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Abstract: 

High building energy consumption to guarantee users’ thermal comfort has greatly impact the built environment worldwide. 

Energy saving strategies based on adaptive comfort models could be an opportunity to reduce the energy consumption of 

the built environment. However, climate change could modify the viability of these measures. The Representative 

Concentration Pathways (RCP) scenarios constitute the most updated scenario framework, with various tendencies 

depending on the radiative forcing in 2100, and Shared Socioeconomic Pathways (SSPs) scenarios were considered to study 

the demographic tendencies expected throughout the 21st century. This study analysed the effectiveness of using adaptive 

energy saving strategies with RCP and SSP scenarios around the world. A dataset composed of 997,000 locations was 

generated by assessing the application of the adaptive strategies in both the current scenario, RCP scenarios (2.6, 4.5, and 

8.5 W/m 2 ) and the five SSP scenarios (SSP1-SSP5) in 2050 and 2100. The results showed that the increase of outdoor 

temperature reduces the regions where the application of the adaptive model is low, although its application is reduced in 

zones in which it is used most of the year (particularly in the RCP 8.5 scenario). Considering the SSP scenarios, it is expected 

that a greater percentage of population could apply the adaptive model throughout the year. Furthermore, adaptive cooling 

setpoint temperatures increase the saving data distribution in hourly degrees, so they are an effective measure to guarantee 

a greater resilience of the built environment in relation to the increase of energy demand of air conditioning systems. 
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1. Introduction 

 

Climate change is among the main sustainability challenges in the 21st century [1]. Among other aspects, the greenhouse 

gases emitted through energy consumption have progressively increased the temperature of the planet. The built 

environment has a key role due to its high energy consumption [2,3]. Furthermore, the interrelations among economic 
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crises, family units’ loss of buying power, and high energy consumption have contributed to the emergence of social 

problems, such as fuel poverty [4,5]. The improvement of the energy performance would reduce the severity of climate 

change, thus leading to a greater well-being of society through various perspectives [6]. For this reason, several international 

agreements, such as the 2015 Paris Climate Conference, have been established among various countries. As a result, 

decarbonisation goals have been established in the building sector [7], such as the reduction of the energy consumption of 

the built environment between 90 and 100% [8–10]. 

It is therefore crucial to intervene in the built environment. One of the main aspects to deal with is the reason for high 

building energy consumption. The main type of building energy consumption is the use of HVAC systems, even more than 

other consumption sources such as domestic hot water [11] or electrical household appliances [12]. The use of these systems 

guarantees appropriate thermal comfort conditions inside buildings  [13–15]. Their high consumption is mainly due to three 

types of factors: (i) a thermal envelope with a deficient performance, inter alia, due to the absence of thermal insulation and 

a lack of maintenance, (ii) HVAC systems with a low performance, and (iii) an inappropriate use of these systems. Regarding 

the first factor, the building stock was built in many countries before the first standards on energy efficiency [16–19]. 

Therefore, the heat transfer through the envelope is high (due to the combination of its huge surface with the high thermal 

transmittance [20–23]), thus implying a high energy demand. For this reason, most energy saving strategies are focused on 

improving the envelope. Many studies have dealt with this aspect, such as Aksoy and Inalli [24], Invidiata et al. [25] and 

Bhikhoo et al. [26]. The use of effective systems with a high performance is also among the most used energy conservation 

measures. However, the most appropriate use of HVAC systems is not considered, an aspect that could be interesting because 

of two aspects: (i) to avoid the rebound effects [27], which increase the energy consumption of the building due to the use 

change that users make with the energy improvement obtained in the building; and (ii) to be considered an energy saving 

strategy without the need of making economic investments. Regarding the latter, some studies have shown the advantages 

of using these systems more appropriately: Ghose et al. [28] determined that the appropriate use of the available resources 

could be more interesting than other energy saving measures, such as self-consumption. Moreover, Gianfrate et al. [29] set 

that an appropriate operational pattern of the HVAC systems could improve the situation of the family units in fuel poverty. 

However, methodologies should be established to guarantee a more sustainable use of HVAC systems. One strategy could 

be the adaptive energy saving strategies [30–33], which are based on the use of adaptive thermal comfort models. These 

models are characterized by a perspective different from that of the static thermal comfort models developed by Fanger 

[34]. In this regard, Nicol and Humphreys [35] and Humphreys [36,37] showed that thermal comfort models in climate 

chambers were not adjusted to buildings with natural ventilation. As a result of these studies, field compilation works were 

conducted by Dear and Brager [38,39], thus developing the adaptive model from ASHRAE. Adaptive models are practically 

used in the energy saving through both adaptive natural ventilation and adaptive setpoint temperatures. On the one hand, 



3 

 

natural ventilation is an effective strategy to reduce thermal loads in summer as it contributes the air intake from the 

exterior with a more appropriate temperature for thermal comfort, thus reducing both building energy consumption [40] 

with no economic cost [41,42] and the overheating risk [43]. However, its use depends on the climate conditions [44] and 

environment [45,46]. On the other hand, adaptive setpoint temperatures are based on the use of thermal comfort limits to 

configure the thermostat and take advantage of the energy saving expected by the nudging effect of the setpoint 

temperatures [47]. 

A key aspect of these measures is their bioclimatic character: they are effective according to the characteristics of the 

climate [48]. Thus, the possibilities of applying the adaptive strategies worldwide have been analysed [49]. Nevertheless, 

the implications related to climate change in the adaptive energy saving strategies should be studied in detail because of the 

variation of the outdoor conditions [50,51]. Although [49] analysed the impact of the future Greenhouse Gas (GHG) 

emissions A2 scenario in 2050, this scenario is an old approach for the evolution expected in the 21st century. The A2 

scenario was included in the first group of the scenarios developed by the Intergovernmental Panel on Climate Change 

(IPCC), which is included in the Special Report on Emissions Scenarios (SRES) [52]. However, the IPCC has been continuously 

working on the development of more updated climate change scenarios, thus presenting the group of Representative 

Concentration Pathways (RCP) scenarios [53]. The RCP scenarios establish four evolution tendencies of climate according 

to the level of radiative forcing. These scenarios have been scarcely used to assess energy performance [54–57], although 

the impact of climate change on buildings is increasingly updated through them.  

The RCP scenarios are therefore expected to modify the effectiveness of the adaptive strategies throughout the 21st 

century. For this reason, this research used the various RCP scenarios to analyse the potential of applying the adaptive 

strategies throughout the 21st century. A climate study was performed in 997,000 locations by analysing the changes caused 

by the RCP scenarios in 2050 and 2100. This threw light on both the effectiveness expected from the energy saving strategies 

and the energy policies that the governments of each region should develop. The energy analysis in the future implies to 

know more precisely the effectiveness of the energy strategies today adopted [58].  

 

 

 

2. Methodology 

 

2.1. Strategies based on adaptive thermal comfort models 
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Adaptive thermal comfort models allow variations to be established in the thermal comfort limits according to the variations 

of the outdoor temperature. Today there are many adaptive thermal comfort models. Most of them are included in various 

standards [59–64], although some studies have developed models for some regions [65–71]. One of the most used standards 

is ASHRAE 55-2017 [59] because it can be internationally used. The reason is the characteristics of the dataset used for its 

development: data from 4 continents. Its international application potential is therefore greater than that of ISSO 74[62], EN 

16798-1:2019 [61] or GB/T 50785-2012 [72]. 

