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Abstract: 

The energy performance of a building is affected by the periodic thermal properties of the walls, and reliable methods of 

characterising these are therefore required. However, the methods that are currently available involve theoretical 

calculations that make it difficult to assess the condition of existing walls. In this study, the characterisation of the periodic 

thermal variables of walls using experimental measurements and methods as described in ISO 13786 was assessed. Two 

regression algorithms (multilayer perceptron [MLP] and random forest [RF]) and input variables obtained using two 

experimental methods (the heat flow meter and the thermometric method) were used. The methods gave accurate 

estimates, and better statistical parameter values were given by the RF models than the multilayer perceptron models. For 

all the periodic thermal variables, the percentage differences between the actual values and the estimated values given by 

the RF algorithm were low. The heat flow meter and the thermometric methods can both be used to characterise 

accurately the periodic thermal properties of walls using the RF algorithm. The variables specific to each method, 

including the wall thickness and the date of construction, affected the accuracies of the models most strongly.  
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1. Introduction 

Arguably, the two most important goals of the 21st century are the prevention of further environmental degradation 

and a reduction in the rate of climate change [1]. The latter is becoming increasingly severe, at least partly due to the large 

amounts of greenhouse gases (GHGs) being emitted through energy production. The pressing need to decarbonise the 

production of energy was recognised at the Paris Climate Conference of 2015, at which 195 countries committed to a 

marked decrease in GHG emissions. However, there is still some way to go towards the effective mitigation of climate 

change. Attempts to decrease GHG emissions and the difficulty of decreasing GHG emissions were described in “United in 

Science” [2], a report published as part of the United Nations Climate Action Summit of 2019. The main points findings of 

the report were that CO2 emissions are continuing to increase by 1% each year, fossil fuel is still dominant despite 

increased renewable energy production, and CO2, CH4, and N2O concentrations are 146%, 275%, and 122% higher, 

respectively, compared with the preindustrial period (before 1750).  

Countries and communities should therefore set themselves more stringent goals than at present, to allow the 

environment to be protected for future generations. The European Union has established a roadmap for developing a low-

carbon economy in accordance with the agreement to eliminate virtually all GHG emissions in all sectors made at the 2015 

conference. For the building sector, the goal is to decrease GHG emissions to the atmosphere by 90% compared with 1990 

[3]. This goal will have an important effect on the climate due to the high percentage of energy consumed by, and GHG 

emissions from, activities in existing buildings. 
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The need to improve the energy performance of existing buildings is clear. The main energy consumption in existing 

buildings is due to heating, ventilation, and air conditioning systems [4,5], meaning that energy conservation measures 

focused on decreasing energy consumption are required in these areas. The thermal behaviour of the envelope of a 

building needs to be characterised in order to identify the most appropriate energy conservation measures for the building 

and to ensure that the building meets the energy use regulations in place [6,7]. For many studies, the aim has been to 

analyse the effects on the energy demands of buildings of thermal variables such as stationary thermal transmittance [8,9] 

and linear thermal transmittance [10]. However, the importance of thermal inertia and periodic thermal properties of 

buildings are of increasing interest. Better understanding of these properties could make it possible to construct net zero 

carbon energy buildings (nZEB) in warm climates in particular, given their greater applicability to energy consumption in 

warm than cold regions [11]. The effects of the periodic thermal properties of buildings have been investigated by many 

authors. For example, di Perna et al. [12] analysed three wall types with different thermal masses in a school building and 

determined appropriate combinations of periodic thermal transmittance and internal areal heat capacity. Rossi and Rocco 

[13] analysed four heavy and four light walls to evaluate the appropriateness of the periodic variable limits set in the 

Decreto Ministeriale 26/6/2009 [14] and found by Di Perna et al. [12]. The results reported by Di Perna et al. were found to 

have limitations caused by the dependence of internal areal heat capacity on the external climate, nevertheless Rossi and 

Rocco were able to identify ways of decreasing the energy demands of buildings in general terms. Stazi et al. [15] 

determined the combined effects of the decrement factor and internal areal heat capacity in a windowless room in Italy 

and found that the best annual performance was given by the average thermal inertia properties of a decrement factor of 

0.072 and an internal areal heat capacity of 33 kJ/(m2 K)). Aste et al. [16] studied six facade types using building model 

simulations and found that the use of periodic thermal variables decreased the cooling demand. They found that 20% less 

cooling was required for a wall with a high thermal inertia than for a wall with a low thermal inertia. Baglivo et al. [17] 

performed multi-objective optimisations to identify the most acceptable configurations for nZEB envelopes for buildings in 

the Mediterranean and found that the surface masses of the external walls strongly affect the performances of buildings. 

Fernandes et al. [18] and Rodrigues et al. [19] found that walls in cold regions should have high thermal inertia while those 

in warm regions should have low thermal inertia. Many building envelope designs using walls with low thermal inertia can 

be used to decrease energy demand in warm regions.  

