
Journal of Computational and Applied Mathematics 349 (2019) 225–238

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Quasi-interpolation by C1 quartic splines on type-1
triangulations
D. Barrera a,*, C. Dagnino b, M.J. Ibáñez a, S. Remogna b

a Department of Applied Mathematics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
b Department of Mathematics, University of Torino, via C. Alberto, 10, 10123 Torino, Italy

a r t i c l e i n f o

Article history:
Received 24 January 2018
Received in revised form 23 May 2018

Keywords:
Spline approximation
Quasi-interpolation
Bernstein–Bézier form
Type-1 triangulation

a b s t r a c t

In this paper we construct two new families of C1 quartic quasi-interpolating splines on
type-1 triangulations approximating regularly distributed data. The splines are directly
determined by setting their Bernstein–Bézier coefficients to appropriate combinations of
the given data values instead of defining the approximating splines as linear combinations
of compactly supported bivariate spanning functions and do not use prescribed derivatives
at any point of the domain. The quasi-interpolation operators provided by the proposed
schemes interpolate the data values at the vertices of the triangulation, reproduce cubic
polynomials and yield approximation order four for smooth functions. We also propose
some numerical tests that confirm the theoretical results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The spline quasi-interpolation has been the subject of extensive research since its introduction. The fundamental reason
is that it constitutes a simple procedure for constructing spline approximations of functions from specific information about
them, such as the point values of the function to be approximated and some of its derivatives [1].

In general, given a space of functions S a quasi-interpolation operator (QIO) Q for S is a linear map into S which is local,
bounded (in some relevant norm), and reproduces some (nontrivial) polynomial space [2, p. 10]. Usually, S is the space
spanned by the translates on a lattice of a nonnegative function with compact support that provide a partition of unity.
B-splines and box splines are very relevant choices (see [2–7] and references therein). These functions have been used to
define different quasi-interpolants having specific properties, among them the near-minimality of the infinity norm of the
operator. The univariate case is considered in [8–10]. This kind of construction in the bivariate case has been addressed
in [11–14], and the trivariate case has been considered in [15–18]. Not only B-splines and box splines have been used to
define quasi-interpolants. For instance, in [19] the construction of QIOs for the space of quadratic Powell–Sabin splines on
nonuniform triangulations is considered (see also [20–22]). As said before, aQIO reproduces a space of polynomials. However,
it is also possible to define quasi-interpolation projectors, as done, for instance, in [23,24].

A different approach has been adopted in a few papers since 2005 for defining C1 quasi-interpolants [25–27]. It is based
on the Bernstein–Bézier representation of polynomials on triangular and tetrahedral partitions. The idea of this approach
is to set all the Bernstein–Bézier (BB-) coefficients of the splines by using local portions of the data in such a way that the
C1-smoothness conditions are satisfied as well as the reproduction of the polynomials of appropriate total degrees. Hence,
each polynomial piece of the approximating spline is immediately available from local portions of the data, without using
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Fig. 1. The triangulation ∆ (left) and the hexagon Hi,j (right).

prescribed derivatives at any point of the domain. In [25], a QIO for the space of C1 quadratic splines on a type-2 triangulation
of a rectangular domain is defined. It is exact on the space P2 of polynomials of total degree two. A similar methodology is
used in [27] to define a QIO for the space of C1 quartic splines on a type-1 triangulation of the real plane, that reproduces the
space P3 of cubic polynomials. Finally, in [26] a QIO for the space of C1 cubic on a type-6 tetrahedral partition of a rectangular,
volumetric domain, that reproduces trilinear polynomials. In all cases the proposed quasi-interpolants only use data values,
and simultaneously approximate smooth functions as well as their derivatives.

Themain goal of this paper is to extend the results in [27], proposing newQIOswith less computational cost and a smaller
uniform norm. Moreover, we recall that the space Sρ

k (∆) of piecewise polynomials of degree ≤ k and smoothness ρ on a
three-directional mesh∆ has the same approximation order that Sloc does, where Sloc is the span of box splines contained in
Sρ

k (∆) [28]. In particular, in [29] (see also [30]), it has been proved that the approximation order of Sρ

k (∆) is at best k when
k < 3ρ + 2, ρ > 0. From the above result, we get that the spaces of C1 and C2 quartic splines have the same approximation
order four. Good QIOs based on C2 box splines having quite small uniform norms are well-known. They provide C2 quartic
quasi-interpolating splines directly and it is possible to compute the BB-coefficients of their restrictions to every triangle
in the triangulation. However, some reasons to choose working with C1 splines are in order. If a C2 quartic box spline is
used to define the QIO by its integer translates, then the BB-coefficients of a quasi-interpolating spline on every triangle
T are combinations of the values of the approximated functions at the vertices lying in a large neighborhood of T . On the
contrary, in the case of dealing with C1 quartic splines the BB-coefficients are computed from simple averaging rules to the
data in T and in the immediate neighboring to T triangles. The coefficients of those rules do not depend on the triangulation
due to its uniform structure. Moreover, in the C1 case, it will be possible to define QIOs with smaller infinity norm and the
quasi-interpolants will be interpolatory at the vertices. In addition, the computational cost can be halved with respect to the
operator defined in [27].

Finally, as quoted in [31], in practice theC1 scheme in [27] provides the best tradeoff between smoothness and the number
of polynomial patches used to represent a data set whenmodeling surfaces of high geometric complexity, such as large-scale
terrain models.

Here is an outline of the paper. In Section 2, we give some preliminaries on the BB-form of quartic C1-splines on type-1
triangulations and we introduce some useful notations used throughout the paper. In Sections 3 and 4, we define families of
quasi-interpolating splines based on two different sets of points. We analyze the general schemes, depending on a certain
number of free parameters and we present some strategies in order to fix them. For a particular choice of the parameters,
we obtain the spline in [27]. Moreover, we discuss the approximation properties of the corresponding operators. Finally, in
Section 5, we propose some numerical tests that confirm the theoretical results established in the previous sections.