The adaptive thermal comfort model from ASHRAE 55-2017 is characterized by establishing two limits according to the 

percentage of acceptability. There are upper and lower limits for the 80% acceptability, and others for the 90% acceptability 

(Fig. 1). These variations are established through an increase or decrease regarding to the correlation straight line of the 

optimal temperature. As for these correlations (Eqs. 1-4), the limits are dependent variables of the prevailing mean outdoor 

temperature (𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) (Eq. 5). Moreover, 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ reflects the variations of the daily outdoor temperature. Apart from 

being useful to obtain upper and lower limit values, 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ also allows the application of the adaptive model to be 

determined. In this regard, lower (10 ºC) and upper (33.5 ºC) thresholds are established to apply the adaptive model. If the 

value of 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is not between 10 and 33.5 ºC, the adaptive model cannot be applied.  

 

𝐿𝑜𝑤𝑒𝑟 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑙𝑖𝑚𝑖𝑡 (80% 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 0.31 ∙ 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 14.3    [º𝐶] (1) 

𝑈𝑝𝑝𝑒𝑟 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑙𝑖𝑚𝑖𝑡 (80% 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 0.31 ∙ 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 21.3    [º𝐶] (2) 

𝐿𝑜𝑤𝑒𝑟 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑙𝑖𝑚𝑖𝑡 (90% 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 0.31 ∙ 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 15.3    [º𝐶] (3) 

𝑈𝑝𝑝𝑒𝑟 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑙𝑖𝑚𝑖𝑡 (90% 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 0.31 ∙ 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 20.3    [º𝐶] (4) 

𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (1 − 𝛼) ∙ ∑(𝛼(𝑖−1) ∙ 𝑇𝑒𝑥𝑡,𝑑)

𝑛

𝑑=1

    [º𝐶] (5) 

Where 𝛼 is the weight assigned, with a value of 0.9 for climates with low synoptic-scale temperature Dynamic (e.g., latitudes 

close to the equator) and of 0.6 for mid-latitude climates [59]. 

 

The adaptive thermal comfort model can be used to establish energy saving strategies in buildings. These strategies are 

aimed to guarantee users’ thermal comfort through an adaptive approach, so the use of HVAC systems is reduced. There are 

two adaptive strategies: (i) adaptive natural ventilation [73,74] (air-conditioning the thermal space when the outdoor 

temperature is within the thermal comfort ranges), and (ii) adaptive setpoint temperatures [75], using the value of the 

respective adaptive limit as setpoint temperature value (the lower limit for the heating setpoint temperature, and the upper 

limit for the cooling setpoint temperature). When the adaptive thermal comfort model cannot be applied (i.e., when 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

is lower than 10 ºC or greater than 33.5 ºC), the criterion established by Sánchez-García et al. [76] is used in this research, 
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which is based on horizontally extending the thermal comfort limit values. The assumption in the expansion of the 

applicability limits supposes that the lower and upper thresholds maintain the difference between upper and lower 

acceptability limits (7ºC at 80% and 5ºC at 90%) during the whole range of the 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Despite the fact is a contrasted 

methodology based on previous research, this is a limitation of the study.  

 

 

 

Fig. 1. Upper and lower limits of the adaptive thermal comfort model from ASHRAE 55-2017. 

 

 

2.2. Analysis methodology of the feasibility of adaptive strategies by using climate data 

 

Adaptive strategies are related to the bioclimatic strategies that can be used in architecture to reduce building energy 

consumption. These strategies  consider local  climate conditions with the aim of ensuring thermal comfort using 

environmental resources. The use of methodologies based on the data analysis of the outdoor climate allows the 

effectiveness of adaptive strategies to be determined. In previous studies, Bienvenido-Huertas et al. [77,78] developed an 

analysis methodology of the adaptive strategies by using climate data. This methodology is based on the analysis of the 

percentage of days when the adaptive model is applied, the percentage of annual hours when natural ventilation is used, 

and the saving in hourly heating and cooling degrees between adaptive setpoint temperatures and static setpoint 

temperatures.  

To determine the percentage of days when the adaptive model is applied (𝐴𝐴𝑇𝐶𝑀), the number of days in which 

𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is within the application thresholds is determined (between 10 and 33.5 ºC) (Eq. 6). The acceptability considered 

https://uses0-my.sharepoint.com/:p:/g/personal/carlosrubio_us_es/EWy9xxkVNF1FowUK9UVukAwBr7yX2DxOSmmTL86Z2TfQVA
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does not influence the analysis of the percentage of days when the adaptive model is applied because this aspect does not 

modify the application thresholds of the model.  

 

𝐴𝐴𝑇𝐶𝑀 = 100
∑ 𝑑𝑖

365
𝑖=1

365
 

𝑑𝑖 = 1     𝑖𝑓 10 ≤ 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ ≤ 33.5 

𝑑𝑖 = 0     𝑖𝑓 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ < 10 

𝑑𝑖 = 0     𝑖𝑓 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ > 33.5 

 

(6) 

Where 𝑑𝑖  is a value assigned to each day of the year by using the rules established. 

The same rule used with 𝐴𝐴𝑇𝐶𝑀 can be used to determine both the percentage of days when the adaptive model is not 

applied because 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is greater than the upper threshold (𝑁𝐴𝐴𝑇𝐶𝑀 − 𝑈𝑇) (Eq. 7) and the percentage of days when the 

adaptive model is not applied when 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is lower than the lower threshold (𝑁𝐴𝐴𝑇𝐶𝑀 − 𝐿𝑇) (Eq. 8).  

 

𝑁𝐴𝐴𝑇𝐶𝑀 − 𝑈𝑇 = 100
∑ 𝑑𝑁𝐴−𝑈𝑇,𝑖

365
𝑖=1

365
 

𝑑𝑁𝐴−𝑈𝑇,𝑖 = 1     𝑖𝑓  𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > 33.5 

𝑑𝑁𝐴−𝑈𝑇,𝑖 = 0     𝑖𝑓 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≤ 33.5 

(7) 

𝑁𝐴𝐴𝑇𝐶𝑀 − 𝐿𝑇 = 100
∑ 𝑑𝑁𝐴−𝐿𝑇,𝑖

365
𝑖=1

365
 

𝑑𝑁𝐴−𝐿𝑇,𝑖 = 1     𝑖𝑓 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ < 10 

𝑑𝑁𝐴−𝐿𝑇,𝑖 = 0     𝑖𝑓 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≥ 10 

(8) 

 

Where 𝑑𝑁𝐴−𝑈𝑇,𝑖  and 𝑑𝑁𝐴−𝐿𝑇,𝑖  are a value assigned to each day of the year by using the rules established. 

 

Unlike the application percentages of the adaptive model, adaptive strategies are hourly analysed, thus obtaining a 

greater detail of results than daily analyses [79]. Moreover, the acceptability considered should be distinguished in adaptive 

strategies because it varies upper and lower thermal comfort limits. Regarding the adaptive natural ventilation strategies, 

the percentage of hours to apply natural ventilation was analysed. Two variables were considered: one for the 80% 

acceptability (V-80) (Eq. 9) and another for the 90% acceptability (V-90) (Eq. 10).  
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V-80=
∑ ℎ80,𝑖

8760
𝑖=1

8760
 

ℎ80𝑖 = 1    𝑖𝑓 𝐸𝑞. 1 ≤ 𝑇𝑒𝑥𝑡,𝑖 ≤ 𝐸𝑞. 2  

ℎ80𝑖 = 0     𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 < 𝐸𝑞. 1 

ℎ80𝑖 = 0     𝑖𝑓𝑇𝑒𝑥𝑡,𝑖 > 𝐸𝑞. 2 

 

(9) 

V-90=
∑ ℎ90,𝑖

8760
𝑖=1

8760
 

ℎ90𝑖 = 1    𝑖𝑓 𝐸𝑞. 3 ≤ 𝑇𝑒𝑥𝑡,𝑖 ≤ 𝐸𝑞. 4ℎ90𝑖 = 0     𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 < 𝐸𝑞. 3 

ℎ90𝑖 = 0     𝑖𝑓𝑇𝑒𝑥𝑡,𝑖 > 𝐸𝑞. 4 

 

(10) 

Where ℎ80𝑖  and ℎ90𝑖  are a value assigned to each hour of the year by using the rules established, and 𝑇𝑒𝑥𝑡,𝑖  is the outdoor 

temperature in the hour 𝑖. 

