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Abstract

Real-coded evolutionary algorithms have solved numerous real-world opti-
mization problems. In this work, we aim to analyze the behavior and robustness
of several real-coded evolutionary algorithms from the state of the art in a chal-
lenging real world optimization problem. This optimization problem consists on
the superimposition of 3D and 2D images of skeletal structures (i.e. bones and
cavities) based on their silhouette. This task is required for the automation of
a forensic identification technique known as comparative radiography, via the
generation of the best projection of the 3D image with respect to the 2D im-
age. This superimposition problem was tackled in a recent proposal using an
evolutionary 3D-2D image registration method based on differential evolution.
However, the results obtained were insufficient for its use in real scenarios, due
to: (1) the complexity and multi-modality of search space, despite the reduced
number of parameters to be optimized (7 in its simple version and 9 in a more
complex one, proposed in this work); and (2) the high computational cost of
generating and evaluating a superimposition. Particularly, we have performed a
rigorous comparative study of six state-of-the-art real-coded evolutionary algo-
rithms (DE, L-SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL, and MVMO-SH)
with synthetic images of three forensic anatomical structures (frontal sinuses,
clavicles, and patellae), showing that the best results are always obtained by
MVMO-SH in terms of precision, robustness and computational cost. Further-
more, we have validated the quality of the superimpositions obtained by the
evolutionary image registration method using MVMO-SH with real images of
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frontal sinuses. We have performed the comparison of 50 head radiographs and
50 3D images, resulting in 2,500 cross-comparisons (50 positive and 2,450 nega-
tives). The obtained results are promising since the superimpositions obtained
allowed us to filter out 88% of the possible candidates with 0 error rate in a fully
automatic manner, showing the high quality of the superimposition obtained.

Keywords: Comparative radiography, computer vision, evolutionary
computation, 3D-2D evolutionary image registration.

1. Introduction

Evolutionary algorithms (EAs) [1, 2] are global optimization techniques in-
spired by biological evolution for solving optimization problems. These algo-
rithms have been successfully applied in many real-world optimization prob-
lems with complex optimization functions [3] because they are able to obtain5

competitive results without requiring specific features to the problem to opti-
mize, as well as they can tackle non-linear, non-differentiable, non-convex and
multi-modal functions.

Among real-world problems, there are problems especially challenging since
they require a significant amount of computational resources and time to evalu-10

ate just a single candidate solution. The solution procedure for these problems
is called expensive optimization [4]. In these frameworks, the optimization al-
gorithm must provide accurate solutions with a very reduced number of eval-
uations. Under these constraints the majority of EAs are not suitable because
they need a significant higher number of evaluations to obtain a competitive15

solution. In recent years, numerous research works [5, 6] and competitions [7, 8]
have studied fast convergence EAs, which have obtained a good trade-off be-
tween quality and computational time.

In this work, we tackle one of these complex and computationally expensive
optimization problems, required for the automation of a forensic identification20

technique known as comparative radiography (CR) [9]. It involves the superim-
position of ante-mortem (AM) radiographs and post-mortem (PM) 3D images
of an skeletal structure (i.e. bones and cavities) based on its morphological
silhouette (see Section 3 for further details). This superimposition task can
be modeled as an image registration (IR) problem [10, 11], where the best 2D25

projection of the PM 3D image, with respect to the AM 2D image, is searched
by iteratively optimizing the parameters of the projective transformation [12].
This superimposition optimization process is complex (due to the unknown ac-
quisition set-up, occlusions and the search space landscape, see Sections 3 and
4.3 for further details) and computationally expensive (due to the high compu-30

tational cost of generating and evaluating a particular projection, see Section
4.1 for further details), despite the low number of parameters to be optimized
(7 with a simple perspective transformation and 9 with a more complex one,
see Section 4.1 for further details).
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The latter task involves a complex real-parameter optimization problem, and35

can be tackled with a real-coded evolutionary algorithm (RCEA). In [12], we use
both different numerical optimization methods and a simple RCEA, differential
evolution (DE). While numerical methods’ accuracy proved to be insufficient,
DE showed a good performance, but still with an insufficient robustness and
a high computational time. Therefore, we aim to analyze the performance of40

several high performance RCEAs [2], with particular focus on those tested in
complex real-world problems as well as in expensive optimization competitions
from the IEEE Congress on Evolutionary Computation (CEC), in order to deter-
mine the influence of the considered RCEA to improve the accuracy, robustness,
and time required to obtain a good superposition for the CR problem.45

The goal of this paper is thus two-fold. Firstly, to study the performance,
robustness and convergence speed of several state-of-the-art EAs in the super-
imposition problem using synthetic images of three skeletal structures (clavicles
[13], patellae [14], and frontal sinuses [15]). These three skeletal structures have
been utilized in the CR literature for forensic identification, as well as in the50

state-of-the-art evolutionary image registration for CR [12] allowing us a fair
comparison. Secondly, to study if the quality of the superimpositions obtained
by the best RCEA in real images of frontal sinuses is sufficient for identification
and/or sort listing using the identification methodology proposed in [12]. With
this aim, we have also proposed and validated a new projective transformation55

that can reproduce the perspective distortion of any kind of radiograph.
This paper is structured as follows. Section 2 briefly reviews the current

state of the art in evolutionary IR and RCEAs, and justifies the choice of the
algorithms studied in this work. Section 3 briefly reviews the CR technique
and related works. Section 4 describes the proposed IR methodology to tackle60

the superimposition problem (including a new projective transformation) and
the study of the complexity of the search space of the superimposition problem.
Section 5 presents experiments and results. Section 6 details the conclusions.

2. Background and justification

The optimization problems underlying IR methods based on the direct search65

of the real-coded transformation parameters are complex. This is particularly
true in real-world problems as CR, as stated in Section 1. RCEAs [1, 16] have
improved the results obtained by traditional methods in many IR problems
[17, 18, 19]. In these works several studies are performed benchmarking tradi-
tional and evolutionary IR methods. Traditional IR methods have shown to be70

insufficient to tackle complex IR problems, especially those where an initial so-
lution close to the ground truth (GT) one is not known, ending in non accurate
local minimum. As a consequence, the interest on evolutionary IR approaches
based on RCEAs have grown over the last two decades [20, 21, 22], with 575
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works published until 20201.75

Among the classical RCEAs, DE [23] and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [24] have shown a great behavior on global nu-
merical optimization problems. They have performed extremely well in those
tackled in the competitions handled within the IEEE CEC [25, 26], making
them useful for many real-world problems. In particular, DE is widely extended80

as a result of its reduced number of parameters to fine tune [27], its robust-
ness, and its fast convergence. DE has demonstrated an excellent performance
on many IR problems [28, 29] and specifically with the only proposal dealing
with the CR problem from an IR perspective [12]. Furthermore, several self-
adaptive DE approaches proposed in the literature yielded better results than85

the classical DE in many different problems [27]. Among them, a self-adaptive
DE approach with a linear reduction of population and an external memory of
elite solutions (to enforce diversity in the mutation) called L-SHADE [30] has
shown a very significant accuracy. L-SHADE ranked on the first positions at
the IEEE CEC2014 competition on real-parameter single objective optimization90

[30]. In this competition, L-SHADE’s results outperformed other state-of-the-
art DE variants and are comparable to the state-of-the-art CMA-ES variants.
However, some of the recent publications [31, 32] have shown that DE and its
variants face significant difficulties on non linearly separable functions and can
be outperformed by CMA-ES. The latter method has advantageous convergence95

properties and performs well with small populations, which makes it even more
promising when it comes to improve the computational time. In addition, it
has already shown a good performance in some IR problems [18]. Furthermore,
several modern CMA-ES variations have yielded better results than the classi-
cal CMA-ES in many different problems [26]. Among them, a restart CMA-ES100

with two interlaced restart strategies (one with an increasing population size
and another with varying small population size) called BI-population-CMAES
(BIPOP-CMA-ES) [33, 34] has showed a very significant behavior outperform-
ing the classic CMA-ES and other modern CMA-ES versions in the BBOB-2009
function testbed [33, 34].105

Recently, a powerful and versatile RCEA called Coral Reef Optimization
with substrate layers (CRO-SL) was proposed in [35]. CRO-SL is inspired on
the formation and reproduction of coral reefs. CRO-SL simulates the different
phases that corals undergo during their lives, such as reproduction, larval set-
tlement, or fight for a space in the reef. Furthermore, CRO-SL simulates the110

substrate layers in coral reefs. Substrate layers affect to the growth and devel-
opment of the coral. These layers are modeled by using different exploration
operators (e.g. DE search, Gaussian mutation, etc.) on different regions of

1Search performed the 2nd June 2020 using the keywords ( TITLE-ABS-KEY “image
registration” ) AND ( TITLE-ABS-KEY ( “evolutionary algorithm” ) OR TITLE-ABS-KEY
( “genetic algorithm” ) OR TITLE-ABS-KEY ( “evolutionary algorithm” ) OR TITLE-ABS-
KEY ( “evolutionary” ) OR TITLE-ABS-KEY ( “metaheuristic” ) OR TITLE-ABS-KEY (
“metaheuristics” ) OR TITLE-ABS-KEY ( “stochastic optimization” ) OR TITLE-ABS-KEY
( “stochastic search” ) OR TITLE-ABS-KEY ( “heuristic search” ) ) ).
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the coral reef. Their simulation combines very different exploration operators
within the competitive evolution rules of the coral reefs, providing a competitive115

grid-based co-evolutionary strategy to CRO-SL in just one population. Lastly,
CRO-SL also improves the best solution using a local search (LS) method with a
limited number of evaluations, making it become a powerful memetic algorithm
[36].