2. Notations and preliminaries

This work aims to analyze the construction in [27] in order to provide new quasi-interpolation schemes. Thus, although
it is possible to use any type-1 triangulation, we consider the one defined by the directions e1 := (h, h), e2 := (h, −h) and
e3 = e1 + e2, with h > 0, and the notations in the referred paper to facilitate the comparison of results. The vertices of
such a partition ∆ are defined as vi,j := ie1 + je2, i, j ∈ Z. They define the two-dimensional lattice V :=

{
vi,j : i, j ∈ Z

}
, that

subdivides the plane into equal parallelograms Pi,j :=
[
vi,j, vi,j+1, vi+1,j+1, vi+1,j

]
(see Fig. 1(left)). Each parallelogram Pi,j is

split into two triangles Ti,j :=
[
vi,j, vi+1,j, vi+1,j+1

]
and T̃i,j :=

[
vi,j, v1,j+1, vi+1,j+1

]
, by drawing the diagonal

[
vi,j, vi+1,j+1

]
.

Therefore, the triangulation ∆ is defined in this way ∆ :=
⋃

i,j∈Z

(
Ti,j ∪ T̃i,j

)
. The triangulation ∆ can also be viewed as a

collection of overlapping hexagons, as shown in Fig. 1(right), where Hi,j is the hexagon centered at vi,j.
We will construct quasi-interpolating splines in S1

4 (∆) :=
{
s ∈ C1

(
R2
)

: s|T ∈ P4, for all T ∈ ∆
}
, where P4 :=

span
{
xiyj : 0 ≤ i + j ≤ 4

}
is the space of bivariate polynomials of total degree four. Such splines will be defined by directly

setting their BB-coefficients on the triangles of ∆ (see e.g. [5]). Given a function s ∈ S1
4 (∆), its restriction to a triangle

T = [v0, v1, v2] ∈ ∆ can be written as

s|T =

∑
i+j+k=4

cTi,j,kB
T
i,j,k,
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Fig. 2. The points of D4 relative to Hi,j .

where BT
i,j,k :=

4!
i!j!k!b

i
0b

j
1b

k
2, i, j, k ≥ 0, i+j+k = 4, are the Bernstein polynomials of degree 4 associatedwith T and (b0, b1, b2)

are the barycentric coordinates with respect to T , i.e. (x, y) = b0v0 + b1v1 + b2v2, b0 + b1 + b2 = 1 for (x, y) ∈ T .
We associate the BB-coefficients cTi,j,k of s|T relative to T with the domain points ξ 4

i,j,k := (iv0 + jv1 + kv2) /4 in T . The
union, without repetitions, of all domain points of each triangle in ∆ gives rise to set denoted by D4. For the construction
of our quasi-interpolating splines, we also consider the subsets D3 and D2, where D3 (D2) denotes the union, without
repetitions, of the sets of domain points for a cubic (quadratic) polynomial associated with each triangle T in ∆: ξ 3

i,j,k :=

(iv0 + jv1 + kv2) /3 (ξ 2
i,j,k := (iv0 + jv1 + kv2) /2).

As in [27], the proposed construction is based on an appropriate partition
{
Dℓ

i,j, i, j ∈ Z
}
of Dℓ, ℓ = 2, 3, 4:

- D4
i,j :=

{
vi,j
}

∪

{
ek,mi,j , k,m ∈ {0, 1} , k + m ̸= 0

}
∪

{
uk,m
i,j , zk,mi,j , k,m ∈ {−1, 0, 1} , k + m ̸= 0

}
, where ek,mi,j is the

midpoint of
[
vi,j, vi+k,j+m

]
, uk,m

i,j :=
1
4

(
3vi,j + vi+k,j+m

)
, zk,mi,j :=

1
4

(
2vi,j + vi+k,j+m + vr,s

)
, with vr,s the third vertex

of
[
vi,j, vi+k,j+m, vr,s

]
∈ ∆ counting counterclockwise;

- D3
i,j :=

{
vi,j, ti,j, t̃i,j

}
∪

{
w

k,m
i,j , k,m ∈ {−1, 0, 1} , k + m ̸= 0

}
, where ti,j and t̃i,j are the barycenters of Ti,j and T̃i,j,

respectively, wk,m
i,j :=

1
3

(
2vi,j + vi+k,j+m

)
,

- D2
i,j :=

{
vi,j, e

1,0
i,j , e0,1i,j , e1,1i,j

}
.

Therefore, Dℓ =
⋃

i,jD
ℓ
i,j, ℓ = 2, 3, 4. Figs. 2–4 show the domain points in Dℓ, ℓ = 4, 3, 2, lying in the hexagon Hi,j,

respectively.

3. C1 quartic quasi-interpolating splines based on D3 point values

Once introduced the needed notations, we define and analyze two different quasi-interpolating splines Q4,ℓf ∈ S1
4 (∆),

ℓ = 2, 3, for a given function f ∈ C
(
R2
)
, by assuming to know the values of f on Dℓ.

Firstly, we describe the construction of the spline Q4,3f ∈ S1
4 (∆) from the values f (v), v ∈ D3, by setting its BB-

coefficients on each triangle T ∈ ∆, taking into account that ∆ is a uniform triangulation. For example, we write the
restriction of Q4,3f to the triangle Ti,j as

Q4,3f|Ti,j = c
(
vi,j
)
B
Ti,j
4,0,0 + c

(
u1,1
i,j

)
B
Ti,j
3,1,0 + c

(
u1,0
i,j

)
B
Ti,j
3,0,1 + c

(
e1,1i,j

)
B
Ti,j
2,2,0 + c

(
z1,1i,j

)
B
Ti,j
2,1,1 (3.1)

+ c
(
e1,0i,j

)
B
Ti,j
2,0,2 + c

(
u−1,−1
i+1,j+1

)
B
Ti,j
1,3,0 + c

(
z0,−1
i+1,j+1j

)
B
Ti,j
1,2,1 + c

(
z−1,0
i+1,j

)
B
Ti,j
1,1,2

+ c
(
u−1,0
i+1,j

)
B
Ti,j
1,0,3 + c

(
vi+1,j+1

)
B
Ti,j
0,4,0 + c

(
u0,−1
i+1,j+1

)
B
Ti,j
0,3,1 + c

(
e0,1i+1,j

)
B
Ti,j
0,2,2

+ c
(
u0,1
i+1,j

)
B
Ti,j
0,1,3 + c

(
vi+1,j

)
B
Ti,j
0,0,4,

with c (p) denoting the BB-coefficient associated with the domain point p ∈ D4
i,j.
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Fig. 3. The points of D3 relative to Hi,j .

Fig. 4. The points of D2 relative to Hi,j .

Thanks to symmetry, it is sufficient to determine the setting of the BB-coefficients corresponding to one of the domain
points denoted by the letters v, u, e and z in D4. The other ones can be obtained by translation and/or rotation.