 

On the other hand, the saving obtained with adaptive setpoint temperatures is characterized by comparing the hourly 

degrees obtained with both the adaptive setpoint temperatures and the static setpoint temperatures. That is, the adaptive 

setpoint temperatures are based on the adaptive comfort approach, which daily varies according to the prevailing mean 

outdoor temperature (𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) and the static setpoint temperatures are fixed throughout the year without considering the 

outdoor conditions. The analysis was independently carried out for heating and air conditioning systems: (i) hourly heating 

degrees with static setpoint temperatures (Eq. 11); (ii) hourly cooling degrees with static setpoint temperatures (Eq. 12); 

(iii) hourly heating degrees with the adaptive setpoint temperatures obtained with the 80% acceptability (Eq. 13); (iv) 

hourly cooling degrees with the adaptive setpoint temperatures obtained with the 80% acceptability (Eq. 14); (iii) hourly 

heating degrees with the adaptive setpoint temperatures obtained with the 90% acceptability (Eq. 13); (iii) hourly cooling 

degrees with the adaptive setpoint temperatures obtained with the 90% acceptability (Eq. 14). As for the static setpoint 

temperatures, this study analysed five temperatures for heating (19, 20, 21, 22, and 23 ºC) and five for cooling (23, 24, 25, 

26, and 27 ºC). That supposes a wide range of fixed setpoint temperatures to achieve a proper comparison with adaptive 

approach. The degree saving was obtained through the subtraction of the hourly degrees obtained with both static and 

adaptive setpoint temperatures (Eq. 15).  

  

SHST-𝑇𝑆𝐻 = ∑ (𝑇𝑒𝑥𝑡,𝑖 − 𝑇𝑆𝐻) · 𝑋𝑆𝐻,𝑖          8760
𝑖=1  

𝑋𝑆𝐻,𝑖 = 1    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 < 𝑇𝑆𝐻 

(11) 
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𝑋𝑆𝐻,𝑖 = 0    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≥ 𝑇𝑆𝐻 

SCST-𝑇𝑆𝐶 = ∑ (𝑇𝑆𝐶 − 𝑇𝑒𝑥𝑡,𝑖) · 𝑋𝑆𝐶,𝑖          
8760
𝑖=1  

𝑋𝑆𝐶,𝑖 = 1    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 > 𝑇𝑆𝐶 

𝑋𝑆𝐶,𝑖 = 0    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≤ 𝑇𝑆𝐶 

(12) 

AHST-80= ∑ (𝑇𝑒𝑥𝑡,𝑖 − 𝐸𝑞. 1) · 𝑋𝐴𝐻,𝑖          
8760
𝑖=1  

𝑋𝐴𝐻,𝑖 = 1    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 > 𝐸𝑞. 1 

𝑋𝐴𝐻,𝑖 = 0    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≤ 𝐸𝑞. 1 

(13) 

ACST-80= ∑ (𝐸𝑞. 2 − 𝑇𝑒𝑥𝑡,𝑖) · 𝑋𝐴𝐶,𝑖          8760
𝑖=1  

𝑋𝐴𝐶,𝑖 = 1    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 < 𝐸𝑞. 2 

𝑋𝐴𝐶,𝑖 = 0    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≥ 𝐸𝑞. 2 

(14) 

AHST-90= ∑ (𝑇𝑒𝑥𝑡,𝑖 − 𝐸𝑞. 3) · 𝑋𝐴𝐻,𝑖          
8760
𝑖=1  

𝑋𝐴𝐻,𝑖 = 1    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 > 𝐸𝑞. 3 

𝑋𝐴𝐻,𝑖 = 0    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≤ 𝐸𝑞. 3 

(15) 

ACST-90= ∑ (𝐸𝑞. 4 − 𝑇𝑒𝑥𝑡,𝑖) · 𝑋𝐴𝐶,𝑖          8760
𝑖=1  

𝑋𝐴𝐶,𝑖 = 1    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 < 𝐸𝑞. 4 

𝑋𝐴𝐶,𝑖 = 0    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≥ 𝐸𝑞. 4 

(16) 

𝐻𝑜𝑢𝑟𝑙𝑦 𝑑𝑒𝑔𝑟𝑒𝑒 𝑠𝑎𝑣𝑖𝑛𝑔 = 𝑆𝑡𝑎𝑡𝑖𝑐 𝑑𝑒𝑔𝑟𝑒𝑒 ℎ𝑜𝑢𝑟𝑠 − 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 ℎ𝑜𝑢𝑟𝑠 (17) 

 

Where SHST-𝑇𝐻𝐶  is the annual sum of the hourly heating degrees with the static setpoint temperature 𝑇𝑆𝐻 [ºC]; SCST-𝑇𝐻𝐶  is 

the annual sum of the hourly cooling degrees with the static setpoint temperature 𝑇𝑆𝐶  [ºC]; AHST-80 and AHST-90 are the 

annual sum of the hourly heating degrees with the 80% and 90% acceptability, respectively [ºC]; ACST-80 and ACST-90 are 

the annual sum of the hourly cooling degrees with the 80% and 90% acceptability, respectively 
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2.3. Scenarios analysed 

The goal of this study was the analysis of the influence of climate scenarios throughout the 21st century on the 

application of adaptive strategies worldwide. For this purpose, the most updated climate change scenarios (at the time when 

this study was conducted) were analysed. The Representative Concentration Pathways (RCP) scenarios were used, which 

are included in the 2014 report of the IPCC [80]. These scenarios describe various levels of greenhouse gases and radiative 

forcings that could take place in the future. There are four RCP scenarios (2.6, 4.5, 6.0, and 8.5). The numeric value indicates 

the change in energy flux in the atmosphere caused by natural or anthropogenic factors of climate change, which is called, 

radiative forcing in 2100 (e.g., 8.5 W/m2 in the RCP 8.5 scenario). This study considered three scenarios (2.6, 4.5, and 8.5) 

because obtaining climate data in the RCP 6.0 scenario is something of a challenge. Based on these three scenarios, the global 

mean temperature is expected to be increased by the end of the 21st century between 0.3 and 1.7 ºC in the RCP 2.6 scenario, 

between 1.1 and 2.6 ºC in the RCP 4.5 scenario, and between 2.6 and 4.8 ºC in the RCP 8.5 scenario. This study therefore 

analysed a range of climate change scenarios: from the scenario closer to the Paris Agreement's goals [81] to the most 

unfavourable scenario (the RCP 8.5 scenario) [80]. The years analysed were 2050 and 2100. These two years were chosen 

due to their importance in the 21st century: 2050 corresponds to the decarbonisation date established by many 

international bodies, and 2100 corresponds to the date at the end of the century, coincident with the radiative forcing values 

that characterize each scenario.  

This study also analysed the implications of the effectiveness of the adaptive strategies for world population. One of the 

limitations of the RCP scenarios is the lack of a socio-economic narrative of the demographic tendencies expected 

throughout the 21st century. Thus, the Shared Socioeconomic Pathways (SSPs) scenarios [82,83] were used. These scenarios 

describe narratives about the changes expected throughout the 21st century in relation to socioeconomic aspects, climate 

change, vulnerabilities, and the effectiveness of sustainable policies [84]. The demographic changes expected throughout 

the 21st century could therefore be analysed. Five narratives or SSP scenarios are distinguished [84,85]: (i) Sustainability 

(SSP1). This first scenario is based on a sustainable pathway throughout the 21st century, aiming to both the reduction of 

inequalities among countries and a consumption with a lower intensity of resources, among other aspects; (ii) Middle of the 

road (SSP2). This scenario does not differ from the patterns historically found with unequal growths among countries. As 

regards sustainability, international goals are pursued, but slowly; (iii) Regional rivalry (SSP3). Nationalism reappears in 

this scenario, with policies focused on the regional scope. The lack of an international awareness of sustainable goals 

contributes to the emergence of environmental problems in various regions; (iv) Inequality (SSP4). Inequalities among 

regions are increased, similarly to today. At the energy level, renewable energies and fossil fuels are developed; and (v) 
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Fossil-fueled development (SSP5). This scenario is based on a rapid increase of the world economy by increasingly 

consuming fossil fuels.  