Calculation procedures or simulation processes are required to allow periodic thermal properties to be characterised 

[20]. ISO 13786 [21] is a calculation procedure for assessing the periodic thermal behaviour of a building envelope, and 

the calculation procedure has the same limitations as that for calculating the stationary thermal transmittance described 

in ISO 6946 [22]. Asan [23] investigated the effects of thickness and type of material on the decrement factor and time shift 

for 26 construction materials. The layers and their thermal properties must be assessed accurately to allow periodic 

thermal properties to be estimated with any confidence. Three main methods can be used to achieve this, namely (i) 

endoscopic analysis [22,24], (ii) analysis of technical documents [25], and (iii) estimation using analogous constructions 

[22,25]. Analogous constructions provide the least certainty, and smaller errors are achieved using endoscopy and 

technical documents [22,26]. However, correct characterisation of wall layers is limited for most buildings because 

endoscopic techniques damage the building and technical documentation is not usually sufficient. Several procedures for 

characterising the stationary thermal transmittances of existing walls have therefore been developed in recent years. The 

most commonly used methods in recent years are the heat flow meter method (HFM) and the thermometric method 

(THM) [27]. The main differences between these are the variables used in the calculations, which imply a need for 

different in situ monitoring procedures. HFM requires heat fluxes and THM requires internal surface temperatures to be 

measured. The different variables used cause the monitoring data to have different errors. Meng et al. [28] found heat flux 

measurement errors of up to 26% but surface temperature measurement errors of only 6%. The most accurate results 

have been found to be achieved using an appropriate envelope orientation [29], a high thermal gradient during the tests 

[30], and unaltered elements [31].  

The stationary thermal transmittance method contains procedures for making appropriate estimates for existing walls 

as long as the walls are in adequate states of repair. Rotilio et al. [32] found differences of 10%–15% between measured 

and estimated values for walls damaged by earthquakes and other eans. There are, however, no acceptable methods for 

determining all of the variables that affect periodic thermal properties, although some methods using hot boxes have been 

used to characterise these types of variables [33]. There are some limitations on the use of hot boxes for walls, making 

such methods something of a challenge. In the study presented here, our aim was to combine different commonly used 

procedures to obtain stationary thermal transmittance using estimated periodic thermal variables. The advantages of 

performing thermal characterisations using these procedures are that the procedures are widely known and that 

stationary thermal transmittance can also be estimated. Two approaches using different regression algorithms (multilayer 

perceptron (MLP) and random forest (RF)) are used. Each approach is based on previous studies using other thermal 

characterisations that gave acceptable results [34,35]. First, use of MLPs allows estimates to be made using the results of 

HFM with THM input variables (internal surface temperature and air temperature), and eliminating errors in the results 

using a theoretical total internal heat transfer coefficient [36]. Second, the stationary thermal transmittance data 

determined using the ISO 6946 method were analysed using MLPs and RFs [34]. It was necessary to determine this in 

order to allow validation of the results obtained by experiment; these results reflect the potential for this variable to be 

determined using the algorithms used here. 

https://www.sciencedirect.com/topics/engineering/thermal-behaviour
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The potential for the use of regression algorithms to estimate stationary thermal transmittance using various 

theoretical and experimental methods is clear. However, as mentioned above, methods for determining periodic thermal 

properties are still required. Therefore, in this study we assessed the possibility of determining different thermal variables 

that would allow the periodic thermal behaviour of a wall to be represented using regression algorithms that have been 

used in previous studies. Periodic thermal variables (periodic thermal transmittance, periodic thermal transmittance time 

shift, decrement factor, internal thermal admittance, internal thermal admittance time shift, external thermal admittance, 

and external thermal admittance time shift) were estimated using input variables determined using HFM or THM. The aim 

was to develop methods for the in-situ characterisation of the periodic thermal properties of buildings without knowledge 

of the compositions of the existing walls, thereby making these methods more widely available to engineers and auditors 

for the correct characterisation of the behaviours of existing buildings, to allow effective energy conservation measures to 

be established, and to make it easier to meet the goal of decreasing GHG emissions from buildings by 2050. 

 

2. Methodology 

2.1. ISO 13786: theory and calculation procedure 

ISO 13786 [21] allows dynamic thermal characterisation of the walls of a building to be performed using a series of 

variables to determine the thermal behaviour of each wall, including temporal variations. In the standard, sinusoidal 

variations in the air temperature outside the envelope are assumed to generate heat fluxes and sinusoidal variations in the 

internal temperature (see Figure 1). ISO 13786 was developed using the results of a study performed by Carslaw and 

Jaeger [37], in which the relationship between the sinusoidal variations in the external and internal temperatures and the 

heat flux were analysed. 

