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Abstract: 

Reducing energy consumption and greenhouse gases emissions is among the main challenges of building sector. It is 

therefore crucial to know the characteristics of envelopes. There are experimental methods to determine thermal 

transmittance, but limitations are presented. By using techniques of artificial intelligence, this article solves the limitations 

of current methods by predicting correctly the thermal transmittance value of ISO 6946 and the building period of a wall 

with monitored data. The methodology used is extrapolated to any country: 163 real monitorings and 140 different 

typologies of walls have been combined to generate the dataset (22,820 items). The results show the optimal operation of 

the Random Forest algorithm because both the thermal transmittance of ISO 6946 and the building period are determined 

by using the most common methods: the heat flow meter method and the thermometric method. This study makes 

progress towards more automatized processes to characterize thermal transmittance. 
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Nomenclature 
Symbols 
    Actual       [W/(m²K)] 
    Estimated       [W/(m²K)] 
   Distribution of negative samples 
      External total thermal mass factor obtained from the external thermal mass factor of each layer 

[J/(m2·K)] 
      Total internal thermal mass factor obtained from the internal thermal mass factor of each layer 

[J/(m2·K)] 
   Distribution of positive samples 
   Heat transfer coefficient [W/(m²K)] 
     Total internal heat transfer coefficient [W/(m²K)] 
   Number of observations in the dataset 
    Hypothetical probability of agreement by chance 
    Relative observed agreement among the observers 
   Thermal energy [J] 
    Density of the heat flow rate per unit area [W/m2] 



    Coefficient of determination 
        External surface thermal resistance [(m2·K)/W] 

 
        Internal surface thermal resistance [(m2·K)/W] 

 
   Heat transfer surface area of the body [m²] 
    Thickness of each wall layer [m] 
   Body temperature [K] 
              Environment temperature [K] 
        Internal air temperature [K] 

        External air temperature [K] 

          Internal surface temperature of the wall [K] 

       Thermal transmittance obtained by ISO 6946 [W/(m²K)] 
      Thermal transmittance obtained by the average method of ISO 9869–1 [W/(m²K)] 
              Thermal transmittance obtained by the average method with correction for storage effects of ISO 9869–1 

[W/(m²K)] 
          Thermal transmittance value obtained by some of the experimental procedures [W/(m²K)] 
      Thermal transmittance obtained by the thermometric method [W/(m²K)] 
  
Greek letters 
    Time interval between both readings [s] 
       Difference between the average external air temperature in the 24 h before measuring the observation 

and the average external air temperature in the first 24 h of the test [K] 
       Difference between the average internal air temperature in the 24 h before measuring the observation 

and the average internal air temperature in the first 24 h of the test [K] 
    Thermal conductivity of each wall layer [W/(m·K)] 
  
Abbreviations 
BFGS Broyden-Fletcher-Goldfarb-Shanno 
CART Classification and Regression Tree 
FP False positive 
HFM Heat flow meter method 
MAE Mean absolute error 
MLP Multilayer perceptron 

 

1. Introduction 

The decrease of building energy consumption is one of the main challenges of today’s society. In the 2015 Paris 

Climate Conference, 195 countries committed to significantly reducing greenhouse gas emissions. The building sector has 

a key role as it is responsible for a high percentage of energy consumption and greenhouse gas emissions [1], so bodies 

and institutions have established ambitious goals to improve the energy performance of buildings. Regarding the 

European Union, its roadmap towards a low-carbon economy aims at decreasing emissions by 90% with respect to the 

levels of 1990 [2]. 

Consequently, reducing building energy consumption is crucial to achieve such goal. Most consumption is caused by 

using HVAC systems [3,4], so it is essential to know the thermal performance of building envelopes to accurately know 

their energy requirement and establish energy conservation measures [5,6]. In recent years, many studies have been 

focused on the thermal characterization of envelopes, namely the experimental characterization of thermal transmittance 

[7].  

The thermal transmittance (also known as U-value) of walls can be experimentally characterized by various 

procedures. The most used are the heat flow meter method (HFM) and the thermometric method (THM) (also known as 

"Air-Surface Temperature Ratio Method”) (see Figure 1) [7]. HFM is developed in ISO 9869-1 [8] through various 

procedures, with the average procedure being the most used [7]. This procedure considers that the average of 

instantaneous values of heat flux and internal-external temperature differences reduce oscillations and lead to a steady 

state: 

     
   
 
   

                
 
   

 (1) 

where    [W/m2] is the density of the heat flow rate per unit area, and        and        [K] are the internal and external air 

temperatures. The method therefore operates by measuring both the heat flux and the internal and external air 

temperature. Some studies show the limitations and requirements to be considered when monitoring walls. Cesaratto et 

al. [9], Desogus et al. [10], and Trethowen [11] found that one of the main error contributions in the method was due to the 

heat flux measurement. Meng et al. [12] established that the error associated with placing the heat flux plate can be up to 

26%. Also, the need to guarantee a high thermal gradient [10,13], the orientation of the wall [14], and no condensations 



[15] nor freezes [16] in the wall have been reflected in several studies to ensure representative results [10,13]. Finally, the 

minimum duration of tests depends on the wall thermal transmittance and the variability of environmental conditions 

[17], achieving durations between 3 and 7 days [7,18]. 

