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Highlights: 
- Fuel Poverty Potential Risk Index (FPPRI) applied to Santiago, Concepción, and Valparaiso (Chile). 
- A total of 116,640 cases were analysed, considering 9 morphological variables per decile. 
- Combination of 84 datasets using 2 approaches. 
- Performance greater than 96% of the individual models for each climate zone.

Abstract:
Many studies are focused on the diagnosis of fuel poverty. However, its prediction before occupying households is a 
developing research area. This research studies the feasibility of implementing the Fuel Poverty Potential Risk Index 
(FPPRI) in different climate zones of Chile by means of regression models based on artificial neural networks (ANNs). 
A total of 116,640 representative case studies were carried out in the three cities with the largest population in Chile: 
Santiago, Concepción, and Valparaiso. Apart from energy price (EP) and income (IN), 9 variables related to the 
morphology of the building were considered in approach 1. Furthermore, approach 2 was developed by including comfort 
hours (NCH). A total of 84 datasets were combined considering both approaches and the 5 most unfavourable deciles 
according to the income level of Chilean families. The results of both approaches showed a better performance in the 
use of individual models for each climate (MLPC, MLPS, and MLPV), and the dataset with all deciles (Full) could be used. 
Regarding the influence of the input variables on the models, IN was the most determinant, and NCH becomes important 
in approach 2. The potential of using this methodology to allocate social housing would guarantee the main objective of 
the country: the reduction of fuel poverty in the roadmap for 2050.
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Nomenclature

Symbols

: Energy consumption [kWh]𝐸𝐶
: Average monthly cooling energy consumption starting from the simulation [kWh]𝐸𝐶𝑆𝐶

: Average monthly energy consumption of equipment and lighting from the simulation [kWh]𝐸𝐶𝑆𝐸 + 𝐿
: Average monthly heating energy consumption from the simulation [kWh]𝐸𝐶𝑆𝐻

: Electricity price for cooling [$/kWh]𝐸𝑃𝐶
: Electricity price for equipment and lighting [$/kWh]𝐸𝑃𝐸 + 𝐿

: Energy of fuel price for heating [$/kWh]𝐸𝑃𝐻
: Fuel poverty index with an adaptive energy consumption𝐹𝑃𝐼𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑣𝑒

: Occupied hours in thermal comfort applying category III of EN 15251:2007 [h]𝐻𝑐
: Unoccupied hours of the analysed period [h]𝐻𝑑
: Total hours of the analysed period [h]𝐻𝑡

: Mean absolute error𝑀𝐴𝐸



: Multilayer perceptron prediction𝑚𝑖
: Number of instances in the training or testing dataset𝑛
: Correlation coefficient𝑅2

: Root mean square error𝑅𝑀𝑆𝐸
: Actual value𝑡𝑖
: Threshold income [$]𝑇𝐼

Greek letters

: Average of the income distribution of decile n𝜇𝐷𝑛

: Variance of the income distribution of decile n𝜎 2
𝐷𝑛

Abbreviations

ANN: Artificial neural network
C: Concepción
CI: Central internal climate zone (Chile)
CL: Central coastal climate zone (Chile)
D: Shadow’s distance [m]
D1: First decile
D2: Second decile
D3: Third decile
D4: Fourth decile
D5: Fifth decile
EP: Energy price [$]
FPI: Fuel poverty index
FPPRI: Fuel Poverty Potential Risk Index
FR: Form ratio
Full: Set of the five poorest family deciles (from D1 to D5)
H: Shadow’s height [m]
IN: Household income [$]
MLP: Multilayer perceptron
MLPC: Multilayer perceptron trained with data of the climate of Concepción
MLPS: Multilayer perceptron trained with data of the climate of Santiago
MLPV: Multilayer perceptron trained with data of the climate of Valparaiso
MLPC-S: Multilayer perceptron trained with data of the climates of Concepción and Santiago
MLPC-V: Multilayer perceptron trained with data of the climates of Concepción and Valparaiso
MLPS-V: Multilayer perceptron trained with data of the climates of Santiago and Valparaiso
MLPC-S-V: Multilayer perceptron trained with data of the climates of Concepción, Santiago and Valparaiso
NCH: Number of comfort hours [h]
OCDE: Organisation for the Economic Co-operation and Development
OR: Orientation
S: Santiago
SAG: Surface area in contact with the ground [m²]
SAH: Horizontal surface area in contact with other homes [m²]
SAV: Vertical surface area in contact with other homes [m²]
SAR: Roof surface area [m²]
SL: South coastal climate zone (Chile)
V: Valparaiso 
VOL: Volume [m³]



1. Introduction

Global warming, the increase of environmental pollution, and Earth’s land degradation constitute the main problems 
faced by state policies [1]. One of the main reasons for such problems are the greenhouse gases emitted to the 
atmosphere because of the energy consumption of the main industries and sectors of each country. In this sense, the 
building sector is among those contributing to such situation, with buildings being responsible for between 30 and 40% 
of the total energy consumption [2,3]. The energy problem of buildings increases therefore the cases of fuel poverty [4].

Generally, poverty has been one of the main concerns in the last fifty years. The United Nations Millennium 
Development Goals suggest the eradication of extreme poverty as a major objective in order to achieve acceptable 
conditions for the sustainable development of the various communities [5]. Meeting basic needs (e.g., thermal comfort) 
by means of energy consumption can be a real challenge for developing countries [6], mainly due to the combination of 
political and economic factors, as well as to the limitations to generate and distribute the energy [7].

In developed countries, there are no obstacles to generate and distribute energy, so the problem to access to energy 
is focused on the potential of households to access to such energy. Because of the variations of energy prices, 
transformations of the energy sector, the high energy consumption of buildings, and the low incomes of families due to 
the economic crisis, many countries (e.g., United Kingdom or United States) have positioned their energy policies to 
make possible that households with lower economic resources access to energy [8,9]. If families cannot pay bills, health 
problems can be caused [10,11], as well as the death of members in extreme cases [12,13].

Such limitations for households to access to energy resources, or even accessing in an inadequate way (thereby 
limiting inhabitable conditions inside dwellings), is known as energy poverty or fuel poverty [14,15]. Another possible 
definition was given by Boardman [16] by establishing that households presenting limitations to guarantee an acceptable 
thermal comfort in their interior as well as expending more than 10% of their incomes in energy consumption are in fuel 
poverty. The mathematical expression used for this definition is as follows:

𝐹𝑃𝐼 =
𝐸𝑃 ∙ 𝐸𝐶

𝐼 (1)

Where  [dimensionless] is the fuel poverty index,  is the energy price used [$/kWh],  is the energy consumption 𝐹𝑃𝐼 𝐸𝑃 𝐸𝐶
[kWh], and  is the household income ($).𝐼

Boardman’s approach has been widely used in several studies from different countries, such as: (i) O’Sullivan et al. 
[17] analysed the limitations of using the prepayment metering for electricity to identify households in risk of fuel poverty 
in New Zealand. The results showed that the method could be used to target energy policies in spite of generating a 
tendency of greater levels of fuel poverty in households; (ii) Legendre and Ricci [18] studied the approach of fuel poverty 
of 10%, together with other two approaches in French dwellings. The results showed the high probability of cases of 
fuel poverty in buildings occupied by retired people living alone. Likewise, factors such as the fact of being the owner of 
the dwelling and the type of heating and energy systems used imply an increase or a decrease of the risk of fuel poverty; 
and (iii) Santamouris et al. [19] analysed the influence of the economic crisis on the energy consumption of households 
in Greece. After analysing the surveys and the energy consumption between 2010 and 2012, 2% and 14% of families 
with high and low incomes, respectively, were found to be in fuel poverty. 

On the other hand, other studies have analysed the limitations of Boardman’s approach by developing new indexes 
to be adapted better to the characteristics of each region [20]: (i) Fabbri [21] developed the Building Fuel Poverty Index, 
which combines the heating energy consumption of the building and the average incomes with a fuel poverty line of 
6.9%. The author applied such index to various Italian buildings. The results showed values greater than 50% in 
buildings built between 1950 and 1980, with a decreasing tendency in the index value since around 90s; (ii) Desiere et 
al. [22] created the progress out of poverty index, which is based on 10 weighted questions on the characteristics of 
households (e.g., member’s education and conditions of the dwelling). The combination of the values assigned by each 
question determines the risk of energy poverty; (iii) Nussbaumer et al. [23] suggested the multidimensional energy 
poverty index, which is based on the privatization of 5 basic energy services using 6 indicators. A household is at risk 
of energy poverty if the multidimensional energy poverty index exceeds a predefined threshold value; (iv) Wang et al. 
[24] developed the energy poverty comprehensive evaluation index, which is obtained from the sum of four categories: 
household energy affordability and energy efficiency, energy management completeness, energy consumption 
cleanliness, and energy service availability. Such index analyses the energy poverty in China; and (v) Bonatz et al. [25] 
developed a new index of energy poverty to measure cases of fuel poverty in Germany and China. This new index is 
based on the multidimensional energy poverty index of Nussbaumer et al. [23] by introducing indicators of access and 
affordability to compare different developing countries. 