 
Figure 1. Scheme showing the sinusoidal temperature variations considered in ISO 13786 

 

The procedure in ISO 13786 requires information on the configuration and properties of the wall layers. It therefore 

requires the values of three thermophysical properties of the materials to be known. These are the specific thermal 

capacity (c), the density ( ), and the thermal conductivity ( ). The procedure therefore has the same limitations as the ISO 

6946 method for calculating the stationary thermal transmittance [38]. In ISO 6946, stationary thermal transmittance is 

characterised by considering the element to be a set of homogeneous and parallel layers. Each layer has a thermal 

resistance determined by the thermal conductivity      and thickness (     The stationary thermal transmittance is defined 

as the reciprocal of the sum of the resistances of the layers in the element and the limiting layers, 

  
 

      
  
  

 
        

, (1) 

where    [W/(m·K)] and    [m] are the thermal conductivity and thickness of layer i of the wall, respectively, and    and    

[W/(m²K)] are the total internal and external thermal transmittance coefficients, respectively, determined as specified in 

ISO 6946.  

The procedure in ISO 13786 involves use of a heat transfer matrix for each layer of the element (   ) (see Eq. (2)). A 

heat transfer matrix for air gaps (  ) is also used (see Eq. (3)). The specific thermal capacity of the air gap is disregarded. 

     
      
      

  

                                      

     
 

  
                                                              

(2) 
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  (3) 

In Eq. (3),   [dimensionless] is the relationship between the thickness ( ) and periodic penetration depth ( ) of a thermal 

wave in the material in the layer (see Eq. (4)) and    [(m²K)/W)] is the thermal resistance of the air gap.  

 

   
  

   
 (4) 

The total heat transfer matrix of an element is obtained by multiplying the matrices of the different layers together, 

beginning with the internal layer (   is to the innermost layer of the element) (see Eq. (5)). This matrix is used to obtain 

the matrix for heat transfer between the two environments (see Eq. (6)) together with the heat transfer matrices for the 

internal limit layer (Eq. (7)) and external limit layer (Eq. (8)). 

   
      
      

     

 

   

 (5) 

              (6) 

     
      
  

  (7) 

     
      
  

  (8) 

The periodic variables used in the standard can be determined from the elements in the heat transfer matrix. The 

variables used in the standard are shown in Table 1. All variables were considered in this study. 

 

Table 1. Periodic thermal variables used in ISO 13786Variable Calculation 

Periodic thermal transmittance      
 

     
 (9) 

Time shift periodic thermal admittance   
 

  
          (10) 

Decrement factor   
     

 
 (11) 

Internal thermal admittance      
     

     
 (12) 

Time shift internal side     
 

  
          (13) 

External thermal admittance      
     

     
 (14) 

Time shift external side     
 

  
          (15) 

Internal areal heat capacity 
   

 

  
 
     

   
  (16) 

External areal heat capacity 
   

 

  
 
     

   
  (17) 

2.2. Regression models 

The method used here involved assessing the possibility of estimating the periodic thermal variables described in 

Section 2 using two wall monitoring procedures, HFM and THM. Two regression algorithms were used, which were 

trained using a dataset containing the results of 22,820 tests performed in a previous study. A flowchart of the study 

procedure is shown in Figure 2.  
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Figure 2. Flowchart of the study  

 

2.2.1. Regression algorithms: MLP and RF 

Two regression algorithms (MLP and RF) were used, with different success rates in previous studies [34,35]. The 

algorithms and the factors analysed in each algorithm are described below.  

 

2.2.1.1. MLP 

MLP is a type of artificial neural network. The MLP algorithm simulates the structure of the brain in order to solve a 

problem [39], and can be used for regression or classification. This approach is successful because of the universal 

approximation capacity that characterises the algorithm [40–42]. The MLP model in this case had three layer types (see 

Figure 3 (a)), an input layer (corresponding to the input layer in the model), one or several hidden layers, and an output 

layer (corresponding to the output variable of the model). There were several connected neurons in each layer. The output 

value of the model was the sum of the values of the neurons in the previous layers weighted using synaptic weights from 

activation, transfer, and propagation functions. The estimate given by the model (     ) can be expressed using the 

equation 

            
   
     

 
      

   
  

        
   
  , (18) 

where    
   

 is the weight of the output layer,   is the activation function,    is the value of the input layer,    
   

 is the weight 

of a hidden layer, and    
   

 and    are the weight and the value, respectively, of the bias neuron in a hidden layer. 