Let c
(
vi,j
)

:= f
(
vi,j
)
. The BB-coefficients corresponding to the domain points denoted by the letters u, e and z, are

expressed as linear combination of the values of f at the 37 domain points of D3 lying in Hi,j (see Fig. 3). For example,
the BB-coefficient associated with the domain point u1,1

ij has the following form

c
(
u1,1
ij

)
= ω0f

(
vij
)
+ ω1f

(
w

1,1
i,j

)
+ ω2f

(
w

1,0
i,j

)
+ ω3f

(
w

0,−1
i,j

)
+ ω4f

(
w

−1,−1
i,j

)
+ ω5f

(
w

−1,0
i,j

)
+ ω6f

(
w

0,1
i,j

)
+ ω7f

(
w

−1,−1
i+1,j+1

)
+ ω8f

(
ti,j
)
+ ω9f

(
w

−1,0
i+1

)
+ ω10f

(̃
ti,j−1

)
+ ω11f

(
w

0,1
i,j−1

)
+ ω12f

(
ti−1,j−1

)
+ ω13f

(
w

1,1
i−1,j−1

)
+ ω14f

(̃
ti−1,j−1

)
+ ω15f

(
w

1,0
i−1,j

)
+ ω16f

(
ti−1,j

)
+ ω17f

(
w

0,−1
i,j+1

)
+ ω18f

(̃
ti,j
)

+ ω19f
(
vi+1,j+1

)
+ ω20f

(
w

0,−1
i+1,j+1

)
+ ω21f

(
w

0,1
i+1,j

)
+ ω22f

(
vi+1,j

)
+ ω23f

(
w

−1,−1
i+1,j

)
+ ω24f

(
w

1,1
i,j−1

)
+ ω25f

(
vi,j−1

)
+ ω26f

(
w

−1,0
i,j−1

)
+ ω27f

(
w

1,0
i−1,j−1

)
+ ω28f

(
vi−1,j−1

)
+ ω29f

(
w

0,1
i−1,j−1

)
+ ω30f

(
w

0,−1
i−1,j

)
+ ω31f

(
vi,j−1

)
+ ω32f

(
w

1,1
i−1,j

)
+ ω33f

(
w

−1,−1
i,j+1

)
+ ω34f

(
vi,j+1

)
+ ω35f

(
w

1,0
i,j+1

)
+ ω36f

(
w

−1,0
i+1,j+1

)
.

In order to simplify the notations, let fi,j (D3) ∈ R37 be the vector of the values of f at the 37 domain points of D3 lying
in Hi,j, enumerated as in Fig. 5(left), and let ω ∈ R37 be the vector whose elements are enumerated in the same way. We
call ω a mask. Therefore, we write c

(
u1,1
i,j

)
= fi,j (D3) · ω, where A · B :=

∑n
k=1AkBk, with n the cardinality of A and B. The

BB-coefficients associated with the other u−points (u1,0
i,j , u

0,−1
i,j , u−1,−1

i,j , u−1,0
i,j , and u0,1

i,j ) are defined in a similar way but using
the rotated versions of the mask ω.

Analogously, the BB-coefficients c
(
e1,1i,j

)
and c

(
z1,1i,j

)
are defined by considering the masks α and β , respectively

c
(
e1,1i,j

)
= fi,j (D3) · α, c

(
z1,1i,j

)
= fi,j (D3) · β . The BB-coefficients associated with the other e, z−points are defined from the

rotated versions of α and β .
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Fig. 5. Notation used for enumerate fi,j (Dℓ), α, β , ω in case ℓ = 3 (left) and ℓ = 2 (right).

Fig. 6. Mask α for the evaluation of the BB-coefficient associated with the point e1,1i,j . The coefficients of α depend on two free parameters α0 and α2 .

In [27], the authors construct a quasi-interpolating spline, that we denote by Sf , providing specific masks ω, α and β . The
operator S : C

(
R2
)

→ S1
4 (∆) associated with their quasi-interpolation scheme is exact on P3, its infinity norm is less than

or equal to 10 and classical error estimates hold for enough regular functions (see e.g. [2,5]), i.e. for an arbitrary triangle T in
∆, there exists an absolute constant K such that for every f ∈ Cm+1

(
R2
)
, 0 ≤ m ≤ 3,

∥Dγ (f − Sf )∥∞,T ≤ Khm+1−|γ |
Dm+1f


∞,ΩT

, (3.2)

for all 0 ≤ |γ | ≤ m, γ := (γ1, γ2), with ΩT denoting the union of the triangles in ∆ having a non-empty intersection with T .
Here, we want to define and study a family of quasi-interpolating splines depending on free parameters. The scheme

proposed in [27] belongs to this family and it is obtained by fixing the free parameters in a particular way.
We determine the BB-coefficients of the spline (and consequently the expression of the masks ω, α and β) by imposing

the C1 continuity and the reproduction of P3, that is the space of polynomials of maximum degree that can be reproduced
by a quasi-interpolating operator in S1

4 (∆) (see e.g. [2,30]). Thus, the following constrains have to be satisfied

Q4,3f ∈ C1 (R2) , and Q4,3f = f for all f ∈ P3. (3.3)

Proposition 1. The problem (3.3) has infinitely many solutions depending on the fourteen parameters α0, α2, βj, j ∈

{1, 2, 3, 7, 8, 9, 10, 11, 12, 19, 20, 21}. The values of the masks α, β , ω satisfy the conditions shown in Figs. 6–8, respectively
and reported in the Appendix .

Proof. As in [27], due to the symmetry of the partition, and since all the BB-coefficients are obtained by using a rotated
version of the masks ω, α and β defining u1,1

i,j , e
1,1
i,j and z1,1i,j , respectively, it is straightforward to verify that for the mask α,

β and ω it holds c
(
vi,j
)

+ c
(
u1,1
i,j

)
= c

(
u1,0
i,j

)
+ c

(
u0,1
i,j

)
and c

(
u1,1
i,j

)
+ c

(
e1,1i,j

)
= c

(
z1,1i,j

)
+ c

(
z0,1i,j

)
. These equalities

guarantee the C1 class of Q4,3f . To prove the exactness of Q4,3 on P3 we show that it reproduces the Bernstein polynomials
BT
i,j,k, i + j + k = 3, T ∈ ∆. As remarked in [27], it suffices to prove that Q4,3

(
BT
3,0,0

)
= BT

3,0,0, Q4,3
(
BT
2,1,0

)
= BT

2,1,0 and
Q4,3

(
BT
1,1,1

)
= BT

1,1,1. We will prove the last one being T the triangle Ti,j. The proof for the triangle T̃i,j is similar, as well
as for the other Bernstein polynomials. We must determine the BB-coefficients of Q4,3

(
BT
1,1,1

)
on Ti,j. They are associated

with the domain points vi,j, u
1,1
i,j , u

1,0
i,j , e

1,1
i,j , z

1,1
i,j , e1,0i,j , u

−1,−1
i+1,j+1, z

0,−1
i+1,j+1, z

−1,0
i+1,j , u

−1,0
i+1,j, vi+1,j+1, u

0,−1
i+1,j+1, e

0,1
i+1,j, u

−1,0
i+1,j, and vi+1,j in Ti,j.