Thus, the five SSP scenarios were analysed to study the demographic implications from applying adaptive strategies. 

Likewise, there are similarities between the RCP and SSP scenarios. Rogelj et al. [86] determined the combinations of the 

RCP and SSP scenarios that are more likely to take place (Table 1). For instance, the RCP 8.5 scenario could only be combined 

with the SSP5 scenario. Thus, this study considered for the demographic analysis the combinations SSP-RCP found by Rogelj 

et al. [86]. The basis year (2010) was the same for all the SSP scenarios and was used for the current scenario. Likewise, the 

data of each SSP scenario were obtained for 2050 and 2100.  

 

Table 1. The most appropriate combination of RCP and SSP scenarios according to Rogelj et al. [80]. 

RCP SSP1 SSP2 SSP3 SSP4 SSP5 

2.6 X X  X  

4.5 X X X X X 

8.5     X 

 

 

2.4. Generation process of the dataset used in the research 

 

The dataset was generated by following the steps included in Fig. 2. First, the hourly climate data of 17,000 locations 

around the world were obtained. For this purpose, METEONORM was used. METEONORM is a database of climate files 

composed of 8,325 weather stations located around the world and its use is guaranteed by several studies [87,88]. Based on 

the data provided by these weather stations, the hourly temperature values of a whole year are obtained with a stochastic 

model [89]. The period 2000-2019 was used for the current scenario. Likewise, METEONORM was used to obtain the climate 

data in the RCP 2.6, 4.5 and 8.5 scenarios in 2050 and 2100 in each location. Thus, 199,000 series of temperature data were 

obtained.  

The analysis methodology described in Subsection 2.2 was applied to these data series, and the adaptive variables 

considered in the research were obtained (Table 2). After analysing the data, 16,000 locations were used for the spatial 

interpolation of the variables analysed through ArcGIS. For this purpose, the parallel inverse distance weighting (IDW) 

interpolation algorithm was used [90]. The remaining 1,000 locations were used to test the validity of the interpolations 

obtained. For this purpose, the statistical parameters of the determination coefficient (𝑅2) (Eq. 18), the mean absolute error 

(MAE) (Eq. 19), and the root-mean-square error (RMSE) (Eq. 20) were analysed.  
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𝑅2 = 100 (1 −
∑ (𝑡𝑖 − 𝑚𝑖)

2𝑛
𝑖=1

∑ (𝑡𝑖 − 𝑡�̅�)
2𝑛

𝑖=1

) (18) 

  

𝑀𝐴𝐸 =
∑ |𝑡𝑖 − 𝑚𝑖|

𝑛
𝑖=1

𝑛
 (19) 

𝑅𝑀𝑆𝐸 = (
∑ (𝑡𝑖 − 𝑚𝑖)

2𝑛
𝑖=1

𝑛
)

1/2

 (20) 

  

  

Where 𝑡𝑖  is the actual value, 𝑚𝑖  is the model’s prediction, and 𝑛 is the number of instances in the dataset. 

 

After generating the spatial distributions of each variable, the results were exported. A network of 997,000 locations 

was generated with a resolution of one-eighth degree (7.5 arc-minutes), and the value of each adaptive variable was 

obtained in each location (Fig. 3). The population data of the SSP scenarios were obtained through the spatial projections 

made by Jones et al. [84]. The demographic data of the starting year of the SSP (2010) were used for the current scenario, 

and the demographic data of each SSP in 2050 and 2100 were used for the future scenarios. The spatial projections were 

obtained from the Socioeconomic Data and Applications Center (SEDAC) of the U.S. National Aeronautics and Space 

Administration (NASA)[90]. 

 

Table 2. Acronyms used for the adaptive variables analysed. 

Variable Description  

AATCM Application of the adaptive thermal comfort model 

NAATCM-UT Non-application of the adaptive thermal comfort model: upper threshold 

NAATCM-LT Non-application of the adaptive thermal comfort model: lower threshold 

V-80 Application of natural ventilation (80% acceptability) 

V-90 Application of natural ventilation (90% acceptability) 

SHST-19 Static heating setpoint temperature: 19 ºC 

SHST-20 Static heating setpoint temperature: 20 ºC 

SHST-21 Static heating setpoint temperature: 21 ºC 

SHST-22 Static heating setpoint temperature: 22 ºC 
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SHST-23 Static heating setpoint temperature: 23 ºC 

SCST-23 Static cooling setpoint temperature: 23 ºC 

SCST-24 Static cooling setpoint temperature: 24 ºC 

SCST-25 Static cooling setpoint temperature: 25 ºC 

SCST-26 Static cooling setpoint temperature: 26 ºC 

SCST-27 Static cooling setpoint temperature: 27 ºC 

AHST-80 Adaptive heating setpoint temperature (80% acceptability) 

AHST-90 Adaptive heating setpoint temperature (90% acceptability) 

ACST-80 Adaptive cooling setpoint temperature (80% acceptability) 

ACST-90 Adaptive cooling setpoint temperature (90% acceptability) 
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Fig. 2. Flowchart of the generation process of the dataset analysed in the research. 
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Fig. 3. Sample of the location analysed in the research.  

 

 

 

 

 

 

  



15 

 

3. Results and discussion 

 

3.1. Application of the adaptive model from ASHRAE 55-2017 

 

The performance of the spatial interpolations of each variable of the adaptive strategies was assessed. This analysis was 

independently performed for each combination of year and scenario used. Table 3 shows the results of the current scenario, 

and Table 4 shows the results of the future scenarios. The results obtained in the variables were satisfactory. There was a 

high similarity between the actual and the interpolated values of the testing dataset, with determination coefficients greater 

than 84% in all the variables, and with maximum values of up to 96.25%. Likewise, the error parameters were appropriate 

according to the value range of each variable. The percentage variables (AATCM, NAATCM-UT, NAATCM-LT, V-80, and V-90) 

obtained values for MAE and RMSE between 0.69 and 3.50% and between 2.58 and 8.12%, respectively. These error values 

were acceptable in the value scale of these variables (between 0 and 100%). Regarding the variables of both hourly heating 

degrees (SHST-19, SHST-20, SHST-21, SHST-23, AHST-80, and AHST-90) and hourly cooling degrees (SCST-19, SCST-20, 

SCST-21, SCST-23, ACST-80, and ACST-90), the values of the error parameters were appropriate for each variable. The values 

obtained in the statistical parameters were different in each variable, but appropriate according to the variable: (i) the 

variables of static heating setpoint temperatures obtained values of MAE that oscillated between 5,746.19 and 7,808.80 ºC 

(for an actual value scale in these variables of up to 437,071.00 ºC); (ii) similar values were obtained for the adaptive heating 

setpoint temperatures due to the similarity of the actual value range of these variables (of up to 396,775.0 ºC); (iii) as for 

cooling static setpoint temperatures, the values of MAE oscillated between 1,590.74 and 3,037.56 ºC (for an actual value 

range of up to 127,635.10 ºC); and (iv) adaptive cooling setpoint temperatures obtained values of MAE between 710.03 and 

2,146.08 ºC due to the lower actual value range of these variables (of up to 67,999.28 ºC).  