Adjustment of the synaptic weights is essential for the model because this allows the difference between the actual and 

the estimated value of each value to be minimised. The MLP models were therefore trained by back propagation [43,44] 

using the Broyden–Fletcher–Goldfarb–Shanno algorithm [45], which is a quasi-Newtonian method. Similar procedures 

were used to design MLPs in previous studies [34,35]. The models were trained using a 10-fold cross validation procedure, 

which was expected to decrease substantially the variance of the model results [46]. The 10-fold cross validation involved 

dividing the training dataset randomly into 10 subsets 10 times. In each set of 10 subsets, nine were used to train the MLP 

and the other was used to test the MLP. This process was repeated 10 times. The MLP performance was determined by 

calculating the average value for all 10 times the process was performed. Only models with one hidden layer were 

considered, and the number of neurons was varied between one and 15 until the configuration giving the best 

performance was identified.  
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Figure 3. Schemes of the (a) multilayer perceptron regression model and (b) random forest regression model 

 
2.2.1.2. RF 

The RF algorithm is a tree-type algorithm. Models using RF algorithms are effective for large datasets [47] and give 

smaller errors and variances than other algorithms [48,49]. A RF algorithm creates a set of classification and regression 

tree (CART) models. The output value of a RF model is the mean estimate for each tree (see Figure 3(b)). A CART model is 

a predictor model with a reverse tree structure (in which the internal nodes are the input variables of the dataset, the 

arches are the possible values of the variables, and the leaves are the CART variables). Like MLPs, CART models can be 

used for classification and regression.  

To train an RF model, the training dataset is divided into   bootstrapped sample sets [49], each of which generates a 

CART model. Each node of each CART is divided using a subset of randomly selected m predictors, which decreases the 

influences of the strongest predictors [50]. The estimate given by the RF model is obtained by calculating the average of 

the estimates given by the set of CARTs (see Eq. (19)). The estimate given by the model therefore depends on the number 

of trees used in the RF model [51]. Therefore, the RF models used in this study had between two and 50 trees. The most 

appropriate number of trees was defined as the number above which the model did not improve but the computing time 

required to train the model increased.  

     
 

 
    

 

   

 (19) 

In Eq. (19),     is the output of the  -th tree and   is the number of trees.  

 

2.2.2. Dataset and approaches used 

As mentioned in Section 1, the aim of the study was to identify a method for making in-situ estimates of the periodic 

thermal properties of walls by combining different stationary thermal transmittance monitoring approaches to avoid the 

limitations of previously developed methods. Such a method would correctly estimate the stationary and periodic thermal 

properties of a wall. Two approaches were used to deal with the input variables to the regression model, one for each of 

the monitoring procedures used (the HFM and the THM), as shown in Figure 4. The main difference between the methods 

was that HFM involved measuring the heat flux but THM involved measuring the internal surface temperature of the 

element. The different approaches gave different input variables (see Table 2). The relationships between the input 

variables for the internal and external air temperatures were therefore considered. The input variables had the same 

structure for both approaches. The mean, minimum, and maximum values determined by performing instantaneous 

measurements were used. Three input variables were used, as in previous studies, namely wall thickness, test duration, 

and date of construction. Given the context of the study (in Spain), it was important to identify three different periods of 

construction, namely P1 (before the normative NBE-CT-79 standard [52]), P2 (after the NBE-CT-79 standard but before 

the Spanish Technical Building Code [53]), and P3 (after the Spanish Technical Building Code). The output variables for 

each approach corresponded to the periodic thermal variables shown in Table 1, i.e.,                                  . 

Separate MLP and RF models were designed for each variable using both approaches. The MLP and RF models were 

assessed until the optimum configurations for the criteria shown in Subsection 3.1 had been identified. 
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Figure 4. Schemes for the in-situ measurement models used to determine the input variables 

 

Table 2. Input and output variables used in each approach 
Approach Algorithm Input variables Output variables 
HFM MLP, RF      ,           ,           ,      ,           ,           ,   , 

       ,        , thickness, time, period 
                 

              

THM MLP, RF      ,           ,           ,      ,           ,           , 
       ,             ,             , thickness, time, period 

                 
              

 

The envelope elements of key interest here are the walls, because these are of primary relevance in determining the 

effectiveness of the thermal characterisation procedure. They are easier to characterise than other envelope elements such 

as roofs, which may have different thicknesses. The dataset was similar to that used in a previous study [35] and was 

obtained by performing two-dimensional transitory simulations. The simulations were based on real tests using simulated 

facade models (see Figure 5). A total of 140 different types of facade were modelled. The designs of the facades were based 

on types described in the Catalogue of Construction Elements [54] and types derived from various studies in which the 

facades of Spanish real estate parks were catalogued [55,56]. The models used were therefore suitable for the types of 

facades used in the construction periods typical of housing estates in Spain. For walls with insulating material layers, 

several layers were used, in particular, expanded polystyrene, mineral wool, polyurethane, and extruded polystyrene. 

These materials were selected because they are the most common types of insulation used in buildings [57]. The fact that 

the walls were designed during the simulation process meant that the characteristics of the layers (material, thickness, 

and thermal properties) were fully understood. A dataset accurately reflecting the periodic thermal properties of each 

simulated facade was therefore available. Each of the 140 types of facade was used with 163 real-time indoor and outdoor 

air temperatures. Therefore, 22,820 different combinations of wall types and times were used. The surface thermal 

resistances contained in ISO 6946:2007 were used as the horizontal heat flux boundary conditions. These were 0.13 m² 

K/W for internal conditions and 0.04 m² K/W for external conditions. This was because it is recommended in ISO 

6946:2007 that these surface thermal resistance values are used for typical building envelopes under normal operating 

conditions (i.e., the interior temperature is within an acceptable range for comfort). 