To compute them, the values of B1,1,1 = B
Ti,j
1,1,1 at the domain points in Hi,j are needed (see Fig. 3, as well as Fig. 5(left) for
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Fig. 7. Mask β for the evaluation of the BB-coefficient associated with the point z1,1i,j . The coefficients of β depend on the free parameters α0 , α2 and
βj , j ∈ {1, 2, 3, 7, 8, 9, 10, 11, 12, 19, 20, 21}. The expressions of the coefficients β22 , β23 , β24 , β25 , β26 , β27 (in blue) are reported in the Appendix. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Mask ω for the evaluation of the BB-coefficient associated with the point u1,1
i,j . The coefficients of ω depend on the free parameters α0 , α2 and βj ,

j ∈ {1, 2, 3, 7, 8, 9, 10, 11, 12, 19, 20, 21}. The expressions of the coefficients ω3 , ω9 , ω19 , ω20 , ω21 , ω22 , ω23 , ω24 , ω25 , ω26 , ω27 (in blue) are reported in the
Appendix. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

enumeration). They determine the list(
0, 0,

2
9
,
1
3
, 0,

4
9
,
1
3
, 0,

1
9
,
4
9
,
8
9
,
4
3
,
4
9
, 0,

5
9
,
20
9

,
16
9

,
4
3
,
2
9
, 0, 0, 0, 0, 1, 2, 3,

16
9

,
5
9
, 0,

2
3
,
8
3
, 6, 5, 4, 3,

8
9
,
1
9

)
.

Thus, using the definitions in Section 3 for computing the BB-coefficients of the quasi-interpolating spline, the following
expressions for Q4,3

(
B1,1,1

)
on Ti,j result:

c
(
v i,j
)

= 0,

c
(
u1,1
i,j

)
= −

2
9

(3ω3 + 3ω6 − ω8 + 4ω10 + 12ω11 + 8ω12 − 5ω14 + 8ω16 + 12ω17 + 4ω18 + 3ω23 + 12ω24

+ 27ω25 + 24ω26 + 15ω27 − 12ω29 − 12ω30 + 15ω32 + 24ω33 + 27ω34 + 12ω35 + 3ω36) ,

c
(
u1,0
i,j

)
= −

2
9

(3ω2 + 3ω5 + 4ω8 + 12ω9 + 8ω10 − 5ω12 + 8ω14 + 12ω15 + 4ω16 − ω18 + 3ω20 + 12ω21

+ 27ω22 + 24ω23 + 15ω24 − 12ω26 − 12ω27 + 15ω29 + 24ω30 + 27ω31 + 12ω32 + 3ω33) ,

c
(
e1,1i,j

)
= −

2
9

(3α3 + 3α6 − α8 + 4α10 + 12α11 + 8α12 − 5α14 + 8α16 + 12α17 + 4α18 + 3α23 + 12α24

+ 27α25 + 24α26 + 15α27 − 12α29 − 12α30 + 15α32 + 24α33 + 27α34 + 12α35 + 3α36) ,

c
(
z1,1i,j

)
= −

2
9

(3β3 + 3β6 − β8 + 4β10 + 12β11 + 8β12 − 5β14 + 8β16 + 12β17 + 4β18 + 3β23 + 12β24

+ 27β25 + 24β26 + 15β27 − 12β29 − 12β30 + 15β32 + 24β33 + 27β34 + 12β35 + 3β36) ,
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c
(
e1,0i,j

)
= −

2
9

(3α2 + 3α5 + 4α8 + 12α9 + 8α10 − 5α12 + 8α14 + 12α15 + 4α16 − α18 + 3α20 + 12α21

+ 27α22 + 24α23 + 15α24 − 12α26 − 12α27 + 15α29 + 24α30 + 27α31 + 12α32 + 3α33) ,

c
(
u−1,−1
i+1,j+1

)
= −

2
9

(3ω2 + 3ω5 + 4ω8 + 12ω9 + 8ω10 − 5ω12 + 8ω14 + 12ω15 + 4ω16 − ω18 + 3ω20 + 12ω21

+ 27ω22 + 24ω23 + 15ω24 − 12ω26 − 12ω27 + 15ω29 + 24ω30 + 27ω31 + 12ω32 + 3ω33) ,

c
(
z0,−1
i+1,j+1

)
= −

2
9

(3β3 + 3β6 − β8 + 4β10 + 12β11 + 8β12 − 5β14 + 8β16 + 12β17 + 4β18 + 3β23 + 12β24

+ 27β25 + 24β26 + 15β27 − 12β29 − 12β30 + 15β32 + 24β33 + 27β34 + 12β35 + 3β36) ,

c
(
z−1,0
i+1,j

)
= −

2
9

(3β3 + 3β6 − β8 + 4β10 + 12β11 + 8β12 − 5β14 + 8β16 + 12β17 + 4β18 + 3β23 + 12β24

+ 27β25 + 24β26 + 15β27 − 12β29 − 12β30 + 15β32 + 24β33 + 27β34 + 12β35 + 3β36) ,

c
(
u−1,0
i+1,j

)
= −

2
9

(3ω3 + 3ω6 − ω8 + 4ω10 + 12ω11 + 8ω12 − 5ω14 + 8ω16 + 12ω17 + 4ω18 + 3ω23 + 12ω24

+ 27ω25 + 24ω26 + 15ω27 − 12ω29 − 12ω30 + 15ω32 + 24ω33 + 27ω34 + 12ω35 + 3ω36) ,

c
(
vi+1,j+1

)
= 0,

c
(
u0,−1
i+1,j+1

)
= −

2
9

(3ω3 + 3ω6 − ω8 + 4ω10 + 12ω11 + 8ω12 − 5ω14 + 8ω16 + 12ω17 + 4ω18 + 3ω23 + 12ω24