However, none of such indexes considered a fundamental aspect affecting the housing energy consumption: the 
adaptive thermal comfort. The adaptive thermal comfort is the human capacity to adapt to external thermal variations 
by means of different mechanisms. So, both the heat and the cold thresholds vary according to the tendency of 
oscillations of the external temperature. This is of great interest when carrying out energy analysis in buildings because 
there could be variations between 10 and 18% in the energy consumption [26]. Under this circumstance, the authors of 
this research developed the Fuel Poverty Potential Risk Index (FPPRI) in a previous work [27]. Such index is based on 
applying models of adaptive thermal comfort to the energy consumption of dwellings by using Boardman’s criterion of 
10% [16]. To determine the FPPRI, the fuel poverty index is first calculated by using the model of adaptive thermal 
comfort from EN 15251:2007 [28] for category III:

𝐹𝑃𝐼𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑣𝑒 =

𝐸𝐶𝑆𝐶 ∙ (1 ‒
𝐻𝑑 + 𝐻𝑐

𝐻𝑡 ) ∙ 𝐸𝑃𝐶 + 𝐸𝐶𝑆𝐻 ∙ (1 ‒
𝐻𝑑 + 𝐻𝑐

𝐻𝑡 ) ∙ 𝐸𝑃𝐻 + 𝐸𝐶𝑆𝐸 + 𝐿 ∙ 𝐸𝑃𝐸 + 𝐿

𝐼

(2)

Where  is the fuel poverty index with an adaptive energy consumption [dimensionless],  is the average 𝐹𝑃𝐼𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑣𝑒 𝐸𝐶𝑆𝐶
monthly cooling energy consumption starting from the simulation [kWh],  is the electricity price for cooling [$/kWh], 𝐸𝑃𝐶

 is the total hours of the analysed period [h],  is the unoccupied hours of the analysed period [h],  is the occupied 𝐻𝑡 𝐻𝑑 𝐻𝑐
hours in thermal comfort applying category III of EN 15251:2007 [h],  is the average monthly heating energy 𝐸𝐶𝑆𝐻
consumption from the simulation [kWh],  is the energy of fuel price for heating [$/kWh],  is the average 𝐸𝑃𝐻 𝐸𝐶𝑆𝐸 + 𝐿
monthly energy consumption of equipment and lighting from the simulation [kWh], and  is the electricity price for 𝐸𝑃𝐸 + 𝐿
equipment and lighting [$/kWh].

Given that  is an index similar to that from Eq. (1) (i.e., an assessment index when the dwelling is already 𝐹𝑃𝐼𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑣𝑒
occupied), the authors adapted such approach to be used as a predictive index (i.e., determining the probability that the 
family allocated to the dwelling suffers from cases of fuel poverty). For this purpose, a threshold income was first defined 
by using Boardman’s threshold of 10% (Eq. (3)). The field of study selected was Chile, which uses data from the survey 
called Chilean National Socioeconomic Characterization [29], and a normal curve of distribution was adjusted to the risk 
of fuel poverty, in which the area under such curve would determine the FPPRI for a household (Eq. (4)).

𝑇𝐼 = 10 ∙ 𝐼 ∙ 𝐹𝑃𝐼𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑣𝑒 (3)

𝐹𝑃𝑃𝑅𝐼 = ∫𝑇𝐼

‒ ∞
𝑓(𝑇𝐼,𝜇𝐷𝑛,𝜎 2

𝐷𝑛)𝑑𝑇𝐼 (4)

Where  is the threshold income [$],  is the average of the income distribution of decile n [$], and  is the variance 𝑇𝐼 𝜇𝐷𝑛 𝜎 2
𝐷𝑛

of the income distribution of decile n.

Chile was used as a case study because of several aspects. On the one hand, Chile is the first South American 
country to be joined to the Organisation for the Economic Co-operation and Development (OCDE) [30], thus reducing 
poverty rates from 29.1 to 14.4% between 2006 and 2013 (these percentage data were obtained by means of surveys 
using the theory of “capabilities framework” for the fuel poverty [31]) [32]. On the other hand, Chile has a strong policy 
for the development of social housing addressed to the most vulnerable households since 1936 [33]. The national 
property register of social dwellings in Chile contains 344,402 units [33]. Such social dwellings are defined in different 
typologies: (i) typologies of type A (A1, A2, A3, A4, A5, and A6) for individual buildings, and (ii) typologies of type B (B1, 
B2, B3, and B4) for constructions of several block of flats connected through access systems. Moreover, another aspect 
to highlight of Chile is the high electricity prices, which usually are higher than in countries such as France, Norway or 
United Kingdom, with an average price of 211 $/MWh [34]. This aspect becomes more noticeable if prices are adjusted 
to the purchasing power parity index, thereby increasing the average price to 251 $/MWh, and considering the increasing 
tendency presented by prices in recent years [34]. Based on such prices, the monthly cost in a Chilean household can 
reach $500 [34,35]. Consequently, Chilean households spend little money according to the statistical data of the country 
[36]. This aspect, together with the low internal temperature in winter (below 15ºC in the main cities [37]), stresses the 
existing cases of fuel poverty in the country. In addition, there is a relationship between the cases of fuel poverty and 
the increase of firewood in the region of Valdivia, thereby increasing the air pollution in winter as well as contributing to 
the appearance of health problems [38].

So, the FPPRI is an opportunity to reduce the risk of fuel poverty before allocating social housing, thus achieving 
the objectives of the roadmap for 2050 to reduce fuel poverty [39]. Given the technical difficulty and the time required to 
perform simulations in buildings to which families were allocated, the use of artificial neural networks (ANNs) was 
recently suggested to estimate the FPPRI [40]. The input variables corresponded to parameters to be easily measured 
by the staff because such variables were morphological aspects of the building (e.g., orientation and surface areas of 
the envelope), the energy price and the family income. More adjusted results were obtained by using ANNs as a 



regression algorithm than using multivariable regressions. The results showed that the ANNs carried out estimations 
close to the actual values (with a correlation coefficient higher than 99%), while multivariable regressions obtained a 
correlation coefficient between 81 and 96%. As a result, the advantage of the approach to carry out accurate estimations 
is shown, like in other applications of energy estimation (estimation of the energy demand [41] and the energy 
consumption [42] of buildings). 

However, some aspects were not studied in such analysis. Firstly, the case studies analysed by the model 
corresponded to the region of Bío-Bío in Chile, without analysing the possibilities of estimating the ANNs for other 
climate regions. This aspect is quite important because there are significant differences in the energy consumption of 
various climate zones of the country [43]. Secondly, and related to the previous issue, the capacity of generalizing the 
models in new instances of other climates was not analysed. Therefore, the most effective methodology could not be 
determined to be applied by regional and provincial governments of the country. 

For these reasons, this paper analyses the advantages and limitations of applying prediction models of the FPPRI 
in different climate zones in Chile. To do this, 38,880 case studies were simulated in three various climates, thereby 
generating a total of 116,640 case studies. Such case studies were used to train and test 84 prediction models. Based 
on the results, both the possibilities of estimating the models in other climate and the most effective methodology of 
implementation were determined.

This article is divided as follows: Section 2 explains in detail the typology of artificial neural network, climate zones 
of Chile and the workflow of this research. Section 3 assesses and compares the results obtained using different 
approaches, thus establishing the most effective methodology of implementation. Finally, Section 4 provides the main 
conclusions and political implications of the results.

2. Methodology

2.1. Algorithm used: multilayer perceptrons
The neural networks is a mathematical model inspired by the neurological brain structure to solve problems [44], 

both of classification [45,46] and regression [47]. One of the typologies of artificial neural networks providing best 
features are the multilayer perceptrons (MLPs) because they are models supervised with capacities of universal 
approximation [48–50]. MLPs consist of a series of nodes or neurons divided into three or more layers: an input layer, 
one or more hidden layers, and an output layer. The prediction or response given by the model corresponds to the 
output value of the neuron of the last layer. The output value of this neuron corresponds to the sum of the values of the 
neurons of the previous layers which are weighted by synaptic weights and by using activation, transference, and 
propagation functions. 