 

Table 3. Values obtained by assessing the testing statistical parameters of the variables of the current scenario. 

Variable R² [%] MAE (1)  RMSE (1) 

AATCM 95.08 3.20 6.68 

NAATCM-UT 84.54 0.69 2.58 

NAATCM-LT 95.96 2.73 6.30 

V-80 93.63 2.90 5.66 

V-90 92.90 2.28 4.55 

SHST-19 96.07 6408.45 13940.36 
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SHST-20 96.13 6737.41 14381.06 

SHST-21 96.17 7082.97 14829.19 

SHST-22 96.21 7442.46 15281.70 

SHST-23 96.22 7808.80 15735.87 

SCST-23 90.05 3037.56 5852.29 

SCST-24 89.80 2650.55 5138.66 

SCST-25 89.64 2274.23 4449.19 

SCST-26 89.56 1917.90 3802.50 

SCST-27 89.52 1590.74 3215.15 

AHST-80 96.04 6077.87 12952.14 

AHST-90 96.10 6395.13 13326.57 

ACST-80 89.92 710.03 1459.12 

ACST-90 90.11 915.61 1803.37 

(1) Unit according to each variable.  

 

Table 4. Values obtained by assessing the testing statistical parameters of the variables of the future scenarios. 

Year Variable 
RCP 2.6   RCP 4.5   RCP 8.5   

R² [%] MAE (2)  RMSE (2) R² [%] MAE (2)  RMSE (2) R² [%] MAE (2)  RMSE (2) 

2050 AATCM 93.96 3.31 6.98 93.60 3.43 7.04 93.20 3.50 7.09 

 NAATCM-UT 86.52 0.90 3.15 87.31 1.09 3.45 89.14 1.25 3.67 

 NAATCM-LT 95.40 2.67 6.42 95.36 2.63 6.38 95.25 2.60 6.37 

 V-80 94.06 2.78 5.27 94.12 2.78 5.12 94.06 2.78 5.04 

 V-90 93.39 2.20 4.27 93.55 2.19 4.15 93.50 2.22 4.09 

 SHST-19 96.08 5968.88 13089.48 96.04 5833.25 12846.72 95.86 5746.19 12809.67 

 SHST-20 96.14 6279.07 13530.39 96.11 6131.30 13279.66 95.94 6044.84 13244.96 

 SHST-21 96.19 6603.89 13977.73 96.17 6446.15 13719.16 96.01 6359.93 13684.85 

 SHST-22 96.23 6943.13 14431.24 96.22 6775.50 14165.11 96.07 6688.91 14129.89 

 SHST-23 96.25 7294.79 14888.97 96.26 7118.36 14616.05 96.12 7031.99 14579.25 

 SCST-23 90.56 3384.31 6414.12 90.89 3559.64 6755.78 91.71 3729.49 6878.46 

 SCST-24 90.29 3001.19 5706.69 90.56 3185.14 6064.53 91.43 3356.82 6208.62 

 SCST-25 90.10 2616.85 5005.22 90.32 2803.90 5365.10 91.23 2973.80 5525.38 
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 SCST-26 90.00 2241.57 4332.21 90.15 2427.33 4683.47 91.09 2591.96 4857.01 

 SCST-27 89.98 1888.91 3704.61 90.05 2064.98 4038.59 91.00 2224.27 4221.96 

 
AHST-80 96.10 5662.56 12105.79 96.05 5550.98 11895.99 95.87 5471.87 11868.23 

 AHST-90 96.16 5977.65 12488.15 96.12 5858.19 12275.07 95.96 5779.10 12249.11 

 ACST-80 90.35 867.40 1721.72 90.36 952.70 1895.41 91.03 1049.22 2052.57 

 ACST-90 90.50 1093.55 2097.35 90.53 1190.07 2291.29 91.26 1294.02 2445.21 

2100 AATCM 93.90 3.32 7.01 91.98 3.65 7.32 86.76 4.52 8.12 

 NAATCM-UT 86.49 0.91 3.14 89.40 1.52 4.04 88.96 3.16 6.68 

 NAATCM-LT 95.37 2.67 6.46 94.66 2.54 6.49 94.45 2.30 5.89 

 V-80 94.09 2.80 5.26 93.21 2.85 5.05 87.33 3.21 5.60 

 V-90 93.44 2.19 4.25 92.99 2.21 3.99 86.45 2.53 4.47 

 SHST-19 96.04 5957.26 13099.36 95.79 5464.86 12257.49 95.19 4776.90 11131.29 

 SHST-20 96.11 6265.11 13539.71 95.88 5751.17 12691.77 95.31 5034.11 11564.06 

 SHST-21 96.16 6588.58 13986.43 95.96 6050.35 13130.05 95.43 5305.13 12000.11 

 SHST-22 96.20 6927.58 14438.56 96.02 6364.58 13574.43 95.53 5591.28 12440.75 

 SHST-23 96.23 7280.14 14894.74 96.07 6692.91 14025.99 95.63 5892.38 12886.90 

 SCST-23 90.55 3383.09 6432.08 91.50 4007.82 7555.34 93.02 4883.90 8796.42 

 SCST-24 90.27 3001.48 5726.31 91.14 3652.09 6899.24 92.73 4569.45 8234.52 

 SCST-25 90.08 2617.30 5024.21 90.84 3279.07 6211.61 92.46 4232.75 7634.75 

 SCST-26 89.98 2243.00 4349.48 90.62 2895.31 5513.68 92.23 3874.45 6999.79 

 SCST-27 89.96 1890.05 3719.41 90.46 2516.28 4832.74 92.05 3498.52 6339.88 

 AHST-80 96.07 5654.56 12103.72 95.82 5200.59 11331.99 95.22 4561.63 10292.71 

 AHST-90 96.13 5967.68 12486.39 95.91 5500.38 11717.22 95.37 4839.13 10687.38 

 ACST-80 90.39 859.33 1718.65 90.67 1195.32 2342.54 91.97 1834.48 3439.02 

 ACST-90 90.53 1086.79 2096.79 90.85 1457.51 2783.73 92.17 2146.08 3933.15 

(2) Unit according to each variable.  

 

Thus, the interpolated values could be considered valid for the goal of this study. Appendix A includes the spatial 

representations of each adaptive variable analysed in the research. First, the distribution of the percentage of days of the 

year when the adaptive models were applied was analysed. The analysis was based on the number of data corresponding to 

intervals of 10% in the dataset obtained by 997,000 locations. Fig. 4 shows applicability of the adaptive thermal comfort 

model in the current scenario and in the RCP 2.6, 4.5 and 8.5 scenarios. The application interval with more points 
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corresponded to the interval between 90 and 100% of the days of the year, particularly in the current scenario, in which the 

interval corresponded to 298,426 points of the dataset (29.93%). Likewise, climate conditions in the current scenario 

presented a great potential to apply the adaptive models. An application range lower than 30% of the days of the year 

corresponded to 278,992 (27.98% of the dataset), and the application range greater than 50% of the days of the year 

corresponded to 50.90% of the dataset. The adaptive model from ASHRAE 55-2017 therefore presented a great application 

potential in the current scenario. However, the possibilities of applying the adaptive models varied in the future scenarios. 