Due to the variability of performance presented by HFM, many research studies have analysed the application of the 

method in a great variety of case studies and the adjustment degree of results: (i) Ficco et al. [19] studied the adjustment 

degree of HFM in 6 walls of various materials by using 3 different plates, and low deviation was obtained in tests. HFM 

therefore obtained representative results despite the possible limitations associated with the method because of using the 

heat flux plate and because of environmental aspects; (ii) Evangelisti et al. [20] used HFM to assess a wall with a balcony 

and a wall with a portico. The heat transfer coefficients obtained with HFM were compared with other different 

expressions obtained both from experimental correlations and ISO 6946. The results reflected disparity in the convective 

correlations in comparison with the values obtained by HFM; (iii) a similar study was conducted by Asdrubali et al. [21], 

who analysed 6 eco-efficient walls. The adjustment degree of results oscillated between 4 and 75%. The authors 

considered that the variability of the environmental conditions during the test and the overestimation of the thermal 

conductivity values were the possible reasons of the percentage deviations; (iv) Gaspar et al. [13] studied the performance 

of HFM in a wall with low thermal transmittance. The authors determined that keeping a temperature difference of 19ºC 

between the interior and the exterior reduced the test duration up to 72 h, with an appropriate adjustment degree. If the 

test is performed with a lower thermal gradient, then the test duration will be increased; (v) Lucchi [22,23] assessed 

historical brick and stone walls in Italy with HFM. There were deviations between the measured values and the values 

tabulated and calculated according to the Italian energy regulation for buildings; and (vi) these deviations between 

tabulated procedures and HFM were also reflected by Rotilio et al. [24], who monitored 4 historic walls in Fontecchio 

(Italy). The results reflected deviations of up to 15% between the value obtained by HFM and the value established by the 

Italian regulation.  

 

 

Figure 1. Schemes of the heat flow meter method and the thermometric method. 

As there are both difficulties in performing HFM and possible errors associated with environmental and morphological 

factors of walls, the infrared thermography has emerged in recent years as an alternative for HFM. These approaches 

aimed at measuring the surface temperature of walls and determining variables of radiation transfer, such as the 

emissivity or the reflected apparent temperature [25]. The main difference between methods is due to the location of the 

chamber during the test and the formulation used. Methods from the exterior [26,27] and from the interior [28–30] can 

therefore be distinguished. The main advantage of these methods is that, if the thermal gradient is high and test are 

conducted with low wind speeds and without rainfalls, then the thermal characterization can be made in a short space of 

time [26]. Also, the thermal heterogeneities presented by the wall can be evaluated by using an infrared camera [30]. 

However, the many possibilities of formulation have implied a great variety of approaches. Bienvenido-Huertas et al. 

[31,32] analysed the different possibilities of formulation of the internal and external methods. The results reflected an 

acceptable adjustment degree of correlations of dimensionless numbers with HFM. This fact is in accordance with the last 

research studies conducted by Tejedor et al. [30,33] related to the thermography method. 

THM is another alternative of HFM. THM is a method in which the heat flux measurement is replaced with the surface 

temperature measurement [34,35] because of the error sources associated with the heat flux in the determination of 

thermal transmittance [11,12]. THM is based on the Newton’s Law of Cooling, which establishes that, when the 

temperature difference between a body and the environment is not considerable, the rate of heat transfer by conduction, 

convection, and radiation is almost proportional to the temperature difference between the body and the environment: 



  

  
                      (2) 

where   [J] is the thermal energy,   [m²] is the heat transfer surface area of the body,   [W/(m²K)] is the heat transfer 

coefficient,   [K] is the body temperature, and              [K] is the environment temperature. Through Eq. (2), the heat 

flux can be expressed with a new expression (Eq. (3)). By using Eq. (3), Eq. (1) can be modified, thus obtaining the 

expression used for THM (Eq. (4)). 

                        (3) 

     
                     
 
   

                
 
   

 (4) 

where     [W/(m²K)] is the total internal heat transfer coefficient, and          [K] is the surface temperature of the wall 

from the interior. THM has been used in several studies, thus showing the possibility of being used to determine the 

thermal transmittance of walls. Kim et al. [36] used both THM and HFM in 4 different walls before and after improvement 

performances. The average error in the 8 tests between THM and HFM was 3.21%. Later, Kim et al. [35]analysed 4 

different case studies by studying walls with different orientations. The error analysis was lower than 10% between HFM 

and THM. There are, however, limitations in relation to the use of the method due to the value or expression used for the 

total internal heat transfer coefficient [7]. The use of theoretical values for total heat transfer coefficients can lead to 

important deviations [32]. The correct use of the method in typical walls and under acceptable conditions therefore 

ensures representative results to be obtained [32,36]. 

