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Abstract: 

The application of adaptive comfort models is among the determinant factors to reduce greenhouse gas emissions in the 

building sector. This research studies the region of Andalusia (south of Spain). A cluster analysis is applied to 786 Andalusian 

municipalities, and 4 groups are established according to the potential of adaptive strategies. A town is chosen from each 

group, and an hourly specific study is conducted for the last 20 years, as well as a daily study of the old time series by using 

an artificial neural network based on the existing climate data. The possibility of application of the EN 16798-1:2019 

standard during the days of the year is analysed, as well as the possibilities of using natural ventilation and the possibility 

of using adaptive setpoint temperatures in comparison with both 3 fixed heating temperatures and 3 fixed cooling 

temperatures by considering the energy saving. The results to apply the standard ranged 69.0 and 100% of the days of each 

year. The possibilities of natural ventilation considered were greater than 10% of the hours of the year in all the 

assumptions. The energy saving of cooling degrees reveals a greater potential in the area studied than that of heating 

degrees; this tendency is supported by the study of old temporary series which are part of the climate variation predicted 

throughout the 21st century. 

 

Highlights: 

- Adaptive comfort is analysed using the 786 municipalities in Andalusia.  

- A total of 4 groups to apply adaptive strategies are found with a cluster analysis.  

- The application of adaptive setpoints reduces the required cooling degrees. 

- Design of 27 multilayer perceptrons to obtain the evolution of old data series. 
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Nomenclature 

Symbols  
𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝐷 Annual sum of hourly cooling degrees between adaptive setpoints and the external temperature [℃] 
𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐻𝐷 Annual sum of hourly heating degrees between adaptive setpoints and the external temperature [℃] 
𝑎(𝑖) Average distance between an individual (i) and the remaining points of the same group 
BSS/TSS Ratio between sum of squares and total sum of square 
𝑏(𝑖) Minimum average distance between the individual and the others 
𝑑𝑖  Value assigned to each day of the year 
ℎ𝑖  Value assigned to each hour of the year 
𝑀𝐴𝐸 Mean absolute error 
𝑚𝑖  Model’s prediction 
𝑁𝐷𝑌 Number of days of the year 
𝑁𝐻𝑌 Number of hours of the year 
𝑁𝐼 Number of nodes of the input layer 
𝑁𝑂 Number of nodes of the output layer 
𝑛 Number of instances in the dataset 
𝑃𝐷𝐴𝐴𝑀 Percentage of days of the year in which the adaptive thermal comfort model could be applied [%] 
𝑃𝐻𝑁𝑉 Percentage of hours to apply adaptive natural ventilation strategies [%] 
𝑅 Reference value selected for static setpoint temperatures 
𝑅2 Determination coefficient 
𝑅𝑀𝑆𝐸 Root mean square error 
𝑆𝐶𝐷𝐻𝑅  Annual saving in cooling degrees of cooling adaptive setpoints with respect to static setpoints of 𝑅-value 

[℃] 
𝑆𝐻𝐷𝐻𝑅  Annual saving in heating degrees of heating adaptive setpoints with respect to static setpoints of 𝑅-value 

[℃] 
𝑆𝑡𝑎𝑡𝑖𝑐𝐶𝐷𝑅  Annual sum of hourly cooling degrees between static setpoints and the external temperature [℃] 
𝑆𝑡𝑎𝑡𝑖𝑐𝐻𝐷𝑅  Annual sum of hourly heating degrees between static setpoints and the external temperature [℃] 
𝑠(𝑖) silhouette index 

𝑇𝐴𝐶,𝑖  Hourly value of adaptive setpoint temperature for cooling [℃] 

𝑇𝐴𝐻,𝑖  Hourly value of adaptive setpoint temperature [℃] 

𝑇𝑒𝑥𝑡,𝑑   

𝑇𝑒𝑥𝑡,𝑖  Hourly value of external temperature [℃] 



𝑇𝑆𝐶,𝑅,𝑖 hourly value of static setpoint temperature for cooling [℃] 

𝑇𝑆𝐻,𝑅,𝑖  Hourly value of static setpoint temperature for heating [℃] 
𝑡𝑖  Actual value 
𝑡𝑟𝑚 Running mean outdoor temperature 
WSS Total within-cluster sum of squares 

𝑤𝑘0
(1)

 Weight of the bias neuron of the input layer 

𝑤𝑘𝑗
(1)

 Weights of the hidden layer 

𝑤𝑙0
(2)

 Weight of the bias neuron of the hidden layer 

𝑤𝑙𝑘
(2)

 Weights of the output layer 

𝑋𝐶𝐴 Logic values 
𝑋𝐶𝑆 Logic values 
𝑋𝐻𝐴 Logic values 
𝑋𝐻𝑆 Logic values 
𝑥0 Input value of the bias neuron of the input layer 
𝑥𝑗  Values of the input layer 

�̂�𝑀𝐿𝑃  Estimation performed by the multilayer perceptron 
𝑦0 Input value of the bias neuron of the hidden layer 
𝑦𝑘  output value of a neuron of the hidden layer 
  
Greek letters  
𝜎 Activation function 
  
Abbreviations  
GHG Greenhouse gas 
HVAC Heating, ventilation and air conditioning 
IPCC Intergovernmental Panel on Climate Change 
MLP Multilayer perceptron 

 

 

1. Introduction 

Climate change and environmental degradation can soon become a turning point in global history, mainly caused by 

continuous greenhouse gas (GHG) emissions speeding up global warming and the acidification of oceans. These aspects have 

been included in various reports of the Intergovernmental Panel on Climate Change (IPCC), which analyses different future 

scenarios characterised by increases in temperature and sea level [1,2]. It is, therefore, essential to take action against the 

main GHG emitters. In this regard, various countries committed to reducing GHG emissions in the 2015 Paris Climate 

Conference, although these objectives are today far from being fulfilled [3]. Nonetheless, these objectives established the 

need that no human activity should produce GHG emissions. Among the major activities, those generating maximum 

emissions include the use of buildings, which are responsible for 36% of the GHG emissions in the atmosphere [4,5]. Thus, 

one of the objectives set by the European Union is to reduce the emissions generated by buildings by 90% by 2050 [6]. 

To achieve these objectives, taking action on one of the main building consumptions, i.e. the use of heating, ventilation 

and air conditioning (HVAC) systems, is required [7]. For this purpose, a tendency in professional actions and research 

studies has been to analyse envelope designs that indicate the reduction in heat transfer to the exterior, improvement in 

HVAC systems, and personal use. These improvements, however, can produce rebound effects, leading to high energy 

consumption by users [8]. Thus, another factor playing an important role in HVAC system energy consumption is user 

behaviour [9]. A fundamental aspect in establishing an appropriate user behaviour with respect to the use of HVAC systems 

is controlling the setpoint temperature. In this regard, considerable research has analysed the energy-saving achieved with 

the modification of the setpoint temperature by following static-use patterns. For example, Wan et al. [10] analysed the 

reduction in energy consumption in future climate-change scenarios in several case studies conducted in Hong Kong by 

modifying the setpoint temperature. These authors achieved substantial decreases in energy consumption under different 

scenarios by using cooling setpoint temperatures above 25.5 °C. Other related studies include those conducted by 

Spyropoulos and Balaras [11] and Hoyt et al. [12], who analysed the possibility of reducing the total energy consumption of 

office buildings by modifying the heating and cooling setpoint temperatures, thus obtaining between 45% and 73% energy 

savings. Despite these results, the above-mentioned studies were based on static criteria, thus in turn, based on Fanger’s 

thermal models [13]. These models present a static behaviour of thermal comfort limits with a narrow range between the 

lower and upper limits. Meanwhile, an increasing number of studies are considering the possibility of using adaptive thermal 

comfort models [14,15]. In these models, users can modify their thermal comfort by adapting their behaviour, and compared 

to Fanger’s static thermal comfort approaches, the building energy consumption can be reduced by limiting the use of HVAC 

systems [16]. The development of these comfort models began in the 1970s by Humphreys [17,18] and Nicol and 



Humphreys [19], who found that the thermal comfort models obtained from the laboratory did not fit the buildings operating 

with natural ventilation. Likewise, the adaptabilities of users to the interior conditions were detected. Subsequently, de Dear 

and Brager [20] conducted 21,000 field observations and formalised the concept of adaptive thermal comfort. After the later 

studies by Dear and Brager [21,22], ASHRAE-55:2004 was the first thermal comfort standard to include an adaptive thermal 

comfort model with the data obtained through the ASHRAE RP-884 project [15]. In Europe, the data obtained through the 

Smart Control and Thermal Comfort project [23] were used to develop an adaptive thermal comfort model that was 

integrated into the standard EN 15251:2007 [24]. Subsequently, the European standard was modified with the standard EN 

16798-1:2019 [25]. This modification also proposed changes in the possibilities of applying the adaptive thermal comfort 

model, such as the temperature difference between the lower limit and the optimum temperature [26]. 

A fundamental aspect of adaptive thermal comfort models is that users can adapt to climatic variations through different 

strategies (also known as adaptive strategies). In this sense, one of the strategies is related to using HVAC systems. The 

adaptive strategies can be distinguished into two topologies: natural ventilation and adaptive setpoint temperatures. 

Natural ventilation involves the possible acclimatisation of the indoor space when the external temperature is within 

appropriate thermal comfort limits for users, thus reducing the use of HVAC systems [27–29]. On the other hand, adaptive 

setpoint temperatures are configured according to the external temperatures and the adaptive thermal comfort model used, 

thus reflecting users’ adaptability to climate variations with up to 50% energy-saving with respect to static setpoint 

temperatures [30–33]. 