This variation was similar in all the scenarios, although its severity level depended on the RCP scenario: locations with low 

percentages of application would be reduced, and the interval with a greater application (between 90 and 100%) would also 

be reduced. Likewise, the number of locations would increase in the application interval between 40 and 90%. However, the 

intensity of these changes also depended on the RCP scenario. Thus, the following variations took place in each scenario by 

going from the current scenario to 2050: (i) in the RCP 2.6 scenario, the intervals lower than 40% obtained decreases 

between 0.45 and 6.04%, and the interval between 90 and 100% obtained a decrease of 1.24%. The application intervals 

between 40 and 90% obtained increases between 0.24 and 1.63%; (ii) in the RCP 4.5 scenario, the intervals lower than 40% 

were similar to the RCP 2.6 scenario (with decreases between 0.49 and 6.10%), and the application interval greater than 

90% obtained a decrease of 2.43%. Thus, the increase was greater in the intermediate intervals (between 0.36 and 2.36%); 

and (iii) the RCP 8.5 scenario was characterised by decreasing the application intervals lower than 30% as the other two 

scenarios, but with a greater increase in the interval between 90 and 100% (with a decrease of 3.43%). An increase of up to 

3.20% was obtained in the intermediate intervals.  

Thus, the scenarios in 2050 would modify the possibilities of applying the adaptive model with similar tendencies to 

those expected with the A2 scenario [77]. In general terms, the possibilities of applying the model were increased because 

the application percentage between 50 and 90% increased the amount of locations. However, the interval of greatest 

application (i.e., between 90 and 100%) decreased. Nevertheless, the major changes took place in 2100. Using the current 

scenario as reference, a greater difference among the tendencies of each scenario is expected in 2100. Moreover, the RCP 

2.6 scenario obtained similar values to those obtained in 2050 (with increase and decrease deviations in the percentage 

values between 0.03 and 0.37%), and the greatest differences were detected in the RCP 4.5 and 8.5 scenarios. The application 

interval greater than 90% was reduced by 5.28% in the RCP 4.5 scenario, and by 14.24% in the RCP 8.5 scenario. Likewise, 

the interval between 40 and 90% increased the locations between 1.49 and 4.26 in the RCP 4.5 scenario, and between 1.41 

and 10.04 in the RCP 8.5scenario. Although the adaptive model could present better possibilities of application throughout 

the 21st century, many locations with the greatest possibilities of application could be lost according to the scenario. This 

aspect directly influenced the percentage of days over and below the application threshold of the adaptive thermal comfort 

model from ASHRAE 55-2017. In the current scenario, the most predominant percentage of days of the year that exceeded 
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the upper threshold (Fig. 5) was the lowest (i.e., the interval between 0 and 10%). This interval was the most predominant 

in the remaining combinations of scenarios and year analysed, although the percentage of locations was reduced. In this 

interval there were therefore percentage reductions of 2.60% with the RCP 2.6 scenario, 4.25% with the RCP 4.5 scenario, 

and 5.79% with the RCP 8.5 scenario in 2050. These increase tendencies were detected in the reduction of the percentage 

of days in which the adaptive model was not applied because the upper threshold was exceeded. The RCP 8.5 scenario with 

greater outdoor temperatures would generate a greater percentage of days exceeding the upper threshold in 2050. These 

variations in the interval between 0 and 10% of the days of the year exceeding the upper limit was increased in 2100: the 

RCP 2.6 scenario obtained a variation of 0.14% in comparison with 2050, and the variations of the RCP 4.5 and 8.5 scenarios 

were 4.24% and 15.85%, respectively. These variations increased the percentages of locations of the remaining intervals 

exceeding the upper limit. This was detected in two aspects: (i) the increase of the percentage of locations in the intervals 

greater than 10%, and (ii) the emergence of intervals with high percentages of days exceeding the upper limit that did not 

take place in the current scenario. In the former the percentages greater than 10% increased between 0.74 and 1.51% in 

2050 and between 0.28 and 4.86% in 2100 in comparison with the current scenario. New intervals emerged in all the 

combinations of scenarios and year, from a maximum interval between 40 and 50% in the current scenario to intervals 

between 50 and 60% in 2050 with the RCP 2.6 and 4.5 scenarios and reaching an interval between 90 and 100% in some 

locations in 2100 with the RCP 8.5 scenario. These variations would also imply a lower percentage of days of the year when 

the adaptive model cannot be applied by being below the lower threshold (Fig. 6). Although in the current scenario the 

percentage of days when the adaptive model cannot be applied with a larger number of locations corresponded to the 

percentage between 0 and 10%, there were distribution locations in the remaining intervals. The climate variations expected 

throughout the 21st century reduced the high non-application intervals of the adaptive model, whereas in the interval 

between 0 and 10% of the days of the year there were increases between 1.07 and 2.06% in 2050 and between 1.14 and 

5.42% in 2100.  

These results therefore showed the greater vulnerability presented by the planet to apply adaptive strategies in the 

future. Although the increase of the outdoor temperature (which varies according to the RCP scenario) could mean a greater 

application in many areas, the zones presenting nowadays a greater application percentage throughout the year could be in 

more and more extreme situations by exceeding the upper threshold, thus limiting the possibility of applying the adaptive 

models. Apart from limiting the energy saving possibilities in the built environment of these locations, habitability 

conditions could also be affected. In this regard, the increase of the percentage of days of the year with values of 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

greater than 33.5 ºC could be a great challenge to achieve appropriate habitability conditions in the urban environment.  
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Fig. 4. Percentage of days of the year with application of the adaptive thermal comfort model in the current scenario and in 

the RCP 2.6, 4.5 and 8.5 scenarios.  
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Fig. 5. Evolution of the annual percentage of days when the adaptive model cannot be applied by exceeding the upper 

threshold.  
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Fig. 6. Evolution of the annual percentage of days when the adaptive model cannot be applied by being below the lower 

threshold.  
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3.2. Potential of applying adaptive energy saving strategies 

 

Apart from the tendencies detected in the potential of applying the adaptive model from ASHRAE 55-2017, the 

effectiveness of the adaptive energy saving strategies in the built environment should be known. As indicated in Section 2.1, 

the adaptive energy saving strategies could be divided into adaptive natural ventilation and adaptive setpoint temperatures. 

The former was assessed according to the percentage of hours of the year when the outdoor temperature was within the 

thermal comfort limits. Thus, the results should be independently analysed for the 80% (Fig. 7) and 90% (Fig. 8) 

acceptabilities. In the current scenario the most predominant interval of percentage of hours of the year to apply adaptive 

natural ventilation was between 0 and 10%: it corresponded to both 36.48% of locations in the 80% acceptability and 

43.85% in the 90% acceptability. These values were related to latitudes close to the poles, prevailing the cold season 

throughout the year. However, the application percentages of adaptive natural ventilation were obtained in intervals greater 

than 10%. This corresponded to the warmest seasons, thus reducing the use of HVAC systems. Moreover, an application 

range of up to both 90 and 100% of the hours of the year was obtained in the 80% acceptability. This mainly took place in 

the latitudes close to the equator, but only in some locations. However, the interval between 20 and 80% of the hours of the 

year obtained a higher percentage of locations (43.42%). Thus, more than 43% of the locations that could apply the adaptive 

natural ventilation in at least warm seasons, including regions such as the Mediterranean area, thus becoming an interesting 

aspect to achieve a decarbonisation in this region due to the difficulties to implement nZEB standards [85]. However, the 

percentage of acceptability used to establish the thermal comfort limits should be considered due to the loss of effectiveness 

with the 90% acceptability. In this regard, the use of the 90% acceptability for natural ventilation in the current scenario 

reduced the maximum interval by the range between 70 and 80% (it was between 90 and 100% with the 80% acceptability), 

thus reducing the percentage of locations by 7.63% in the application interval between 20 and 80% of the hours of the year.  