A common practice to guarantee representative experimental results is using the criterion included in Section 7.3 from 

ISO 9869-1 [7], which indicates that the percentage deviation between the measured value and the thermal transmittance 

value of ISO 6946 [37] should not be greater than 20% (see Eq. (5)). If there is higher deviation, there can be an error in 

monitorings. This validation procedure has been widely used in many studies focused on the validation of experimental 

methods, including HFM [38], THM [34] , and the quantitative infrared thermography [30], among others. However, its use 

has some limitations due to the calculation procedure of ISO 6946 [37], which is carried out by considering the wall as an 

element of parallel layers, and each layer with a thermal resistance. The thermal transmittance is obtained by the inverse 

of the sum of the thermal resistances of layers (which are obtained through the thermal conductivity and the thickness of 

each) and surface thermal resistances (see Eq. (6)).  

 

  
              

     
 (5) 

      
 

        
  
  

 
          

 (6) 

where          [W/(m²K)] is the thermal transmittance value obtained by some of the experimental procedures,       

[W/(m²K)] is the thermal transmittance value of ISO 6946,    [W/(m·K)] and    [m] are the thermal conductivity and the 

thickness of each wall layer, respectively, and        and        [(m2·K)/W] are the internal and external surface resistances, 

respectively. 

The number, type, and characteristics of the layers of walls are needed for the calculation procedure included in ISO 

6946, so the main limitation is related to the determination of the wall configuration [19]. The wall configuration can be 

determined by various procedures: (i) endoscopic analysis [19,39], (ii) use of technical documents of the building [40], and 

(iii) estimations based on analogous buildings [19,40]. Among these three techniques, estimations based on analogous 

buildings have the highest uncertainty [19,21], so the endoscopy and the use of technical documents are the most efficient 

[19]. Although the endoscopic analysis and estimations based on analogous buildings carry out more accurate calculations, 

both the lack of technical documents on the characteristics of the envelope and the damages generated by endoscopic 

techniques limit the correct use of ISO 6946 [7]. Also, the possible variation of the thermal conductivity of layers (generally 

obtained through technical catalogues [7]) increases the error in the estimation of thermal transmittance.  

The ISO 9869-1 standard includes a different procedure to carry out corrections for the heat storage effect [8]. This 

new procedure consists in modifying the heat flux through a correction obtained for the heat storage of the materials of 

the wall (see Eq. (7)). More detailed information on this calculation methodology can be found in [7]. 

             
   
 
    

                     
  

                
 
   

 (7) 

where      [J/(m2·K)] is the total internal thermal mass factor obtained from the internal thermal mass factor of each 
layer,       [K] is the difference between the average internal air temperature in the 24 h before measuring the 
observation and the average internal air temperature in the first 24 h of the test,      [J/(m2·K)] is the external total 
thermal mass factor obtained from the external thermal mass factor of each layer,       [K] is the difference between the 
average external air temperature in the 24 h before measuring the observation and the average external air temperature 
in the first 24 h of the test, and    [s] is the time interval between both readings. To use this new procedure is therefore 



important to know the thermophysical properties of the materials of the wall similarly as in ISO 6946. As a result, the 
procedure has the same use limitations as the method of ISO 6946. Some studies, however, stress the potential of using the 
procedure of heat storage effect: (i) Choi and Ko [41] found that the use of the correction procedure reduced the duration 
required for tests. In this way, the method with correction achieved a standard deviation of 0,036 two days later, and of 
0,006 four days later, whereas the average method obtained a deviation of 0,160 five days later, thereby concluding that 
the use of the correction procedure reduced the time required for monitoring; and (ii) Deconinck et al. [42] drew a similar 
conclusion: for the average method, a period of 8 days was required to obtain a low deviation in the results, whereas the 
time required for the correction procedure was 3 days. So, the limitations of the procedure related to the determination of 
thermophysical properties should be solved. In a recent study, Bienvenido-Huertas et al. [43] analysed the use of 
multilayer perceptrons (MLPs) to carry out the correction procedure without knowing the thermophysical properties of a 
wall. Different input variables, some of them from the monitoring of a wall (e.g., the internal air temperature), were 
considered. However, new variables were included, such as the thickness of the wall and the building period in which it 
was designed and built. The results achieved an acceptable adjustment degree between the value estimated by the MLP 
and the actual value obtained by knowing the thermophysical properties of a wall. Although the building period can be 
determined with cadastral data of buildings, there can be some limitations for its correct classification, particularly in 
buildings designed and built in the transition years of the periods or in buildings from old periods which have been 
renovated (consulting the cadastral data of the building would indicate the year of construction and not the year of 
improvement). Later, the same input variables were used to determine the results of ISO 9869-1 with THM [44], as there 
could be possible deviations between the results of both methods because of the total internal heat transfer coefficient 
used in THM [32,45]. The MLPs made accurate estimations of the thermal transmittance values of ISO 9869-1, thus 
reducing the possible deviations between both methods.  
 