There is a lot of controversy with the proposal of new bio-inspired algorithms120

[37] and their justification must be based on their actual performance beyond
the metaphor. CRO-SL presents a high novelty since it provides an excellent
exploration-exploitation trade-off and robustness as results of the combination
of all the previous mentioned features, specially for its competitive environment
and the incorporation of multiple search patterns. In addition, CRO-SL usually125

converges quickly to high quality solutions even in multi-modal seach spaces,
being suitable for computationally expensive optimization problems both satis-
fying quality and computation time constraints. However, its performance varies
significantly depending on the CRO’s parameters and the different substrates
included in the simulated reef. In particular, CRO-SL has outperformed both130

classical and state-of-the-art evolutionary IR methods in many 3D-3D medical
IR problems [19], making it a really promising RCEA for CR with the only
drawback of the complex tuning of its parameters.

The best RCEA for solving computationally expensive optimization prob-
lems according to the IEEE CEC competitions is the mean-variance mapping135

optimization (MVMO) optimizer [38]. MVMO has ranked in top positions in
expensive optimization competitions, such as IEEE CEC 2013 [39], 2014 [7],
2015 [8], 2016 [40], and 2018 [41], showing an excellent performance and robust-
ness. MVMO is a novel single-individual RCEA that considers a best solution
archive, but its novelty lies within a new mapping function employed for mu-140

tating the offspring. This mapping function is based on the mean and variance
of the best solution archive. MVMO has been numerically compared to other
enhanced RCEAs showing a better performance in many problems, especially in
terms of convergence speed. For instance, a powerful variant called MVMO-SH
(the “S” refers to the offspring approach based on single parent and multi-145

parent crossover, and the “H” for the hybridization of MVMO with the use of
LS) improves the global search performance of the classical MVMO. MVMO-
SH considers a set of solutions (i.e. particles of a swarm) instead of just one,
each having its own best solution archive and mapping function, and allows the
exchange of information and dynamic reduction of the swarm size.150

Thus, a rigorous comparison is needed to determine the influence of the
RCEA in the proposed framework to automate the CR problem. Motivated
by the analysis of the literature, the RCEAs to be studied in this paper are
as follows: (1) DE, the RCEA used in state-of-the-art CR method [12]; (2) L-
SHADE, one of the best self-adaptive variants of DE; (3) CMA-ES, a classic155

RCEA that has outperformed DE in many problems; (4) BIPOP-CMAES, one
of the best modern variation of CMA-ES; (5) CRO-SL, a powerful RCEA that is
the state-of-the-art method in 3D-3D IR problems but is complex to fine tune;
and (6) MVMO-SH, a novel RCEA that has obtained groundbreaking results in
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many prestigious competitions such as those held within IEEE CEC, especially160

in costly optimization problems.

3. Comparative radiography basics and related works

CR consists of the comparison of skeletal structures (i.e. bones and cavi-
ties) in AM and PM radiographs to determinate the identity of a deceased (see
Fig. 1). Depending on the number of available skeletal structures and their165

uniqueness, CR can be utilized either for positive identification or candidate
short listing [42]. In the CR technique, we distinguished three consecutive tasks
[12]:

1. Process the PM material (cleaning, stabilizing the skeletal remains, and
scanning the “clean” bone with a laser range scanner or performing com-170

puted tomography (CT) scan) and ask the corresponding authorities for
AM data of all the candidates. Image enhancement and/or segmentation.

2. Produce a PM radiograph that simulates the scope and projection of each
of the AM radiographs.

3. Based on the superimpositions achieved, the identification decision is made175

by comparing the consistencies and inconsistencies in the bone or cavity
morphology, together with other elements such as the quality of the AM
radiograph, the visibility of bone or cavity, etc. Notice that the use of
computers in this stage aims to support the final identification decision
that will always be made by the forensic anthropologist.180

Figure 1: The usual procedure utilized by forensic experts for CR-based identification is the
following: (1) a biological profile (sex, age, stature, etc) is obtained based on the PM remains
of the deceased; (2) the candidates that do not match the biological profile are discarded;
(3) all the possible AM records and medical images of the candidates are gathered and pre-
processed; (4) the PM remains are superimposed and compared to the AM data through
skeletal comparison techniques; and (5) an identification decision is taken based on the results.

Traditionally, the analyst manually performs the superimposition through
a trial and error process, based only on its skills and experience. Thus, CR is
time consuming and its results are subjective, hardly reproducible and suffer
from errors related to the analyst’s fatigue reducing the applicability of the CR
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technique. All these factors reduce the utility of the CR method and thus (semi)185

automatic methods to assist forensic experts in their identification endeavour
are required.

The superimposition process can be automatized using a 3D-2D image reg-
istration (IR) approach [43, 10]. It is based on an optimization process that
searches for the best match between the silhouette of a skeletal structure in a190

AM radiograph and a 2D projection of the 3D PM skeletal structure (either ob-
tained via the segmentation of a PM Computed Tomography (CT) or digitized
with a 3D scanner). Most 3D-2D IR approaches are designed for a controllable
set-up, which is a common situation in many medical domains. They can as-
sume an initial pose nearby the GT and that the parameters associated with195

perspective distortions are known [11]. Feldman et al [44] proposed a 3D-2D
IR method based on silhouettes without any initialization assumptions by using
free-form curves and surfaces, but still assuming the perspective distortions’ pa-
rameters. However, the AM radiograph was taken in an uncontrollable set-up,
where pose and radiograph device are unknown, and therefore none of these200

assumptions are appropriate for CR.
These drawbacks have been overcome by IR methods based on RCEAs, a.k.a.

evolutionary IR methods, in several IR problems [20, 21, 22]. RCEAs are global
optimization techniques with a robust performance, that enables them to tackle
complex medical IR problems. In particular, in [12] Gómez et al. proposed the205

first evolutionary 3D-2D IR approach to automatize the superimposition process
to compare the silhouette of any bone or cavity without any assumption on the
initialization or the main parameters related to the perspective distortions in
radiographs (i.e. the source to image distance, a.k.a. SID). The approach makes
use of DE [23], a modification of the DICE metric [45] that considers occlusion210

regions (which are hard to segment regions either because of the fuzzy borders
of the bone or occlusions caused by other overlapped structures), and a simple
perspective transformation with 7 parameters: 3 translations; 3 rotations; and
the SID. This method was tested with frontal sinuses, clavicles and patellae ob-
taining a promising performance. However, it showed the following drawbacks:215

(1) the robustness of the DE algorithm, especially with clavicles and patellae,
that in some runs leaded to bad superimpositions due to the stochastic nature of
DE and the highly multimodal search space tackled (see [12] and Section 4.3 for
further details of the landscape analysis); (2) the large amount of time required
to obtain a superimposition with DE (1,800 seconds on average). This high run220

time is motivated by the high computational cost required by each evaluation
(on average, it takes 0.25 seconds to obtain projection of 1290× 1050 pixels in
a standard computer), uncovering the computationally expensive optimization
nature of the CR problem as well as the high number of evaluations required by
the optimizer to converge; and (3) none of the projective projections considered225

reproduced the perspective distortion of radiographs where the x-ray generator
was not perpendicular to the image receptor (e.g. in the Water’s projection of
radiographs of frontal sinuses [9], see Fig. 3).
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4. Evolutionary image registration for comparative radiography

The methodology proposed in this paper is based on [12] and depicted in
Fig. 2. As said, the method proposed in [12] is the only existing method for
the automation of the superimposition of 3D and 2D images for CR. The IR
method requires the five following components: (1) a 3D image and a 2D image
of a skeletal structure to be superimposed. The 3D image is a PM 3D surface
model of the skeletal structure obtained by segmenting a CT or acquired using
a 3D surface scanner. Meanwhile, the 2D image is the segmented silhouette of
the skeletal structure in the AM radiograph, together with its occlusion region
(i.e. the region where the segmentation expert cannot distinguish among the
target structure and other skeletal structures, organs and/or background); (2) a
projective transformation, which produces 2D projections of the 3D image; (3)
the expert knowledge that constrains the projective transformation’s parameters
such as radiographs acquisition protocols [46]; (4) a similarity metric, a.k.a.
fitness function, that measures the overlap between the AM silhouette and a
2D projection. Both in the state-of-the-art work for CR [12] and in this work,
the similarity metric utilized is the Masked DICE metric [12], which combines
the DICE metric [45] with a occlusion region (see Eq. 1); and (5) an optimizer,
which searches for the best projective transformation in terms of the similarity
metric.