The effectiveness of applying these measures mainly depends on the climate in which the building is located. A previous 

study [34] assessed the possibilities of applying adaptive strategies globally. The results showed great possibilities of 

applying adaptive thermal comfort models globally, particularly in zones such as the Mediterranean. This study, however, 

was based on the analyses of average climate files, and thus, did not study the recent evolution. Likewise, this study 

considered that the use of detailed local analyses would deeply indicate the possibility of applying these strategies. For this 

reason, the potential applications of adaptive strategies between the 20th and 21st centuries were analysed in the region of 

Andalusia (south of Spain). This region was chosen due to the following three reasons: (i) the potential application found in 

the global study conducted in this region was high, although regions with a lower application were also found; (ii) the studies 

on the potential application of adaptive setpoint temperatures and natural ventilation in actual case studies were conducted 

in some cities of the region (e.g. Seville [30–33]); and (iii) the existing energy poverty risk in the region [35]. In this regard, 

the Spanish Institute of Statistics determined that Andalusia presents the highest percentage of population with risk poverty 

and/or exclusion (35.4%), with the national average being 22.3% for 2016 [36]. Likewise, Herrero et al. [37] showed that 

5.1 million people in Spain (11% households) cannot maintain their dwelling under appropriate thermal conditions, thus 

increasing the number of households with energy poverty by 22% in barely two years and identifying Andalusia as one of 

the main affected regions.  

Thus, the Andalusian building stock requires strategies to reduce the building energy consumption. For this reason, the 

present study analyses the possibilities of applying the recent adaptive energy-saving strategies. First, a cluster analysis is 

conducted to classify the 786 Andalusian municipalities. Based on the classification result, a representative city is selected 

by each cluster and the possibilities of applying adaptive strategies are analysed according to the existing temperature 

records from the mid-20th century to 2019. In the analysis, multilayer perceptrons (MLPs) are used to estimate the variables 

of hourly energy-saving based on the available daily data.  

 

2. Methodology 

2.1. Adaptive thermal comfort model: EN 16798-1:2019 

The adaptive thermal comfort model developed for Europe is included in EN 16798-1:2019 [25], which is the adaptive 

thermal comfort standard applicable to all of Europe and constitutes the modification of the previous standard (EN 

15251:2007 [24]). The standard establishes three categories of thermal comfort––categories I, II, and III––each of which 

establishes different recommendations for use: category I is recommended for users with less thermal adaptation (e.g. the 

elderly, sick, or children), while categories II and III are recommended for new and existing buildings, respectively. In 

addition, each category establishes lower and upper temperature limits for the indoor operative temperature, which are 

calculated using linear regression with respect to the running mean outdoor temperature (𝑡𝑟𝑚) (Eqs. (1)–(7)). In this case, 

EN 16798-1:2019 is applicable when 𝑡𝑟𝑚 is within 10 ℃ and 30 ℃.  

𝑡𝑟𝑚 = (1 − 𝛼) ∙ ∑(𝛼(𝑖−1) ∙ 𝑇𝑒𝑥𝑡,𝑑)

𝑛

𝑑=1

     (1) 

𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼) = 0.33 ∙ 𝑡𝑟𝑚 + 20.8    (10 ≤ 𝑡𝑟𝑚 ≤ 30) (2) 

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼) = 0.33 ∙ 𝑡𝑟𝑚 + 15.8    (10 ≤ 𝑡𝑟𝑚 ≤ 30) (3) 



𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝐼) = 0.33 ∙ 𝑡𝑟𝑚 + 21.8    (10 ≤ 𝑡𝑟𝑚 ≤ 30) (4) 

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝐼) = 0.33 ∙ 𝑡𝑟𝑚 + 14.8       (10 ≤ 𝑡𝑟𝑚 ≤ 30) (5) 

𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝐼𝐼) = 0.33 ∙ 𝑡𝑟𝑚 + 22.8       (10 ≤ 𝑡𝑟𝑚 ≤ 30) (6) 

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝐼𝐼) = 0.33 ∙ 𝑡𝑟𝑚 + 13.8       (10 ≤ 𝑡𝑟𝑚 ≤ 30) (7) 

The use of these adaptive thermal comfort models allows adaptive energy-saving measures to be adopted. These 

measures are mainly based on two aspects: (i) the use of natural ventilation during the hours in which the external 

temperature is within the application limits of EN 16798-1:2019 and (ii) the use of HVAC systems through adaptive setpoint 

temperatures when the indoor space cannot be naturally ventilated. If the 𝑡𝑟𝑚 value is beyond the application limits of the 

standards (e.g. lower than 10 ℃ or greater than 30 ℃ in EN 16798-1:2019), a fixed value should be used for the adaptive 

setpoint temperatures, corresponding to the horizontal extension of the limit values of the adaptive model [38]. 

 

2.2. Analysis process of adaptive strategies 

The process of analysing the climate data involves assessing the possibilities of applying the adaptive thermal comfort 

models and hourly saving of heating and cooling degrees by following the same criterion of data analysis as that mentioned 

in a previous study [34]. For this purpose, in the next subsections, the procedure followed in the previous study is described 

separately in relation to the possibility of applying adaptive thermal comfort models in Andalusia and the energy-saving 

potential that can be achieved through the adaptive strategies. 

 

2.2.1. Application of adaptive thermal comfort models 

The possibility of applying the models was achieved in accordance with the application criteria of EN 16798-1:2019, 

where 𝑡𝑟𝑚 was assumed to be within the application limits of EN 16798-1:2019 (i.e. between 10 ℃ and 30 ℃). Note that in 

this case, it is not necessary to distinguish between the EN 16798-1:2019 categories, because they all follow the same 

criteria. The application analysis was performed on a daily scale, because the 𝑡𝑟𝑚 value is associated with the average daily 

temperatures. Therefore, the number of days for which 𝑡𝑟𝑚 was within the limits of application and EN 16798-1:2019 was 

determined and evaluated with respect to the year total. The 𝑡𝑟𝑚 value was determined using the data obtained from 

previous 15 days, with an 𝛼-value of 0.8. 

𝑃𝐷𝐴𝐴𝑀 = 100 ∙
∑ 𝑑𝑖

𝑁𝐷𝑌
𝑖=1

𝑁𝐷𝑌
   

𝑑𝑖 = 1           𝑖𝑓 30 ≥ 𝑡𝑟𝑚 ≥ 10  

𝑑𝑖 = 0           𝑖𝑓 𝑡𝑟𝑚 < 10 

𝑑𝑖 = 0           𝑖𝑓 𝑡𝑟𝑚 > 30 

(8) 

where 𝑃𝐷𝐴𝐴𝑀 is the percentage of days of the year in which the adaptive thermal comfort model could be applied [%], 𝑑𝑖  

is a value assigned to each day of the year, and 𝑁𝐷𝑌 is the number of days of the year (365 days for non-leap years and 366 

days for leap years). If 𝑡𝑟𝑚 is within the application limits, then a value of 1 is assigned. If not, a value of 0 is then assigned. 

 

2.2.2. Adaptive energy-saving strategies 

Adaptive strategies were hourly analysed in different manners for natural ventilation and adaptive setpoint 

temperatures.  

2.2.2.1. Natural ventilation 

The natural ventilation potential was evaluated on an hourly scale, using an approach similar to that shown in Eq. (8). 

In this case, the number of annual hours for which the outside temperature remained between the upper and lower limits 

of adaptive thermal comfort was evaluated (Eq. (9)). Through this criterion, users were assured that the outside temperature 

was adequate to ensure thermal comfort and that counterproductive effects generated by natural ventilation were avoided 

[39]. Moreover, for natural ventilation, it is necessary to distinguish the EN 16798-1:2019 categories because each of them 

has a different equation for the upper and lower limits. Therefore, natural ventilation analysis was performed independently 

for each category. 



𝑃𝐻𝑁𝑉 = 100 ∙
∑ ℎ𝑖

𝑁𝐻𝑌 
𝑖=1

𝑁𝐻𝑌 
   

ℎ𝑖 = 1    𝑖𝑓 𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 ≥ 𝑇𝑒𝑥𝑡,𝑖 ≥ 𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 

ℎ𝑖 = 0    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 < 𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 

ℎ𝑖 = 0    𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 > 𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 

(9) 

where 𝑃𝐻𝑁𝑉 is the percentage of hours to apply adaptive natural ventilation strategies [%], ℎ𝑖  is a value assigned to each 

hour of the year, 𝑇𝑒𝑥𝑡,𝑖  is the hourly value of external temperature [℃], and 𝑁𝐻𝑌 is the number of hours of the year (8,760 

hours for non-leap years and 8,784 hours for leap years). If the hourly outside temperature is within the limits of 

acceptability, it is assigned a value of 1, and a value of 0 is assigned when it does not meet this condition. 

 

2.2.2.2. Adaptive setpoint temperatures 

Adaptive setpoint temperatures acquire the upper and lower limit values of adaptive thermal comfort models [39]. Thus, 

for heating at the setpoint temperature, the lower limit is used (Eq. (10)), while for cooling at this temperature, the upper 

limit is used (Eq. (11)). This assumes that the adaptive setpoint temperatures vary each day according to the variations in 

the upper and lower limits. Similar to natural ventilation, the adaptive setpoint temperatures must distinguish the category 

of EN 16798-1:2019 used. Therefore, the following three approaches can be used for adaptive setpoint temperatures 

depending on the category used. 

𝑇𝐴𝐻,𝑖 = 𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (10) 

𝑇𝐴𝐶,𝑖 = 𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (11) 

where 𝑇𝐴𝐻,𝑖  is the hourly value of adaptive setpoint temperature [℃], and 𝑇𝐴𝐶,𝑖  is the hourly value of adaptive setpoint 

temperature for cooling [℃]. 