2. Aims of this research 

Limitations in thermal transmittance assessments were found in previous reviews, namely (i) the determination of 

thermal transmittance through ISO 6946 to evaluate the percentage deviation of experimental results according to the 

criterion included in Section 7.3 from ISO 9869-1; and (ii) the determination of building periods to use optimization 

approaches based on MLPs. This study therefore aims at tackling such weaknesses in in-situ assessments. The objective 

was to accurately determine both variables, thus automating and optimizing the data analysis. For this purpose, the use of 

artificial intelligence is an opportunity to optimize and automate certain processes. Moreover, creating datasets with a 

high number of cases through simulations is an opportunity to generate artificial intelligence models due to the 

adjustment degree between the simulated and actual values under certain boundary conditions [46,47]. Random Forest 

was used in this study as an algorithm of artificial intelligence. It is widely validated and used in various applications of 

building energy analysis [48–50] and also tackles classification and regression problems. Another new aspect of this study 

is the lack of studies using Random Forests for problems related to the thermal characterization of building envelopes.  

This article is structured as follows: after the introduction, Section 3 describes how the Random Forest algorithm 

operates. Section 4 describes the methodology: the variables used in the different approaches, the dataset designed, and 

the training and validation of models. Section 5 discusses the results obtained. Finally, Section 6 includes the main 

conclusions.  

 

 
3. Random Forest algorithm 

Tree-type algorithms are among the algorithms of artificial intelligence applied to classification and regression 

problems. The most known is the Classification and Regression Tree (CART) algorithm [51], which constructs prediction 

models with a reverse tree structure (i.e., from the root to the leaves, with the root being in the upper part of the model’s 

scheme). Prediction models are suitable for classification and regression problems (i.e., the output can be a label or a 

numeric value). The structure of the tree is made up of internal nodes corresponding to each variable considered for 

predicting the model, arches corresponding to the value or range of values of the variable, and leaves corresponding to the 

output value of the model.  

Although the CART model has been widely used in many applications [52,53], several studies show limitations of its 

use [54,55]. The Random Forest (RF) algorithm is therefore an opportunity to use tree models with a better performance. 

RF operates by creating a set of CART models based on the training subset so that a forest of tree models is generated (see 

Figure 2). As it is an ensemble learning algorithm, a better performance than CART is obtained [56] and the variance and 

bias of the model are reduced [57,58]. Moreover, RF develops efficient models with big dataset and is not influenced by 

atypical values [59]. The number of trees considered in the algorithm strongly affect the performance of the RF model [60]. 



 

Figure 2. Scheme of the operation of a Random Forest model. 

For training an RF model, the training subset is divided into   bootstrapped sample sets [58], and each bootstrapped 

sample generates a CART model. Also, each node of each CART is divided by using a subset of m predictors randomly 

selected, thus reducing the influence of the strongest predictors [61]. The estimation given by the RF model is obtained by 

the average of the estimations given by the set of CART models:  

     
 

 
    

 

   

 (8) 

where     is the output of the  -th tree and   is the number of trees.  

 

4. Methodology 

4.1. Approaches 

As noted earlier, this study aims at solving two main problems: the determination of the thermal transmittance value 

of ISO 6946 and the building period of the wall analysed. For this purpose, monitored data were used. It is therefore 

important to make distinctions between the approaches according to the type of the output variable intended to be 

estimated by the model. Also, independent models were developed according to the experimental procedure used to 

assess the thermal transmittance: HFM or THM. Table 1 includes the input and output variables for each approach, as well 

as their nomenclature. Input variables have always the same structure in the different approaches: the maximum and 

minimum value recorded by each variable in the tests are used, as well as the average value obtained by the instantaneous 

measurements throughout the whole test. This was performed both for the internal and external air temperature. The 

difference related to the in-situ method used in the monitoring (HFM or THM) is the third variable monitored: in HFM, the 

heat flux, and in THM, the internal surface temperature of the wall. In THM, the coefficient of internal heat transfer is not 

considered as an input variable because the approaches used in the scientific literature do not need additional variables to 

quantify it: either using a theoretical value for the coefficient of the total heat transfer [34] or experimental correlations 

characterizing it through the surface temperature [32]. The other two variables considered were the thickness of the wall 

and the test time. The output variable was a numeric type (       or a label (building period) depending on the approach. 

As the scope of this study was Spain, the response given by the model for the building period was 3 different periods: P1 

(anterior to the normative NBE-CT-79 [62]), P2 (posterior to NBE-CT-79 and anterior to the Spanish Technical Building 

Code [63]), and P3 (posterior to the Spanish Technical Building Code). 

 

Table 1. Input and output variables used in each approach. 
Approach In-situ method  Input variables Output variables 
Thermal 
transmittance 
of ISO 6946 

HFM      ,           ,           ,      ,           ,           ,   , 
       ,        , thickness, time 

      

THM      ,           ,           ,      ,           ,           ,        , 

            ,             , thickness, time 

      

Building 
period 

HFM      ,           ,           ,      ,           ,           ,   , 
       ,        , thickness, time 

Building period (P1, 
P2, and P3) 



THM      ,           ,           ,      ,           ,           ,        , 

            ,             , thickness, time 

Building period (P1, 
P2, and P3) 

 