Masked DICE =
2 · |(A \M) ∩ (B \M)|

|A \M |+ |B \M |
(1)

where A and B are sets of pixels of an object silhouette (i.e. the AM segmented230

skeletal structure and a PM projection of the 3D skeletal structure), and M is
the occlusion region (of the AM radiograph).

The five former components are further detailed in [12]. The main contribu-
tion of the current work is in the proposal of a new projective transformation and
the analysis of the optimizers (the second and fifth components, respectively)235

that will be detailed in the following subsections.

4.1. Projective transformation

The projective transformation [47] behind a radiograph image is, in most of
the cases, a simple perspective transformation obtained using a pinhole camera
model [48]. A simple perspective transformation considers 6 extrinsic param-240

eters (3 translation and 3 rotations) and 1 intrinsic parameter (focal distance;
assuming that the rest of intrinsic parameters of a complete perspective trans-
formation are known: the principal point is located in the center of the image,
pixels’ aspect ratio is square, and no skewness). Particularly, in a radiograph,
the focal distance is represented by the source to image receptor distance (SID)245

[48] (see Fig. 2). SID is also assumed as known in most works [11] since they
are designed for a controllable set-up but that is not the case for the CR prob-
lem. Although the perspective distortion can be small in many radiographs
because of the large distance between the x-ray generator and receptor (as in
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Figure 2: Scheme of the proposal of 3D-2D IR for CR. Three main interconnected blocks are
represented: (Right) the projective transformation to obtain a projection of the 3D model with
9 parameters: translation (tx, ty , and tz), rotation (rx, ry, and rz), and perspective distortions
(SID, cx, and cy); (Top left) The similarity metrics that compares the PM projection (colored
in blue) and the AM segmentation (colored in red) considering an occlusion region (colored in
gray); (Bottom left) the optimization process to estimate the 9 parameters of the registration
transformation that are only weakly limited by the context and expert knowledge from the
x-ray acquisition protocol.

chest radiographs), its consideration has shown to be crucial in the IR endeav-250

our. This has been shown in [12], where better results were obtained using the
perspective transformation than the orthographic transformation, despite the
more challenging optimization problem involved.

Figure 3: (Left) Diagram of a frontal sinus radiograph with a posteroanterior view, where the
ray between x-ray generator and the center of the image receptor is perpendicular. (Right)
Diagram of a frontal sinus radiograph with a Water’s view, where the ray between x-ray
generator and the center of the image receptor is not perpendicular.

However, radiographs acquired with procedures where the ray that joins
the x-ray generator and the center of the image receptor is not perpendicular
cannot be modeled with a simple perspective transformation. That is the case
of frontal sinuses radiographs taken in one of the acquisition protocols of the
Water’s view (see Fig. 3 for a graphical example). In these radiographs, the
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acquisition protocols [46] establish that the x-ray bean is angled at β to the
center of the receptor (see Fig. 3). It causes that the principal point of the
image is not located at the center of the images (as can be seen in Fig. 3) and
can be located even outside the image limits. Thus, to model these radiographs,
a more complex perspective transformation, that also models changes in the
principal points is needed (resulting in 9 parameters to be optimized). The
movement of the principal point in an axis can be calculated according to the
following equation:

ci = SID ·
sin(90− βi)

sin(βi)
(2)

where ci is the principal point displacement in the axis i, and βi is the angle of
the ray that joins the center of the image receptor and x-ray generator in the255

axis i.
Furthermore, even radiographs taken in conventional views as the poste-

rioanterior can be affected by this distortion (although with a minor effect), due
to the small alignment errors between the image receptor and x-ray generator
and the modeling of changes in the principal point can also be beneficial for260

them.
To sum up, two projective transformations are considered in this contri-

bution, aiming to improve the performance of the automatic CR-method: the
simple perspective projection with 7 parameters (tx, ty, tz, rx, ry, rz , and SID)
from [12] and a new more complex perspective projection with 9 parameters (tx,265

ty, tz, rx, ry, rz , SID, βx, and βy). The two transformations will be referred
from now on as P7 and P9, respectively. Their parameters’ range is stated in
Section 5.1.

4.2. Real-coded evolutionary algorithms for the image registration optimizer

This subsection is devoted to the description of the six RCEAs to be bench-270

marked on the CR problem in the current contribution. All the RCEAs are
designed for the optimization of the real coded parameters of the P7 and P9
transformations, defined in Subsection 4.1, using the Masked DICE metric, in-
troduced in Section 4, as fitness function. The candidate solutions of the differ-
ent RCEAs are randomly initialized within the ranges showed in Table 1 since275

a closer one would be unrealistic as stated in Section 1.

4.2.1. Differential Evolution

DE [23] is a variant of an evolution strategy [49]. It begins with a random
initialization of a population of n candidate solutions. Afterward, DE searches
for better solutions by combining the candidate solutions’ parameters using a280

crossover operator along a limited number of generations. The crossover op-
erator combines the parameters of three random candidate solutions from the
previous generation (detailed equations can be reviewed in [23]). Lastly, DE
also has an elitism mechanism which maintains the best candidate solution so
far into the next generation. In summary, DE has the following parameters: the285

population size p, the differential weight F , and the crossover probability Pc.
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4.2.2. L-SHADE

L-SHADE is a self-adaptive DE approach proposed by Tanabe et al. in 2014
[30] based on a previous adaptive DE optimizer called SHADE [50]. Its main
addition was a linear reduction of the population size (which it is initially set to290

pinit) thought the generations. L-SHADE maintains the automatic adjust of the
differential weight F and crossover probability Pc parameters in each generation
of SHADE. To this end, it keeps a historical memory with H entries for both F
and Pc. Furthermore, it also conserves its mutation strategy, to-pbest/1, where
the greediness is adjustable using a parameter pb, and the use of an external295

archive for maintaining diversity, its size equal to pinit plus rarc. The goal is
to adjust the optimizer behaviour during the first generation to promote the
search space exploration and subsequently to reinforce its exploitation. To sum
up, the parameters to be tuned for L-SHADE are: pinit, H , pb, and rarc. Their
recommended ranges are reported in [30].300

4.2.3. CMA-ES

CMA-ES [24] has been largely considered as the state of the art in RCEAs
and has outperformed DE and its variants in many optimization problems, as
stated in Section 2. CMA-ES is based on updating the covariance matrix of the
multivariate normal distribution along the algorithm’s generations to focus the305

exploration on the most promising regions. Afterward, CMA-ES performs the
following two steps in each generation: (1) λ candidate solutions are generated
according to the multi-variable normal distribution, the covariance matrix, and
the step size σ; and (2) the distribution center and the covariance matrix are
updated based on the µ best candidate solutions and σ is updated based on the310

improvement achieved (detailed equations can be reviewed in [24]).
CMA-ES only requires to set three parameters µ, λ (number of best solutions

considered to update the distribution center and number of individuals of the
population, respectively), and initial step size σ. Their default value in function
of the number of variables n according to the authors is: λ = 4+ ⌊3 ln(n)⌋ and315

µ = λ/2. However, some works have shown that a higher value for λ and a
modification of the value of µ can lead to make CMA-ES more robust and/or
exploitative on multimodal problems [18].

4.2.4. BIPOP-CMA-ES

BIPOP-CMA-ES [33, 34] is a restart CMA-ES with two interlaced restart320

strategies, that modifies the values of the number of candidate solutions λ and
the number of best solutions utilized for updating the covariance matrix µ in
each restart. The first restart strategy consists of increasing the population size
λ by a factor of 2. Meanwhile, the second restart strategy involves decreasing
the population size λ based on the previous and the default values of λ (detailed325

equations can be reviewed in [33]). In both restart strategies, the new value of
µ is obtained by halving the new value of λ. Performing the first or second
restart strategy depends on which restart strategy’s budget value is smaller.
Nevertheless, the first and last restarts always utilize the first’s strategy. Lastly,
the maximum number of restarts that can be performed is nine. To sum up,330
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BIPOP-CMA-ES requires to set the three same parameters than CMA-ES (λ,
µ, and the step size σ). The only difference is that the values of λ and µ given
to BIPOP-CMA-ES are only their initial values since they are adapted in each
restart.