The adjustment of the synaptic weights is an essential process for the development of the MLP as such weights 
allow the accuracy between the predicted value and the actual value of the instance to be adjusted. For this purpose, a 
learning algorithm is applied to a training dataset. In this research, the MLPs were trained by means of backpropagation 
[51–53], using the Broyden-Fletcher-Goldfarb-Shanno [54] algorithm (which belongs to the quasi-Newton methods). 
Also, the models were developed in the R language. As in the previous work, an architecture of only one layer has been 
used [40] because such architectures generally have a better performance than architectures of several intermediate 
layers [55]. Moreover, sigmoidal activation functions were used as activation and transference functions. 

2.2. Climate zones of Chile
Chile is a country with a wide climate variety. According to the Köppen-Geiger climate classification [56], climates 

in this country are dry, mild, and cold. This climate variety implies that the climate characteristics of the different regions 
of Chile are the same as in different geographical points of the planet, such as Spain or Australia [56]. However, the 
Köppen-Geiger climate classification provides not enough resolutions in some zones because of some aspects, such 
as the topography of the ground and the distance from the sea. The topography significantly influences the 
characteristics of a climate (rainfalls, temperatures, solar radiation, etc.), as many studies show [57–60]. Thus, there 
are various microclimates in Chile because its altitude ranges between 0 and 6,000 meters above mean sea level [61]. 
This aspects is reflected in the state regulation in the standard NCh 1079:2008 [62], which classifies the climate of the 
country in 9 zones (Fig. 1). 

As indicated above, this study analyses the potential and limitations of using prediction tools of the FPPRI in the 
climate variations presented by Chile in different zones. Given the variety of existing climate zones, three of them were 
analysed: south coastal zone (SL), central internal zone (CI), and central coastal zone (CL). These climates are very 



different [43] and the feasibility of estimating the models can be applied to other climate zones. The cities selected for 
each climate as references were Concepción (SL), Santiago (CI), and Valparaiso (CL). 

Fig. 1. Climate zones of Chile and the cities analysed.

2.3. Data collection, approaches, and training and testing procedure
Fig. 2 represents the flowchart of this research. Training and testing datasets were generated by making simulations 

of typologies A1 (individual building with internal vertical access) and B1 (parallel buildings with external vertical access) 
for projects of social housing developed by the Chilean Ministry of Housing and Urbanism (MINVU in Spanish) [63]. 
Both typologies were selected because they represent 40.5% of the total existing social housing in the country [64] (the 
remaining percentage is divided into 8 typologies of social housing). Furthermore, such typologies of social housing are 
the most built in the country since 2005 [34]. Likewise, the income levels of the families of the dataset were determined 
according to the poorest deciles. According to the Chilean national socioeconomic survey, Chilean families can be 
classified in 10 groups (called deciles) depending on their economic incomes (the 10th decile corresponds to the 
wealthiest families, and the 1st decile to the poorest families) [32]. The five first deciles were therefore considered in 
this study because they were the most vulnerable (Fig. 3). The maximum and minimum expected household income 
per decile could therefore be estimated according to the average number of inhabitants per household [32].

https://www.sciencedirect.com/topics/social-sciences/government-departments


Fig. 2. Flowchart of the training and testing procedure of the models.

Fig. 3. Upper and lower limit income values of the Chilean deciles.

The thermophysical properties of the envelope's elements were obtained from the standard DS 47 [63]. The minimal 
values of air tightness, the air change rate, and the thermal loads of occupation, equipment, and lighting were obtained 
from the Chilean Sustainable Building Code (CCS in Spanish) [65]. Fig. 4. shows the percentage distribution per hour 
of the internal loads by CCS. Different combinations of surface, form ratio, orientation, etc. were made in the simulations, 
as in a previous research [34].



Fig. 4. Distribution of loads for the days of the week and weekends.

Each combination of case study was simulated in the climates of Concepción, Santiago, and Valparaiso. A total of 
38,880 case studies were carried out per city. The simulated cases were designed according to Chilean regulations 
[33,63]. Further information on the parameters used can be found in a previous research [34]. Also, the simulations 
were undertaken by using Energy Plus software. In such 38,880 case studies, 7,776 case studies corresponded to the 
poorest deciles (i.e., from D1 to D5). The FPPRI was determined to each case study according to their income levels. 

After simulating 38,880 case studies per city (i.e., a total of 116,640 case studies), datasets were created. For this 
purpose, two possibilities for the architecture of the MLP were considered (Fig. 5). The former corresponds to the original 
approach from the previous research [40] In this approach, the input variables were as follows: (i) orientation (OR); (ii) 
form ratio (FR); (iii) volume (VOL); (iv) surface area in contact with the ground (SAG); (v) horizontal surface area in 
contact with other homes (SAH); (vi) roof surface area (SAR); (vii) vertical surface area in contact with other homes 
(SAV); (viii) shadow’s distance (D); (ix) shadow height (H); (x) energy price (EP); and (xi) household income (IN). D and 
H values have been analysed using the combination with the orientation variables and studying the four orientations 
with nine combinations of element possibilities that could generate shade over the simulated case. D and H values, 
which will characterize the position and size of the shade element, have been calculated starting from the winter solstice. 
Three values of H have been calculated so that the winter solstice projects cast shade over all the ground, intermediate 
or top floors for a D between 3 and 5.71 m (distances according to Chilean regulations [63]). The output variable was 
FPPRI. It is worth noting that this variable was logarithmically transformed to obtain a better performance in the 
estimations. 

Given that this study aimed at analysing the capacity of generalization of the models to estimate the FPPRI in other 
climate regions, a new input variable was introduced in approach 2: the number of thermal comfort hours (NCH). This 
was due to the lack of a variable considering the variability in the performance of the building because of climate. The 
number of thermal comfort hours was determined according to the upper and lower limits for category III from EN 
15251:2007 [28]. Such limits are in turn determined according to the daily average variation of the external temperature. 
To verify that there was not a high correlation of the new variable with the previous variables of the model, Pearson’s 
correlation and the p-values were previously analysed. Pearson correlation coefficients between the new predictor 
variable and the remaining variables were low. Only a low correlation was obtained with VOL, SAG, and SAR, although 
the p-values obtained for these pairs of variables allowed the null hypothesis to be rejected. Therefore, the relationship 
between NCH and other variables had a behaviour similar to that of the remaining pairs of variables. 

 



Fig. 5. Scheme of both approaches of MLPs.

Therefore, two types of datasets were developed according to the input variables of each model. At first, 18 datasets 
were obtained for each approach (5 datasets per decile were carried out for each city, and 1 dataset including all deciles). 
Each decile was randomly divided into two sets: 75% of instances corresponded to the training dataset, and the 
remaining 25% to the testing dataset. However, the feasibility of combining data from the different climates was analysed 
in the training of each model. For this reason, the training datasets of the 3 climates were combining, thereby generating 
a total of 42 training datasets for each approach (i.e., a total of 84 MLPs were analysed). Likewise, the combined training 
datasets had all the instances of the training datasets of each climate to perform the training with the same case studies 
for each climate. For this reason, the number of instances in the training dataset is larger in the combined models (MLPC-

S, MLPC-V, MLPS-V, and MLPC-S-V) than in the individual models of each climate (MLPC, MLPS, and MLPV). To provide a 
clearer explanation of the types of the MLPs developed according to the training data, a further explanation is given in 
Table 1. It is worth highlighting that a 10-fold cross validation was carried out for the training of the MLPs. The cross 
validation allows the bias and the variance of the MLP to be reduced [66]. All training datasets were randomly divided 
into 10 subsets. For each fold, 9 subsets were used for the training, and the remaining subset for the validation of the 
model. The performance of the model in the training is obtained by the average value of the 10 folds.