4.2. Dataset used 

To obtain representative results of the application of RF models, many tests were required. Performing many tests 

implies a temporary effort and the limitation of applying the models in other regions (e.g., as tests should be adapted to the 

building periods or type of walls of each zone), so transient two-dimensional simulations were conducted with finite 

element methods. A total of 163 real monitorings were first carried out in various walls, both under favourable conditions 

to apply experimental methods (i.e., with a high thermal gradient) and unfavourable conditions. It is important to note that 

the duration was different, ranging from 3 to 7 days. The monitorings were useful to have 163 sets of time series of the 

internal and external air temperature. Afterwards, 140 typologies of different walls in the building stock in Spain were 

designed. By using various sources, such as [64–66], accurate knowledge of the design used in the façades of the building 

stock in Spain was obtained (i.e., accurate knowledge of the number of layers, type of material, thermal conductivities, and 

thicknesses of a representative sample of the Spanish building stock was available). The error associated with the 

determination of thermal transmittance was therefore reduced, as many studies indicate (by using accurate thermal 

transmittance values as output variables, without errors due to the lack of knowledge of materials or thermal properties of 

walls). The walls designed were of different typologies according to the building period, existing typologies with or 

without insulating material, and with or without air gaps. The different 140 typologies of walls were useful to design the 

2D models. The 163 sets of time series were used as boundary conditions. By combining 140 wall typologies with 163 

monitorings, a total of 22,820 different combinations were obtained. A transient two-dimensional simulation was 

performed in each combination with data of internal and external air temperature, thereby obtaining the variables of the 

internal surface temperature and the heat flux required for using HFM and THM. The values established in ISO 6946 were 

selected as surface thermal resistances of boundary conditions: 0.04 m²K/W for external conditions and 0.13 m²K/W for 

internal conditions. The standard recommends these values for the typical building envelopes [37]. These values have also 

been used in other similar research studies on thermal characterization through transient simulations [67,68]. The 

simulation time varied depending on the time serie used (time series are different in relation to duration, from 3 to 7 days) 

and the data acquisition interval was 900 s because it was used in other studies [34,43]. Lower and upper sides of walls 

are modelled with a concrete slab. To avoid the influence of thermal bridges produced by the junction with the slab, the 

internal surface temperature and the heat flux simulated were measured at 1.50 m above the floor. It is worth stressing 

that monitorings were conducted in different seasons and with different thermal gradients (high and low), with the aim of 

applying the estimations carried out by the regression models in a wide variety of test conditions. As measurements of the 

internal surface temperature and the heat flux were available from 163 real tests, they were also used for validating the 

data simulated. As can be seen in Figure 3, the values simulated were adjusted to the actual values analysed. In these cases, 

the mean error obtained was 0.23 ºC for the internal surface temperature and 0.14 W/m² for the heat flux. A total of 

22,820 different tests were therefore obtained at the end of the simulation process. Figure 4 shows the workflow followed.

  

Each test was used as an observation of datasets. As 4 different possibilities of approach were distinguished (see Table 

1), 4 different datasets were developed. The various input variables considered for each approach were obtained at the 

end of each test. Given that time series with a different duration were available, the duration of each test was randomly 

determined, thus implying no coincidences in the time variable among the observations. As the thermophysical properties 

and thickness of layers must be specified when designing the 140 wall typologies, it is worth stressing that the same 

accurate knowledge was available to determine      . 

 



 

Figure 3. Comparison between the actual and simulated values of the internal surface temperature and the heat flux. 

 



 

Figure 4. Workflow followed in the simulation process of the 22,820 tests.  

4.3. Validation of Random Forest models 

A total of 4 different datasets were developed through 22,820 cases simulated. Each dataset was randomly divided 

into two different subsets: 75% of instances constituted the training subset, and the remaining 25%, the testing subset. 

The training subset was used in the training phase (i.e., in the developing phase of the model), and the testing subset was 

used in the testing phase (i.e., in the assessment of the performance of the model with new observations). The training was 

carried out through a 10-fold cross validation, which reduces the error and the variance of the model [69]. Also, the 

optimal number of trees used by the model was required to be determined in the training of RF models. For this reason, 

configurations varying from 1 to 50 trees in each approach were analysed. The most suitable configuration was 

determined according to the values obtained in the quality statistical parameter. As regression (     ) and classification 

(building period) approaches were distinguished in this study, statistical parameters varied. Such indicators were used 

both in the training and testing. As for regression approaches, the quality indicators were as follows: the coefficient of 

determination (  ) (Eq. (9)), the mean absolute error (MAE) (Eq. (10)), and the root mean square error (RMSE) (Eq. (11)). 

Such parameters have been widely used in many studies to assess the performance of regression models [70,71]. 

 



      
        

  
   

         
  

   

  (9) 
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where    is the actual      ,    is the estimated      , and   is the number of observations in the dataset. 

 

Regarding the classification approach, the parameters analysed were as follows: the true positive (TP) ratio (Eq. (12)), 

the false positive (FP) ratio (Eq. (13)), the kappa statistic (Eq. (14)), and the area under the receiver operating 

characteristic (ROC) curve (Eq. (15)). TP and FP ratios indicate the accuracy percentage in the estimations made by the 

model, kappa statistic determines the coincidence of the estimation with the real class, and the area under the ROC curve 

determines the probability that the model classifies correctly the class analysed, existing a different value for each possible 

label (in this case, there is a value for each building period).  