+ 27ω25 + 24ω26 + 15ω27 − 12ω29 − 12ω30 + 15ω32 + 24ω33 + 27ω34 + 12ω35 + 3ω36) ,

c
(
e0,1i+1,j

)
= −

2
9

(3α2 + 3α5 + 4α8 + 12α9 + 8α10 − 5α12 + 8α14 + 12α15 + 4α16 − α18 + 3α20 + 12α21

+ 27α22 + 24α23 + 15α24 − 12α26 − 12α27 + 15α29 + 24α30 + 27α31 + 12α32 + 3α33) ,

c
(
u0,1
i+1,j

)
= −

2
9

(3ω2 + 3ω5 + 4ω8 + 12ω9 + 8ω10 − 5ω12 + 8ω14 + 12ω15 + 4ω16 − ω18 + 3ω20 + 12ω21

+ 27ω22 + 24ω23 + 15ω24 − 12ω26 − 12ω27 + 15ω29 + 24ω30 + 27ω31 + 12ω32 + 3ω33) ,

c
(
vi+1,j

)
= 0.

Direct substitution of masks α, β , ω reported in the and satisfying the conditions shown in Figs. 6–8 gives way to the
values

(
0, 0, 0, 0, 1

2 , 0, 0,
1
2 ,

1
2 , 0, 0, 0, 0, 0, 0

)
. They are the BB-coefficients of B1,1,1 on Ti,j as a quartic polynomial because

B1,1,1 =
3!

1!1!1!λ1λ2λ3 (λ1 + λ2 + λ3) =
1
2

(
B2,1,1 + B1,2,1 + B1,1,2

)
. Therefore, Q4,3 reproduces B1,1,1. □

Also for Q4,3 the estimates (3.2) hold.
Now, we propose different strategies to choose the free parameters.
The masks given in [27] correspond to the following ones:

α0 =
1
3
, α2 = −

3
8
, β1 = β2 = β3 = β10 = β11 = β12 = 0, β7 = β9 = −

9
16

, β8 =
9
4
, β19 =

5
24

, β20 = β1 = −
3
8
.

A first immediate possibility consists in imposing all the free parameters equal to zero. Another possibility consists in
minimizing the maximum of the quasi-interpolation errors

Q4,3mγ − mγ


∞

for the quartic monomials (mγ (x, y) = xγ1yγ2 ,
|γ | = 4), subject to the reproduction of the cubic polynomials. After some computations, it can be proven that the objective
function depends only on α0 and α2. The minimum is attained uniquely when α0 =

10
21 and α2 = −

27
56 . Once again, β1, β2, β3,

β7, β8, β9, β10, β11, β12, β19, β20, β21 are free parameters. In order to find appropriate values for them, the maximum of the
quasi-interpolation errors associated with the quintic monomials can be minimized. The constrained optimization problem
is equivalent to a unconstrained problem that can be expressed into the form max1≤j≤p

⏐⏐∑m
i=1zibij − cj

⏐⏐. It is transformed
into a linear programming problem whose solution is attained only at

β1 = β2 = β3 = β7 = β9 = β11 = 0, β8 =
613
448

, β10 = −
321
4480

, β12 =
653
4480

,

β19 =
1803
11200

, β20 = −
5021
14000

, β21 = −
7683
28000

.

(3.4)

Since the Bernstein polynomials form a partition of unity, we have that⏐⏐Q4,3f
⏐⏐ ≤ max

{
∥α∥1 , ∥β∥1 , ∥ω∥1

}
= max

{
36∑
k=0

|αk| ,

36∑
k=0

|βk| ,

36∑
k=0

|ωk|

}
,

for a function f with ∥f ∥∞ = 1, so that
Q4,3


∞

≤ max
{
∥α∥1 , ∥β∥1 , ∥ω∥1

}
. For this choice of parameters, we obtain that

the infinity norm of Q4,3 is bounded by 47697
2800 ≈ 17.03.

Another criterion for the selection of the free parameters could be the minimization of the operator norm.
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Fig. 9. Mask α for the evaluation of the BB-coefficient associated with the point e1,1i,j .

4. C1 quartic quasi-interpolating splines based on D2 point values

The degree of the splines and the required exactness motivate the use of the lattices D4 and D3 in [27] to define the
C1-quartic quasi-interpolating spline on ∆. The previous study shows that there are infinitely many solutions to the
considered problem, and therefore there is a reasonable prospect that there aremaskswith fewer points providing operators
that behave in the same way.

Now, we use the same logical scheme of the previous section to construct a quasi-interpolating spline Q4,2f based on the
values f (v), v ∈ D2 and therefore using fewer points with respect to Q4,3f .

Taking into account the symmetry of ∆, also in this case it is sufficient to determine the setting of the BB-coefficients
corresponding to one of the domain points denoted by the letters v, u, e and z in D4, in order to compute (3.1). The other
ones can be obtained by translation and/or rotation.

Let c
(
vi,j
)

:= f
(
vi,j
)
. The BB-coefficients corresponding to the domain points denoted by the letters u, e and z, are

expressed as linear combinations of the values of f at the 19 domain points of D2 lying in Hi,j (see Fig. 4).
Let fi,j (D2) ∈ R19 be the vector of the values of f at the 19 domain points of D2 lying in Hi,j and let α ∈ R19, β ∈ R19 and

ω ∈ R19 be the three masks, enumerated as in Fig. 5(right). Therefore, we write c
(
e1,1i,j

)
= fi,j (D2) · α, c

(
z1,1i,j

)
= fi,j (D2) · β ,

and c
(
u1,1
i,j

)
= fi,j (D2) · ω.

By imposing the same constrains of (3.3), we have the problem

Q4,2f ∈ C1 (R2) and Q4,2f = f for all f ∈ P3, (4.1)

and, by using a symbolic computation software, the following result is established.

Proposition 2. The problem (4.1) has infinitely many solutions depending on the three parameters β1, β2, β3. The values of the
mask α (see Fig. 9) are fixed, with αj = 0, j ∈ {3, 4, 5, 10, 11, 12, 13, 14, 15, 16}, and

α0 = α7 = −
1
3 , α1 =

2
3 , α2 = α6 = α8 = α18 =

1
3 , α9 = α17 = −

1
6 .