Table 1. MLPs and training datasets used.
Model Submodel Training dataset Number of instances in the training dataset
MLPC MLPC (D1) Concepción – decile 1 5,832

MLPC (D2) Concepción – decile 2 5,832
MLPC (D3) Concepción – decile 3 5,832
MLPC (D4) Concepción – decile 4 5,832
MLPC (D5) Concepción – decile 5 5,832
MLP C (D1) Concepción – all deciles 29,160

MLPS MLPS (D1) Santiago – decile 1 5,832
MLPS (D2) Santiago – decile 2 5,832
MLPS (D3) Santiago – decile 3 5,832
MLPS (D4) Santiago – decile 4 5,832
MLPS (D5) Santiago – decile 5 5,832
MLPS (Full) Santiago – all deciles 29,160

MLPV MLPV (D1) Valparaiso – decile 1 5,832
MLPV (D2) Valparaiso – decile 2 5,832
MLPV (D3) Valparaiso – decile 3 5,832
MLPV (D4) Valparaiso – decile 4 5,832
MLPV (D5) Valparaiso – decile 5 5,832
MLPV (Full) Valparaiso – all deciles 29,160

MLPC-S MLP C: S (D1) Concepción and Santiago – decile 1 11,664
MLP C: S (D2) Concepción and Santiago – decile 2 11.664
MLP C: S (D3) Concepción and Santiago – decile 3 11,664
MLP C: S (D4) Concepción and Santiago – decile 4 11,664
MLP C: S (D5) Concepción and Santiago – decile 5 11,664
MLPC-S (Full) Concepción and Santiago – all deciles 58,320

MLPC-V MLPC-V (D1) Concepción and Valparaiso – decile 1 11,664
MLPC-V (D2) Concepción and Valparaiso – decile 2 11,664
MLPC-V (D3) Concepción and Valparaiso – decile 3 11,664
MLPC-V (D4) Concepción and Valparaiso – decile 4 11,664
MLPC-V (D5) Concepción and Valparaiso – decile 5 11,664
MLPC-V (Full) Concepción and Valparaiso – all deciles 58,320

MLPS-V MLP S: V (D1) Santiago and Valparaiso – decile 1 11,664
MLP S: V (D2) Santiago and Valparaiso – decile 2 11,664
MLP S: V (D3) Santiago and Valparaiso – decile 3 11,664
MLP S: V (D4) Santiago and Valparaiso – decile 4 11,664
MLP S: V (D5) Santiago and Valparaiso – decile 5 11,664
MLPS-V (Full) Santiago and Valparaiso – all deciles 58,320

MLPC-S-V MLPC-S-V (D1) Concepción, Santiago and Valparaiso – decile 1 17,496
MLPC-S-V (D2) Concepción, Santiago and Valparaiso – decile 2 17,496
MLPC-S-V (D3) Concepción, Santiago and Valparaiso – decile 3 17,496
MLPC-S-V (D4) Concepción, Santiago and Valparaiso – decile 4 17,496
MLPC-S-V (D5) Concepción, Santiago and Valparaiso – decile 5 17.496
MLPC-S-V (Full) Concepción, Santiago and Valparaiso – all deciles 87,480

After training the models, their performances in new instances were assessed. As mentioned above, the testing 
dataset was obtained from 25% of the instances of the datasets of each climate: such instances were randomly selected. 
Each MLP was tested in new instances of the 3 climates analysed in this study. The type of testing dataset varied 
depending on whether the model was trained with separate deciles or the full set. In this sense, it is worth noting that 
combined testing datasets were not used, unlike in the training of the models: each model was analysed using the same 
testing subset (deciles or full) as the other models. 

To assess the performance of the models developed, three statistical parameters were used: (i) the correlation 
coefficient ( ) (Eq. 5), the root mean square error ( ) (Eq. 6), and the mean absolute error ( ) (Eq. 7). The use 𝑅2 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸
of such parameters allows the performance of the models to be correctly defined. Quality indicators of the model were 
when the value for  was greater than 0.95, and when  and  were as low as possible [40].𝑅2 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸
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Where  is the MLP’s prediction,  is the actual value, and  is the number of instances in the training or testing dataset.𝑚𝑖 𝑡𝑖 𝑛

3. Results and discussion

3.1. Results of approach 1 (without NCH as an input variable)

Firstly, the results obtained with the original architecture of the model were analysed. As indicated in Section 2, 
individual models were trained for each decile, as well as models with all datasets of the deciles. Likewise, the 
combination of data of the various cities was studied to analyse the possibility of generalization of the MLP. The 
performance obtained by each model in the training and testing phases are indicated in Tables 2 and 3, respectively. 
The values obtained in the statistical parameters in the training phase show that the performance obtained by the MLPs 
with a training dataset of an only climate obtained an acceptable degree of adjustment for training data, whereas the 
performance obtained by the models with combined training datasets presented limitations (e.g., MLPC-S). In this way, 

 was in all cases greater than 97.9% in individual models, whereas  presented decreases greater than 10.26% in 𝑅2 𝑅2

the combined models with respect to the lowest value of the individual models. Only models of MLPC-V had values for 
 greater than 95%. This was due to the similarity presented by climates CL and SL, which contributed to obtain a 𝑅2

better performance in the model. However, the dataset of Santiago presented great differences with the other two 
climates, implying that the combined models trained with data of this climate (MLPC-S, MLPS-V, and MLPC-S-V) had a low 

.𝑅2

Table 2. Results of the training of the models using approach 1.
Model Submodel and Dataset  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
MLPC MLPC (D1) 98.53 0.027 0.033

MLPC (D2) 98.16 0.015 0.025
MLPC (D3) 98.78 0.009 0.013
MLPC (D4) 98.62 0.008 0.011
MLPC (D5) 98.51 0.006 0.009
MLP C (D1) 98.92 0.010 0.017

MLPS MLPS (D1) 98.16 0.032 0.040
MLPS (D2) 97.91 0.011 0.017
MLPS (D3) 98.13 0.007 0.011
MLPS (D4) 98.29 0.005 0.008
MLPS (D5) 98.33 0.004 0.006
MLPS (Full) 98.40 0.008 0.013

MLPV MLPV (D1) 98.17 0.030 0.037
MLPV (D2) 98.50 0.013 0.020
MLPV (D3) 98.61 0.008 0.013
MLPV (D4) 98.43 0.007 0.011
MLPV (D5) 98.39 0.006 0.009
MLPV (Full) 98.67 0.011 0.017

MLPC-S MLP C: S (D1) 83.23 0.113 0.125
MLP C: S (D2) 79.21 0.049 0.073



MLP C: S (D3) 70.13 0.037 0.059
MLP C: S (D4) 57.15 0.036 0.054
MLP C: S (D5) 73.11 0.023 0.035
MLPC-S (Full) 84.96 0.036 0.055

MLPC-V MLPC-V (D1) 97.81 0.033 0.040
MLPC-V (D2) 98.04 0.017 0.025
MLPC-V (D3) 97.48 0.013 0.019
MLPC-V (D4) 96.86 0.011 0.016
MLPC-V (D5) 97.92 0.007 0.011
MLPC-V (Full) 96.98 0.018 0.027

MLPS-V MLP S: V (D1) 91.22 0.070 0.088
MLP S: V (D2) 77.87 0.045 0.070
MLP S: V (D3) 75.16 0.032 0.051
MLP S: V (D4) 80.70 0.023 0.034
MLP S: V (D5) 90.02 0.013 0.020
MLPS-V (Full) 94.92 0.019 0.030

MLPC-S-V MLPC-S-V (D1) 86.08 0.100 0.111
MLPC-S-V (D2) 86.54 0.037 0.060
MLPC-S-V (D3) 76.04 0.032 0.054
MLPC-S-V (D4) 87.86 0.020 0.030
MLPC-S-V (D5) 85.85 0.017 0.026
MLPC-S-V (Full) 82.65 0.037 0.060

After analysing the performance obtained by each model in the training, its performance was assessed in new 
instances. Table 3 indicates the performance in the prediction obtained by the model trained with the total dataset (Full) 
as well as by the combination of the individual models (D1-5). In the latter, the performance is obtained from the estimation 
carried out by each model per decile in the testing subset of its decile, combining all estimations in a unique dataset 
where their statistical parameters are analysed. For further information on the performance in the testing of each decile, 
Appendix A includes the statistical parameters obtained. Also, the point clouds between the actual values and the 
predicted values in all the case studies are represented. As can be seen, the estimation of the models trained with a 
climate presented an acceptable degree of adjustment in estimations carried out in the same climate: in the different 
models,  was greater than 98.2%, whereas  and  were lower than 0.008 and 0.014, respectively. There 𝑅2 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸
were not great differences between using individual models per deciles (D1-5) or a full model for all deciles (Full), except 
a better estimation in the latter (  increased between 0.20 and 0.42% in estimations performed in the same day). 𝑅2

However, these models had limitations when estimations of other climates were performed. In this sense, estimations 
could reach a  of 28.49% (MLPC - Santiago (D1-5)). Only in climates with similar characteristics (Concepción and 𝑅2

Valparaiso), the estimation carried out by the model had a good degree of adjustment, with values for  ranging 𝑅2

between 94.78 and 97.82. However, because of the limitations presented by the model to estimate the FPPRI in other 
climates (e.g., NL, SE or AN), it is more advisable to perform estimations only with the models generated by each 
climate. So, the models generated by combining data of the different climates (MLPC-S, MLPC-V, MLPS-V, and MLPC-S-V) 
did not improve the estimations generated. The estimations carried out by these models had a tendency similar to the 
individual models of each climate, with estimations closer to the actual values in climates which were used to train the 
models. However, except in some models,  in the estimations of the same climates was lower than 95%. Moreover, 𝑅2

the estimations in the new climate were not satisfactory, with a very poor performance of the models. Finally, the use of 
a model trained with data from all climates did not allow an acceptable level of performance to be reached. The purpose 
of studying this model was due to the potential of having a generic model for all Chile. However,  had values of up to 𝑅2

58.98%, with an  of up to 0.056. Therefore, the use of individual models for each climate to perform estimations 𝑀𝐴𝐸
only in such climate is the best option for approach 1. In this sense, the point clouds between the actual values and the 
predicted values of the FPPRI presented a greater accuracy in the individual models than in the best option of the 
combined models (see Appendix A).