   
                                 

                            
 (12) 
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 (14) 

                        
 

 

   (15) 

where    is the relative observed agreement among the observers,    is the hypothetical probability of agreement by 

chance, and   and   are the distribution of positive and negative samples, respectively. 

The performance of the RF models developed with MLPs was also compared to know the advantages of using RF 

models with respect to a typology of algorithm widely used and validated. In addition, as MLP performs models for 

classification and regression problems, the results of both approaches could be compared. Datasets were the same as 

those used for RF models. MLPs were trained by backpropagation [72,73], using the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) [74] algorithm. The number of neurons of the hidden layer oscillated between 1 and 20 until determining the 

optimal architecture by analysing the performance of each architecture with the values obtained in the quality statistical 

parameters (Eqs. (9)-(15)). 

Also, additional monitorings were conducted in 3 actual case studies. Each wall belonged to a building period (see 

Table 2), thus checking the performance of the models generated with new data from actual monitorings. Measurements 

were conducted for 1 week and with a data acquisition of 15 min. Surface temperature probes and the heat flux plate were 

placed in an area without thermal bridges and at a distance of 1.5 m above the floor, following the measurement criterion 

of variables indicated in Section 4.2 (see Figure 5). 

 

Table 2. Thermophysical properties of the actual walls monitored for being individually analysed.  
Case Component Thickness  

[m] 
Thermal conductivity 
[W/(mK)] 

U-value 
[W/(m²K)] 

Building 
period 

Sketch 

Wall A Cement mortar 0.015 1.000 1.31 P1 

 

Solid brick 0.115 0.850   
Cement mortar 0.015 1.000   
Air gap 0.100 -   
Hollow brick 0.070 0.320   
Gypsum plaster 0.015 0.570   

Wall B Cement mortar 0.015 1.000 0.69 P2 

 

Perforated brick 0.115 0.350   
Cement mortar 0.015 1.000   
Air gap 0.010 -   
MW insulation 0.020 0.038   
Hollow brick 0.070 0.320   
Gypsum plaster 0.015 0.570   

Wall C Cement mortar 0.015 1.000 0.57 P3 

 

Perforated brick 0.115 0.350   
Cement mortar 0.015 1.000   
Air gap 0.005 -   
MW insulation 0.040 0.038   
Laminated 
plasterboard 

0.015 0.250   

 



 
Figure 5. Monitoring in actual walls monitored for being individually analysed: (a) photograph of the probes used for 
monitoring the internal surface temperature and the heat flux, and (b) the placing criterion followed during tests. 
 

5. Results and discussion 

5.1. Estimating the U-value of ISO 6946 

Firstly, the possibilities of estimating the U-values obtained through ISO 6946 were analysed by using the input 

variables of both methods. As indicated in Section 3, the determination of the number of trees influenced the performance 

obtained with Random Forest, so the variability presented by the statistical parameters considered in this study (R², MAE, 

and RMSE) was analysed as the number of trees increased (see Figure 6). Both in the training and testing, the increase of 

the number of trees led to an improvement of statistical parameters. Regarding HFM models, R² was always greater than 

99%, with very low values of MAE and RMSE (the highest value of MAE was 0.017, and of RMSE, 0.0635). Also, statistical 

parameters had acceptable values in THM models. As for the most adequate configuration, the values close to the limit 

obtained the most acceptable performances. Regarding HFM, it was found that an RF model with 46 trees obtained the 

best result, whereas in THM, the acceptable result was 42 trees (Table 3). The consideration of a larger number of trees 

did not imply an improvement of the performance of the models, increasing the computing time and the memory required 

for the training.  

Although the performance obtained by the RF models for HFM and THM was acceptable, a slight deviation was found 

according to the approach used. Regarding THM models, a slight diminution was obtained in the performance of the 

model. In this sense, a percentage deviation in R² of 0.31% was found in the testing, whereas MAE and RMSE had increases 

of 82.65% and 78.57%, respectively, so that the modification of input variables meant a variation in the performance of RF 

models. As mentioned above, the difference between HFM and THM is that the former considers the heat flux, and the 

latter, the internal surface temperature. The use of heat flux variables leads therefore to a slightly better adjustment in RF 

models. However, the performance obtained by the RF models of both methods is acceptable: (i) R² was greater than 

99.55%, and the mean absolute error was lower than 0.0179.  

 



 
Figure 6. Assessment of the statistical parameters in the training and testing with the variation of the number of trees of 

RF models to estimate      . 

 

Table 3. Performance of the optimal RF models in the testing to estimate      .  

Method Model Number of trees R² [%] MAE RMSE 
HFM HFM-RF 46 99.86 0.0098 0.0210 
THM THM-RF 42 99.55 0.0179 0.0375 

 

The performance obtained by the RF models to estimate the U-value included in ISO 6946 was therefore acceptable, 

thereby leading to accurate estimations. Figures 7 and 8 represent the histograms of the error obtained in the estimations. 