Regarding the impact of future scenarios on the possibility of applying natural ventilation, three aspects could be 

expected: (i) a reduction in the percentage of locations with the lowest application possibility of natural ventilation (between 

0 and 10% of the hours of the year), (ii) a reduction in the greatest application percentages obtained in each category of 

acceptability from ASHRAE 55-2017, and (iii) an increase in the percentage of locations with an application greater than 

20% of the hours of the year. However, and similarly to the application of the adaptive model, the intensity of the changes 

depended on the RCP scenario with respect to the current scenario. This can be seen in the lowest application percentage of 

the hours of the year: (i) the RCP 2.6 scenario obtained a reduction of 3.99% in 2050 and of 3.86% in 2100; (ii) the RCP 4.5 

scenario obtained a reduction of 5.22% in 2050 and of 9.66% in 2100, and (iii) the RCP 8.5 scenario obtained a reduction of 

7.06% in 2050 and of 15.13% in 2100. Thus, climate change would generate a greater possibility of applying natural 

ventilation throughout the year in the zones with the lowest application of natural ventilation in the current scenario. In 
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general terms, climate change would limit the use of natural ventilation, particularly in the case of a high radiative forcing 

because the percentage of locations in applications greater than 30% of the hours of the year is reduced. Although these 

tendencies were detected in the A2 scenario [77], they did not show a high change tendency such as that obtained in the RCP 

4.5 and 8.5 scenarios. Thus, the climate evolution throughout the 21st century could limit the use of adaptive natural 

ventilation in various magnitude commands. This is crucial in regions whose built environment is traditionally influenced 

by using natural ventilation [92–94].  

 

Fig. 7. Percentage of hours of the year to use the natural ventilation based on the 80% acceptability in the current scenario 

and in the RCP 2.6, 4.5 and 8.5 scenarios.  
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Fig. 8.  Percentage of hours of the year to use the natural ventilation based on the 90% acceptability in the current 

scenario and in the RCP 2.6, 4.5 and 8.5 scenarios.  

 

Regarding the hourly saving in heating and cooling degrees by using adaptive setpoint temperatures, Fig. 9 shows the 

saving distributions obtained with respect to the static setpoint temperatures considered in the research. In addition, 

distinctions were made depending on whether the adaptive setpoint temperatures were adjusted to the 80% or 90% 

acceptability. As for the saving in heating degrees, the results showed the limitations of using adaptive setpoint temperatures 

to achieve savings in comparison with static patterns. However, there were many locations in which their use was 
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counterproductive. This can be seen in the quartile distribution values of the 80% acceptability in the current scenario: (i) 

the saving in hourly degrees with respect to a static setpoint temperature of 19 and 20 ºC obtained negative values of 

1442.98 and 121.46 ºC, respectively, in the value of the first quartile (Q1); and (ii) the minimum saving values obtained were 

always negative with respect to the static setpoint temperature of 21, 22 and 23 ºC. Nonetheless, positive values were 

obtained in the values of the second (Q2) and third (Q3) quartile: (i) saving values of 5,406, 11,890, 18,666, 25,709 and 

33,009 ºC were obtained in Q2 with respect to the static setpoint temperatures of 19, 20, 21, 22 and 23 ºC, respectively; and 

(ii) saving values of 10,530, 18,720, 27,028, 35,441 and 43,937 ºC were obtained in Q3 with respect to the static setpoint 

temperatures of 19, 20, 21, 22 and 23 ºC, respectively. Likewise, the maximum values in the distributions oscillated between 

14,017 and 49,057 ºC. Despite the limitations detected with the adaptive setpoint temperatures in certain regions, their use 

could save appropriate heating degrees with respect to static patterns, thus leading to both a lower building energy demand 

and a saving in the energy consumption. The saving depended on the static operational patterns existing before 

implementing the adaptive strategies. Thus, the use of an effective static pattern (through a low static setpoint temperature) 

limited the saving achieved by the adaptive setpoint temperatures. However, the possibility of obtaining values in the lower 

limit below 19 ºC (the lowest value considered for a static heating pattern) allowed savings to be achieved. Nonetheless, the 

use of the 90% acceptability would limit the effectiveness of the adaptive heating setpoint temperatures with respect to the 

static patterns with a low setpoint temperature, since the energy saving distributions were lower than with the 80% 

acceptability (with an average reduction of 5,995 ºC) and there were greater negative values in the quartiles (e.g., the saving 

distribution in heating degrees was characterised by presenting negative values in Q2 with respect to the static temperature 

of 19 ºC). The influence of climate change did not significantly vary the saving tendencies in heating degrees obtained with 

the adaptive setpoint temperatures, although the level of radiative forcing decreased the heating demand. Thus, the 

following average reduction values were obtained in the quartile values: (i) the RCP 2.6 scenario obtained a similar average 

reduction with respect to the current scenario throughout the 21st century, with values of 524 ºC in 2050 and of 513 ºC in 

2100; (ii) the RCP 4.5 scenario obtained an average reduction of 731 ºC in 2050 and of 1341 ºC in 2100; and (iii) the RCP 8.5 

scenario obtained an average reduction of 943 ºC in 2050 and of 2528 ºC in 2100. The RCP 4.5 and 8.5 scenarios 

progressively reduced the saving in hourly degrees obtained with the adaptive setpoint temperatures, particularly in 2100. 

Thus, the lowest heating energy demand caused by climate change is expected to imply a reduction of the effectiveness of 

the adaptive heating setpoint temperatures. This aspect mainly takes place due to the obtaining of higher values for the 

lower limit, reducing the thermal differential with respect to the reference values used for the static patterns.  

Nevertheless, the adaptive setpoint temperatures could be greatly used for the cooling energy saving as positive energy 

saving results were obtained in most of the combinations analysed. With the 80% acceptability in the current scenario, the 

energy saving was positive in the quartile distribution values. Values oscillated between 2 and 452 ºC in Q1, between 695 
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and 4,345 ºC in Q2, between 5,387 and 20,806 ºC in Q3, and between 27,857 and 62,726 ºC in the maximum values. The use 

of the 90% acceptability implied an average reduction in the saving in cooling degrees of 1,864 ºC and the emergence of a 

negative value in Q1 in the assumption of a static setpoint temperature of 27 ºC. This was due to the high energy efficiency 

of this static setpoint temperature that could obtain values greater than the upper limit of the adaptive model in certain 

regions. Regarding climate change, the saving in cooling degrees increased. The average increase varied according to the 

scenario and year: (i) the RCP 2.6 scenario obtained an average increase in the saving with respect to the current scenario 

of 1,313 and 1,472 ºC in 2050 and 2100, respectively. Likewise, the maximum increases were 3,789 and 3,833 ºC in 2050 

and 2100; (ii) the RCP 4.5 scenario obtained an average increase in the saving of 2,297 ºC in 2050 and of 2,783 ºC in 2100, 

with maximum values of up to 6,922 ºC; and (iii) the RCP 8.5 scenario obtained an increase in the saving achieved by the 

adaptive setpoint temperatures of 2,956 and 5,967 ºC in 2050 and 2100, respectively. Likewise, maximum increase values 

of 7,676 ºC in 2050 and of 16,631 ºC in 2100 were obtained.  