Two datasets were used because two different approaches were used. One dataset was suitable for HFM and the other 

for THM. Accurate information was available for the layers and the thermal properties of the 140 walls, therefore periodic 

thermal properties could be determined using ISO 13786 (see Eqs. (9)–(17)). Each test was used as an observation of the 

relevant dataset, so the sum of the durations of the randomly selected instances was the full test duration. Each dataset 

was randomly divided into smaller datasets for training and testing. The training dataset contained 17,115 instances (75% 

of the full dataset) and the testing dataset contained 5,705 instances (25% of the full dataset). Three walls in any dataset 

were not considered (see Table 3). Each wall belonged to a different representative period for buildings in Spain. The 

estimates made using the models for the three case studies were assessed by analysing the estimates made for the three 

walls that were not considered. 
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Figure 5. Flowchart of the simulation process  

 

Table 3. Thermophysical properties of the walls selected for individual analysis 
Wall Layer Thickness 

[m] 
Thermal 
conductivity 
[W/(mK)] 

Thermal 
capacity 
[J/(kgK)] 

Density 
[kg/m

3
] 

Thermal properties Sketch 

W-A Cement mortar 0.015 1.000 1.000 1.700                 

                  

          

        

                  

 

            

                  

            

                   

                   
 

 Solid brick 0.115 0.850 1.000 2300 
 Cement mortar 0.015 1.000 1.000 1.700 
 Air gap 

Hollow brick 

0.100 - - - 
 0.070 0.320 1.000 770 
 Gypsum 

plaster 

0.015 0.570 1.000 1.100 

W-B Cement mortar 0.015 1.000 1.000 1.700                

                  

          

        

                  

 

            

                  

            

                   

                   
 

 Perforated 
brick 

0.115 0.350 1.000 780 

 Cement mortar 0.015 1.000 1.000 1.700 
 Air gap 0.010 - - - 
 MW insulation 0.020 0.038 1.450 20 
 Hollow brick 0.070 0.320 1.000 770 
 Gypsum 

plaster 
0.015 0.570 1.000 1.100 

W-C Cement mortar 0.015 1.000                  

                  

          

        

                  

 

            

                  

            

                   

                   
 

 Perforated 
brick 

0.115 0.350 1.000 780 

 Cement mortar 0.015 1.000 1.000 1.700 
 Air gap 0.005 - - - 
 MW insulation 0.040 0.038 1.450 20 
 Laminated 

plasterboard 
0.015 0.250 1.000 1.100 
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The accuracy of each model was assessed using three statistical parameters, namely the coefficient of determination 

(  ) (Eq. (20)), the mean absolute error (   ) (Eq. (21)), and the root-mean-square error (    ) (Eq. (22)). These 

parameters were selected because they are widely used to assess regressions [58,59]. 

         
        

  
   

         
  

   

  (20) 
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 (22) 

In Eqs. (20)–(22),    is the actual value,    is the predicted value, and   is the number of instances in the dataset (training 

or testing). 

4. Results and discussion 

The procedures used to calculate the periodic thermal variables had the same limitations as that used to calculate 

stationary thermal transmittance in ISO 6946 because accurate information on the thermal properties of each layer in the 

element was required. As for existing buildings, correct characterisation of the periodic thermal properties of the envelope 

elements is a considerable challenge.  

As mentioned in Section 3, the estimated periodic thermal properties were analysed using different approaches for the 

HFM and THM monitoring procedures. Both procedures were analysed using the MLP and RF regression algorithms.  

First, the variability described by the statistical parameters R², MAE, and RMSE was analysed using different MLP and 

RF configurations (by varying the number of nodes in the hidden layer for the MLP models and varying the number of 

trees for the RF models). The evolutions of the statistical parameters in the models for the HFM approach are shown in 

Figures 6 and 7. The RF model performance improved as the number of trees increased until a plateau was reached. The 

optimal number of trees in the RF models of the periodic variables was generally between 40 and 45. The most 

appropriate number of nodes for the MLPs was between 11 and 15, depending on the periodic thermal variable being 

considered.  

The RF models performed better than the MLP models (see Tables 4 and 5). The periodic variables in the RF models 

had determination coefficients >95%, but the periodic variables in the MLP models had determination coefficients <70%. 