Moreover, the results of the estimations of the RF models were compared with those obtained by the optimal MLP 

configurations. The most acceptable architectures of MLPs were of 14 nodes in the hidden layer for HFM, and of 12 nodes 

in the hidden layer for THM. The error associated with the estimations of the RF models was low. As for the HFM-RF 

model, 75.14% of estimations had an error between 0 and 0.01 W/(m²K). Such percentage was lower in the case of the 

MLP, with 21.27% of estimations with error values in such range. Also, the error values were greater in HFM-MLP: 

whereas the error values ranged from -0.181 to 0.167 W/(m²K) in HFM-RF, the values ranged from -0.318 to 0.324 

W/(m²K) in HFM-MLP. Although HFM-RF obtained slightly high error values, the number of observations was low. In this 

sense, the percentage of instances with errors greater than 0.05 W/(m²K) was 3%, whereas in the case of HFM-MLP, the 

percentage was 26.82%.  



 

 
Figure 7. Comparison of the errors between the values estimated by the HFM models and the actual values in the testing 

phase. The histogram is represented by a bin width of 0.01 W/(m²K). 

 

THM models had similar tendencies as HFM models. The THM-RF model made estimations with an acceptable 

accuracy degree. The percentage of observations with a range of error between 0 and 0.01 W/(m²K) was 57.18% in RF, 

whereas it was 14.44% in MLP. Likewise, the range of errors was smaller in THM-RF than in THM-MLP, although the 

difference between the limit values was reduced: the error values of THM-RF ranged from -0.295 to 0.265 W/(m²K), and 

the error values of THM-MLP were between -0.311 and 0.397. This same tendency was found in the percentage of 

instances in such ranges: 7.52% in THM-RF and 35.71% in THM-MLP. 

 

 
Figure 8. Comparison of the errors between the values estimated by the THM models and the actual values in the testing 

phase. The histogram is represented by a bin width of 0.01 W/(m²K). 

 

The use of RF models therefore obtained adjusted estimations of the thermal transmittance of ISO 6946, both in HFM 

and THM. Although some differences in the performance of RF models were found according to the type of input variables 

(i.e., the in-situ assessment method), the estimation made by the models had deviations lower than 0.05 W/(m²K) in more 

than 92.48% of the tests analysed (97% in HFM-RF and 92.48% in THM-RF). This tendency was found in the analysis of 

the estimations conducted in the walls for being individually analysed (see Table 4). In these cases, the estimations 

conducted by the RF models were adjusted (with an error lower than 0.01 W/(m²K)), whereas in the MLP models, errors 

between 0.01 and 0.09 W/(m²K) were achieved. RF models can therefore be used as a methodology to validate the 

experimental results obtained by HFM and THM. 

 

Table 4. Results of the estimations of       conducted by the models in the walls individually analysed. 



Wall        
[W/(m²K)] 

Estimated U-value [W/(m²K)] 
HFM-RF THM-RF HFM-MLP THM-MLP 

Wall A 1.31 1.30 1.31 1.38 1.35 
Wall B 0.69 0.69 0.69 0.66 0.67 
Wall C 0.57 0.56 0.57 0.66 0.61 

 

5.2. Estimating the building period for heat storage corrections 

After validating the use of RF models to determine accurately the thermal transmittance obtained through ISO 6946, 

their performance was analysed in the estimation of the building period. As in Section 5.1, the most adequate number of 

trees for RF models was determined (see Figure 9). Both in HFM-RF and THM-RF, the increase of the number of trees from 

1 to 30 had an increase in the performance of the models. Over 30, the most acceptable configurations were determined 

for each approach: for HFM-RF, the optimal number was 33 trees, and for THM-RF, 30. Over such numbers, the 

performance of the models did not improve, leading to an increase of the computing time.  

 

 
Figure 9. Evaluation of the TP ratio in the training and testing with the variation of the number of trees of the RF models. 

 

After determining the most acceptable configuration for each methodology, the results were compared with the 

optimal MLPs. The analysis determined that MLP configurations with 13 and 15 nodes in the hidden layer were the best 

for HFM and THM, respectively. Figure 10 shows the performances obtained by the HFM models in the testing. Firstly, the 

analysis of the confusion matrix of HFM-RF showed the high TP ratio in the 3 building periods (in the confusion matrix, 

diagonal values correspond to the TP ratio, whereas the other values are the FP ratio). In this sense, the TP ratio in P1 was 

100%, whereas in P2 and P3 was 99.72 and 99.92%, respectively. The classification was therefore optimal in most 

observations. However, a certain limitation was found in some instances of P2 and P3 because such building periods had 

certain similarities (e.g., the use of insulation), unlike P1. Such TP ratios were different from that obtained in HFM-MLP. 

This model showed how the building periods of the walls were worse classified. So, the TP ratio in P1 was 95.41%; in P2, 

87.36%, and in P3, 99.16%. The model was found to present the high FP ratio in the next building period in which it should 

be classified (e.g., the high FP ratio was presented in P2 when it should be classified in P1), thus showing the limitations of 

MLP to determine the differences among building periods. 

On the other hand, the kappa statistic and the area under the ROC curve had very different values between the models. The 

area under the ROC curve determines the probability that the model correctly classifies the class analysed, whereas the 

kappa statistic determines the coincidence of the class estimated with the real class. Values close to 1 of both parameters 

indicates a better estimation of the models. HFM-RF and HFM-MLP obtained values close to 1 in both parameters. 