The energy-saving potential with adaptive set temperatures was evaluated for the savings achieved in the heating and 

cooling degrees with respect to the static setpoint temperatures. First, the summation of the hourly degrees of heating (Eq. 

(12)) and cooling (Eq. (13)) was determined for a more accurate knowledge of the energy demand of buildings with adaptive 

strategies. Hourly degrees are based on the rates of cooling and heating degree days to determine the demands of HVAC 

systems [40]. Both heating and cooling degree days are determined by the difference between the average daily outside 

temperature and average space temperature. However, this approach does not provide an exact knowledge of the daily 

thermal oscillations that can vary the energy demand of buildings. In this circumstance, the analysis at an hourly scale 

provides a more detailed knowledge of the possible energy demand of the buildings [41]. 

𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐻𝐷 = ∑(𝑇𝑒𝑥𝑡,𝑖 − 𝑇𝐴𝐻,𝑖) · 𝑋𝐻𝐴         

𝑁𝐻𝑌

𝑖=1

 

𝑋𝐻𝐴 = 1 𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 < 𝑇𝐴𝐻,𝑖  

𝑋𝐻𝐴 = 0 𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≥ 𝑇𝐴𝐻,𝑖  

(12) 

𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝐷 = ∑(𝑇𝐴𝐶,𝑖 − 𝑇𝑒𝑥𝑡,𝑖) · 𝑋𝐶𝐴        

𝑁𝐻𝑌

𝑖=1

 

𝑋𝐶𝐴 = 1 𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 > 𝑇𝐴𝐶,𝑖  

𝑋𝐶𝐴 = 0 𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≤ 𝑇𝐴𝐶,𝑖  

(13) 

where 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐻𝐷 is the annual sum of hourly heating degrees between adaptive setpoints and the external temperature 

[℃], 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝐷 is the annual sum of hourly cooling degrees between adaptive setpoints and the external temperature [℃], 

and 𝑋𝐻𝐴 and 𝑋𝐶𝐴  are logic values whose value will be 1 when the condition given in the equations is met, and 0 when not. 

The hourly degrees of heating and cooling with an adaptive behaviour were compared with those obtained with static 

operational patterns by the users. For this purpose, the hourly degrees of heating (Eq. (14)) and cooling (Eq. (15)) were 

determined using a static setpoint temperature as the base temperature. Three temperatures were selected for heating (20 

℃, 21 ℃, and 22 ℃) and three for cooling (25 ℃, 26 ℃, and 27 ℃) following the same criteria as those used previously [34]. 

These static temperature values were selected according to the values collected in different standards and regulations 

[24,42]. 



𝑆𝑡𝑎𝑡𝑖𝑐𝐻𝐷𝑅 = ∑(𝑇𝑒𝑥𝑡,𝑖 −  𝑇𝑆𝐻,𝑅,𝑖) · 𝑋𝐻𝑆    

𝑁𝐻𝑌

𝑖=1

 

𝑋𝐻𝑆 = 1 𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 < 𝑇𝑆𝐻,𝑅,𝑖 

𝑋𝐻𝑆 = 0 𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≥ 𝑇𝑆𝐻,𝑅,𝑖 

(14) 

𝑆𝑡𝑎𝑡𝑖𝑐𝐶𝐷𝑅 = ∑(𝑇𝑆𝐶,𝑅,𝑖 − 𝑇𝑒𝑥𝑡,𝑖) · 𝑋𝐶𝑆         

𝑁𝐻𝑌

𝑖=1

 

𝑋𝐶𝑆 = 1 𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 > 𝑇𝑆𝐶,𝑅,𝑖 

𝑋𝐶𝑆 = 0 𝑖𝑓 𝑇𝑒𝑥𝑡,𝑖 ≤ 𝑇𝑆𝐶,𝑅,𝑖 

(15) 

where 𝑆𝑡𝑎𝑡𝑖𝑐𝐻𝐷𝑅  is the annual sum of hourly heating degrees between static setpoints and the external temperature [℃], 

𝑆𝑡𝑎𝑡𝑖𝑐𝐶𝐷𝑅  is the annual sum of hourly cooling degrees between static setpoints and the external temperature [℃], 𝑇𝑆𝐻,𝑅,𝑖  is 

the hourly value of static setpoint temperature for heating [℃], 𝑇𝑆𝐶,𝑅,𝑖  is the hourly value of static setpoint temperature for 

cooling [℃], 𝑅 is the reference value selected for static setpoint temperatures (in the case of heating temperatures 𝑅 has 

values of 20, 21 and 22 ℃, and in the case of cooling temperatures 𝑅 has values of 25, 26 and 27 ℃), and 𝑋𝐻𝑆 and 𝑋𝐶𝑆 are logic 

values whose value will be 1 when the condition given in the equations is met, and 0 when not. 

Once the hourly degrees of heating and cooling were determined with both the adaptive and static strategies, the savings 

in degrees obtained with the adaptive approach for both heating and cooling were determined: 

𝑆𝐻𝐷𝐻𝑅 = 𝑆𝑡𝑎𝑡𝑖𝑐𝐻𝐷𝑅 − 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐻𝐷 (16) 

𝑆𝐶𝐷𝐻𝑅 = 𝑆𝑡𝑎𝑡𝑖𝑐𝐶𝐷𝑅 − 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐶𝐷 (17) 

where 𝑆𝐻𝐷𝐻𝑅  is the annual saving in heating degrees of heating adaptive setpoints with respect to static setpoints of 𝑅 [℃], 

and 𝑆𝐶𝐷𝐻𝑅  is the annual saving in cooling degrees of cooling adaptive setpoints with respect to static setpoints of 𝑅 [℃]. 

 

2.3. Cluster analysis 

One of the stages of the study analysis was to conduct a cluster analysis to identify the similarities among the Andalusian 

cities. For this purpose, the 𝑘-means algorithm was used, which is an iterative algorithm based on the centroid concept of a 

group of individuals [43]. This method classifies a sample 𝑋 of 𝑛 individuals into 𝑘 groups, for which a partition 𝑊 of such 

sample with 𝑊 = (𝑤1, … , 𝑤𝑎 , … , 𝑤𝑏 , … , 𝑤𝑘) is considered. Therefore, (⋃ 𝑤𝑎 = 𝑋, 𝑤𝑎 ∩ 𝑤𝑏 = Ø, a ≠ b𝑘
𝑎=1 ), and thus, the total 

sum of the sums of squares of the Euclidean distances is minimum within each group: 

argmin
𝑊

∑ ∑ ∑(𝑥𝑖𝑟 − 𝜇𝑎𝑟)2

𝑝

𝑟=1𝑥𝑖∈𝑤𝑎

𝑘

𝑎=1

 (18) 

This method is sensitive to initial centroids; thus, various results can be obtained by varying the initial values of 𝑘. In 

this regard, the greater the value of 𝑘 used in the algorithm, the lower is the variation within the groups. If the variables have 

different units, the data should be normalised before conducting the cluster analysis (i.e. variables are rescaled between 1 

and 0 using max-min normalisation).  

In this study, to select the number of groups optimally, three analyses were conducted, based on the Elbow method, 

silhouette index (𝑠(𝑖)), and ratio between sum of squares and total sum of square (BSS/TSS). 

The Elbow method involves selecting the optimal number of 𝑘 by minimising the total within-cluster sum of squares 

(WSS) [44]. This method involves applying the 𝑘-means algorithm for different values of 𝑘 as well as calculating WSS (Eq. 

(19)). The representation of the WSS curve allows the elbow of such curve, which indicates the optimal number of groups, 

to be determined.  

𝑊𝑆𝑆 = ∑ ∑ ∑(𝑥𝑖𝑗 − �̅�𝑘𝑗)
2

𝑝

𝑗=1𝑖∈𝑆𝑘

𝐾

𝑘=1

 (19) 

However, the elbow of the curve cannot always be clearly observed [44], especially in cases where there is a gradual and 

continuous data transition. In these cases, the method does not provide a unique possible solution but a range of possible 

solutions, which should be examined to determine the best value. For this reason, we combined the Elbow method with two 

indicators: 𝑠(𝑖) and BSS/TSS. 



BSS/TSS indicates the cluster compactness, and is a percentage relation that can have values between 0% and 100%. 

The greater the value of the ratio, the greater is the compactness of individuals within a group. The ratio is formulated as 

follows: 

𝐵𝑆𝑆

𝑇𝑆𝑆
=

∑ ∑ (�̅�𝑘𝑗 − �̅�𝐺)
2𝑝

𝑗=1
𝐾
𝑘=1

∑ ∑ (�̅�𝑘𝑗 − �̅�𝐺)
2𝑝

𝑗=1
𝐾
𝑘=1 + ∑ ∑ ∑ (𝑥𝑖𝑗 − �̅�𝑘𝑗)

2𝑝
𝑗=1𝑖∈𝑆𝑘

𝐾
𝑘=1

 (20) 

where �̅�𝐺  is the grand mean of the means of all the groups.  

Finally, 𝑠(𝑖) is among the most frequently used indices in cluster analysis [45], and indicates the similarity of an 

individual with the other individuals of the same group. The quality of a group is, therefore, measured. For this purpose, the 

following equation is used: 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}
 (21) 

where 𝑎(𝑖) is the average distance between an individual (i) and the remaining points of the same group and 𝑏(𝑖) is the 

minimum average distance between the individual and the others. The 𝑠(𝑖) can have values ranging between −1 and 1. The 

meaning of these values determines the suitability of the cluster analysis. (i) A value between 0 and 1 indicates that the 

individual is placed in the correct cluster, thus obtaining optimal values close to 1. (ii) The value is 0 means that the 

individual lies between two groups, indicating that either the individual shows very different characteristics with respect to 

the others, thus not being able to be grouped with the others, or that the cluster analysis has excessively classified individual 

groups. (iii) A value between −1 and 0 indicates that the individual is placed in an incorrect cluster.  