4.2.5. CRO-SL335

CRO-SL [19] is based on natural processes occurring in coral reefs. The coral
reef R is represented as a bi-dimensional grid of p positions (population size),
where each position stands for solutions to the current optimization problem.
At the beginning, p0 positions (given as a percentage of the total population)
are randomly initialized with candidate solutions to the problem tackled while340

the rest are empty, reserved to allow other corals to grow. For each generation,
the following stages will be applied to the coral reef sequentially (these stages
are further detailed in [19]): (1) Broadcast spawning: it consists of generating
new larvae from a pair of candidate solutions using a crossover operator; (2)
Brooding: new larva are generated via a mutation mechanism that is applied345

to a fraction of corals 1 - Fb; (3) Larvae setting: each larvae will try to set in a
random position of the coral reef, they will only set if it the location is free or
the larvae has a better fitness value than the solution occupying that position;
(4) Depredation: a fraction (Fd) of the corals with the worst fitness are removed
from the population with very small probability (Pd).350

CRO-SL is an extension of the basic algorithm that also simulates the sub-
strate layers in coral reefs. It divides equally the coral reef R into several
substrate’s layers, and the crossover operator in step 2 will vary depending in
which layer the larvae falls. The choice of the operators (or substrate layers) to
be used has a significant effect in the optimizer’s behaviour. In particular, the355

operators (or substrate layers) considered for IR in [19] are: Harmony search,
DE, Gaussian mutation, Cauchy mutation, Simulated Binary Crossover (SBX),
and Blend Crossover(BLX)-α. Furthermore, CRO-SL (as stated in Section 2)
also has a LS to improve the larvaes with the Bound Optimization BY Quadratic
Approximation (BOBYQA) optimizer [51] using a maximum of nLS evaluations.360

To sum up, the parameters to be tuned for CRO-SL are as follows: reef size p,
number of coral reef positions initialized p0, number of generations g, number of
LS evaluations nLS, deprecation fraction Fd, deprecation probability Pd, asexual
reproduction proportion Fa, mutation fraction Fb, mutation probability, the set
of substrate layers utilized, and the parameters from the operators (e.g. F for365

DE and δ for harmony search).

4.2.6. MVMO-SH

MVMO-SH [39] begins with a initialization stage where the p particles (can-
didate solutions) of the swarm are randomly generated. The particles are nor-
malized to the range [0, 1], which is a necessary condition to the latter mutation370

via mapping function (a key element in MVMO) and are only des-normalized
for their fitness evaluation. Afterward, the following steps are performed for
each generation (these are detailed in depth in [39]): (1) LS optimization of the
particles with a probability pLS ; (2) If a particle founds a better solution in
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terms of fitness than those in its solution archive, the new solution is added to375

the particle’s solution archive (notice that if the archive has reached its maxi-
mum size As the worst solution is removed); (3) Particles are sorted and divided
into two groups according to their fitness value, the GP best ones are classi-
fied as “good particles” and the rest as “bad particles” (GP is adapted along
the process taking values between the 20% and 70% of p). The good particles380

are modified via a custom single parent crossover operation based on local best
[7] and bad particles via a custom multi-parent crossover operation based on
a subset of good particles [7]; (4) the particles are mutated using a mapping
function. This mapping function is based on the mean and variance of each
particle’s solution archive and a scaling factor fs that modulates the function’s385

shape. The scaling factor usually begins with a small value fstart and progres-
sively increases until reaching its maximum value fend to progressively increase
the algorithm’s accuracy.

To sum up, the parameters to be tuned are: number of particles p (the
recommended value is 15*number variables; if the number of particles chosen390

is equal to 1, MVMO-SH will perform as the standard MVMO), LS probability
pLS, archive size As, scaling factor start (fstart) and end values (fend), initial
value of the shape of all the variables at the beginning of the optimization
dr (values around 1-5 are suitable to guarantee good initial performance. In
practice, it is usually set to 1), and parent selection method (random, neighbor395

group selection in single step or block steps, or sequential selection of the first
variable and the rest randomly).

4.3. Problem landscape complexity

Apart from the high computation requirements of CR, the numerical opti-
mization problem underlying the superimposition process is complex. This can400

be confirmed by studying the fitness’ landscape of the CR problem by using
the fitness-distance correlation [52] (see Eq. 3 for the distance function) with
synthetic data of a clavicle, a patella, and a frontal sinus (see Section 5.1).

Dist =

∑n
i=1 |

ti−mini

maxi−mini
− GTi−mini

maxi−mini
|

n
(3)

where n is the number of parameters, ti is the i-th parameter of a registration
transformation t, GTi is the i-th parameter of the GT transformation GT , mini405

is the minimum possible value of the i-th parameter, and maxi is the maximum
possible value of the i-th parameter.

However, the fitness landscape varies significantly with each CR identifica-
tion problem, due to factors such as the singularity and discriminatory power of
each skeletal structure, the segmentation of the AM and PM images, the occlu-410

sions present within these images, the projective transformation utilized, etc.
Nevertheless, the complexity of the CR problem can be uncovered by studying
its simplest scenario, i.e. synthetic data without occlusions or segmentation
errors. To analyze the simplest optimization scenario, a sample of 200,000 ran-
dom transformations near to the GT transformation have been generated and415
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Figure 4: Scatter plots of DICE metric of a transformation versus its distance to the ground
truth transformation according to bone/cavity, and projective transformation.

evaluated for each skeletal structure (clavicles, patellae and frontal sinuses) and
perspective transformation (P7 and P9), as shown in Fig. 4. Fig. 4 shows
many bad superimpositions with a small distance to the GT transformation, as
well as good superimpositions with a big distance to the GT transformation.
It hints the multimodality of the search space. Furthermore, the fitness dis-420

tance correlation according to the Pearson’s correlation coefficient [53] is 0.47
for P7 and 0.42 for P9, both weakly correlated confirming the complexity and
multimodality of the search space even in its simplest scenario.

5. Experiments

The experimental study is divided into three parts. The first experiment is425

devoted to fine tune the different RCEAs to find their best configuration in terms
of accuracy and robustness. For this experiment, only simulated CR problems
(positive cases, i.e. the AM and PM data belong to the same person) of frontal
sinuses are considered, since these are of great forensic interest and result in the
most complex optimization scenario (as it has to model both posterioanterior430

and Water’s views). Furthermore, it is computationally unaffordable (because of
its high computational cost) to perform this experimentation also with clavicles
and patallae. Meanwhile, the second experiment is devoted to compare the best
configuration of each RCEA with simulated CR problems of frontal sinuses,
clavicles, and patellae with P7 and P9 in order to find the best RCEA in terms435

of accuracy and robustness. Finally, the third experiment is devoted to studying
the identification capability of the proposed IR framework using P9 and the best
resulting RCEA, in turn MVMO-SH, in real images of frontal sinuses.

14



The same stop criteria is established for all the RCEAs to allow a fair com-
parison in terms of computational resources. The optimization process ends440

when at least one of the following three conditions holds: (1) the maximum
number of evaluations is reached. This value is set to 50,000 evaluations (it
includes the evaluations performed by the LS methods); (2) the optimization
process has got stuck. It is considered that the optimization process has stag-
nated when it has performed 10,000 evaluations without improving the fitness445

of the best solution; and (3) the optimization process has achieved a good so-
lution/superimposition. A solution is considered of good quality when it shows
an error lower than 0.001 in terms of fitness.

All the experiments (I, II and III) have been performed on the high perfor-
mance computing server Alhambra from the University of Granada composed450

of 1808 cores Fujitsu PRIMERGY CX250/ RX350/RX500 nodes running Red
Hat Enterprise 6.4, although on average only 50 cores were available for this ex-
perimentation. Furthermore, several preliminary experiments were performed
in the supercomputing center of Galicia (CESGA). It is important to remark
the large computational cost of the experimentation following a rigorous ex-455

perimental design of a computationally expensive optimization problem as CR.
Overall, around 1,314 computation hours (55 days) were required to perform
Experiments I, II and III when the 50 cores were available uninterruptedly. No-
tice that the reported computational time is for the entire experimentation and
it would require a significantly smaller computational time for its use in real460

forensic scenarios. For instance, the comparison of a 3D surface model against
a radiograph only requires 1,000 seconds (0.27 computational hours in one core)
and the comparison of a 3D module against a set of 50 radiographs of possible
candidates requires 50,000 seconds (14 computational hours in one core). Nev-
ertheless, each superimposition can easily run in parallel reducing significantly465

the required time for all the comparisons.

5.1. Simulated data set

The dataset employed in Experiments I and II is formed by 900 simulated
CR problems, 3002 for each skeletal structure to be studied. Each of simulated
CR problems is composed by a 3D surface model and a random 2D perspective470

projection of the 3D model with occlusions using the projective transformations
P7 and P9. The random parameters, that generated the 2D perspective pro-
jection of a simulated CR problem, composed the GT transformation, i.e.
the transformation parameters that our method aims to find. Furthermore, we

2According to the sample estimation equation presented in [54] (n = (4 · Z2 · σ2)/(W 2),
where n is the required sample, z the z-score value, σ the expected standard deviation, and
W the margin of error), a sample size of 300 is sufficient to guarantee an error lower than
±0.03 (W=0.06) in the mean with a confidence level of 99% (z-score Z = 2.4) and expected
standard deviation of 0.2. The value of σ was estimated in a preliminary extermination and,
latter, confirmed in our experimental study, see Table 4. Furthermore, it gives a good trade-
off between the computational cost of the experimentation and the number of CR scenarios
captured in the sample.
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have also generated a second 2D perspective projection using the GT transfor-475

mation but without considering occlusions. The GT transformation and the GT
projection without occlusions allow us to objectively measure the quality of the
superimpositions archived.