These results therefore showed the great potential of using the adaptive setpoint temperatures to achieve energy 

savings in HVAC systems. The main potential is related to the degree saving in air conditioning systems, a key aspect in the 

climate context that the built environment should tackle throughout the 21st century because of a greater cooling energy 

demand. The use of adaptive cooling setpoint temperatures achieved important savings in all the assumptions of static 

patterns. Likewise, both heating setpoint temperatures and natural ventilation were also interesting measures to achieve 

energy savings by changing the operational pattern, although studies focused on each region or on each case study should 

be conducted to value the most appropriate way of implementing them due to the negative climate change impact expected 

through the RCP scenarios.  
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Fig. 9. Box plots with the degree saving between the adaptive and the static setpoint temperatures.  
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3.3. Relations between adaptive strategies and world population through the SSP scenarios 

An essential aspect to analyse the application possibilities of the adaptive strategies worldwide is their influence on the 

world population. For this reason, the relations between the population tendencies throughout the 21st century and the 

adaptive variables were analysed (Fig. 10). Regarding the implications of the world population to apply the adaptive model 

from ASHRAE 55-2017, 53.3% of the world population in the current scenario lives in zones with an application percentage 

greater than 90% of the days of the year, and 1.96% of population lives in zones with an application percentage lower than 

40%. The climate change effect changed the population percentage living in zones with an application percentage between 

90 and 100%, with these variations being more important in the combinations of the RCP 4.5 and 8.5 scenarios with the 

most appropriate SSPs for each: (i) the percentage of population for this application interval oscillated between 54.72 (2050-

SSP1) and 59% (2100-SSP4) with the RCP 2.6 scenario, (ii) the RCP 4.5 scenario obtained values between 49.55 and 53.12% 

in 2050 and between 42,57 and 49.33% in 2100, and (iii) the RCP 8.5 scenario obtained values of 48.04% in 2050 and of 

29.29% in 2100. These values were fulfilled, together with the reduction of the population in the application percentage 

lower than 40% of the days of the year. It is therefore expected that climate change contributes to the fact that a greater 

percentage of population could apply the adaptive model throughout the year. However, the severity detected with the RCP 

4.5 scenario and the population of SSP5 is a challenge to guarantee inhabitants’ thermal comfort in most developing 

countries (as they are countries located in latitudes close to the equator). In addition, the percentage of the population living 

in regions with more days of the year when the upper threshold of the adaptive model is exceeded throughout the 21st 

century is increased. Regarding natural ventilation, the application percentage between 30 and 50% of the hours of the year 

obtained a progressive increase of the world population from the current scenario (30.02%) to the RCP8.5-SSP5 

combination in 2100 (34.62%). Although the population living in the zone with the greatest application was progressively 

reduced (only SSP1, SSP2, and SSP4 obtained percentages between 2.08 and 2.67% of the population in 2100 with the RCP 

2.6 scenario), the greatest concentration of population in the intermediate percentages showed the effectiveness of using 

natural ventilation to air-condition indoor spaces.  
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Fig. 10. Heatmap of the world population distribution with the SSP scenarios according to the relation of the application 

variables of the adaptive strategies.  
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4. Conclusions 

 

This study analysed the influence of the RCP scenarios throughout the 21st century on the possibility of applying 

adaptive energy saving strategies in the built environment. Three aspects were analysed by using climate data worldwide: 

the possibilities of applying the adaptive model from ASHRAE 55-2017, the possibilities of applying adaptive natural 

ventilation, and the saving in hourly degrees with the adaptive setpoint temperatures. The RCP scenarios had various 

tendencies in the application of the adaptive measures. The RCP 2.6 scenario was characterised by a steady behaviour 

throughout the 21st century, with a general increase in the percentage of days in which the adaptive model can be applied. 

However, the RCP 4.5 and 8.5 scenarios generated a progressive loss in the application of the adaptive model, particularly 

the latter. The reason was a greater percentage of days in which the upper threshold to apply the adaptive model from 

ASHRAE (33.5 ºC) was exceeded, even obtaining locations with a percentage of days of the year between 60 and 100%. 

However, the most interesting aspect was the potential of applying the two energy saving measures related to the adaptive 

thermal comfort models: natural ventilation and adaptive setpoint temperatures. On the one hand, the RCP scenarios would 

reduce both the percentage of locations with the lowest possibility of applying natural ventilation (between 0 and 10% of 

the hours of the year) and the greatest application percentages obtained in each category of acceptability from ASHRAE 55-

2017; moreover, the percentage of locations with an application greater than 20% of the hours of the year would be 

increased. This could imply that regions with a limited possibility of applying today natural ventilation move on to an 

intermediate level. Moreover, the stage based on using natural ventilation is expected to be longer in the Mediterranean 

area, thus limiting its use in the months with the greatest cooling energy demand. Likewise, the effectiveness of the 

vernacular architecture based on the potential of natural ventilation could be limited in regions with this type of designs.  

On the other hand, variable savings could be achieved in heating and air conditioning systems by using adaptive setpoint 

temperatures. Although heating savings are expected in heating systems (particularly with respect to static operational 

patterns with high setpoint temperatures), the saving was greater in cooling systems. This aspect became very important 

by analysing the impact expected with the RCP scenarios, as the cooling energy demand is expected to prevail throughout 

the 21st century. The saving obtained with the adaptive heating setpoint temperatures slightly varied their distributions 

throughout the 21st century (with some reductions in 2100 with the RCP 4.5 and 8.5 scenarios), whereas the adaptive 

cooling setpoint temperatures obtained greater savings throughout the 21st century. Thus, adaptive models have a great 

potential to achieve reductions in the cooling energy consumption at the same time users’ thermal comfort is kept. This 
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becomes important due to the possible difficulties to achieve a total decarbonisation of the built environment in warm 

regions. 

To conclude, the results of this study are of great interest to establish policies focused on improving the energy 

performance of the built environment. These results show the variable tendencies of the adaptive strategies throughout the 

21st century and constitute a key aspect to develop energy policies. Furthermore, users’ operational adaptation without the 

need of intervening in buildings could contribute to the mitigation of fuel poverty cases due to the difficulties of many 

families to finance energy conservation measures. Likewise, these measures could guarantee a more appropriate transition 

towards a decarbonisation of the built environment by 2050, an aspect difficult to achieve through the current energy 

renovation rate of the building stock. Nonetheless, there are limitations related to the type of data analysis. Through a 

multivariable analysis, future studies should focus on the influence of the combinations of insulation, orientation, form, and 

surface by using the adaptive strategies worldwide.  
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Appendix 

 

 

 

Fig. A1.  Evolution of the annual percentage of days when the adaptive model can be applied in the various scenarios. 
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Fig. A2. Percentage of days of the year with non-application of the adaptive thermal comfort model (above the upper 

threshold) in the current scenario and in the RCP 2.6, 4.5 and 8.5 scenarios. 
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Fig. A3. Percentage of days of the year with non-application of the adaptive thermal comfort model (below the lower 

threshold) in the current scenario and in the RCP 2.6, 4.5 and 8.5 scenarios. 
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Fig. A4.  Evolution of the annual percentage of hours when natural ventilation is used (80% acceptability). 
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Fig. A5. Evolution of the annual percentage of hours when natural ventilation is used (90% acceptability).  
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Fig. A6. Hourly heating degrees with a static setpoint temperature of 19 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A7. Hourly heating degrees with a static setpoint temperature of 20 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A8. Hourly heating degrees with a static setpoint temperature of 21 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A9. Hourly heating degrees with a static setpoint temperature of 22 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A10. Hourly heating degrees with a static setpoint temperature of 23 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A11. Hourly cooling degrees with a static setpoint temperature of 23 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A12. Hourly cooling degrees with a static setpoint temperature of 24 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A13. Hourly cooling degrees with a static setpoint temperature of 25 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A14. Hourly cooling degrees with a static setpoint temperature of 26 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A15. Hourly cooling degrees with a static setpoint temperature of 27 ºC in the current scenario and in the RCP 2.6, 4.5 

and 8.5 scenarios. 
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Fig. A16. Hourly heating degrees with an adaptive setpoint temperature based on the 80% acceptability in the current 

scenario and in the RCP 2.6, 4.5 and 8.5 scenarios. 
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Fig. A17. Hourly heating degrees with an adaptive setpoint temperature based on the 90% acceptability in the current 

scenario and in the RCP 2.6, 4.5 and 8.5 scenarios. 
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Fig. A18. Hourly cooling degrees with an adaptive setpoint temperature based on the 80% acceptability in the current 

scenario and in the RCP 2.6, 4.5 and 8.5 scenarios. 
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Fig. A19. Hourly cooling degrees with an adaptive setpoint temperature based on the 90% acceptability in the current 

scenario and in the RCP 2.6, 4.5 and 8.5 scenarios. 

 

 

 

 

 