 

2.4. Artificial neural network 

Another aspect to be considered within the methodological framework of this research is the need for estimating the 

variables of potential energy-saving described in Section 2.2. Given the difficulty in obtaining hourly data, the possibility of 

estimating these variables using artificial neural networks was considered. Neural networks are bio-inspired statistical 

models that simulate the neurological brain structure to solve regression and classification problems [46]. Among the 

various typologies of artificial neural networks, MLPs provide the best features owing to their capability of universal 

approximation [47–49]. MLPs are characterised as presenting an architecture of three or more layers, each with a series of 

nodes and neurons. (i) An input layer whose nodes correspond to the different input variables considered in the model, (ii) 

one or several intermediate layers with interconnected nodes, and (iii) an output layer that corresponds to the output 

variable (or dependent variable) and whose value is obtained by summing the values of the input neurons weighted by 

synaptic weights and applying an activation function:  

 

�̂�𝑀𝐿𝑃 = 𝜎 (∑ 𝑤𝑙𝑘
(2)

𝜎 (∑ 𝑤𝑘𝑗
(1)

𝑥𝑗

𝑑

𝑗=0

)

𝑀

𝑘=1

+ 𝑤𝑙0
(2)

𝑦0) (22) 

where �̂�𝑀𝐿𝑃  is the estimation performed by the MLP, 𝑥𝑗  indicates the values of the input layer, 𝑤𝑘0
(1)

 and 𝑥0 are the weight and 

input value of the bias neuron of the input layer, respectively, 𝑤𝑘𝑗
(1)

 indicates the weights of the hidden layer, 𝑤𝑙0
(2)

 and 𝑦0 are 

the weight and input value of the bias neuron of the hidden layer, 𝑤𝑙𝑘
(2)

 indicates the weights of the output layer, 𝑦𝑘  is the 

output value of a neuron of the hidden layer, and 𝜎 is the activation function. In this study, models with a hidden layer were 

considered, and a sigmoidal activation function was considered in both the hidden and output layers (Eq. (23)), similarly to 

the case of other studies in which these models were applied [50], as they usually perform better than those in more complex 

structures [51]. The number of nodes of the hidden layer is determined by Eq. (24).  

𝜎 =
1

1 + 𝑒−𝑥
 (23) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 =
𝑁𝐼 + 𝑁𝑂

2
 (24) 

where 𝑁𝐼 is the number of nodes of the input layer (i.e. the input variables of the dataset) and 𝑁𝑂 is that of the output layer 

(i.e. the output variables of the dataset). 

As indicated above, the output value is obtained from the weighted propagation of the input signs. One of the most 

important aspects of MLPs is, therefore, the adjustment of synaptic weights for reducing the error between the estimated 

and actual values. For this purpose, the models were trained through backpropagation [52–54] by using the Broyden–

Fletcher–Goldfarb–Shanno [55] algorithm (which belongs to quasi-Newton methods). Three statistical parameters were 

used to assess the model performance: (i) determination coefficient (𝑅2) ( Eq. (25)), root mean square error (𝑅𝑀𝑆𝐸) (Eq. 

(26)), and mean absolute error (𝑀𝐴𝐸) (Eq. (27)). The use of these parameters allowed the model performance to be 

appropriately defined.  

 

𝑅2 = 100 (1 −
∑ (𝑡𝑖 − 𝑚𝑖)

2𝑛
𝑖=1

∑ (𝑡𝑖 − 𝑡�̅�)
2𝑛

𝑖=1

) (25) 

  



𝑅𝑀𝑆𝐸 = (
∑ (𝑡𝑖 − 𝑚𝑖)

2𝑛
𝑖=1

𝑛
)

1/2

 (26) 

  

𝑀𝐴𝐸 =
∑ |𝑡𝑖 − 𝑚𝑖|

𝑛
𝑖=1

𝑛
 (27) 

where 𝑡𝑖  is the actual value, 𝑚𝑖  is the model’s prediction, and 𝑛 is the number of instances in the dataset. 

 

2.5. Climate data 

A cluster analysis of the existing climates in the region of Andalusia was performed. Given the difficulties in achieving 

the recent temperature records, this analysis simplified the procedure. For this purpose, climate data from the 786 

Andalusian municipalities were obtained with METEONORM, which is a climate file database comprising 8,325 weather 

stations spread throughout the planet and has been widely used in various studies [56–59]. Based on the data of seasons, 

hourly external temperature values were obtained by using a stochastic model [60]. The temperature period generated was 

2000–2009, and the radiation period was 1991–2010. After generating the hourly time series of the 786 Andalusian 

municipalities, the data were treated for generating the dataset used in the cluster analysis. From this analysis (which is 

detailed in the Results section), four climate clusters were detected in the Andalusia region, each of which selected a 

representative city from which recent temperature data were available. The chosen cities were as follows: Cadiz for cluster 

1, Jaen for cluster 2, Grazalema for cluster 3, and Seville for cluster 4. The temperature data were obtained from the 

automatic weather stations of the State Meteorological Agency in Spain. Note that the types of temperature data and 

available dates varied in each municipality. Likewise, the time series were validated by the State Meteorological Agency in 

Spain. Table 1 indicates the types of temperature variables available and their time period. For most cities, hourly 

temperature data between 2000 and 2019 were available (except Grazalema, whose data were available from 2001), 

whereas data from the 20th century were available at a daily scale (in terms of average, maximum, and minimum values) 

and with a range of dates that varied according to the city analysed. As for Grazalema, data from the 20th century were not 

available, indicating a lack of monitoring data in the cities at a huge altitude in the Andalusian territory. Table 2 indicates 

the technical specifications of the probes of each weather station. 

 

Table 1. Climate files used in the study, indicating the type of temperature variable available and the period of data.  

Cluster City Latitude Longitude Altitude Hourly temperature 
values 

Daily temperature values (average, 
minimum, and maximum) 

   Start 
year 

End 
year 

Start year End year 

1 Cadiz 36.49972 -6.25778 2 2000 2019 1956 1999 
2 Jaen 37.77750  -3.80889 580 2000 2019 1989 1999 
3 Grazalema 36.76799 -5.36589 913 2001 2019 - - 
4 Seville 37.41667 -5.87917 34 2000 2019 1951 1999 

 

Table 2. Main technical specifications of the temperature probe of each weather station.  

Cluster City Manufacturer Model Measuring range Accuracy 
1 Cadiz Thies 1.1005.54.700 -30 – 70 ℃ ±0.2 ℃ 
2 Jaen Thies 1.1005.54.700 -30 – 70 ℃ ±0.2 ℃ 
3 Grazalema Thies 1.1005.51.015 -30 – 50 ℃ ±0.2 ℃ 
4 Seville VAISALA HMP45D -40 – 60 ℃ ±0.2 ℃ 

 

3. Results and discussion 

3.1. Climate classification 

First, a cluster analysis of the existing climates in Andalusia was conducted. Owing to the difficulties in obtaining the 

recent temperature records, this analysis simplified the procedure. Following the analysis procedure described in Section 

2.2., a dataset was generated, in which each instance was one of the municipalities and the variables were those of potential 

energy-saving with adaptive strategies (i.e. percentage of application, percentage of ventilation (by category), and saving of 

heating and cooling degrees (by category and a different static setpoint temperature)). Thus, it was a multi-dimensional 

cluster analysis. The following step involved determining the optimal number of k for the classification. For this purpose, 

the elbow method and the analysis of both 𝑠(𝑖) and BSS/TSS were used. For a simplified discussion of the results, Figure 1 

summarises the results obtained in the cluster analysis. The results showed that k = 4 yielded the best cluster. This aspect 

can be observed for the average values of the silhouette index, as the highest value was obtained at 4, whereas the remaining 



clusters obtained lower values. In addition, BSS/TSS obtained a value of 82.7%, constituting an increase of 12.9% with 

respect to k = 3, thus showing the use of k = 4.  

 

 

Figure 1. Results of the cluster analysis.  

 

The Andalusian cities can, therefore, be divided into four clusters according to the potential of the adaptive strategies, 

reflecting the geographic characteristics:  

 Cluster 1 corresponds to municipalities whose cities are located on the coast. In this regard, the municipalities 

included in Figure 1 are close to the coast but belong to another cluster as the city is far from the coast.  

 Cluster 2 corresponds to municipalities located in mountain systems, such as Sierra Morena and the Subbaetic 

System.  

 Cluster 3 corresponds to cities whose vast majority are located in the highest-altitude areas of the Baetic 

Mountain Ranges (e.g. Sierra Nevada), while the remaining are located at a great altitude above the sea level.  

 Cluster 4 corresponds to the depression of the Guadalquivir River.  

Consequently, an aspect was found in the overall study [34], as climate classification of the potential application of 

adaptive strategies could be conducted according to the existing geographic characteristics of each region. Cluster 2 

corresponds to a heterogeneous zone that could not be related to any geographic element.  

 



Furthermore, the clusters do not coincide with the climatic zones established in the Spanish Building Technical Code 

[42], which classifies the climate according to the winter and summer climate severity. For winter, the code assigns letters 

ranging from A (slightly cold weather) to E (very cold weather), while for summer, it assigns numbers ranging from 1 (not 

very hot weather) to 4 (very hot weather). As shown in Figure 2, the clusters presented different climatic zones. However, 

certain trends were detected in the majority percentages of these zones. For example, cluster 3 grouped the most severe 

climatic zones in winter (D2, D3, and E1), while cluster 1 grouped those with less severity (A3 and A4). Therefore, although 

the climatic zones of the Spanish Building Technical Code do not fit the clusters of the adaptive model, certain zones tend to 

fit a given cluster. In any case, the climatic zones of the Spanish Building Technical Code would not serve to be able to perform 

climatic classifications of the application of adaptive models. 