The values of the masks β and ω satisfy the following conditions (see Figs. 10, 11):

β0 =
1
3 , β4 =

1
3 − β1, β5 =

1
3 − β2, β6 = −β3, β7 = −

5
8 +

5
8β1 +

3
8β2 −

3
8β3, β8 =

7
6 − β1 − β2,

β9 = −
5
8 +

3
8β1 +

5
8β2 +

3
8β3, β10 =

1
2 − β2 − β3, β11 = −

3
8β1 +

3
8β2 +

5
8β3, β12 = −

1
2 + β1 − β3,

β13 =
11
24 −

5
8β1 −

3
8β2 +

3
8β3, β14 = −

5
6 + β1 + β2, β15 =

11
24 −

3
8β1 −

5
8β2 −

3
8β3, β16 = −

1
2 + β2 + β3,

β17 =
3
8β1 −

3
8β2 −

5
8β3, β18 =

1
2 − β1 + β3,

ω0 = 1, ω1 = −
2
3 + β1 + β2, ω2 = −

1
3 + β2 + β3, ω3 =

1
3 − β1 + β3, ω4 =

2
3 − β1 − β2, ω5 =

1
3 − β2 − β3,

ω6 = −
1
3 + β1 − β3, ω7 = −

11
12 + β1 + β2, ω8 =

4
3 − β1 − 2β2 − β3, ω9 = −

11
24 + β2 + β3,

ω10 = β1 − β2 − 2β3, ω11 =
11
24 − β1 + β3, ω12 = −

4
3 + 2β1 + β2 − β3, ω13 =

11
12 − β1 − β2,

ω14 = −
4
3 + β1 + 2β2 + β3, ω15 =

11
24 − β2 − β3, ω16 = −β1 + β2 + 2β3, ω17 = −

11
24 + β1 − β3,

ω18 =
4
3 − 2β1 − β2 + β3.

Notice that for all β1, β2 and β3 the error estimates (3.2) hold for the corresponding operator Q4,2.
Now, we want to propose different strategies to choose the free parameters.
A first possibility consists in imposing all the free parameters equal to zero. Instead, if we require β1 = β2 and β3 = 0, we

obtain masks β and ω with nice symmetry properties, depending on the parameter β1. Then we choose the parameter β1 by
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Fig. 10. Mask β for the evaluation of the BB-coefficient associated with the point z1,1i,j .

Fig. 11. Mask ω for the evaluation of the BB-coefficient associated with the point u1,1
i,j .

minimizing an upper bound for the infinity norm of Q4,2. Indeed, since
Q4,2


∞

≤ max
{
∥α∥1 , ∥β∥1 , ∥ω∥1

}
and ∥α∥1 = 3,

by using a symbolic computation software we find that the infinity norm of Q4,2 is equal to 3 for β1 ∈
[ 13
36 ,

41
84

]
.

5. Numerical results

In this section, we show the results of some numerical tests, developed in the Matlab environment, for several operators
on Franke’s function

f1 (x) = 0.75e

(
−

(9x1−2)
2

4 −
(9x2−2)

2

4

)
+ 0.75e

(
−

(9x1+1)
2

49 −
9x2+1

10

)
+ 0.5e

(
−

(9x1−7)
2

4 −
(9x2−3)

2

4

)
− 0.2e

(
−(9x1−4)2−(9x2−7)2

)
,

and the highly oscillating test function f2 (x) = 0.1
(
1 + cos

(
12π cos

(
π

√
x21 + x22

)))
, both defined on the unit square

[0, 1]2 and compare them with the ones provided by the operator S defined in [27].
In general, for a step length h, the maximal error (ME) for a given function f and a quasi-interpolation opera-

tor Q is estimated as the value MEh given by maximum of the quasi-interpolation error |f − Qf | on a finite subset
G =

{(
g1,i, g2,j

)
: (i, j) ∈ J

}
of points lying in the unit square, and the root mean square error (RMSE) as RMSEh :=√∑

(i,j)∈J(f (g1,i,g2,j)−Qf (g1,i,g2,j))
2

card J , with card J standing for the cardinality of J .
In order to evaluate these values we have sampled the splines on 300 points in each triangle of ∆, for any considered

value of h. The evaluation of the quasi-interpolating splines is carried out by the de Casteljau’s algorithm [5, p. 25].
The numerical convergence orders are computed by the formula NCO := log2

MEh
MEh/2

.
We have omitted any reference to f and Q in denoting these quantities.
For the more difficult function f2, we started the computations by using a larger set of data points, i.e. by considering an

initial value of h smaller than the one used for the test function f1.
Concerning the quasi-interpolating splines based on the points of D3, we have obtained the results given in Tables 1–3.

In particular, Table 1 contains the maximal and root mean square errors and the numerical convergence orders provided by
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Table 1
Numerical results given by the spline based on the points of D3 whose masks are obtained by considering all the 14 free parameters equal to zero in
Proposition 1.

Test function f1 Test function f2
h MEh NCO RMSEh MEh NCO RMSEh
1/4 4.95 × 10−1 – 1.66 × 10−1

1/8 1.93 × 10−1 1.36 3.34 × 10−2

1/16 1.37 × 10−1 3.82 2.22 × 10−3 1.81 – 4.06 × 10−1

1/32 6.26 × 10−4 4.44 8.19 × 10−5 1.23 0.51 1.81 × 10−1

1/64 2.70 × 10−5 4.53 2.91 × 10−6 1.06 × 10−1 3.58 1.41 × 10−2

1/128 1.33 × 10−6 4.34 1.25 × 10−7 3.96 × 10−3 4.74 4.82 × 10−4

1/256 7.69 × 10−8 4.12 6.63 × 10−9 1.34 × 10−4 4.89 1.70 × 10−5

1/512 4.69 × 10−9 4.03 3.94 × 10−10 5.64 × 10−6 4.57 7.52 × 10−7

Table 2
Numerical results given by the spline based on the points of D3 whose masks are obtained by computing the free parameters in Proposition 1 minimizing
the error for quartic and quintic monomials.