Table 3. Results of the testing of the models using approach 1 (the best estimations carried out by each individual model 
in its climate as well as by the best option of the combined models in each climate are in bold).
Model Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
MLPC Concepción (D1-5) 98.52 0.012 0.020

Santiago (D1-5) 28.49 0.070 0.088
Valparaiso (D1-5) 97.12 0.018 0.025
Concepción (Full) 98.93 0.010 0.017
Santiago (Full) 14.52 0.073 0.100
Valparaiso (Full) 95.87 0.020 0.031

MLPS Concepción (D1-5) 63.52 0.075 0.099
Santiago (D1-5) 98.21 0.008 0.014
Valparaiso (D1-5) 71.47 0.062 0.080



Concepción (Full) 70.65 0.068 0.089
Santiago (Full) 98.41 0.008 0.014
Valparaiso (Full) 77.98 0.054 0.071

MLPV Concepción (D1-5) 94.78 0.023 0.037
Santiago (D1-5) 60.16 0.054 0.066
Valparaiso (D1-5) 98.31 0.011 0.019
Concepción (Full) 97.82 0.016 0.024
Santiago (Full) 38.64 0.065 0.085
Valparaiso (Full) 98.71 0.011 0.017

MLPC-S Concepción (D1-5) 88.73 0.029 0.055
Santiago (D1-5) 53.02 0.054 0.071
Valparaiso (D1-5) 90.29 0.028 0.046
Concepción (Full) 81.00 0.051 0.072
Santiago (Full) 92.13 0.022 0.030
Valparaiso (Full) 86.89 0.037 0.055

MLPC-V Concepción (D1-5) 98.14 0.014 0.022
Santiago (D1-5) 35.99 0.065 0.083
Valparaiso (D1-5) 98.15 0.013 0.020
Concepción (Full) 95.82 0.024 0.034
Santiago (Full) 62.31 0.049 0.066
Valparaiso (Full) 98.38 0.013 0.019

MLPS-V Concepción (D1-5) 60.58 0.075 0.102
Santiago (D1-5) 96.56 0.011 0.019
Valparaiso (D1-5) 80.12 0.048 0.066
Concepción (Full) 68.88 0.066 0.092
Santiago (Full) 94.87 0.015 0.024
Valparaiso (Full) 94.75 0.022 0.035

MLPC-S-V Concepción (D1-5) 92.52 0.028 0.045
Santiago (D1-5) 58.98 0.049 0.067
Valparaiso (D1-5) 95.14 0.020 0.033
Concepción (Full) 74.28 0.056 0.084
Santiago (Full) 93.63 0.020 0.027
Valparaiso (Full) 84.83 0.037 0.059

3.2. Results of approach 2 (with NCH as an input variable)

After analysing the performance of the MLPs of approach 1, the performance of the models with the input variable 
NCH were assessed. As in approach 1, the performance obtained in the training (Table 4) and testing (Table 5) are 
indicated. The incorporation of the new input variable significantly improved the degree of adjustment obtained in the 
training phase, the values for R² were modified between -0.8% and 42.62%, and MAE and RMSE were modified up to 
0.106 and 0.112 with respect to the models of Table 2. In this sense, individual models per climate obtained a  greater 𝑅2

than 99.35%, and  and  were lower than 0.012 and 0.015, respectively. Likewise, the models generated with 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸
the combinations of data from the different climates had a good performance in the training phase, obtaining the worst 
values in the MLPs trained with the three climates: the value for  was lower than 96.67% (MLPC-S-V (D4)), whereas the 𝑅2

greatest values for  and  were 0.036 and 0.045 (MLPC-S-V (D1)), respectively.𝑀𝐴𝐸 𝑅𝑀𝑆𝐸

Table 4. Results of the training of the models using approach 2.
Model Submodel and Dataset  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
MLPC MLPC (D1) 99.90 0.007 0.009

MLPC (D2) 99.81 0.004 0.008
MLPC (D3) 99.88 0.003 0.004
MLPC (D4) 99.82 0.003 0.004
MLPC (D5) 99.84 0.002 0.003
MLP C (D1) 99.92 0.003 0.005

MLPS MLPS (D1) 99.74 0.012 0.015
MLPS (D2) 99.73 0.003 0.006
MLPS (D3) 99.80 0.002 0.004
MLPS (D4) 99.35 0.003 0.005
MLPS (D5) 99.75 0.001 0.003
MLPS (Full) 99.80 0.002 0.005

MLPV MLPV (D1) 99.90 0.007 0.008
MLPV (D2) 99.88 0.003 0.006
MLPV (D3) 99.72 0.003 0.006
MLPV (D4) 99.79 0.002 0.004



MLPV (D5) 99.85 0.002 0.003
MLPV (Full) 99.89 0.003 0.005

MLPC-S MLP C: S (D1) 99.82 0.010 0.013
MLP C: S (D2) 99.75 0.004 0.008
MLP C: S (D3) 99.77 0.003 0.005
MLP C: S (D4) 99.77 0.003 0.004
MLP C: S (D5) 99.79 0.002 0.003
MLPC-S (Full) 99.84 0.003 0.006

MLPC-V MLPC-V (D1) 99.08 0.020 0.026
MLPC-V (D2) 99.03 0.011 0.017
MLPC-V (D3) 97.40 0.013 0.019
MLPC-V (D4) 99.27 0.005 0.008
MLPC-V (D5) 99.17 0.005 0.007
MLPC-V (Full) 99.13 0.010 0.015

MLPS-V MLP S: V (D1) 99.42 0.017 0.023
MLP S: V (D2) 98.96 0.008 0.015
MLP S: V (D3) 98.25 0.007 0.014
MLP S: V (D4) 99.02 0.004 0.008
MLP S: V (D5) 98.96 0.004 0.006
MLPS-V (Full) 98.98 0.007 0.013

MLPC-S-V MLPC-S-V (D1) 97.70 0.036 0.045
MLPC-S-V (D2) 97.48 0.016 0.026
MLPC-S-V (D3) 97.68 0.011 0.017
MLPC-S-V (D4) 96.67 0.009 0.016
MLPC-S-V (D5) 98.77 0.005 0.008
MLPC-S-V (Full) 98.85 0.009 0.016

Despite the good performance obtained by the MLPs of approach 2 in the training phase, the performance in testing 
presented a tendency similar to that obtained in approach 1: the models of each climate generally carried out better 
estimations than the combined models. In this sense,  oscillated between 99.70 and 99.92 in the estimations 𝑅2

performed in the same climate by MLPC, MLPS, and MLPV, whereas  and  oscillated between 0.002-0.004 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸
and between 0.005-0.007, respectively. In addition, full models could generalize better than the individual models (D1-

5). Also, these models carried out better estimations in the other climates than in the approach 1, thus modifying the 
tendency of accuracy of the models with respect to approach 1: the MLPs with data of Concepción or Santiago carried 
out acceptable estimations in the other climate, whereas estimations in Valparaiso presented a lower degree of 
adjustment. Regarding the models combined with two climates ((MLPC-S, MLPC-V, and MLPS-V), there were limitations to 
estimate the FPPRI in the climate not included in the training, reaching a correlation of 9.38%, with a  of up to 𝑀𝐴𝐸
0.117. Under this circumstance, the generation of the model with data of all climates (MLPC-S-V) allowed acceptable 
estimations in all climates to be performed, with  being greater than 96%. However, the performance obtained by 𝑅2

MLPC-S-V was lower than that of individual models of each climate (MLPC, MLPS, and MLPV), with a decrease of R² 
between 0.59 and 3.45%. As in approach 1, the use of individual models is more adequate than the combined models. 