In [12], the optimizers showed a different behaviour depending on the sin-
gularity of the skeletal structure and occlusions, among other factors. Thus,480

we have composed a simulated dataset that captures the diversity of the CR
problem to guarantee that the evolutionary image registration method performs
properly in as many different scenarios as possible. We utilized 300 problems
per skeletal structure since this value gives a good trade-off between diversity
and computational cost of the experimentation.485

The dataset has been generated using 30 3D surface models (10 of each
skeletal structure studied in this work, i.e. 10 frontal sinuses, 10 clavicles, 10
patellae) obtained as in [12]. Particularly, frontal sinueses’ models were ob-
tained by manually segmenting CTs (provided by the Hospital de Castilla la
Mancha, Spain) using 3D Slicer 4.5.0-1 [55]. Meanwhile, clavicles and patel-490

lae’ models were obtained by scanning bones (from the bone collection of the
Physical Anthropology Lab at the University of Granada) using a laser range
scanner (Artec SpiderTM 3D scanner). All these 3D models were placed in
their respective most frequent positions in a radiograph [46] (a frontal position
for frontal sinus and clavicle’s models, and a lateral one for patella’s models).495

For each 3D surface model, 10 perspective projections (5 with P7 and 5 with
P9) were randomly generated within the ranges showed in Table 1 (these ranges
have been set based on international acquisition protocols [46] and are detailed
in [12] with the exception of the new parameters βx and βy. Notice that these
parameters are set to 0 with the P7 transformation). The parameters βx and500

βy have been added to model small alignment errors in the posterioranterior
view for clavicles and patellae, and model posterioranterior and Water’s views
for frontal sinuses (as stated in Section 4). With frontal sinuses, the parameter
βy has a larger range to allow the optimizer to adapt automatically to both
posterioranterior and Water’s views. In addition, the rotation range has been505

increased to [-40, 40] to study the robustness of the RCEA to a greater un-
certainty on the initial pose of the 3D model. These projections are generated
with a resolution of 2 pixels per mm, resulting in images of 480× 600 pixels for
frontal sinuses and patellae, and 860× 700 pixels for clavicles. Lastly, in order
to model the occlusions present in real radiographs, two additional projections510

were generated with occlusion on the skeletal structure of 20% and 40% for each
of the previous projective projections. The occlusion ranges are greater than in
[12] to test the RCEAs in a more complex optimization scenario.

5.2. Real dataset

The dataset employed in Experiment III was provided by the Hospital de515

Castilla-La Mancha, Spain, and is composed of 50 CTs and 50 radiographs
where the frontal sinuses are visible. The data were segmented by two forensic
anthropology MSc students from the Physical Anthropology lab (PAL) of the
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Table 1: Range of the parameters of the projective transformations for each skeletal structure
according to international acquisition protocols [46] and expert knowledge.

Parameter
Bone/Cavity

Frontal Sinuses Patellae Clavicles

Image receptor dimension (mm) 240 × 300 430 mm × 350
tx (mm) [-125, 125] [-125, 125] [-210, 210]
ty (mm) [-150, 150] [-175, 175]
tz (mm) [900 - 200, 900 + 200] [900 - 200, 1700 + 200]

rx, ry , and rz (degrees) [-40◦, 40◦]
SID (mm) [1000 - 100, 1000 + 100] [1800 - 100, 1800 + 100]

βx (degrees) [-10◦, 10◦]
βy (degrees) [-50◦, 10◦] [-10◦, 10◦]

University of Granada. All CTs were segmented by the forensic student A (An-
drea Cerezo Vallecillo), and all radiographs were segmented by forensic students520

B (José Manuel Pérez Jiménez).

5.3. Performance metrics

Two GT metrics are employed to objectively measure the quality of the
superimpositions archived by RCEAs: GT DICE [45] and the mean reprojec-
tion distance error (mRPD) [56]. The GT DICE metric measures the overlap525

between the GT projection’s silhouette (equal to the simulated AM projection
but without any occlusion) and the 2D projection’s silhouette archived by the

Table 2: Summary of all the parameters of the different RCEAs and their studied values in
Experimentation I

Fixed parameters

General par. Number of evaluations: 50,000
DE p = 100 F = 0.5 Pc = 0.5

L-SHADE rarc = 21 None
CMA-ES None

BIPOP-CMA-ES None

CRO-SL p0 = 0.42 nLS = 503 F = 0.5

Substrates = (Harmony search, DE, Cauchy Mutation4, SBX,
and BLX-α)

MVMO-SH fstart =1 dr = 1 GP = 5 pLS = 0.015

Parent selection strategy = sequential selection of the 1st variable, and
the rest randomly5

Parameters to fine tune N◦conf.

DE
None. DE’s parameters were already fine tuned

in [12])
1

L-SHADE pinit = (15, 20, 25) pb = (0.05, 0.1, 0.15) H = (2, 5, 10) 27

CMA-ES λ & µ = (100 & 15, 40 & 15, d6 & d7). σ = (0.01, 0.1, 0.3) 9

BIPOP-CMA-ES λ & µ = (100 & 15, 40 & 15, d6 & d7). σ = (0.01, 0.1, 0.3) 9

CRO-SL p = (25, 50, 100) δ = (0.1, 0.25, 0.4) 9
MVMO-SH p = (1, 25, d8) As = (5, 10, 25) fend = (1.5, 2.5) 12

1 other values (1, 3) were also studied in a preliminary experimentation with worst performance results.
2 other values (0.15, 0.65) were also studied in a preliminary experimentation with worst performance results.
3 other values (0, 100) were also studied in a preliminary experimentation with worst performance results.
4 the Gaussian Mut. was studied as alternative to the Cauchy Mut. in preliminary experiments with worst
results.

5 the rest of selection strategies were tested in preliminary experiments with worst performance results.
6 d = default value calculated according to the following equation: λ = 4 + ⌊3 ln(n)⌋. Thus, it is equal to 9
and 10 for P7 and P9, respectively.

7 d = default value calculated according to the following equation: µ = λ/2. Thus, it is equal to 4 and 5 for
P7 and P9, respectively.

8 d = default value calculated according to the following equation: 15*number variables. Thus, it is equal to
105 and 135 for P7 and P9, respectively.
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RCEA. However, the GT DICE metric and the fitness function (i.e. Masked
DICE, see Section 4) are highly correlated (e.g. they are equal in cases with-
out occlusions) and thus, to avoid any possible bias, the mRPD metric is also530

employed. mRPD is an standardized metric for the evaluation of 3D-2D IR
methods by computing the retroprojection error between the transformation
obtained by the RCEA and the GT transformation (see [12] for further details
of the utilization of mRPD in the CR problem). Notice that these metrics can
be employed only in simulated CR problems since in real CR problems the GT535

projection and the GT transformation are unknown.

5.4. Experiment I: Fine tuning of the evolutionary algorithms for the CR prob-

lem

5.4.1. Experimental set up

This experimentation involves the application of six different RCEAs (DE, L-540

SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL, and MVMO-SH) and two kinds
of projective transformations (P7 and P9) for each of the 300 CR cases of frontal
sinuses to achieve our goal of determining the influence of the evolutionary opti-
mizer used by the automatic CR method. As mentioned above, this experiment
is meant to fine tune the six RCEAs. While there are unsupervised methods for545

parameter tuning [57], they tend to evaluate a very large number of parameter
configurations, making them infeasible for an expensive optimization problem
as CR (since each configuration should be tested over the 300 CR problems
to compare them rigorously). Therefore, we have utilized a grid search where
the parameter values are chosen based on the recommendations present on the550

RCEA’s original paper and on expert knowledge about its behaviour. Taking
these considerations into account, the parameter grid shown in Table 2 was de-
signed. Lastly, in order to allow for a fair comparison, every RCEA will have
the same computational resources with maximum number of 50,000 evaluations.

In summary, a total of 67 parameter configurations were considered, resulting555

in 20,100 executions. For each of these executions, 10 independent runs were
performed to study the robustness of the RCEAs for solving the CR problem
due to their stochastic component. Thus, 201,000 runs (i.e. superimpositions)
were performed. Each superposition takes 1,000 seconds on average, resulting
in an experimentation of around 55,833 computation hours (2,326 computation560

days) that performed on the 50 available cores of Alhambra required “only”
around 1,100 computation hours (45 computation days).

5.4.2. Results

Fig. 5 shows the results obtained by the different RCEAs and their configu-
rations according to the GT DICE metric. The performance varies significantly565

depending on the RCEA and projective transformation in terms of mean and
standard deviation values. Better results are always obtained with P7 proving
that P9 is significantly more complex as stated in Section 3, which is confirmed
by the Wilcoxon’s test [58] obtaining a p-value lower than 1 · 10−15 with both
metrics. CMA-ES is an exception obtaining better results with P9 but its results570
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are still significantly worse than those provided by the other RCEAs with both
P7 and P9. Nevertheless, P9 holds a greater forensic interest since it allows to
model radiographical scenarios that P7 cannot model.