Test function f1 Test function f2
h MEh NCO RMSEh MEh NCO RMSEh
1/4 1.09 × 10−1 – 2.75 × 10−2

1/8 2.06 × 10−2 2.41 3.80 × 10−3

1/16 3.57 × 10−3 2.53 3.46 × 10−4 4.13 × 10−1 – 8.60 × 10−2

1/32 2.37 × 10−4 3.91 1.85 × 10−5 1.57 × 10−1 1.40 2.19 × 10−2

1/64 1.17 × 10−5 4.34 9.57 × 10−7 1.63 × 10−2 3.27 2.49 × 10−3

1/128 6.74 × 10−7 4.12 5.55 × 10−8 9.43 × 10−4 4.11 1.30 × 10−4

1/256 4.08 × 10−8 4.05 3.40 × 10−9 4.69 × 10−5 4.33 6.35 × 10−6

1/512 2.53 × 10−9 4.01 2.11 × 10−10 3.01 × 10−6 3.96 3.57 × 10−7

Table 3
Numerical results given by the spline proposed in [27].

Test function f1 Test function f2
h MEh NCO RMSEh MEh NCO RMSEh
1/4 7.27 × 10−2 – 1.78 × 10−2

1/8 1.56 × 10−2 2.22 1.76 × 10−3

1/16 1.28 × 10−3 3.61 1.37 × 10−4 4.02 × 10−1 – 8.54 × 10−2

1/32 1.02 × 10−4 3.64 1.14 × 10−5 8.86 × 10−2 2.18 1.06 × 10−2

1/64 1.06 × 10−5 3.27 8.37 × 10−7 7.66 × 10−3 3.53 8.05 × 10−4

1/128 7.70 × 10−7 3.79 5.54 × 10−8 4.51 × 10−4 4.08 6.74 × 10−5

1/256 4.97 × 10−8 3.95 3.52 × 10−9 3.73 × 10−5 3.60 5.20 × 10−6

1/512 3.13 × 10−9 3.99 2.21 × 10−10 2.79 × 10−6 3.74 3.47 × 10−7

Table 4
Numerical results given by the spline based on the points of D2 whose masks are obtained by considering all the 3 free parameters equal to zero in
Proposition 2.

Test function f1 Test function f2
h MEh NCO RMSEh MEh NCO RMSEh
1/4 2.65 × 10−1 – 9.56 × 10−2

1/8 9.33 × 10−2 1.51 2.08 × 10−2

1/16 1.79 × 10−2 2.38 1.80 × 10−3

1/32 9.52 × 10−4 4.23 8.54 × 10−5

1/64 3.71 × 10−5 4.68 3.51 × 10−6 1.25 × 10−1 – 1.28 × 10−2

1/128 1.93 × 10−6 4.26 1.76 × 10−7 5.90 × 10−3 4.40 5.84 × 10−4

1/256 1.15 × 10−7 4.07 1.03 × 10−8 1.94 × 10−4 4.93 2.30 × 10−5

1/512 7.08 × 10−9 4.02 6.30 × 10−10 8.42 × 10−6 4.52 1.12 × 10−6

the spline in Proposition 1 with all free parameters equal to zero. The results for the quasi-interpolation scheme with masks
obtained by minimizing the error for quartic and quintic monomials, provided by the values α0 =

10
21 , α2 = −

27
56 and, are

shown in Table 2. Finally, Table 3 shows the results for the quasi-interpolating splines Sf1 and Sf2 defined in [27]. The results
confirm the theoretical value for the convergence order.

Concerning the quasi-interpolating splines based on the points of D2, we have obtained the results given in Tables 4 and
5. In particular, Table 4 contains the maximal and root mean errors and the numerical convergence orders provided by the
spline in Proposition 2 with all the three free parameters equal to zero. The results for the quasi-interpolation scheme with
masks obtained by imposing symmetry and choosing β1 =

2
5 , are shown in Table 5. The results confirm the theoretical value

for the convergence order.
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Table 5
Numerical results given by the spline based on the points of D2 whose masks are obtained by computing the free parameters in Proposition 2 imposing
symmetry and choosing β1 =

2
5 .

Test function f1 Test function f2
h MEh NCO RMSEh MEh NCO RMSEh
1/4 1.69 × 10−1 – 4.25 × 10−2

1/8 4.48 × 10−2 1.92 8.06 × 10−3

1/16 7.90 × 10−3 2.50 7.40 × 10−4

1/32 4.92 × 10−4 4.01 4.52 × 10−5

1/64 2.96 × 10−5 4.05 2.64 × 10−6 4.04 × 10−2 – 4.83 × 10−3

1/128 1.82 × 10−6 4.02 1.61 × 10−7 2.39 × 10−3 4.08 2.91 × 10−4

1/256 1.13 × 10−7 4.01 1.00 × 10−8 1.25 × 10−4 4.26 1.67 × 10−5

1/512 7.05 × 10−9 4.00 6.26 × 10−10 7.31 × 10−6 4.10 1.01 × 10−6

Fig. 12. The quartic C1 splines Q4,3f1 with h = 1/64 (left) and Q4,3f2 (right) with h = 1/128, whose masks are obtained by computing the free parameters
in Proposition 1 minimizing the error for quartic and quintic monomials.

Moreover, the approach proposed in the paper produces visually pleasant surfaces, as shown in Figs. 12 and 13.
Finally, we remark that the two families of quasi-interpolating splines Q4,3f and Q4,2f , based on the points of D3 and D2,

respectively, produce similar results. However, the number of evaluation points is halved in case of Q4,2f and therefore the
computational cost is reduced.

We remark that, in order to compute the BB-coefficients related to triangles having a non interior vertex, we have
extended the triangulation, to be able to compute the corresponding masks.

6. Conclusions

Wehave analyzed the construction of C1 quartic quasi-interpolants defined on a type-1 triangulationwithout imposing a
structure based on the translation of one ormore compactly supported functions. Instead, the quasi-interpolating splines are
determined by setting their BB-coefficients to appropriate combinations of the given data only using values of the function
to be approximated. The associated operator reproduces cubic polynomials.