The RF models had determination coefficients between 0.44% and 39.08% better than the MLP models, but had MAE and 

RMSE values that were, on average, 75.62% and 65.65%, respectively, lower than for the MLP models. This indicates that 

the statistical parameters were better for the RF models than for the MLP models. The configurations and performances of 

the models were similar regardless of whether THM or HFM was used, but there were some differences. First, the 

determination coefficients were 0.13%–2.11% lower for the THM models than for the HFM models. Second, the MAEs and 

RMSEs were 16.09% and 41.27% higher, respectively, for the THM models than for the HFM models. As mentioned in 

Section 3, THM uses internal surface temperature variables and HFM uses heat flux variables, and the use of different input 

variables affected the performances of the two models. However, the performances of the RF models were satisfactory, 

because they both had determination coefficients >93% and acceptable MAEs and RMSEs.  
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Figure 6. Mean absolute errors (MAEs) and root-mean-square errors (RMSEs) for the periodic thermal transmittance, 

decrement factor, and periodic thermal transmittance time shift for the heat flow meter method models. R² values are 

shown in black, MAEs in green, and RMSEs in purple. 
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Figure 7. Mean absolute errors (MAEs) and root-mean-square errors (RMSEs) for the external thermal admittance, 

external thermal admittance time shift, internal thermal admittance, internal thermal admittance time shift, external areal 

heat capacity, and internal areal heat capacity for the heat flow meter method models. R² values are shown in black, MAEs 

in green, and RMSEs in purple. 

 

Table 4. Performances of the optimal multilayer perceptron models for the heat flow meter method models and 

thermometric method models  

Variable HFM   THM   
R² [%] MAE RMSE R² [%] MAE RMSE 

Periodic thermal transmittance 96.62 0.0477 0.0691 96.02 0.0531 0.0757 
Decrement factor 80.46 0.0658 0.0779 75.26 0.0751 0.0862 
Periodic thermal transmittance time shift 94.04 0.4463 0.6519 93.79 0.5067 0.6725 
External thermal admittance 99.49 0.0716 0.1334 98.88 0.1000 0.1998 
External thermal admittance time shift 98.10 0.0871 0.1289 97.76 0.0912 0.1400 
Internal thermal admittance 60.61 0.4976 0.5679 47.23 0.5671 0.6294 
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Internal thermal admittance time shift 56.31 0.3596 0.4090 34.54 0.4304 0.4771 
External areal heat capacity 99.22 1.5214 2.3667 98.47 1.9103 3.3239 
Internal areal heat capacity 60.27 6.7024 7.7119 49.74 7.3093 8.3316 

 

Table 5. Performances of the optimal random forest models for the heat flow meter method models and thermometric 

method models  

Variable HFM   THM   
R² [%] MAE RMSE R² [%] MAE RMSE 

Periodic thermal transmittance 99.68 0.0107 0.0214 99.36 0.0153 0.0302 
Decrement factor 97.89 0.0140 0.0272 96.65 0.0195 0.0341 
Periodic thermal transmittance time shift 99.47 0.0895 0.1959 99.20 0.1222 0.2419 
External thermal admittance 99.93 0.0301 0.0503 99.80 0.0384 0.0856 
External thermal admittance time shift 99.81 0.0208 0.0415 99.63 0.0289 0.0571 
Internal thermal admittance 95.54 0.1079 0.2153 93.59 0.1470 0.2582 
Internal thermal admittance time shift 95.39 0.0777 0.1521 93.28 0.1076 0.184 
External areal heat capacity 99.92 0.3811 0.7526 99.77 0.5420 1.2815 
Internal areal heat capacity 95.63 1.4320 2.8094 93.82 1.9433 3.3481 
 

The internal areal heat capacity, internal thermal admittance, and internal thermal admittance time shift showed 

worse performances than the other periodic thermal variables, meaning the models could not predict these variables well. 

The percentage differences between the actual and the estimated values for these variables for the 5,705 instances in the 

testing dataset were determined. Histograms for the percentage differences for the MLP and RF models using the HFM 

approach are shown in Figures 8 and 9. The percentage differences were lower for the RF models than the MLP models. 

Most of the periodic thermal variables had percentage differences <25%, and for many instances the percentage 

differences were <10%. This was also the case for the other periodic thermal variables (internal areal heat capacity, 

internal thermal admittance, and internal thermal admittance time shift), which had slightly worse performances in terms 

of the statistical parameters. Only the decrement factor had percentage differences >25% for large numbers of instances. 

However, this was only the case for instances with low decrement factors (close to 0) because a very small difference 

between the actual and estimated decrement factor (e.g., an actual value of 0.097 and an estimated value of 0.122) gave a 

large percentage difference. The histograms indicate that the RF algorithm gave accurate estimates of periodic thermal 

variables. The percentage differences were higher and there were fewer instances with percentage differences <10% for 

the estimates made by the MLP models than for the estimates made by the RF models. High percentage differences were 

found for the periodic thermal transmittance, decrement factor, and internal thermal admittance for the MLP models. The 

MLP models gave acceptable estimates for some periodic thermal variables (e.g., external thermal admittance), but the RF 

models gave better estimates for all of the periodic thermal variables considered.  
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Figure 8. Percentage differences between the actual and estimated values of the periodic thermal transmittance, 

decrement factor, and periodic thermal transmittance time shift made by the heat flow meter method models. The 

histogram bin width is 0.50%. 