Studying the influence of the different parameters, it can be observed large
differences for each RCEA, especially with respect to their sensibility to the575

parameter choice. L-SHADE presents the more robust behavior since the re-
sults are similar for the different parameter values for each one of the problems.
On the contrary, CMA-ES gives very different results in P7 depending on the
parameter values used (in P9 there are very similar). More in detail, the most
influential parameter in CMA-ES seems to be sigma, σ, obtaining better results580

with higher σ values. In BIPOP-CMA-ES this tendency is increased, corroborat-
ing that σ parameter is clearly more influential in both problems. By setting an
appropriate σ value, BIPOP-CMA-ES obtains for both problems better results
than the majority of the remaining RCEAs but DE and MVMO-SH. MVMO-
SH is very sensitive to the number of particles, p. In P7, results are clearly585

different with p=1 and p=25, obtaining two performance levels based on that
parameter value. For P9, results show three very different performance levels,
for p=1, p=25, and p=d. In both problems, the results provided by MVMO-
SH with p=1 are worse than the other RCEAs but with p=25 it outperforms
the majority of algorithms, and with p=d, MVMO-SH achieves the best results590

overall.
In terms of accuracy and robustness of the best configuration of each RCEA,

the worst RCEA (i.e. the sixth position) is CMA-ES (best configuration: λ =
100, µ = 25, and σ = 0.3). It is followed by L-SHADE (pinit = 25, pb = 0.15, H
= 2, and rarc = 2) and CRO-SL (p = 100, and δ = 0.25) in the fifth and forth595

positions, respectively, closely tied. Neither CMA-ES, L-SHADE nor CRO-SL
can obtain better results than DE, the state-of-the-art RCEA for CR [12], either
with P7 and P9. BIPOP-CMA-ES (λ = 100, µ = 25, and σ = 0.3) and DE
are also closely tied (taking the third and second positions). Finally, the best
RCEA in terms of average and standard deviation values, and confirmed by the600

Wilcoxon’s test with p-values lower than 1 · 10−7 in the comparison with all the
other RCEAs, is MVMO-SH (p = d, As = 4, and Fend = 2.5).

MVMO-SH has greatly improved the state-of-the-art results both in terms of
accuracy and robustness with P7 [12]. MVMO-SH has also successfully solved a
more complex version of the CR problem based on the projective transformation605

P9, that allows to model both posterioanterior and Water’s views, as well as,
being robust to occlusions up to the 40% of their silhouettes and rotation ranges
of up to 80◦([-40◦, 40◦]) in the three axis.

5.5. Experiment II: Comparison of the RCEAs over all the CR problems

5.5.1. Experimental set up610

This experimentation involves the application of the best configuration of the
six different RCEAs (DE, L-SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL, and
MVMO-SH) from Experiment I to all the 900 CR cases (300 frontal sinuses, 300
clavicles, and 300 patellae) using the two kinds of projective transformations (P7
and P9). The best configuration of the parameters in Table 2 are as follows:615

19



CMA−ES CRO−SL L−SHADE

P
7

P
9

la
m

b
d

a
=

1
0

0
−

m
u

=
1

5
 s

ig
m

a
=

0
.0

1

la
m

b
d

a
=

1
0

0
−

m
u

=
1

5
 s

ig
m

a
=

0
.1

la
m

b
d

a
=

1
0

0
−

m
u

=
1

5
 s

ig
m

a
=

0
.3

la
m

b
d

a
=

4
0

−
m

u
=

1
5

 s
ig

m
a

=
0

.0
1

la
m

b
d

a
=

4
0

−
m

u
=

1
5

 s
ig

m
a

=
0

.1

la
m

b
d

a
=

4
0

−
m

u
=

1
5

 s
ig

m
a

=
0

.3

la
m

b
d

a
=

d
−

m
u

=
d

 s
ig

m
a

=
0

.0
1

la
m

b
d

a
=

d
−

m
u

=
d

 s
ig

m
a

=
0

.1

la
m

b
d

a
=

d
−

m
u

=
d

 s
ig

m
a

=
0

.3

 d
e

lta
=

0
.2

5
 p

=
1

0
0

 d
e

lta
=

0
.2

5
 p

=
2

5

 d
e

lta
=

0
.2

5
 p

=
5

0

 d
e

lta
=

0
.5

 p
=

1
0

0

 d
e

lta
=

0
.5

 p
=

2
5

 d
e

lta
=

0
.5

 p
=

5
0

p
−

in
it=

1
5

 H
=

1
0

 p
b

=
0

.0
5

p
−

in
it=

1
5

 H
=

1
0

 p
b

=
0

.1

p
−

in
it=

1
5

 H
=

1
0

 p
b

=
0

.1
5

p
−

in
it=

1
5

 H
=

2
 p

b
=

0
.0

5

p
−

in
it=

1
5

 H
=

2
 p

b
=

0
.1

p
−

in
it=

1
5

 H
=

2
 p

b
=

0
.1

5

p
−

in
it=

1
5

 H
=

5
 p

b
=

0
.0

5

p
−

in
it=

1
5

 H
=

5
 p

b
=

0
.1

p
−

in
it=

1
5

 H
=

5
 p

b
=

0
.1

5

p
−

in
it=

2
0

 H
=

1
0

 p
b

=
0

.0
5

p
−

in
it=

2
0

 H
=

1
0

 p
b

=
0

.1

p
−

in
it=

2
0

 H
=

1
0

 p
b

=
0

.1
5

p
−

in
it=

2
0

 H
=

2
 p

b
=

0
.0

5

p
−

in
it=

2
0

 H
=

2
 p

b
=

0
.1

p
−

in
it=

2
0

 H
=

2
 p

b
=

0
.1

5

p
−

in
it=

2
0

 H
=

5
 p

b
=

0
.0

5

p
−

in
it=

2
0

 H
=

5
 p

b
=

0
.1

p
−

in
it=

2
0

 H
=

5
 p

b
=

0
.1

5

p
−

in
it=

2
5

 H
=

1
0

 p
b

=
0

.0
5

p
−

in
it=

2
5

 H
=

1
0

 p
b

=
0

.1

p
−

in
it=

2
5

 H
=

1
0

 p
b

=
0

.1
5

p
−

in
it=

2
5

 H
=

2
 p

b
=

0
.0

5

p
−

in
it=

2
5

 H
=

2
 p

b
=

0
.1

p
−

in
it=

2
5

 H
=

2
 p

b
=

0
.1

5

p
−

in
it=

2
5

 H
=

5
 p

b
=

0
.0

5

p
−

in
it=

2
5

 H
=

5
 p

b
=

0
.1

p
−

in
it=

2
5

 H
=

5
 p

b
=

0
.1

5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Optimizer

G
T.

D
IC

E
.M

e
tr

ic

BIPOP−CMAES DE MVMO−SH

P
7

P
9

la
m

b
d

a
=

1
0

0
−

m
u

=
1

5
 s

ig
m

a
=

0
.0

1

la
m

b
d

a
=

1
0

0
−

m
u

=
1

5
 s

ig
m

a
=

0
.1

la
m

b
d

a
=

1
0

0
−

m
u

=
1

5
 s

ig
m

a
=

0
.3

la
m

b
d

a
=

4
0

−
m

u
=

1
5

 s
ig

m
a

=
0

.0
1

la
m

b
d

a
=

4
0

−
m

u
=

1
5

 s
ig

m
a

=
0

.1

la
m

b
d

a
=

4
0

−
m

u
=

1
5

 s
ig

m
a

=
0

.3

la
m

b
d

a
=

d
−

m
u

=
d

 s
ig

m
a

=
0

.0
1

la
m

b
d

a
=

d
−

m
u

=
d

 s
ig

m
a

=
0

.1

la
m

b
d

a
=

d
−

m
u

=
d

 s
ig

m
a

=
0

.3

d
e

fa
u

lt

p
=

1
−

A
s=

1
0

 f
−

e
n

d
=

1
.5

p
=

1
−

A
s=

1
0

 f
−

e
n

d
=

2
.5

p
=

1
−

A
s=

2
5

 f
−

e
n

d
=

1
.5

p
=

1
−

A
s=

2
5

 f
−

e
n

d
=

2
.5

p
=

1
−

A
s=

5
 f

−
e

n
d

=
1

.5

p
=

1
−

A
s=

5
 f

−
e

n
d

=
2

.5

p
=

2
5

−
A

s=
1

0
 f

−
e

n
d

=
1

.5

p
=

2
5

−
A

s=
1

0
 f

−
e

n
d

=
2

.5

p
=

2
5

−
A

s=
2

5
 f

−
e

n
d

=
1

.5

p
=

2
5

−
A

s=
2

5
 f

−
e

n
d

=
2

.5

p
=

2
5

−
A

s=
5

 f
−

e
n

d
=

1
.5

p
=

2
5

−
A

s=
5

 f
−

e
n

d
=

2
.5

p
=

d
−

A
s=

1
0

 f
−

e
n

d
=

1
.5

p
=

d
−

A
s=

1
0

 f
−

e
n

d
=

2
.5

p
=

d
−

A
s=

2
5

 f
−

e
n

d
=

1
.5

p
=

d
−

A
s=

2
5

 f
−

e
n

d
=

2
.5

p
=

d
−

A
s=

5
 f

−
e

n
d

=
1

.5

p
=

d
−

A
s=

5
 f

−
e

n
d

=
2

.5
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Optimizer

G
T.