 

 
Figure 2. (a) Climatic zones established by the Spanish Technical Building Code and (b) heatmap with the percentages of 

climatic zones by cluster. 

 

Note that the cluster analysis was conducted with variables obtained from the application of adaptive strategies 

according to the climate of each city. Each cluster, therefore, included cities with various characteristics of populations and 

incomes of family units. These parameters are crucial to be controlled as the main potential of these strategies lies in the 

acclimatisation of indoor spaces of buildings with low energy consumption. It is, therefore, vital to be able to apply adaptive 

strategies in cities with low income per person or family unit, with the aim of reducing the cases of energy poverty. For these 

reasons, the data distributions of people and incomes were assessed in each cluster (Figure 3 and Table 3). The data were 

obtained from the Spanish Institute of Statistics [61,62]. The analysis results showed that cluster 1 compiled the maximum 

population, followed by cluster 4. The other two clusters, in most cases, corresponded to cities with a low population density. 

As for the incomes, the following two aspects were observed: (i) regarding per person income, cluster 1 was characterised 

by clustering the lower incomes by person, whereas the other clusters obtained different values, and (ii) the incomes per 

household showed that clusters 2 and 3 obtained lower income values than the other two clusters. This aspect shows the 

complexity of the assessment of users’ economic incomes, as the size of a family unit can influence the economic incomes of 



dwelling users. Nonetheless, this analysis reflects how, for the two income typologies, all clusters presented a potential of 

using adaptive strategies due to the low incomes of users and households. 

 

 

Figure 3. Box plots with the data distributions of people and of average income per person and per household in each cluster. 

 

Table 3. Quartile of the data distributions of population and average incomes in clusters.  

Cluster Population [inh.] Average incomes per person [€/year] Average incomes per household [€/year] 
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 

1 2,878  8,896 23,482  7,063.00 7,608.50 8,604.00 18,343.00 20,175.00 22,645.00 
2 927  2,472 4,900  7,310.50 7,865.00 8,355.50 17,322.50 18,703.50 20,429.50 
3 470 1,043 2,026  7,526.00 8,187.50 8,873.00 17,327.00 18,551.50 20,100.00 
4 3,449 7,011 12,773  7,354.00 7,795.00 8,171.00 19,586.00 20,975.00 22,498.00 

 

 

3.2. Application of adaptive strategies in the XXI century 

The first step towards analysing the application of adaptive strategies with actual data from the four clusters is the use 

of hourly data available. The analysis first assessed the potential application of adaptive thermal comfort models. As 

indicated in Subsection 2.2., the application requirement was that the external temperature should be between the lower 

(10 ℃) and upper limits (30 ℃). Figure 4 summarises the application potential data. As could be verified, the application 

possibilities varied according to the cluster. Cluster 1 presented almost 100% application of the days between years 2000 

and 2019, while the other clusters presented lower percentages. In this regard, cluster 4 obtained a greater percentage of 

application (between 81.4% and 99.2%), cluster 2 obtained slightly lower percentages (between 68.5% and 85.5%), and 

cluster 3 presented the lowest percentage (between 49.9% and 69%). These variations in the percentages of application 

resulted from temperatures below 10 ℃ (cold days) and above 30 ℃ (hot days). In general, these variations varied according 

to the cluster: while the percentage of no application in cluster 3 resulted from the average temperature being below 10 ℃, 

there were both cold and hot days in clusters 2 and 4, with more cold days in Jaen than in Seville.  

 



 
Figure 4. Possibilities of application of the adaptive thermal comfort models from EN 16798-1:2019 in the period between 

2000 and 2019. 

 

After analysing the possibilities of applying the adaptive thermal comfort models, those of natural ventilation were 

assessed (Figure 5). As indicated in Section 2.2., the analysis was performed considering the percentage of yearly hours for 

which the outside temperature was within the limits of the comfort categories of the EN 16798-1:2019 model. This ensured 

that natural ventilation provided acceptable thermal comfort and reduced the use of HVAC systems. The possibilities of 

using the ventilation strategies never exceeded 60%. In general, the trends of applying natural ventilation strategies were 

similar over the years and had differences among clusters. Cluster 1 obtained the greatest percentages of application (with 

average values of 17%, 26%, and 37% for categories I, II, and III, respectively), whereas cluster 3 obtained the lowest 

percentage. As for clusters 2 and 4, the application percentages were similar. Likewise, the effect of increase in users’ thermal 

expectations and the possibilities of natural ventilation varied according to the cluster. In cluster 1, the increase in the 

category implied an average increase of between 8% and 11.6% in the possibilities of natural ventilation, whereas in the 

other clusters, there were average increases of between 3% and 6.7%. 



  
Figure 5. Percentage of hours of the year with possibility to apply natural ventilation strategies between 2000 and 2019. 

 

These results showed the possibility of applying natural ventilation strategies at more than 10% of the hours of the year, 

varying according to users’ thermal expectations. Thus, there is a potential application of these strategies to acclimatise 

indoor spaces. Nonetheless, the use of HVAC systems is required to guarantee appropriate internal temperature conditions. 

Given this circumstance, the application of adaptive setpoint temperatures would ensure an appropriate use of HVAC 

systems. For this reason, the heating and cooling temperature degrees required for acclimatising the indoor spaces were 

first analysed, using the static setpoint temperatures defined in Subsection 2.2. Figure 6 represents the time series of heating 

and cooling degrees required. As seen, each region presented certain needs of heating and cooling degrees in accordance 

with those reflected in Figure 4. Thus, the zones with a 𝑡𝑟𝑚 value below 10 ℃ were characterised as presenting heating 

degrees, whereas if the temperature of 30 ℃ was not overcome, the values of the cooling degrees were low. Accordingly, 

clusters 1 and 3 were characterised as presenting lower values of cooling degrees, whereas clusters 2 and 4 obtained higher 

values. In addition, all clusters obtained high values of heating degrees, although cluster 3 obtained greater values, while 

cluster 1 obtained lower values. In addition, the possible variability presented by the energy demand of a building according 

to the climate conditions of each year was shown, as some years, such as 2017, were characterised as presenting greater 

demands for cooling degrees. 



 
Figure 6. Hourly heating and cooling degrees required to acclimatize the buildings of the analysis zone between the year 

2000 and 2019. 

 

These heating and cooling demands, required to acclimatise the indoor spaces according to the static setpoint 

temperature, clearly influenced the degree-saving obtained by the adaptive setpoint temperatures (Figures 7 and 8). 

Moreover, as in the case of ventilation, users’ thermal expectations could influence the savings achieved. In this regard, the 

clusters with lower values of heating degrees and the most demanding categories of thermal expectation (i.e. categories I 

and II) obtained negative values. In these cases, only category III obtained savings of heating degrees. Only the savings 

obtained with respect to the use of a static setpoint temperature with a high thermal expectation of the user (i.e. 22 ℃) were 

positive. This aspect resulted from the behaviour of the adaptive setpoint temperatures obtained through the linear 

correlations of 𝑡𝑟𝑚. A high 𝑡𝑟𝑚 value implies that, in the hours of heating demand, the adaptive setpoint temperature obtained 

for categories I and II is greater than the static setpoint temperature. Thus, a successful saving can only be obtained in these 

regions if the adaptive setpoint temperatures from category III are used; for the other two categories, it would be interesting 

to consider a static approach as the effectiveness of these setpoint temperatures can be reduced if the user does not have 

patterns of high thermal expectation. This same tendency was observed in the other two clusters, although the greatest 



heating demand generated the greatest effectiveness of using the adaptive setpoint temperatures of categories I and II. In 

this regard, only the saving of category I with respect to a static setpoint temperature of 20 ℃ was negative. Therefore, the 

use of these adaptive setpoint temperatures for heating generated substantial energy-saving in cold regions. In this regard, 

cluster 3 obtained savings of heating degrees between 22,989.62 ℃ and 29,670.55 ℃ with category III. 

 
Figure 7. Saving of hourly heating degrees by using adaptive setpoint temperatures between 2000 and 2019. 

 

Regarding the savings from cooling degrees, the values mainly depended on the demand of cooling degree, as indicated 

in Figure 6. In this regard, the saving values of cooling degrees were greater in the zones with greater demand (clusters 2 

and 4). However, even in clusters with lower saving and compared to a highly efficient static setpoint temperature (27 ℃), 

the obtained results were always greater than 0, thus reflecting the possibility of applying adaptive thermal comfort models 

to achieve considerable saving of the building cooling demand. In addition, there is a huge potential of applying adaptive 

strategies, as the adequacy of nZEB in the countries from the south of Spain is challenging [63]. 



 
Figure 8. Saving of hourly cooling degrees by using adaptive setpoint temperatures between 2000 and 2019. 