 

 

 

 
Figure 9. Percentage differences between the actual and estimated values of the external thermal admittance, external 

thermal admittance time shift, internal thermal admittance, internal thermal admittance time shift, external areal heat 

capacity, and internal areal heat capacity made by the heat flow meter method models. The histogram bin width is 0.50%. 

 

The estimates obtained using the RF model designed using the THM and HFM approaches were similar. Violin plots of 

the percentage differences are shown in Figure 10. A violin plot is a type of box plot with a kernel density curve added 

[60]. The percentage difference distributions were similar for the RF models designed using the THM and HFM 

approaches. However, fewer instances with percentage differences <1% were found for the THM models than for the HFM 

models, and the limit values of the violin plots were higher for the THM models than for the HFM models. The same trends 

were found in the estimates of the periodic thermal variables for the walls made using the RF models designed using the 

THM and HFM approaches. The estimates made using the HFM and THM models are shown in Tables 6 and 7, respectively. 

The differences between the estimated and actual values are shown. The percentage differences were all <7%, and many 
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estimates had percentage differences <2%. The percentage differences were between −6.83% and 2.92% for the HFM 

approach and −5.81% and 4.21% for the THM approach. More acceptable estimates were obtained using the THM than the 

HFM, and more acceptable estimates for W-B and W-C were obtained using the THM than the HFM, but the estimates 

obtained using the HFM for W-B and W-C also had acceptable percentage differences. The internal thermal admittance 

time shift obtained using the HFM and the periodic thermal transmittance, decrement factor, and internal thermal 

admittance time shift obtained using the THM had percentage differences >4%. This agreed with the results described 

above in that the variables estimated using each approach had low numbers of observations with percentage differences 

<1% (see Figures 9 and 10). It is worth noting that the differences for these variables may have been large because the 

values of the variables were generally low. The differences between the actual values and the values estimated using the 

RF model using the THM approach for W-A were 0.0186 W/(m² K) for the periodic thermal transmittance, 0.018 for the 

decrement factor, and 0.125 h for the internal thermal admittance time shift. The errors associated with the estimates of 

these variables were therefore acceptable for correct characterisation of the periodic thermal transmittances of the walls. 

Three of the variables that had good estimates had percentage differences <2% when either the THM or HFM approach 

was used. (i) The periodic thermal transmittance time shift had percentage differences between −0.22% and 0.83% for the 

HFM and between −1.17% and 0.49% for the THM. (ii) The external thermal admittance time shift had percentage 

differences between −0.59% and 0% for the HFM and between −1.18% and 0.17% for the THM. (iii) The external areal 

heat capacity had percentage differences between −0.23% and 0.82 for the HFM and between −0.01% and 1.40% for the 

THM.  

These results indicate the accuracies of the estimates given by the models and the potential for using the models to 

investigate the periodic thermal characteristics of the elements of building envelopes. The performances of the RF models 

when some unknown input variables were used were analysed, in order to assess the limitations of the models under 

actual test conditions caused either by operational errors during monitoring (e.g., a probe being disconnected) or by it not 

being possible to measure some input variables (e.g., identifying the building period). The analysis was performed by 

assessing the percentage decrease in the determination coefficient and MAE relative to the estimates performed using the 

test dataset (see Figures 11 and 12). The effects of not knowing some input variables were different when estimating 

different periodic thermal variables. The loss of accuracy was greatest for the variables specific to each approach (i.e., heat 

flux for the HFM and internal surface temperature for the THM) and for the wall thickness and building period. These 

variables had percentage decreases in values of R² of up to 36.51%, but for the other variables the percentage decreases 

were up to 1.88%. These results indicate that the building period strongly affects the results, as also found in a previous 

study [35]. Not knowing the thickness of a wall strongly affected the percentage increase in the MAE, and increases of 

2824.9% and 2905% were found for the MAEs of the external thermal admittance and external areal heat capacity. This 

indicates that wall thickness and building period and the variables specific to each approach (heat flux and internal surface 

temperature) need to be well understood if the models are to perform well. The RF models give the most accurate 

estimates when these variables are well understood. The other variables used in the models (external and internal 

temperatures and time) allow the estimates of the different periodic variables to be fine-tuned, but erroneous or missing 

values for these variables do not necessarily cause large errors in the estimates of the different periodic variables.  
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Figure 10. Violin plots of the percentage differences between the actual and estimated values obtained using the heat flow 

meter method (HFM) and thermometric method (THM) approaches  

 

Table 6. Estimates of the periodic thermal properties obtained using the heat flow meter method models to analyse the 

individual walls  

Variable W-A W-B W-C 
Actual Predicted Deviation 

[%] 
Actual Predicted Deviation 

[%] 
Actual Predicted Deviation 

[%] 
Periodic thermal 
transmittance 

0.370 0.374 0.97 0.277 0.267 -3.68 0.244 0.250 2.26 

Decrement factor 0.283 0.284 0.40 0.402 0.390 -2.90 0.428 0.427 -0.18 
Periodic thermal 8.506 8.502 -0.05 8.364 8.434 0.83 6.522 6.508 -0.22 
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transmittance 
time shift 
External thermal 
admittance 