D
IC

E
.M

e
tr

ic

Figure 5: Boxplot of the minimum errors according to projective transformation, and optimizer
for the GT DICE metric (Experiment I). Notice that good superimpositions obtain a Masked
DICE value close to 0, while bad ones are close to 1.
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• DE: p = 100, F = 0.5, and Pc = 0.5 (fine tuned in [12]).

• L-SHADE: pinit = 25, pb = 0.15, H = 2, and rarc = 2.

• CMA-ES: λ = 100, µ = 25, and σ = 0.3.

• BIPOP-CMA-ES: λ = 100, µ = 25, and σ = 0.3.

• CRO-SL: p = 100, and δ = 0.25.620

• MVMO-SH: p = d, As = 4, and Fend = 2.5.

In summary, the six RCEAs are applied to the 900 CR cases resulting in
3,000 executions. As in the first experiment, 10 independent runs are performed
to avoid any possible bias caused by the stochastic component of the RCEA,
resulting in 30,000 runs/superimpositions and around 200 computation hours625

(8 days) when performed using the 50 cores.

5.5.2. Results

Table 3 shows the results obtained by the different RCEAs according to
Masked DICE, GT DICE, and mRPD metrics. In view of those results, the
impact of the considered skeletal structure on the RCEA’s performance depicted630

in [12] has been reduced but not eliminated. When a P7 transformation is
considered, the best results are still obtained with frontal sinuses, followed by
clavicles and patellae. This is probably due to the frontal sinus’ silhouettes are
more singular than those from clavicles and patellae. In fact, frontal sinuses are
usually employed for identification [15], while clavicles and patellae are mainly635

employed for short listing [14, 13]. However, when P9 is considered, clavicles
achieve the best results since the optimization problem to solve with frontal
sinuses is more complex (notice that βy has a range of 50◦compared with the
20◦of clavicles and patellae). Nevertheless, frontal sinuses are able to obtain
significant results with a mean error of 0.02 (i.e. an error of only the 2% of the640

pixels of the silhouette) and 14 mm according to GT DICE and mRPD metrics,
respectively. They also show a low standard deviation of 0.009 and 29 mm for
GT DICE and mRPD metrics, respectively. As in P7, patellae had the last
position due to their lower singularity.

In this experiment, MVMO is again the best RCEA for CR in terms of645

average and standard deviation values, as confirmed by the Wilcoxon’s test [58]
obtaining a p-value equal or lower than 2 · 10−16 in the comparison with the
other RCEAs considering the two metrics and the three bones. The rest of the
optimizers are ranked as follows: the second best is DE, the state-of-the-art
optimizer for CR; the third best is BIPOP-CMA-ES, that also outperforms to650

DE in some particular scenarios (e.g. with patellae and P9); followed by L-
SHADE and CRO-SL with no significant differences between them (-value of
0.166 according to the Wilcoxon’s test [58]); and the worst results are obtained
by CMA-ES.

Table 4 shows the mean and standard deviation, according to the Masked655

DICE metric, of each RCEA and projective transformation after 5,000, 10,000
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Table 3: Summary of the results according to projective transformation, skeletal structure
type, and RCEA optimizer (Experiment II).

Bone Opt.
Proj.

Tran.
Masked DICE GT DICE mRPD

Mean Sd Mean Sd Mean Sd

Frontal
Sinus

CMA-ES P7 0.414 0.140 0.446 0.130 8.736 4.767
P9 0.272 0.067 0.307 0.078 46.306 36.856

BIPOP-
CMA-ES

P7 0.011 0.054 0.015 0.061 0.595 1.998
P9 0.016 0.044 0.029 0.070 15.453 28.762

CRO-SL P7 0.073 0.069 0.111 0.100 2.458 2.930
P9 0.198 0.075 0.249 0.084 44.723 35.268

DE P7 0.008 0.034 0.015 0.048 0.307 1.396
P9 0.048 0.040 0.076 0.066 29.024 31.458

L-SHADE P7 0.079 0.085 0.113 0.110 2.553 3.213
P9 0.147 0.071 0.202 0.091 49.439 31.324

MVMO-SH P7 0.001 0.009 0.002 0.009 0.047 0.369

P9 0.011 0.020 0.021 0.042 14.778 29.968

Clavicle

CMA-ES P7 0.542 0.130 0.564 0.140 22.695 16.785
P9 0.519 0.139 0.537 0.149 32.044 17.304

BIPOP-
CMA-ES

P7 0.089 0.186 0.109 0.220 7.063 17.111
P9 0.132 0.220 0.155 0.246 30.573 29.887

CRO-SL P7 0.107 0.134 0.149 0.178 10.092 18.339
P9 0.133 0.122 0.176 0.153 27.121 16.946

DE P7 0.005 0.021 0.010 0.036 0.461 3.116
P9 0.028 0.053 0.046 0.077 23.024 15.253

L-SHADE P7 0.105 0.142 0.129 0.159 7.396 15.648
P9 0.111 0.149 0.136 0.164 33.862 20.716

MVMO-SH P7 0.001 0.000 0.002 0.002 0.065 0.051

P9 0.004 0.004 0.009 0.009 19.383 14.008

Patella

CMA-ES P7 0.273 0.117 0.330 0.116 15.318 15.878
P9 0.268 0.136 0.326 0.122 22.001 15.865

BIPOP-
CMA-ES

P7 0.016 0.024 0.045 0.063 9.486 19.605
P9 0.019 0.028 0.053 0.072 22.163 25.054

CRO-SL P7 0.043 0.033 0.096 0.070 12.395 19.434
P9 0.080 0.054 0.152 0.092 22.558 19.350

DE P7 0.014 0.022 0.045 0.057 7.057 16.320
P9 0.025 0.026 0.073 0.073 21.411 20.970

L-SHADE P7 0.096 0.083 0.143 0.089 14.228 23.969
P9 0.146 0.144 0.184 0.134 28.048 23.771

MVMO-SH P7 0.003 0.010 0.009 0.026 2.650 13.130

P9 0.006 0.011 0.026 0.044 17.151 18.216

and 50,000 evaluations. Meanwhile, Fig. 6 reports the average time required
by the RCEAs to reach a stop condition and the average results obtained ac-
cording to the GT DICE metric. In view of the results collected in Table 4,
the convergence speed of MVMO-SH is lower than that of the other RCEAs,660

needing almost all the 50,000 evaluations to obtain significant results in terms
of accuracy and robustness. On the contrary, the other RCEAs have a similar
performance with 10,000 and 50,000 evaluations, and the only one showing ac-
ceptable results with only 10,000 evaluations is DE. However, after the 50,000
evaluations limit, the best RCEA in terms of time is also MVMO-SH (as can665

also be seen in Fig. 6). In that figure, we can also observe that every algo-
rithm but CMA-ES, and sometimes DE, does do not stop due to the maximum
number of evaluations condition, but to the premature convergence (worse case)
or good superimposition (best case) stop conditions. CRO-SL and L-SHADE
stops more than 90% of times for premature convergence, while BIPOP-CMA-670

ES stops for good superimposition more than half of times. The main stopping
condition of MVMO-SH is the good superposition (especially in problem P7, in
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Table 4: Summary of the Masked DICE metric results according to projective transformation,
and RCEA optimizer at 5,000, 10,000 and 50,000 evaluations (Experiment II).

Opt. N. Ev. P7 P9

Mean Sd Mean Sd

CMA-ES
5,000 0.429 0.168 0.418 0.163
10,000 0.422 0.169 0.391 0.167
50,000 0.410 0.169 0.351 0.169

BIPOP-CMA-ES
5,000 0.174 0.180 0.221 0.200
10,000 0.079 0.159 0.109 0.186
50,000 0.053 0.137 0.075 0.167

CRO-SL
5,000 0.087 0.098 0.168 0.120
10,000 0.078 0.094 0.146 0.109
50,000 0.072 0.092 0.134 0.102

DE
5,000 0.096 0.061 0.152 0.080

10,000 0.036 0.036 0.078 0.052

50,000 0.009 0.027 0.034 0.042

L-SHADE
5,000 0.094 0.109 0.142 0.130
10,000 0.093 0.108 0.135 0.128
50,000 0.093 0.108 0.135 0.128

MVMO-SH
5,000 0.241 0.138 0.338 0.171
10,000 0.157 0.096 0.269 0.145
50,000 0.001 0.007 0.006 0.013

which almost all runs stop for that good condition). The most frequent stop-
ping condition reached by MVMO-SH is the good superimposition in 92% of
all executions, while the converged condition arises in 7%, and the maximum675

number of evaluation condition only in 1% of runs (see Fig. 7). Thus, MVMO-
SH has obtained an improvement in accuracy, robustness, and convergence, as
well as run time (see Table 5), in the solution of the CR problem. In general,
every RCEA (but CMA-ES for P7 and P9 and DE for P9) is not limited by the
maximum number of evaluations and thus no further improvements are to be680

expected with further run times.