 

3.3. Application of adaptive strategies from the 20th century to nowadays 

As indicated in Subsection 3.2., the potential of energy-saving with adaptive strategies presented acceptable results in 

the four clusters analysed. This analysis was conducted with the hourly temperature data between 2000 and 2019. However, 

Table 1 indicates that there were daily time series of the 20th century in clusters 1, 2, and 4. Therefore, the determination 

of variables related to adaptive thermal comfort strategies would allow the tendencies of evolution of the strategies to be 

found with the recorded data. Only the results related to the percentage of days to apply adaptive thermal comfort models 

could be determined with daily temperature data, and thus, the results were estimated at an hourly scale (i.e. natural 

ventilation and saving of heating and cooling degrees) by using MLPs. For this purpose, individual MLPs were designed for 

each output variable, and the maximum, minimum, and average temperatures of each month were used as the input 

variables (Table 4). A total of 27 MLPs were designed. The dataset used in the analysis was designed with the data obtained 

for the cluster analysis, as well as the hourly data of the cities of Cadiz, Jaen, Grazalema, and Seville. MLPs were trained with 

75% of a random data sample, while the remaining 25% was used for the testing. 

 

  



Table 4. Input and output variables configured in each MLP used in the study. 
Input variables Output variable 
�̅�𝐽𝑎𝑛𝑢𝑎𝑟𝑦, �̅�𝐽𝑎𝑛𝑢𝑎𝑟𝑦−𝑚𝑖𝑛, �̅�𝐽𝑎𝑛𝑢𝑎𝑟𝑦−𝑚𝑎𝑥, 

�̅�𝐹𝑒𝑏𝑟𝑢𝑎𝑟𝑦 , �̅�𝐹𝑒𝑏𝑟𝑢𝑎𝑟𝑦−𝑚𝑖𝑛 , �̅�𝐹𝑒𝑏𝑟𝑢𝑎𝑟𝑦−𝑚𝑎𝑥, 

�̅�𝑀𝑎𝑟𝑐ℎ , �̅�𝑀𝑎𝑟𝑐ℎ−𝑚𝑖𝑛 , �̅�𝑀𝑎𝑟𝑐ℎ−𝑚𝑎𝑥, 

�̅�𝐴𝑝𝑟𝑖𝑙 , �̅�𝐴𝑝𝑟𝑖𝑙−𝑚𝑖𝑛 , �̅�𝐴𝑝𝑟𝑖𝑙−𝑚𝑎𝑥, 

�̅�𝑀𝑎𝑦, �̅�𝑀𝑎𝑦−𝑚𝑖𝑛 , �̅�𝑀𝑎𝑦−𝑚𝑎𝑥, 

�̅�𝐽𝑢𝑛𝑒 , �̅�𝐽𝑢𝑛𝑒−𝑚𝑖𝑛 , �̅�𝐽𝑢𝑛𝑒−𝑚𝑎𝑥, 

�̅�𝐽𝑢𝑙𝑦, �̅�𝐽𝑢𝑙𝑦−𝑚𝑖𝑛 , �̅�𝐽𝑢𝑙𝑦−𝑚𝑎𝑥, 

�̅�𝐴𝑢𝑔𝑢𝑠𝑡, �̅�𝐴𝑢𝑔𝑢𝑠𝑡−𝑚𝑖𝑛, �̅�𝐴𝑢𝑔𝑢𝑠𝑡−𝑚𝑎𝑥, 

�̅�𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟, �̅�𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟−𝑚𝑖𝑛 , �̅�𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟−𝑚𝑎𝑥, 

�̅�𝑂𝑐𝑡𝑜𝑏𝑒𝑟, �̅�𝑂𝑐𝑡𝑜𝑏𝑒𝑟−𝑚𝑖𝑛, �̅�𝑂𝑐𝑡𝑜𝑏𝑒𝑟−𝑚𝑎𝑥, 

�̅�𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟, �̅�𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟−𝑚𝑖𝑛 , �̅�𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟−𝑚𝑎𝑥, 

�̅�𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟, �̅�𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟−𝑚𝑖𝑛 , �̅�𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟−𝑚𝑎𝑥 

MLP-01 Hourly heating 
degrees (20 ℃) 

MLP-02 Hourly heating degrees 
(21 ℃) 

MLP-03 Hourly heating degrees (22 
℃) 

MLP-04 Hourly cooling 
degrees (25 ℃) 

MLP-05 Hourly cooling degrees 
(26 ℃) 

MLP-06 Hourly cooling degrees (27 
℃) 

MLP-07 Percentage of hours 
of natural ventilation 
(category I) 

MLP-08 Percentage of hours of 
natural ventilation 
(category II) 

MLP-09 Percentage of hours of 
natural ventilation (category 
III) 

MLP-10 Hourly heating 
degrees  
(category I - 20 ℃) 

MLP-11 Hourly heating degrees  
(category I - 21 ℃) 

MLP-12 Hourly heating degrees  
(category I - 22 ℃) 

MLP-13 Hourly cooling 
degrees  
(category I - 25 ℃) 

MLP-14 Hourly cooling degrees  
(category I - 26 ℃) 

MLP-15 Hourly cooling degrees  
(category I - 27 ℃) 

MLP-16 Hourly heating 
degrees  
(category II - 20 ℃) 

MLP-17 Hourly heating degrees  
(category II - 21 ℃) 

MLP-18 Hourly heating degrees  
(category II - 22 ℃) 

MLP-19 Hourly cooling 
degrees  
(category II - 25 ℃) 

MLP-20 Hourly cooling degrees  
(category II - 26 ℃) 

MLP-21 Hourly cooling degrees  
(category II - 27 ℃) 

MLP-22 Hourly heating 
degrees  
(category III - 20 ℃) 

MLP-23 Hourly heating degrees  
(category III - 21 ℃) 

MLP-24 Hourly heating degrees  
(category III - 22 ℃) 

MLP-25 Hourly cooling 
degrees  
(category III - 25 ℃) 

MLP-26 Hourly cooling degrees  
(category III - 26 ℃) 

MLP-27 Hourly cooling degrees  
(category III - 27 ℃) 

 

Table 5 indicates the performance of the MLPs in the training and testing phases, and Figure 9 shows the dispersion 

diagrams among the actual and simulated values. The performance achieved by the MLPs was satisfactory. In this regard, in 

the testing phase, the values of the determination coefficient were above 90% in most MLPs. Only MLP-10 (hourly heating 

degrees (category I - 20 ℃)) and MLP-12 (hourly heating degrees (category I - 22 ℃)) obtained lower values for the 

determination coefficient. Regarding the error parameters, the values obtained were satisfactory, because according to the 

variables analysed, the values obtained showed an appropriate adjustment degree. The performances achieved by the MLPs, 

therefore, indicated the possibility of using these models for estimating the energy-saving variables with adaptive strategies 

of daily time series. Thus, the potential application of adaptive thermal comfort models was first determined based on daily 

data (Figure 10), and then, the MLPs were used to estimate the possibilities of natural ventilation (Figure 11) and the saving 

of heating and cooling degrees (Figure 12). 
 

Table 5. Results obtained in the statistical parameters during the testing phase. 
Model Output variable Testing 

𝑅2 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 

MLP-01 Hourly heating degrees (20 ℃) 99.77 290.93 913.16 
MLP-02 Hourly heating degrees (21 ℃) 99.70 397.48 1120.66 
MLP-03 Hourly heating degrees (22 ℃) 99.72 338.44 1034.20 
MLP-04 Hourly cooling degrees (25 ℃) 99.59 144.40 232.59 
MLP-05 Hourly cooling degrees (26 ℃) 99.63 158.81 254.31 
MLP-06 Hourly cooling degrees (27 ℃) 99.68 116.08 177.85 
MLP-07 Percentage of hours of natural ventilation (category I) 95.20 0.46 0.78 
MLP-08 Percentage of hours of natural ventilation (category II) 92.35 0.73 1.42 
MLP-09 Percentage of hours of natural ventilation (category III) 93.51 0.69 1.73 
MLP-10 Hourly heating degrees (category I - 20 ℃) 86.86 156.59 938.93 
MLP-11 Hourly heating degrees (category I - 21 ℃) 94.26 130.31 959.20 
MLP-12 Hourly heating degrees (category I - 22 ℃) 89.99 137.11 1047.54 
MLP-13 Hourly cooling degrees (category I - 25 ℃) 99.64 77.31 118.90 
MLP-14 Hourly cooling degrees (category I - 26 ℃) 99.76 86.53 129.38 
MLP-15 Hourly cooling degrees (category I - 27 ℃) 99.68 50.14 81.15 
MLP-16 Hourly heating degrees (category II - 20 ℃) 91.20 125.77 906.49 
MLP-17 Hourly heating degrees (category II - 21 ℃) 96.73 155.29 827.82 
MLP-18 Hourly heating degrees (category II - 22 ℃) 93.92 125.52 945.51 
MLP-19 Hourly cooling degrees (category II - 25 ℃) 99.66 87.86 135.87 
MLP-20 Hourly cooling degrees (category II - 26 ℃) 99.76 100.96 148.48 
MLP-21 Hourly cooling degrees (category II - 27 ℃) 99.73 62.87 95.35 
MLP-22 Hourly heating degrees (category III - 20 ℃) 94.41 132.25 877.20 
MLP-23 Hourly heating degrees (category III - 21 ℃) 97.45 219.75 842.25 
MLP-24 Hourly heating degrees (category III - 22 ℃) 96.42 165.53 856.21 
MLP-25 Hourly cooling degrees (category III - 25 ℃) 99.69 97.68 149.05 
MLP-26 Hourly cooling degrees (category III - 26 ℃) 99.71  117.84 177.25 
MLP-27 Hourly cooling degrees (category III - 27 ℃) 99.70 75.25 117.47 

 

 

 



 
Figure 9. Point clouds between the actual and estimated values per each MLP designed in the research. 