We have considered two different sets of evaluation points. In the first case, it has been proved that this problem has a
general solution depending of fourteen parameters. The scheme proposed in [27] is a particular case that provides a quasi-
interpolation operator with uniform norm equal to 10. We have also constructed an operator that minimizes the maximum
of the quasi-interpolation errors for quartic and quintic monomials and it behaves like the operator in [27]. In the second
case, the number of points involved in the computation of the BB-coefficients is smaller. The masks are composed of 19
values instead of 37. The general solution corresponds to a mask without free parameters and two masks depending on
only three parameters. A specific choice yields a scheme depending on a parameter and having nice symmetries. The free
parameter can be chosen to produce operators with infinity norm equal to 3. The main contribution in this case is that the
computational cost has been halved. Moreover, a better result with respect to the uniform norm has been obtained.
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Fig. 13. The quartic C1 splines Q4,2f1 with h = 1/64 (left) and Q4,2f2 with h = 1/128 (right), whose masks are obtained by computing the free parameters
in Proposition 2 imposing symmetry and choosing β1 =

2
5 .
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Appendix

The values of the masks α, β , ω in Proposition 1, solution of the problem (3.3), satisfy the following conditions:
• mask α:

α1 = α7 = −
1
4 −

3
2α0, α6 = α9 = α20 = α35 = −

1
4 −

3
2α0 − α2, α8 = α18 =

5
4 + 3α0, α17 = α21 = α36 = α2, α19 = α0,

α22 = α34 =
1
2α0, αj = 0, j ∈ {3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33},

• mask β

β0 =
1
2

+
1
2
α0, β4 = −

1
4

−
3
2
α0 − α2 − β1, β5 = α2 − β2, β6 = −β3, β13 = α2 − β7, β14 =

5
4

+ 3α0 − β8,

β15 = −
1
4

−
3
2
α0 − α2 − β9, β16 = −β10, β17 = −β11, β18 = −β12,

β22 = −
35
24

+ β1 + β2 + β7 +
4
3
β8 + β9 +

2
3
β10 −

2
3
β12 − β19,

β23 =
865
192

−
1
16

α0 +
1
12

α2 −
13
4

β1 − 3β2 +
1
3
β3 −

7
2
β7 −

14
3

β8 −
15
4

β9 −
11
6

β10

+
5
12

β11 +
7
3
β12 +

9
4
β19 −

5
3
β20 −

7
3
β21,

β24 = −
253
60

+
1
5
α0 −

1
15

α2 +
17
5

β1 +
12
5

β2 −
16
15

β3 +
19
5

β7 +
68
15

β8 + 3β9 +
2
3
β10

−
4
3
β11 −

43
15

β12 −
9
5
β19 +

7
3
β20 +

8
3
β21,

β25 =
35
48

− β1 + β3 − β7 −
2
3
β8 +

2
3
β10 + β11 +

4
3
β12 + β19,

β26 =
63
40

−
3
10

α0 −
1
15

α2 −
3
5
β1 −

8
5
β2 −

16
15

β3 −
6
5
β7 −

32
15

β8 − 2β9 −
5
3
β10 −

4
3
β11

−
8
15

β12 −
9
5
β19 −

8
3
β20 −

7
3
β21,
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β27 = −
77
64

+
3
16

α0 +
1
12

α2 +
3
4
β1 + β2 +

1
3
β3 +

3
2
β7 +

5
3
β8 +

5
4
β9 +

5
6
β10

+
5
12

β11 −
1
3
β12 +

9
4
β19 +

7
3
β20 +

5
3
β21,

β28 =
1
2
α0 − β19, β29 = −

1
4

−
3
2
α0 − α2 − β20, β30 = α2 − β21,

β31 = −β22 +
1
2
α0, β32 = −β23, β33 = −β24, β34 = −β25, β35 = −β26, β36 = −β27.

• mask ω

ω0 = 1, ω1 =
1
4 +

3
2α0+β1+β2, ω2= −α2+β2+β3, ω3 = −

1
4 −

3
2α0−α2−β1+β3, ω4= −ω1, ω5= −ω2,

ω6 = −ω3, ω7 =
1
4 +

3
2α0+β7+β9, ω8 = −

5
4−3α0+β8+β10, ω9 =

1
4 +

3
2α0+α2+β9+β11, ω10= β10+β12,

ω11 = α2−β7+β11, ω12 =
5
4+3α0−β8+β12, ω13= −ω7, ω14= −ω8, ω15= −ω9, ω16= −ω10, ω17= −ω11,

ω18 = −ω12, ω19 = −
35
24−α0+β1+β2+β7 +

4
3β8+β9 +

2
3β10 −

2
3β12,

ω20 =
913
192 +

23
16α0 +

13
12α2 −

13
4 β1−3β2 +

1
3β3 −

7
2β7 −

14
3 β8 −

15
4 β9 −

11
6 β10

+
5
12β11 +

7
3β12 +

9
4β19 −

2
3β20 −

7
3β21,

ω21 = −
253
60 +

1
5α0 −

16
15α2 +

17
5 β1 +

12
5 β2 −

16
15β3 +

19
5 β7 +

68
15β8+3β9 +

2
3β10

−
4
3β11 −

43
15β12 −

9
5β19 +

7
3β20 +

11
3 β21,

ω22 = −
35
48 −

1
2
α0+β2+β3 +

2
3β8+β9 +

4
3β10+β11 +

2
3β12,

ω23 =
5837
960 −

29
80α0 +

1
60α2 −

77
20β1 −

23
5 β2 −

11
15β3 −

47
10β7 −

34
5 β8 −

23
4 β9 −

7
2β10

−
11
12β11 +

9
5β12 +

9
20β19 −

13
3 β20 −

14
3 β21,

ω24 = −
5203
960 +

31
80α0 +

1
60α2 +

83
20β1 +

17
5 β2 −

11
15β3 +

53
10β7 +

31
5 β8 +

17
4 β9 +

3
2β10

−
11
12β11 −

16
5 β12 +

9
20β19 +

14
3 β20 +

13
3 β21,

ω25 =
35
48 +

1
2α0−β1+β3−β7 −

2
3β8 +

2
3β10+β11 +

4
3β12,

ω26 =
53
40 −

9
5α0 −

16
15α2 −

3
5β1 −

8
5β2 −

16
15β3 −

6
5β7 −

32
15β8−2β9 −

5
3β10 −

4
3β11 −

8
15β12 −

9
5β19 −

11
3 β20 −

7
3β21,

ω27 = −
77
64 +

3
16α0 +

13
12α2 +

3
4β1+β2 +

1
3β3 +

3
2β7 +

5
3β8 +

5
4β9 +

5
6β10 +

5
12β11 −

1
3β12 +

9
4β19 +

7
3β20 +

2
3β21,

ω28 = −ω19, ω29= −ω20, ω30= −ω21, ω31= −ω22, ω32= −ω23,

ω33 = −ω24, ω34= −ω25, ω35= −ω26, ω36= −ω27,

where α0, α2, βj, j ∈ {1, 2, 3, 7, 8, 9, 10, 11, 12, 19, 20, 21} are free parameters.
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