However, HFM-RF obtained better values than HFM-MLP: (i) the kappa statistic obtained a value very close to 1 in HFM-

RF, whereas its value was 0.914 in HFM-MLP; and (ii) the area under the ROC curve of the three building periods was 1 in 

HFM-RF, whereas lower values were obtained in HFM-MLP (0.993 for P1, 0.972 for P2, and 0.988 for P3). Such differences 

showed the worse performance presented by HFM-MLP to correctly estimate the building periods of the observations of 

the testing dataset.  



Regarding the models developed for THM, a similar behaviour was found when building periods were to be classified 

(see Figure 11). THM-RF had a greater TP ratio than THM-MLP. Also, both the statistic kappa and the area under the ROC 

curve were better in THM-RF than in THM-MLP. Regarding walls for their individual analysis, a behaviour similar to what 

is above indicated was found, conducting correct estimations of the building period with all models except THM-MLP (see 

Table 5). 

 

Table 5. Results of the estimations of the building period conducted by the models in the walls individually analysed. 

Wall Period Estimated period 
HFM-RF THM-RF HFM-MLP THM-MLP 

Wall A P1 P1 P1 P1 P1 
Wall B P2 P2 P2 P2 P2 
Wall C P3 P3 P3 P3 P2 

 

 

 

 



 

Figure 10. Comparison of the performance obtained between HFM-RF and HFM-MLP models in the estimation of the 

building periods of the wall. 

 

 

 

 

 



 

Figure 11. Comparison of the performance obtained between THM-RF and THM-MLP models in the estimation of the 

building periods of the wall. 

 

The results therefore showed how the models developed with the RF algorithm classified correctly the building 

periods of the simulated tests. Also, its performance was better than the MLPs developed with the same dataset. Although 

MLPs have a potential of use for various assessment applications of the thermal transmittance, as those developed by 

Bienvenido-Huertas et al. [43] and Buratti et al. [75], their use is limited to determine the thermal transmittance included 

in ISO 6946 and the building period of walls with monitored data. The limitations are solved by the models developed with 

the RF algorithm. In addition, the results of this study stress the potential of using algorithms of artificial intelligence 

different from MLPs to tackle the problems related to the thermal characterization of buildings. 

 

 



6. Conclusions 

This study analyses the optimization and automation of certain processes related to the assessment of the thermal 

transmittance of walls. Particularly, two aspects were analysed according to the limitations showed in the scientific 

literature: (i) the determination of the thermal transmittance of ISO 6946 to validate the experimental results following 

section 7.3 from ISO 9869-1; and (ii) the determination of the building period of walls to apply the optimized procedure of 

correction for storage effects developed in a previous study [43]. Random Forest models were designed for the two most 

used assessment methodology of thermal transmittance: the heat flow meter method and the thermometric method.  

Based on the results obtained, Random Forest models had an efficient performance for the applications proposed. On 

the one hand, as for the determination of the thermal transmittance of ISO 6946, models made estimations with a 

correlation coefficient greater than 99.55% with respect to the real values. On the other hand, more than 5,276 of the 

5,705 tests analysed in the testing had errors lower than 0.05 W/(m²K) in the estimation. Also, by comparing the Random 

Forest models with multilayer perceptrons, it was found that the former is the most adequate typology of algorithm to 

determine the thermal transmittance of ISO 6946.  

This same tendency was found in the approach to determine the building period of walls. In this approach, the true 

positive ratio in the 3 periods was always greater than 99.50% in the various Random Forest models, whereas a greater 

error in the true positive ratio was obtained in the multilayer perceptrons.  

Results firstly showed the suitability of using the Random Forest algorithm to determine the thermal transmittance 

and the building period of a wall by its monitoring (whether by the heat flow meter method or the thermometric method), 

and secondly, the potential of using other algorithms of artificial intelligence different from the multilayer perceptrons, 

thus optimizing and automating certain processes related to the building thermal characterization.  

To conclude, the relevance of this study is the proposal of two new applications allowing the uncertainty associated 

with the problems analysed to be reduced. On the one hand, many studies reveal the limitations when determining the 

thermal transmittance of ISO 6946 because of the uncertainty associated with the determination of layers, material, and 

thermophysical properties of walls. Such determination, however, is essential to have a reference value to determine 

whether the results obtained by any in-situ procedure (e.g., the heat flow meter method) are representative. On the other 

hand, knowing the representative building period of the zone in which a wall was built is required by the correction for 

storage effect designed in a previous study. Although consulting cadastral data could solve this aspect, there can always be 

some uncertainty whether the wall was designed according to the technical regulation of that period. The results of this 

study therefore remove the error sources associated with thermal characterization tests and could be useful for energy 

auditors, architects, and engineers. Also, the methodology used to generate datasets to train and validate the models 

(based on the combination of real data and simulations) would adapt models to the building periods which are typical of 

each zone. Finally, a more automatized process to characterize the thermal transmittance would establish better energy 

conservation measures, reduce payback periods, and ensure a greater renovation rate of the building stock, thus 

facilitating the objective proposed by the European Union by 2050: reducing the greenhouse gas emissions of building 

sector by 90%. 
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