3.826 3.842 0.42 4.031 3.946 -2.10 1.184 1.191 0.55 

External thermal 
admittance time 
shift 

2.940 2.940 0.00 3.673 3.660 -0.35 3.268 3.249 -0.59 

Internal thermal 
admittance 

5.192 5.123 -1.34 3.817 3.867 1.30 3.846 3.842 -0.09 

Internal thermal 
admittance time 
shift 

1.171 1.186 1.31 2.146 1.999 -6.83 2.137 2.099 -1.77 

External areal 
heat capacity 

57.657 57.737 0.14 59.238 59.101 -0.23 19.191 19.349 0.82 

Internal areal heat 
capacity 

75.638 74.944 -0.92 56.035 57.672 2.92 55.096 55.575 0.87 

 

Table 7. Estimates of the periodic thermal properties obtained using the thermometric method models to analyse the 

individual walls  

Variable W-A W-B W-C 
Actual Predicted Deviation 

[%] 
Actual Predicted Deviation 

[%] 
Actual Predicted Deviation 

[%] 
Periodic thermal 
transmittance 

0.370 0.386 4.21% 0.277 0.277 -0.07% 0.244 0.251 2.67% 

Decrement factor 0.283 0.291 2.88% 0.402 0.384 -4.40% 0.428 0.427 -0.18% 
Periodic thermal 
transmittance 
time shift 

8.506 8.407 -1.17% 8.364 8.392 0.33% 6.522 6.554 0.49% 

External thermal 
admittance 

3.826 3.864 0.99% 4.031 3.952 -1.95% 1.184 1.196 0.97% 

External thermal 
admittance time 
shift 

2.940 2.945 0.17% 3.673 3.639 -0.92% 3.268 3.230 -1.18% 

Internal thermal 
admittance 

5.192 5.096 -1.86% 3.817 3.898 2.12% 3.846 3.927 2.12% 

Internal thermal 
admittance time 
shift 

1.171 1.185 1.23% 2.146 2.021 -5.81% 2.137 2.099 -1.77% 

External areal 
heat capacity 

57.657 57.986 0.57% 59.238 59.230 -0.01% 19.191 19.460 1.40% 

Internal areal heat 
capacity 

75.638 73.366 -3.00% 56.035 57.589 2.77% 55.096 56.668 2.85% 
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Figure 11. Heat maps of the percentage decreases in the determination coefficients (R2) found when input variables were 

removed and the random forest models using the heat flow meter method and thermometric method approaches were 

used  
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Figure 12. Heat maps of the percentage increases in the mean absolute errors (MAEs) found when input variables were 

removed and the random forest models using the heat flow meter method and thermometric method approaches were 

used  

5. Conclusions 

Results from a modelling study of thermal performance of buildings indicate that it is possible to characterise periodic 

thermal variables experimentally using regression algorithms. Two methods (HFM and THM) were used to characterise 

stationary thermal transmittance, with two regression algorithms (MLP and RF). The results indicate that all of the 

approaches gave good estimates of the periodic thermal properties. However, the results given by the different models 

were not the same. Assessment of the performances of the two regression algorithms showed that the RF method was 

found to give better estimates than the MLP method. This finding was supported by the statistical parameters and the 

percentage differences between the actual and estimated values for each observation in the test dataset. The coefficients of 

determination were between 0.44% and 39.08% higher for the RF models than for the MLP models, and the error 

parameters were 65.65%–75.62% lower for the RF models than for the MLP models. It is therefore more appropriate to 

use the RF method than the MLP method to estimate periodic thermal variables.  

HFM and THM gave equally good estimates. The percentage differences and statistical parameters for the two methods 

were similar, but slightly less good statistical parameters were found for  THM than for HFM. However, THM gave more 

accurate estimates than HFM for two out of the three walls that were analysed individually, indicating that both 

approaches allowed the periodic thermal properties to be characterised accurately.  

Not knowing some of the input variables for the RF models affected the errors in different ways. Uncertainty in the 

variables specific to each approach (i.e., heat flux for the HFM and internal surface temperature for the THM) and the wall 

thickness and the building period gave the largest percentage differences.  

The methods presented here for characterising the periodic thermal properties of building envelopes using RF models 

are important because they avoid the limitations of the calculations specified in ISO 13786, which require accurate 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

information on each layer in a wall. These methods therefore represent new resources that will allow technicians 

responsible for improving the energy efficiencies of buildings to ensure that appropriate energy conservation measures 

are selected and implemented. This will allow more building renovations aimed at improving the energy efficiencies of 

buildings to be performed than at present, and will make it more likely that the goal of decreasing GHG emissions from 

buildings by the mid-21st century is met. 
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