Table 5. Results of the testing of the models using approach 2 (the best estimations carried out by each individual model 
in its climate as well as by the best option of the combined models in each climate are in bold).
Model Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
MLPC Concepción (D1-5) 99.81 0.004 0.007

Santiago (D1-5) 98.05 0.010 0.015
Valparaiso (D1-5) 91.65 0.032 0.043
Concepción (Full) 99.92 0.003 0.005
Santiago (Full) 97.96 0.010 0.015
Valparaiso (Full) 91.95 0.032 0.043

MLPS Concepción (D1-5) 97.75 0.015 0.024
Santiago (D1-5) 99.70 0.003 0.006
Valparaiso (D1-5) 91.99 0.028 0.042
Concepción (Full) 98.90 0.012 0.017
Santiago (Full) 99.80 0.002 0.005
Valparaiso (Full) 92.80 0.029 0.041

MLPV Concepción (D1-5) 80.18 0.053 0.073
Santiago (D1-5) 91.87 0.018 0.030
Valparaiso (D1-5) 99.87 0.003 0.005
Concepción (Full) 78.81 0.055 0.076
Santiago (Full) 91.97 0.019 0.031
Valparaiso (Full) 99.88 0.003 0.005

MLPC-S Concepción (D1-5) 99.79 0.004 0.008
Santiago (D1-5) 99.71 0.003 0.006



Valparaiso (D1-5) 92.20 0.031 0.042
Concepción (Full) 99.85 0.004 0.006
Santiago (Full) 99.78 0.003 0.005
Valparaiso (Full) 92.35 0.031 0.042

MLPC-V Concepción (D1-5) 99.19 0.009 0.015
Santiago (D1-5) 73.62 0.039 0.054
Valparaiso (D1-5) 98.92 0.010 0.015
Concepción (Full) 99.43 0.009 0.012
Santiago (Full) 81.34 0.034 0.047
Valparaiso (Full) 98.72 0.012 0.017

MLPS-V Concepción (D1-5) 15.19 0.097 0.150
Santiago (D1-5) 98.54 0.006 0.013
Valparaiso (D1-5) 99.11 0.008 0.014
Concepción (Full) 9.38 0.117 0.173
Santiago (Full) 97.86 0.008 0.016
Valparaiso (Full) 99.44 0.006 0.011

MLPC-S-V Concepción (D1-5) 96.56 0.016 0.030
Santiago (D1-5) 96.25 0.009 0.020
Valparaiso (D1-5) 97.18 0.016 0.025
Concepción (Full) 99.33 0.008 0.014
Santiago (Full) 98.85 0.007 0.012
Valparaiso (Full) 98.22 0.011 0.020

3.3. Approach 1 vs approach 2

After analysing their performance, both approaches were compared. For this purpose, Fig. 6 represents radar charts 
of the values of the statistical parameters obtained in the testing phase. The incorporation of the input variable NCH in 
the models increased the correlation coefficient of almost all cases, with decreases of  and . However, there 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸
were exceptions: (i) the estimation of the FPPRI in Valparaiso carried out by MLPC; and (ii) the estimations of FPPRI in 
Concepción carried out by MLPV and MLPS-V. Moreover, the differences between both approaches in the performance 
of the estimations performed by individual models of each climate in their own climate were low, with an increase of  𝑅2

between 1.00 and 1.59%. There was a significant improvement only in the error parameters, with decreases of up to 
0.008 in  and 0.013 in . However, the values of the error parameters obtained in these models of approach 1 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸
continued to be low (Table 3). Both approaches could therefore be used as tools to estimate the FPPRI in the different 
climates. To determine the greatest potential of using some of the approaches, the influence of the input variables on 
the model was analysed, as well as the cost of obtaining their values.



Fig. 6. Comparison of the statistical parameters of approach 1 (orange) and approach 2 (blue). 



The influence of the input variables on the models is shown in Table 6. The effect on one of the models is indicated 
to speed up the reading, since the tendency was the same in the other models. By removing one of the input variables, 
the effect generated in the estimations carried out by the models can be appreciated, thus decreasing its performance. 
In approach 1, the variable of income had the highest influence on the performance of the model, with a percentage 
deviation in  of 89.44% and increases in the error parameters greater than 810%. The remaining input variables 𝑅2

presented similar contributions in the performance of the model, highlighting the decrease generated in  by removing 𝑅2

SAV, as well as the increase in  and  by removing SAG, SAV, and D. Regarding approach 2, the variable of 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸
income obtained the highest influence on the performance of the model. NCH (number of comfort hours) influenced the 
performance of the MLPs similar to that of SAV (variable vertical surface area in contact with other homes). The 
remaining input variables of approach 2 had a low influence on the performance of the model, although such variables 
contributed to obtain adjusted results. 

As can be seen in both approaches, and except the variable of income, the removal of some input variables did not 
significantly influence the performance of the model. This aspect becomes important if the time required to obtained 
values of the input variables is analysed. OR, FR, VOL, SAG, SAR, SAH, SAV, D, and H are morphological aspects of 
the social building which are easily obtained using both data of the building’s project and in situ measurements. Likewise, 
EP can be obtained based on data from the supplier companies (e.g., the General Electricity Company of Chile) and IN 
of the family incomes to which a social dwelling should be allocated. The variables of approach 1 are therefore variables 
easily obtained by the technical personnel responsible for the allocation. NCH also constitutes an input variable whose 
values can be estimated, although with some limitations with respect to the other input variables. This is because NH is 
an input variable whose value should be obtained by simulating the building in order to obtain the internal temperature 
and assess it with respect to the upper and lower limits obtained with the running mean temperature. Hence, the time 
required to estimate its value is greater than that used in other variables, consequently slowing down the process of 
determining the FPPRI. Likewise, the possibility of determining such variable in situ would have limitations of use, since 
the temperatures of dwellings should be monitored for a year before being allocated. 

Because of the temporal cost implied by acquiring the NCH and the degree of accuracy obtained by individual 
models of approach 1, the greatest potential of using the model of approach 1 is therefore determined to carry out 
estimations of the FPPRI in each climate.

Table 6. Influence of the input variables on the quality indicators (the results obtained in the testing of the data of 
Concepción using MLPC).

Model
Input 
variable 
removed

 𝑅2

[%]

Deviation 
percentage of 

 [%]𝑅2
 𝑀𝐴𝐸

Deviation 
percentage of 

 [%]𝑀𝐴𝐸
𝑅𝑀𝑆𝐸

Deviation 
percentage of 

 [%]𝑅𝑀𝑆𝐸
OR 97.65 -1.29 0.016 60.00 0.025 47.06
FR 98.74 -0.19 0.012 20.00 0.018 5.88
V 98.64 -0.29 0.010 0.00 0.019 11.76
SAG 98.93 0.00 0.028 180.00 0.035 105.88
SAR 98.70 -0.23 0.011 10.00 0.019 11.76
SAH 98.88 -0.05 0.010 0.00 0.017 0.00
SAV 87.38 -11.67 0.038 280.00 0.059 247.06
D 98.35 -0.59 0.035 250.00 0.044 158.82
H 97.51 -1.44 0.017 70.00 0.026 52.94
EP 98.20 -0.74 0.014 40.00 0.022 29.41

Approach 1

IN 10.45 -89.44 0.091 810.00 0.156 817.65
OR 99.83 -0.09 0.004 33.33 0.007 40.00
FR 99.75 -0.17 0.005 66.67 0.008 60.00
V 99.89 -0.03 0.003 0.00 0.006 20.00
SAG 99.92 0.00 0.006 100.00 0.008 60.00
SAR 99.88 -0.04 0.003 0.00 0.006 20.00
SAH 99.88 -0.04 0.003 0.00 0.006 20.00
SAV 98.92 -1.00 0.010 233.33 0.017 240.00
D 99.89 -0.03 0.003 0.00 0.005 0.00
H 99.87 -0.05 0.003 0.00 0.006 20.00
EP 99.18 -0.74 0.025 733.33 0.031 520.00
IN 11.45 -88.54 0.090 2,900.00 0.155 3,000.00

Approach 2

NCH 98.93 -0.99 0.010 233.33 0.017 240.00

3.4. Estimation methodology of FPPRI for social housing allocation



Given that the models developed with approach 1 presented limitations when FPPRI was estimated in climates not 
included in its training, it is necessary to carry out models for each type of climate for their correct implementation. 
Likewise, only a full model for each climate is required because the performance obtained by the individual models per 
deciles and by models for all of them was almost identical. To obtain the training dataset, 29,160 simulations (instances) 
should be performed (corresponding to 75% of the full dataset of each climate used in this research). The dataset should 
include the input variables of the MLPs (i.e., OR, FR, V, SAG, SAR, SAH, SAV, D, H, EP, and IN), as well as the output 
variable of the models (FPPRI). When assessing the allocation of families in social housing, the input variables 
corresponding to the morphology of the building should be assessed, as well as the energy price and incomes of the 
family to be allocated. The input vector generated for each case study will be introduced in the model to estimate the 
FPPRI. If the estimation is lower than 10%, the combination of the characteristics of the dwelling and the family does 
not suffer from risk of fuel poverty, so such social dwelling can be allocated to the family. If the value is greater than 
10%, the variables of the building should be reassessed until obtain the most adequate configuration with the family. 
Fig. 7 shows the procedure of generating the model of a climate and its use in a real case of social housing allocation. 