Table 5: Summary of the computational time, in seconds, according to skeletal structure,
projective transformation, and RCEA optimizer (Experiment II).

Opt. Proj. Tran. Frontal sinuses Clavicles Patellae

Mean Sd Mean Sd Mean Sd

BIPOP-CMAES P7 497 285 586 311 435 260
BIPOP-CMAES P9 912 478 951 450 460 221
CMA-ES P7 1321 592 1243 565 818 333
CMA-ES P9 1080 439 1080 500 709 217
CRO-SL P7 1127 598 1232 578 624 282
CRO-SL P9 1014 513 1135 506 542 232
DE P7 1665 913 1515 652 814 369
DE P9 2730 1035 2073 586 919 306
L-SHADE P7 278 149 408 176 214 90
L-SHADE P9 405 172 489 166 228 80
MVMO-SH P7 1056 396 1211 354 722 234
MVMO-SH P9 1487 548 1720 498 858 232
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Figure 6: (Top) Boxplots of the time required to perform a superimposition according to
projective transformation and RCEA optimizer. (Bottom) Relation between the average time
(seconds) and the GT DICE metric according to projective transformation and RCEA opti-
mizer (Experiment II).

5.6. Experiment III: Testing the identification capability of our 3D-2D IR-based

CR framework with frontal sinuses

5.6.1. Experimental set up

This experimentation is aimed to evaluate the identification capability of685

the proposed 3D-2D IR-based CR framework using frontal sinuses and the best
RCEA configuration (MVMO-SH with p = d, As = 4, Fend = 2.5, and P9). To
this end, we confront 50 manually segmented radiographs against 50 manually
segmented CTs, resulting in a total of 2,500 CR problems (50 positive and 2,450
negative cases). Since previous experiments have already shown the robustness690

of MVMO-SH, and due to the large computational cost of employing again 10
repetitions, a single run is performed. Each of the 2,500 runs takes on aver-
age 1,000 seconds, resulting in 695 hours of computation (or 29 computation

24



Figure 7: Boxplots of stop condition (defined in Section 5) reached by the optimization process
according to skeletal structure, projective transformation and RCEA optimizer (Experiment
II).

days) that, performed on the 50 available cores of computing server Alhambra,
required only around 14 computation hours.695

5.6.2. Results

Promising results have been obtained. In the reliability study, positive and
negative cases have shown important differences in terms of fitness according
to the Masked DICE Metric (see Fig. 8). However, this metric alone is not
sufficient to precisely distinguish between positive and negative cases.700
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Figure 8: Boxplots of the minimum error of positive and negative cases according to the
Masked DICE metric (Experiment III).
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Therefore, the results are reported using CMC curves to study the identifi-
cation capabilities of the proposal, as done in [12]. A CMC curve measures the
probability that the correct match for a identification case is present in a can-
didate list of the r best matches, where r denotes the position in the rank. For
example, rank 5 identification accuracy denotes the probability that the correct705

match is one of the subjects in a list of the top 5 matches. The results of the
reliability study are significant (see Fig. 9). The positive case ranks in the first
position in 88% of the cross-comparisons (out of 50 candidates, 2% of the total
sample), and a confidence level of 100% of success is reached when the first six
positions are considered. Notice that these results are obtained with the sim-710

plest decision-making method based only on the registration error. Therefore, a
more complex decision-making method based on multiple forensic criteria and
metrics, as the one depicted in [59] for the craniofacial identification technique,
can further improve the identification capabilities of the proposal.
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Figure 9: CMC curve of the comparison of 50 radiographs against 50 CTs (Experiment III).

6. Conclusions and future developments715

6.1. Regarding the 3D-2D comparative radiography problem

In this work, we have tackled the superimposition problem within the CR
task using an evolutionary 3D-2D IR approach based on the silhouette of the
skeletal structure. It considers a completely realistic scenario and thus a more
complex version of the CR problem than the one studied in [12]. Our aim720

was to analyze the influence of the RCEA optimizer estimating the registration
transformation parameters in the CR solution. To this end, six different state-
of-the-art RCEAs (DE, L-SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL, and
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MVMO-SH) have been fine-tuned and studied to deal with this challenging and
computationally expensive optimization scenario.725

In summary, after a detailed analysis of the results obtained by the different
RCEAs, we can conclude that the underlying optimization problem within CR is
really complex for reasons such as the strong correlation among the parameters,
their order of magnitude, and the high computational cost. We also confirmed
that there is a strong influence of the kind of RCEA considered in a complex730

problem like CR. Advanced RCEAs such as CMA-ES, L-SHADE, and CRO-
SL have not been able to obtain accurate results despite their good behavior
in other real-world optimization problems. Nonetheless, promising results have
been obtained with MVMO-SH overcoming BIPOP-CMA-ES and the state-of-
the-art RCEA for CR, DE. The best configuration of MVMO-SH (p = d, As735

= 4, and Fend = 2.5) allowed us to obtain accurate superimpositions with an
average error of 0.001 and 0.006 according to the Masked DICE metric for P7
and P9, respectively, in all the studied bones/cavities (frontal sinuses, clavicles,
and patellae). Despite of its stochastic nature, it also showed a robust behavior
with a low standard deviation (frontal sinuses, 0.009 for P7 and 0.042 for P9;740

clavicles 0.002 with P7 and 0.009 with P9; and patellae, 0.026 for P7 and 0.044
for P9) according to GT DICE metric. The results in terms of the mRPD metric
with P7 were lower than 1 mm for frontal sinuses and clavicles, and lower than 3
mm for patellae, but were around 15 mm when P9 was considered. Furthermore,
by using MVMO-SH, the strong dependency on the kind of bone or cavity was745

greatly reduced, obtaining accurate results with every bone under study. The
main drawback is the computation time required to obtain the superimpositions,
that despite having been reduced is still high.

Lastly, we have validated the evolutionary IR method using the best RCEA,
MVMO-SH, for solving real CR problems of frontal sinuses. We have compared750

50 skull radiographs against 50 skull CTs, where the frontal sinuses were seg-
mented by forensic anthropology master students at the Physical Anthropology
lab (PAL) of the University of Granada. The positive case ranks in the first
position in 88% of the cross-comparisons (out of 50 candidates, 2% of the total
sample), and a confidence level of 100% of success is reached when the first six755

positions are considered. Thus, if we compare 50 AM radiographs of possible
candidates against the PM 3D image, our proposal with a very preliminary ver-
sion of the decision making stage, based only on the value of the Masked DICE
metric, is able to filter out 88% of the possible candidates with 0 error rate in
a fully automatic manner.760

Future research is planned to reduce the run time required by studying evo-
lutionary multiresolution IR approaches, surrogate assisted approaches [60], and
computation on GPUs. We also plan to study the identification potential of dif-
ferent bones and cavities (both separately and combined) for the CR task [61]
through a collaboration with the Israel National Centre of Forensic Medicine765

and the Hebrew University of Jerusalem. Lastly, we plan to develop and val-
idate a hierarchical decision support system that will analyze frontal sinuses
superimpositions using multiple criteria (morphological, intensities, etc.), each
of them measured using multiple metrics.
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6.2. Regarding the soft computing field770

Theoretical benchmarks are usually utilized as a means to validate and com-
pare RCEAs. However, these optimization problems are often not able to re-
flect the full complexity of a real-world optimization problem. In this work, we
have performed a rigorous comparative study of several state-of-the-art RCEAs
(DE, L-SHADE, CMA-ES, BIPOP-CMA-ES, CRO-SL, and MVMO-SH) in a775

complex real-world optimization problem, 3D-2D superimposition for CR. The
underlying optimization task is computationally expensive, limiting the maxi-
mum number of evaluations that can be performed by the optimizer to satisfy
the time constrains of the real-world problem. Furthermore, it also establishes
certain limitations on the experimental study, since the computational resources780

and time are limited.
We think that the methodology employed in this paper can be utilized as a

guideline for tackling other computationally expensive real-world optimization
problems. As a brief summary, the guidelines that have been most relevant to
this work are: the utilization of syntactic data with GT solutions for finemtun-785

ing the RCEAs, the selection of a dataset that represents as many different real
scenarios as possible, the study of the stop criteria, the analysis of the conver-
gence of the RCEAs with different number of evaluations, and the validation of
the results with real data not utilized in the selection of the best RCEA and its
configuration.790

In addition, we have been able to conclude that some of the RCEAs which
showed to be competitive in some of the competitions developed, did not pro-
vide a good performance when applied on a real-world complex problem. On
the opposite, MVMO-SH showed up as the best performing optimizer when pro-
vided with a sufficient number of evaluations to converge (50,000), confirming795

its good results in these competitions. We should say that for a lower number of
evaluations (5,000 and 10,000) the basic DE was the most competitive method,
showing that classical RCEAs are still promising in complex real-world prob-
lems. It would be interesting to analyze if this behavior could also happen in
other kinds of real-world optimization problems.800
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by Spanish MECD FPU grant [grant number FPU14/02380]. Dr. Ibáñez’s work
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