 

By analysing the adaptive variables of energy-saving, the analysis of the possible application of adaptive thermal comfort 

models was started again. An analysis of the overall series verified that the application percentages obtained by the records 

throughout the 20th century presented similar values to those obtained throughout the 21st century. However, there were 

different tendencies of evolution at these values. Using the results obtained by the overall series in each cluster (in cluster 

3, there were only hourly results between 2001 and 2019), linear correlations were determined in the time series, which 

reflected the tendencies of evolution (Table 6). This analysis showed that the potential application of adaptive thermal 

comfort models presented a slightly downward tendency, with cluster 2 being the only exception, as it exhibited a greater 

downward tendency. In cluster 1, there was an almost uniform tendency as the percentage of application was mainly 100%. 

Regarding the reasons for the decrease in the application of adaptive models, three tendencies were observed in each 

cluster: (i) the decrease in cluster 2 was due to the percentage of days in which the lower and upper limits were overcome; 

(ii) in cluster 3, it was due to an increase in the percentage of days with cold temperatures (with 𝑡𝑟𝑚 lower than 10 ℃); and 



(iii) in cluster 4, it was due to an increase in the number of hot days (with 𝑡𝑟𝑚 greater than 30 ℃). Nonetheless, these 

tendencies, although there was a downward tendency in most clusters, did not constitute a negative factor with respect to 

the potential application of the adaptive strategies, as in general, the values obtained by the adaptive models were greater 

than 50% of the days of the year, and these downward tendencies could be a sign of the climate variation predicted 

throughout the 21st century.  

There was, therefore, a downward tendency in the days to apply the adaptive thermal comfort models. However, the 

effectiveness of applying adaptive energy-saving strategies presented different tendencies. First, the possibilities of natural 

ventilation showed a clear ascending tendency in the four clusters and three categories of EN 16798-1:2019. As for the 

saving of heating and cooling degrees, different tendencies were observed according to the type of energy demand to be 

met: the saving of heating degrees showed a downward tendency in all clusters due to the decreasing tendency presented 

by heating requirements, whereas the saving of cooling degrees showed an ascending tendency, which results from the 

ascending tendency of the cooling requirements of buildings. These results agreed with the increasing tendency of external 

temperatures, which have resulted from the evolutions of climate change since the end of the 20th century.  

 

Table 6. Linear correlations between the different variables related to the adaptive strategies analysed in this study (results 

obtained with the sample of hourly temperature data between 2000 and 2019). 
Variable  Group 1 Group 2 Group 3 Group 4 
Percentage of days of application 𝑦 = 61.3 + 0.02 ∙ 𝑥 𝑦 = 413.44 − 0.17 ∙ 𝑥 𝑦 = 152.29 − 0.04 ∙ 𝑥 𝑦 = 100.39 − 0.01 ∙ 𝑥 
Percentage of days in which the 
upper limit is overcome 

𝑦 = 0.37 − 0.01 ∙ 𝑥 𝑦 = −155.26 + 0.08 ∙ 𝑥 𝑦 = 2381.10 − 1.23 ∙ 𝑥 𝑦 = −139.79 + 0.071 ∙ 𝑥 

Percentage of days in which the 
lower limit is overcome 

𝑦 = 38.33 − 0.02 ∙ 𝑥 𝑦 = −158.18 + 0.09 ∙ 𝑥 𝑦 = −57.24 + 0.05 ∙ 𝑥 𝑦 = 139.4 − 0.07 ∙ 𝑥 

Percentage of hours of natural 
ventilation (category I) 

𝑦 = −17.17 + 0.02 ∙ 𝑥 𝑦 = −81.71 + 0.05 ∙ 𝑥 𝑦 = −69.93 + 0.04 ∙ 𝑥 𝑦 = 0.56 + 0.01 ∙ 𝑥 

Percentage of hours of natural 
ventilation (category II) 

𝑦 = −87.73 + 0.06 ∙ 𝑥 𝑦 = −25.72 + 0.02 ∙ 𝑥 𝑦 = −103.97 + 0.06 ∙ 𝑥 𝑦 = −15.54 + 0.02 ∙ 𝑥 

Percentage of hours of natural 
ventilation (category III) 

𝑦 = −207.99 + 0.12 ∙ 𝑥 𝑦 = −65.95 + 0.05 ∙ 𝑥 𝑦 = −128.47 + 0.07 ∙ 𝑥 𝑦 = −76.49 + 0.05 ∙ 𝑥 

Hourly heating degrees  
(20 ℃) 

𝑦 = 220701.95 − 97.93
∙ 𝑥 

𝑦 = 164697.01 − 60.09 ∙ 𝑥 𝑦 = 200148.8 − 67.9 ∙ 𝑥 𝑦 = 344827.7 − 155.7 ∙ 𝑥 

Hourly heating degrees  
(21 ℃) 

𝑦 = 247516.22 − 108.64
∙ 𝑥 

𝑦 = 207576.75 − 78.60 ∙ 𝑥 𝑦 = 228690.76 − 78.62 ∙ 𝑥 𝑦 = 370128.5 − 165.7 ∙ 𝑥 

Hourly heating degrees  
(22 ℃) 

𝑦 = 272899.58 − 118.32
∙ 𝑥 

𝑦 = 246660.45 − 95.08 ∙ 𝑥 𝑦 = 253151 − 87.2 ∙ 𝑥 𝑦 = 392065.58 − 173.88
∙ 𝑥 

Hourly cooling degrees 
(25 ℃) 

𝑦 = 2609.02 − 0.27 ∙ 𝑥 𝑦 = −134786.12 + 71.06 ∙ 𝑥 𝑦 = −48949.04 + 25.62 ∙ 𝑥 𝑦 = −63680.63 + 37.12 ∙ 𝑥 

Hourly cooling degrees  
(26 ℃) 

𝑦 = 5687.14 − 2.2 ∙ 𝑥 𝑦 = −114487.87 + 60.12 ∙ 𝑥 𝑦 = −37013.15 + 19.32 ∙ 𝑥 𝑦 = −53354.18 + 31.02 ∙ 𝑥 

Hourly cooling degrees 
(27 ℃) 

𝑦 = 7482.49 − 3.33 ∙ 𝑥 𝑦 = −103393.3 + 53.9 ∙ 𝑥 𝑦 = −26011.84 + 13.57 ∙ 𝑥 𝑦 = −51127.66 + 29.07 ∙ 𝑥 

Hourly heating degrees 
(category I - 20 ℃) 

𝑦 = 15019.06 − 11.33 ∙ 𝑥 𝑦 = −49776.04 + 23.23 ∙ 𝑥 𝑦 = 43742.44 − 22.5 ∙ 𝑥 𝑦 = 11580.19 − 8.97 ∙ 𝑥 

Hourly heating degrees 
(category I - 21 ℃) 

𝑦 = 38680.56 − 20.48 ∙ 𝑥 𝑦 = −2580.11 + 2.57 ∙ 𝑥 𝑦 = 72284.44 − 33.24 ∙ 𝑥 𝑦 = 39845.59 − 20.46 ∙ 𝑥 

Hourly heating degrees 
(category I - 22 ℃) 

𝑦 = 61321.94 − 28.8 ∙ 𝑥 𝑦 = 48227.24 − 19.74 ∙ 𝑥 𝑦 = 96744.73 − 41.82 ∙ 𝑥 𝑦 = 66505.99 − 30.95 ∙ 𝑥 

Hourly cooling degrees 
(category I - 25 ℃) 

𝑦 = 9889.58 − 3.98 ∙ 𝑥 𝑦 = −102676.58 + 54.02 ∙ 𝑥 𝑦 = −35264.9 + 18.49 ∙ 𝑥 𝑦 = −46414.45 + 26.58 ∙ 𝑥 

Hourly cooling degrees 
(category I - 26 ℃) 

𝑦 = 3615.77 − 1.28 ∙ 𝑥 𝑦 = −78411.23 + 41.11 ∙ 𝑥 𝑦 = −23329.01 + 12.2 ∙ 𝑥 𝑦 = −39231.63 + 22.04 ∙ 𝑥 

Hourly cooling degrees 
(category I - 27 ℃) 

𝑦 = 2081.28 − 0.77 ∙ 𝑥 𝑦 = −56186.57 + 29.35 ∙ 𝑥 𝑦 = −12327.69 + 6.45 ∙ 𝑥 𝑦 = −31280.64 + 17.27 ∙ 𝑥 

Hourly heating degrees  
(category II - 20 ℃) 

𝑦 = 26632.32 − 13.77 ∙ 𝑥 𝑦 = −14198.98 + 8.69 ∙ 𝑥 𝑦 = 64843.76 − 29.37 ∙ 𝑥 𝑦 = 32040.6 − 16.15 ∙ 𝑥 

Hourly heating degrees  
(category II - 21 ℃) 

𝑦 = 51853.78 − 23.69 ∙ 𝑥 𝑦 = 38674.43 − 14.79 ∙ 𝑥 𝑦 = 93385.76 − 40.11 ∙ 𝑥 𝑦 = 59019.32 − 27 ∙ 𝑥 

Hourly heating degrees  
(category II - 22 ℃) 

𝑦 = 73783.43 − 31.66 ∙ 𝑥 𝑦 = 86218.74 − 35.47 ∙ 𝑥 𝑦 = 117846.05 − 48.69 ∙ 𝑥 𝑦 = 84302.33 − 36.82 ∙ 𝑥 

Hourly cooling degrees 
(category II - 25 ℃)  

𝑦 = 9760.82 − 3.86 ∙ 𝑥 𝑦 = −115351.27 + 60.67 ∙ 𝑥 𝑦 = −40388.4 + 21.18 ∙ 𝑥 𝑦 = −49553.9 + 28.64 ∙ 𝑥 

Hourly cooling degrees  
(category II - 26 ℃) 