Fig. 7. Flowchart of the methodology proposed for social housing allocation to reduce the risk of fuel poverty.

4. Conclusions 
The roadmap of the Chilean government “Energy 2050” establishes as 1 out of the 38 main objectives of the country 

to promote adequate specific measurements to avoid cases of fuel poverty. One of the possibilities to reduce cases of 
fuel poverty is the smart allocation of low-income families to households adapted to their limitations. For this purpose, 
the use of artificial intelligence would provide prediction models assessing the best combination for the different families 
obtaining the lowest fuel poverty potential risk index (FPPRI). The use of such index has many advantages to predict 
better the real behaviour of the low-income families in order to have conditions of thermal comfort inside their dwellings 
as the adaptive comfort is used.

The main objective of this research was therefore the analysis of the potentials and limitations of the multilayer 
perceptrons to estimate the FPPRI in various climate zones in Chile as well as to allocate social housing to families with 
low economic resources correctly. A total of 38,880 case studies have been generated in three different climate zones 
of the country (i.e., a total of 166,640 case studies) Such case studies corresponded to both the 5 deciles of the most 
vulnerable families of the country and the two most numerous typologies of social housing of new construction since 
2005.

The results showed the most adequate methodological approach to use prediction models of FPPRI in social 
housing located in other climate zones. The use of models typical of each climate allowed estimations adjusted to the 



actual values of FPPRI to be carried out in the case studies located in such climate, with a correlation coefficient greater 
than 98%. Likewise, the use of full models for the five poorest types of families obtained predictions of the same quality 
as individual models of each type of family. However, there were limitations of generalization of the models for the case 
studies of other climates. The most effective methodology to estimate the FPPRI of all types of the most vulnerable 
families is therefore the use of individual models for each climate. Also, the most adequate vector of input variables for 
the flexible implementation of the methodology was that without the variable of the number of comfort hours. 

The potential of using this methodology to allocate social housing would guarantee the main goal of the country, 
that is, reducing the fuel poverty in the roadmap for 2050. By means of prediction models, regional and provincial 
governments can have simple and flexible tools of assessment. The use of input variables of architectural characteristics 
of buildings of social dwellings, the energy price, and family incomes are aspects easily to be analysed by the technical 
or administrative personnel responsible for social housing allocation. Likewise, technicians responsible for designing 
new social housing projects can use these prediction models to adapt the morphological characteristics of the building 
to the poorest families. It is worth highlighting that users should be aware of the need of using adaptively air conditioning 
systems for the model and the application of FPPRI to work. For this reason, various political estates should promote 
education and awareness plans for the poorest families before allocating social housing. 

To conclude, the results of this research has defined the most effective methodology of implementing prediction 
models of the FPPRI in all regions of Chile. Likewise, the accuracy achieved by the estimations of the model implies the 
implementation of the methodology of social housing allocation in other countries. 
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Appendix A

Table A1. Results of the testing of the MLPC per deciles (approach 1).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 98.39 0.028 0.035
Santiago (D1) 7.88 0.115 0.131
Valparaiso (D1) 96.21 0.029 0.037
Concepción (D2) 98.15 0.015 0.025
Santiago (D2) 28.21 0.079 0.097
Valparaiso (D2) 97.69 0.018 0.025
Concepción (D3) 98.72 0.009 0.014
Santiago (D3) 16.38 0.060 0.075
Valparaiso (D3) 96.72 0.015 0.021
Concepción (D4) 98.69 0.008 0.011
Santiago (D4) 2.38 0.053 0.063
Valparaiso (D4) 94.20 0.016 0.021
Concepción (D5) 98.22 0.007 0.011
Santiago (D5) 15.53 0.043 0.052
Valparaiso (D5) 93.50 0.013 0.018

Table A2. Results of the testing of the MLPS per deciles (approach 1).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 23.22 0.237 0.241
Santiago (D1) 98.06 0.013 0.019
Valparaiso (D1) 63.30 0.098 0.114
Concepción (D2) 57.03 0.097 0.123
Santiago (D2) 97.77 0.011 0.017
Valparaiso (D2) 64.00 0.080 0.098
Concepción (D3) 55.03 0.067 0.083
Santiago (D3) 96.91 0.007 0.014
Valparaiso (D3) 65.16 0.056 0.070
Concepción (D4) 59.90 0.051 0.061
Santiago (D4) 98.21 0.005 0.008
Valparaiso (D4) 68.74 0.041 0.050
Concepción (D5) 60.40 0.041 0.050
Santiago (D5) 98.24 0.004 0.006
Valparaiso (D5) 66.77 0.033 0.040

Table A3. Results of the testing of the MLPV per deciles (approach 1).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 93.01 0.062 0.073
Santiago (D1) 56.68 0.079 0.090
Valparaiso (D1) 97.06 0.021 0.032
Concepción (D2) 94.98 0.028 0.042
Santiago (D2) 52.18 0.066 0.079
Valparaiso (D2) 98.56 0.012 0.020
Concepción (D3) 95.56 0.017 0.026
Santiago (D3) 47.58 0.049 0.059
Valparaiso (D3) 98.49 0.009 0.014
Concepción (D4) 94.97 0.015 0.022
Santiago (D4) 50.80 0.038 0.045
Valparaiso (D4) 97.99 0.007 0.013
Concepción (D5) 97.32 0.009 0.013
Santiago (D5) 23.15 0.035 0.043
Valparaiso (D5) 98.41 0.006 0.009

Table A4. Results of the testing of the MLPC-S per deciles (approach 1).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 69.91 0.144 0.151
Santiago (D1) 91.20 0.033 0.041
Valparaiso (D1) 78.94 0.065 0.087
Concepción (D2) 97.14 0.019 0.032
Santiago (D2) 28.80 0.079 0.096
Valparaiso (D2) 95.91 0.023 0.033



Concepción (D3) 96.71 0.014 0.022
Santiago (D3) 1.60 0.060 0.081
Valparaiso (D3) 93.91 0.018 0.029
Concepción (D4) 95.07 0.013 0.022
Santiago (D4) 41.56 0.060 0.076
Valparaiso (D4) 86.56 0.022 0.032
Concepción (D5) 96.91 0.008 0.014
Santiago (D5) 1.69 0.038 0.048
Valparaiso (D5) 94.36 0.010 0.016

Table A5. Results of the testing of the MLPC-V per deciles (approach 1).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 97.33 0.037 0.045
Santiago (D1) 24.40 0.102 0.119
Valparaiso (D1) 98.08 0.019 0.026
Concepción (D2) 98.73 0.014 0.021
Santiago (D2) 16.30 0.085 0.105
Valparaiso (D2) 97.52 0.018 0.026
Concepción (D3) 96.62 0.016 0.023
Santiago (D3) 45.02 0.048 0.060
Valparaiso (D3) 98.60 0.010 0.014
Concepción (D4) 98.40 0.008 0.012
Santiago (D4) 1.15 0.053 0.064
Valparaiso (D4) 94.96 0.014 0.020
Concepción (D5) 98.03 0.008 0.011
Santiago (D5) 17.43 0.036 0.044
Valparaiso (D5) 97.74 0.007 0.010

Table A6. Results of the testing of the MLPS-V per deciles (approach 1).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 25.49 0.227 0.238
Santiago (D1) 95.45 0.019 0.029
Valparaiso (D1) 87.78 0.050 0.066
Concepción (D2) 54.58 0.097 0.126
Santiago (D2) 96.13 0.014 0.023
Valparaiso (D2) 65.77 0.076 0.096
Concepción (D3) 49.95 0.068 0.087
Santiago (D3) 95.48 0.010 0.017
Valparaiso (D3) 60.79 0.057 0.074
Concepción (D4) 61.30 0.049 0.060
Santiago (D4) 97.37 0.006 0.010
Valparaiso (D4) 70.08 0.039 0.048
Concepción (D5) 54.00 0.042 0.054
Santiago (D5) 95.50 0.007 0.010
Valparaiso (D5) 85.88 0.019 0.026

Table A7. Results of the testing of the MLPC-S-V per deciles (approach 1).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 81.82 0.109 0.117
Santiago (D1) 79.09 0.050 0.063
Valparaiso (D1) 91.02 0.044 0.057
Concepción (D2) 97.10 0.024 0.032
Santiago (D2) 37.25 0.069 0.091
Valparaiso (D2) 97.72 0.017 0.025
Concepción (D3) 93.99 0.021 0.030
Santiago (D3) 0.04 0.055 0.082
Valparaiso (D3) 91.91 0.019 0.034
Concepción (D4) 93.22 0.016 0.025
Santiago (D4) 56.11 0.036 0.042
Valparaiso (D4) 96.05 0.010 0.018
Concepción (D5) 96.88 0.010 0.014
Santiago (D5) 25.49 0.033 0.042
Valparaiso (D5) 97.10 0.008 0.012

Table A8. Results of the testing of the MLPC per deciles (approach 2).



Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 99.88 0.007 0.010
Santiago (D1) 97.34 0.017 0.022
Valparaiso (D1) 88.28 0.053 0.065
Concepción (D2) 99.79 0.005 0.009
Santiago (D2) 98.51 0.008 0.014
Valparaiso (D2) 90.77 0.039 0.050
Concepción (D3) 99.86 0.003 0.005
Santiago (D3) 97.48 0.009 0.013
Valparaiso (D3) 90.22 0.029 0.037
Concepción (D4) 99.81 0.003 0.004
Santiago (D4) 96.88 0.008 0.011
Valparaiso (D4) 90.76 0.021 0.027
Concepción (D5) 99.55 0.002 0.005
Santiago (D5) 96.92 0.006 0.009
Valparaiso (D5) 89.24 0.018 0.023

Table A9. Results of the testing of the MLPS per deciles (approach 2).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 97.99 0.033 0.039
Santiago (D1) 99.57 0.005 0.009
Valparaiso (D1) 86.85 0.052 0.068
Concepción (D2) 97.01 0.022 0.032
Santiago (D2) 99.74 0.003 0.006
Valparaiso (D2) 92.30 0.032 0.046
Concepción (D3) 98.35 0.011 0.016
Santiago (D3) 99.75 0.002 0.004
Valparaiso (D3) 91.15 0.026 0.035
Concepción (D4) 97.90 0.011 0.014
Santiago (D4) 99.35 0.003 0.005
Valparaiso (D4) 93.82 0.017 0.022
Concepción (D5) 97.92 0.008 0.012
Santiago (D5) 99.76 0.001 0.002
Valparaiso (D5) 91.45 0.015 0.020

Table A10. Results of the testing of the MLPV per deciles (approach 2).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 79.01 0.115 0.126
Santiago (D1) 90.11 0.029 0.043
Valparaiso (D1) 99.86 0.004 0.007
Concepción (D2) 79.34 0.065 0.085
Santiago (D2) 90.99 0.023 0.034
Valparaiso (D2) 99.89 0.003 0.005
Concepción (D3) 71.07 0.050 0.066
Santiago (D3) 87.80 0.018 0.028
Valparaiso (D3) 99.74 0.003 0.006
Concepción (D4) 78.11 0.035 0.045
Santiago (D4) 91.88 0.012 0.018
Valparaiso (D4) 99.79 0.002 0.004
Concepción (D5) 76.03 0.030 0.039
Santiago (D5) 89.56 0.010 0.016
Valparaiso (D5) 99.86 0.002 0.003

Table A11. Results of the testing of the MLPC-S per deciles (approach 2).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 99.79 0.010 0.013
Santiago (D1) 99.63 0.005 0.008
Valparaiso (D1) 88.47 0.052 0.064
Concepción (D2) 99.80 0.005 0.008
Santiago (D2) 99.65 0.004 0.007
Valparaiso (D2) 91.65 0.038 0.047
Concepción (D3) 99.77 0.004 0.006
Santiago (D3) 99.61 0.003 0.005
Valparaiso (D3) 91.49 0.027 0.034
Concepción (D4) 99.80 0.003 0.004



Santiago (D4) 99.69 0.002 0.004
Valparaiso (D4) 91.52 0.020 0.026
Concepción (D5) 99.70 0.002 0.004
Santiago (D5) 99.70 0.002 0.003
Valparaiso (D5) 90.69 0.017 0.021

Table A12. Results of the testing of the MLPC-V per deciles (approach 2).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 98.88 0.022 0.029
Santiago (D1) 59.52 0.072 0.087
Valparaiso (D1) 99.27 0.011 0.016
Concepción (D2) 99.35 0.010 0.015
Santiago (D2) 72.21 0.048 0.060
Valparaiso (D2) 98.73 0.012 0.019
Concepción (D3) 97.93 0.011 0.018
Santiago (D3) 81.27 0.028 0.035
Valparaiso (D3) 96.59 0.015 0.022
Concepción (D4) 99.44 0.005 0.007
Santiago (D4) 65.72 0.031 0.037
Valparaiso (D4) 99.12 0.005 0.008
Concepción (D5) 99.30 0.005 0.007
Santiago (D5) 79.01 0.018 0.022
Valparaiso (D5) 98.99 0.005 0.007

Table A13. Results of the testing of the MLPS-V per deciles (approach 2).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 46.63 0.185 0.201
Santiago (D1) 98.17 0.009 0.018
Valparaiso (D1) 99.03 0.011 0.019
Concepción (D2) 0.04 0.129 0.187
Santiago (D2) 97.86 0.009 0.017
Valparaiso (D2) 99.33 0.008 0.013
Concepción (D3) 28.77 0.072 0.104
Santiago (D3) 98.81 0.004 0.009
Valparaiso (D3) 97.46 0.011 0.019
Concepción (D4) 8.80 0.066 0.092
Santiago (D4) 98.26 0.004 0.008
Valparaiso (D4) 99.19 0.005 0.008
Concepción (D5) 21.54 0.050 0.071
Santiago (D5) 99.05 0.003 0.005
Valparaiso (D5) 98.95 0.004 0.007

Table A14. Results of the testing of the MLPC-S-V per deciles (approach 2).
Testing  [%]𝑅2  𝑀𝐴𝐸  𝑅𝑀𝑆𝐸
Concepción (D1) 96.14 0.046 0.054
Santiago (D1) 90.74 0.022 0.042
Valparaiso (D1) 98.24 0.016 0.025
Concepción (D2) 98.38 0.016 0.024
Santiago (D2) 98.99 0.008 0.012
Valparaiso (D2) 95.14 0.026 0.036
Concepción (D3) 98.63 0.010 0.014
Santiago (D3) 98.72 0.006 0.009
Valparaiso (D3) 95.32 0.019 0.026
Concepción (D4) 97.08 0.010 0.017
Santiago (D4) 98.99 0.004 0.006
Valparaiso (D4) 94.00 0.013 0.022
Concepción (D5) 98.50 0.005 0.010
Santiago (D5) 98.16 0.004 0.007
Valparaiso (D5) 98.54 0.006 0.008



Fig. A1. Cloud points between the actual values and the predicted values for MLPC (approach 1). The testing dataset 
used is indicated in brackets.

Fig. A2. Cloud points between the actual values and the predicted values for MLPS (approach 1). The testing dataset 
used is indicated in brackets.



Fig. A3. Cloud points between the actual values and the predicted values for MLPV (approach 1). The testing dataset 
used is indicated in brackets.

Fig. A4. Cloud points between the actual values and the predicted values for MLPC-S (approach 1). The testing dataset 
used is indicated in brackets.



Fig. A5. Cloud points between the actual values and the predicted values for MLPC-V (approach 1). The testing dataset 
used is indicated in brackets.

Fig. A6. Cloud points between the actual values and the predicted values for MLPS-V (approach 1). The testing dataset 
used is indicated in brackets.



Fig. A7. Cloud points between the actual values and the predicted values for MLPC-S-V (approach 1). The testing dataset 
used is indicated in brackets.

Fig. A8. Cloud points between the actual values and the predicted values for MLPC (approach 2). The testing dataset 
used is indicated in brackets. 



Fig. A9. Cloud points between the actual values and the predicted values for MLPS (approach 2). The testing dataset 
used is indicated in brackets.

 

Fig. A10. Cloud points between the actual values and the predicted values for MLPV (approach 2). The testing dataset 
used is indicated in brackets. 



Fig. A11. Cloud points between the actual values and the predicted values for MLPC-S (approach 2). The testing dataset 
used is indicated in brackets. 

Fig. A12. Cloud points between the actual values and the predicted values for MLPC-V (approach 2). The testing dataset 
used is indicated in brackets. 



Fig. A13. Cloud points between the actual values and the predicted values for MLPS-V (approach 2). The testing dataset 
used is indicated in brackets.

 

Fig. A14. Cloud points between the actual values and the predicted values for MLPC-S-V (approach 2). The testing dataset 
used is indicated in brackets. 