𝑦 = 4602.37 − 1.7 ∙ 𝑥 𝑦 = −90641.95 + 47.54 ∙ 𝑥 𝑦 = −28452.51 + 14.88 ∙ 𝑥 𝑦 = −41764.24 + 23.8 ∙ 𝑥 

Hourly cooling degrees 
(category II - 27 ℃) 

𝑦 = 2849.39 − 1.09 ∙ 𝑥 𝑦 = −67203.78 + 35.17 ∙ 𝑥 𝑦 = −17451.194 + 9.133
∙ 𝑥 

𝑦 = −33579.96 + 18.92 ∙ 𝑥 

Hourly heating degrees  
(category III - 20 ℃) 

𝑦 = 45727.77 − 20.33 ∙ 𝑥 𝑦 = 28771.91 − 9.72 ∙ 𝑥 𝑦 = 85591.87 − 36.21 ∙ 𝑥 𝑦 = 54406.68 − 24.51 ∙ 𝑥 

Hourly heating degrees  
(category III - 21 ℃) 

𝑦 = 70306.13 − 29.93 ∙ 𝑥 𝑦 = 78245.15 − 31.51 ∙ 𝑥 𝑦 = 114133.87 − 46.95 ∙ 𝑥 𝑦 = 80755.97 − 35.05 ∙ 𝑥 

Hourly heating degrees  
(category III - 22 ℃) 

𝑦 = 91570.62 − 37.57 ∙ 𝑥 𝑦 = 122644.65 − 50.62 ∙ 𝑥 𝑦 = 138594.16 − 55.52 ∙ 𝑥 𝑦 = 104739.87 − 44.23 ∙ 𝑥 

Hourly cooling degrees 
(category III - 25 ℃) 

𝑦 = 7483.77 − 2.7 ∙ 𝑥 𝑦 = −127623.62 + 67.02 ∙ 𝑥 𝑦 = −42479.12 + 22.3 ∙ 𝑥 𝑦 = −50550.96 + 29.54 ∙ 𝑥 

Hourly cooling degrees  
(category III - 26 ℃) 

𝑦 = 4489.23 − 1.61 ∙ 𝑥 𝑦 = −98896.03 + 51.90 ∙ 𝑥 𝑦 = −30543.22 + 16.01 ∙ 𝑥 𝑦 = −45235.01 + 25.94 ∙ 𝑥 

Hourly cooling degrees 
(category III - 27 ℃) 

𝑦 = 3032.15 − 1.15 ∙ 𝑥 𝑦 = −72987.72 + 38.30 ∙ 𝑥 𝑦 = −19541.91 + 10.26 ∙ 𝑥 𝑦 = −37045.97 + 21.06 ∙ 𝑥 



 
Figure 10. Time series increased by the possibilities of application of the adaptive thermal comfort model of EN 16798-

1:2019 in the period between the oldest year available for clusters and 2019. The results before the year 2000 were obtained 

through the existing daily mean temperature data.  

 



 
Figure 11. Time series increased by the possibilities of natural ventilation of the adaptive thermal comfort model of EN 

16798-1:2019 in the period between the oldest year available for clusters and 2019. The results before the year 2000 were 

obtained through the MLPs.  

 



 
Figure 12. Example of time series increased by the saving of heating and cooling degrees obtained with category III of the 

adaptive thermal comfort model of EN 16798-1:2019 in the period between the oldest year available for clusters and 2019. 

The results before the year 2000 were obtained through the MLPs.  

 

 

4. Conclusions 

This study analysed the potential application of adaptive energy-saving strategies in the 786 Andalusian municipalities 

(in the south of Spain) through the international EN 16798-1:2019 standard. From a multi-dimensional cluster analysis, 

considering the use of natural ventilation and adaptive setpoint temperatures, four groups were determined based on the 

climatic parameters. Clusters 1 and 4 exhibited the greatest population, with cluster 1 obtaining lower income per person 

and clusters 2 and 3 obtaining lower income per household. Furthermore, the cluster analysis showed the relation between 

the geographical characteristics of a region and the application of adaptive models. In this study, the groups corresponded 



to municipalities with similar geographic characteristics, such as municipalities located in coastal areas, those located in the 

depression of the Guadalquivir River, or those located in the Baetic System. Therefore, these results agree with those of the 

studies conducted on a global scale, where the relation between adaptive models and geographic characteristics was 

detected. This forms a basis for the development of climatic zones for the application of adaptive models. In this sense, the 

groups obtained in the cluster analysis showed variation with respect to the climatic zones established in the Spanish 

Building Technical Code. However, these differences are normal as both the classification criteria and objectives differed for 

the two climatic zones. Nevertheless, the differences serve as a basis for discussing the needs to establish new climatic zones 

in the country or developing new regulatory criteria. 

Regarding the analysis of historical data, a representative city was selected for each cluster: Cadiz for cluster 1, Jaen for 

cluster 2, Grazalema for cluster 3, and Seville for cluster 4. This study showed that the applicability of an adaptive thermal 

comfort model had substantial potential in all four clusters within the temporary framework of 2000–2019, ranging between 

100% for cluster 1 and 69% for cluster 3.  

As for the potential of natural ventilation, two main conclusions were drawn by considering the three categories studied. 

First, the applicability of this strategy was never below 10% (cluster 3), even at the most restrictive level of expectation 

(Category I), being at ~15% in clusters 2 and 4 and ~20% in cluster 1. Second, considering the least restrictive level of 

expectation usually applied to an existing building (Category III), the percentage substantially increased in cluster 1, being 

close to 40% of the hours of the year, increasing by ~30% in clusters 2 and 4, and by more than 20% in cluster 3. As a result, 

the substantial potential of natural ventilation as a strategy for energy reduction is proved, even in the coldest zones (cluster 

3) studied. 

In addition, this study showed that the energy-saving strategy through the application of adaptive setpoints to regulate 

the consumption of HVAC systems led to a substantial saving of the heating and cooling degrees required with respect to six 

configurations of static setpoints: three for heating (20 ℃, 21 ℃, and 22 ℃) and three for cooling (25 ℃, 26 ℃, and 27 ℃). The 

results showed that users’ thermal expectations, as in the case of natural ventilation, substantially influenced the saving of 

heating and cooling degrees. Considering the former, only Category III implied saving in all cases, with clusters 2 and 3 being 

the most stressed. However, comparing Category I with static setpoints, saving was achieved in clusters 1 and 4 only with 

the most restrictive setpoint (22 ℃), whereas that in clusters 2 and 3 was achieved at setpoint of 21 ℃. This tendency is 

contrary to that observed for the saving of cooling degrees, where all cases maintained positive values, thus stressing the 

potential of using adaptive setpoints in the cooling regime to achieve substantial reduction in energy consumption.  

By considering the analysis of old time series with the design of 27 MLPs, the following conclusions can be drawn based 

on the evolution presented by these series considering the increasing tendency of external temperatures due to climate 

change. There was, therefore, a slight downward trend in the application of adaptive thermal comfort models in the days. 

However, with a decrease in saving of heating degrees, the natural ventilation strategy substantially increased in all clusters, 

followed by the saving of cooling degrees. These results can be useful in understanding, with real data, the expected 

evolution trend of the energy performance of existing buildings and facilitate their transition to buildings with almost zero 

energy consumption. The expected higher energy demand for cooling in buildings may limit the use of energy-saving 

measures, such as improving the envelope of buildings (a measure more focused on reducing the energy demand for 

heating). In this circumstance, an adaptive behaviour by users would reduce the energy demand for cooling in buildings and 

guarantee better resilience to the expected evolution of the climate. 

These results, therefore, showed the potential application of adaptive strategies for reducing the energy consumption. 

The use of natural ventilation strategies and cooling adaptive setpoint temperatures can substantially save building energy 

consumption, and in turn, reduce GHGs. Further studies should consider several climate change scenarios in Andalusia. The 

results of this study show the need to implement adaptive behaviours in the conditioning of interior spaces. For this purpose, 

the use of automation processes in HVAC systems and smartphone applications can facilitate a better implementation of 

adaptive strategies. Likewise, it is necessary to develop awareness policies so that users know the advantages of adaptive 

strategies, similar to that conducted in Japan with the ‘Super cool biz’ campaign [64]. Regarding the limitations of this study, 

the recently detected trend for the application of adaptive models has not analysed the scenarios foreseen by the 

Intergovernmental Panel on Climate Change. These scenarios should be analysed in the future to observe the expected trend 

throughout the 21st century. Second, the analysis did not consider the period of permanence of users in buildings. In this 

sense, an adaptive behaviour by users based on moving to areas with more favourable thermal conditions (e.g. going to 

coastal areas during the summer) can change the expected trends in energy demand. However, long-term episodes of users 

in their homes, such as the COVID-19 pandemic, may limit the application of these travel strategies to other regions. Finally, 

the relation that can be presented between the application of adaptive strategies and the decrease in cases of energy poverty 

constitutes a future aspect to be studied. The study results have shown how the different clusters are characterised as having 

municipalities with low–middle income. Thus, the use of these strategies is an opportunity for these families to condition 

their interior spaces. However, the following two knowledge gaps need to be addressed in the future. First, a precise 

evaluation of the relation between the population and income of the census units of each municipality, with the potential of 

applying adaptive strategies, needs to be conducted. Therefore, future research should be oriented towards small- or 

medium-scale studies in a similar manner to those conducted by Sánchez et al. [65] in Madrid. Second, the possibility that 

users are already using adaptive approaches in the region indicates that family assessment procedures, such as those based 

on the energy rating of buildings, overestimate the energy consumption of buildings and generate ‘false positives’ in case of 



energy poverty. The analysis of these cases should be addressed in the future through surveys that provide detailed 

information on the predominant type of behaviour exhibited by users in each municipality.  
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