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Abstract

In this paper we propose a specially designed memetic algorithm for mul-
timodal optimisation problems. The proposal uses a niching strategy, called
region-based niching strategy, that divides the search space in predefined and
indexable hypercubes with decreasing size, called regions. This niching tech-
nique allows our proposal to keep high diversity in the population, and to keep
the most promising regions in an external archive. The most promising solutions
are improved with a local search method and also stored in the archive. The
archive is used as an index to effiently prevent further exploration of these areas
with the evolutionary algorithm. The resulting algorithm, called Region-based
Memetic Algorithm with Archive, is tested on the benchmark proposed in the
special session and competition on niching methods for multimodal function op-
timisation of the Congress on Evolutionary Computation in 2013. The results
obtained show that the region-based niching strategy is more efficient than the
classical niching strategy called clearing and that the use of the archive as re-
strictive index significantly improves the exploration efficiency of the algorithm.
The proposal achieves better exploration and accuracy than other existing tech-
niques.

Keywords: Multimodal optimisation, memetic algorithm, niching strategy

1. Introduction1

Many real world problems offer various solutions considered as global op-2

tima. The identification of multiple solution has thus gained popularity in the3

research community. It is referred to as multimodal optimisation as the objec-4

tive is to retrieve more than one optima. While classical evolutionary algorithms5

Email addresses: b.m.e.lacroix@rgu.ac.uk (Benjamin Lacroix),
daniel.molina@uca.es (Daniel Molina), herrera@decsai.ugr.es (Francisco Herrera)

Preprint submitted to Information Sciences June 1, 2016



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(EA) were designed to identify a single optimum, some modifications have to6

be applied to identify multiple optima, preventing their premature convergence7

and maintaining the diversity in their population to ensure the exploration of8

distinct areas of the fitness landscape. Such techniques, known as niching strate-9

gies [6], are meant to stay in the population subgroups of individuals, or niches,10

in different parts of the search domain.11

Most existing techniques’ efficiency relies on two problem dependent param-12

eters, the niche radius and the population size [7, 16, 42]. The first one should13

be defined according to the distance between optima in the fitness landscape14

and the second one according to the number of optima to locate. Both data are15

however usually unknown in real world problems. Nowadays, research interest16

focuses on designing EA which are less dependent on those parameters.17

The main challenge when designing an EA for multimodal optimisation is to18

create an algorithm capable of approximating with the highest level of accuracy19

the different global optima.20

Memetic algorithms (MA) [35] are the hybridisation between EA and local21

search methods (LS) combining in one model the exploration power of the for-22

mer and the exploitation capacity of the latter. This hybridisation can achieve23

a good trade-off between the exploration of the domain search and the exploita-24

tion of found solutions, so it is important to obtain good results in EAs [59],25

and it also offers interesting properties when applying them to multimodal opti-26

misation problems from the multimodal optimisation point of view. Indeed, as27

we said before, niching techniques used with classical EA forms sub-populations28

destined to explore and optimise different areas of the search space with the29

same mechanism. MA separate these efforts, leaving the exploration task to the30

EA and the refinement of the most promising regions identified by the EA to31

the LS method.32

In a previous work [21], we designed a MA for global continuous optimisa-33

tion problems called region based memetic algorithm with local search chaining34

(RMA-LSCh). It proposed a novel niching strategy, the originality of which35

lies in the definition of a niche. While traditionally the niche surrounding a36

solution is defined by the radius around it, the proposed niching technique par-37

titions the search into equal hypercubes called regions. The dependency to the38

niche size (defined by the number of divisions of the search space) is reduced39

by increasing the number of divisions during the search. In this work we pro-40

pose a new algorithm specially designed for continuous multimodal optimisation,41

Region-based Memetic Algorithm with Archive (RMAwA). Although RMAwA42

maintains the same definition of a niche and alternatively applies the EA and43

the LS, the memetic scheme is modified and a novel archive is implemented to44

match the requirements of multimodal optimisation. First, while RMA-LSCh45

uses LS Chaining [32, 33] and thus limites the number of fitness evaluation per46

LS application, RMAwA applies the LS until it has reached a local or global47

optimum. Most importantly, regions intensively explored by LS are discarded48

by the proposal from further exploration. RMAwA contains an indexed archive49

with these regions to reduce the search domain in a very efficient way. Also,50

because the identified optima are stored into the archive and not into the pop-51
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ulation, the number of optima that RMAwA can identify is not limited by the52

population size [12, 63, 64].53

RMAwA is tested using a specific benchmark for multimodal optimisation.54

The experiments carried out show that the use of the region based niching strat-55

egy coupled with an archive provides interesting improvements to the memetic56

framework, and that the RMAwA is a very competitive algorithm against ex-57

isting ones.58

This paper is organised as follows. In Section 2, we present a quick intro-59

duction on methods previously proposed to tackle multimodal problem optimi-60

sation. In Section 3, we present the RMAwA and detail each component. In61

Section 4, we explain the experimental framework used and the parameter set-62

ting of the algorithm. In Section 5, several comparisons are carried out to study63

the influence of the different components of the algorithm and our proposal is64

compared with other algorithms in the literature. Finally, In Section 6 some65

concluding remarks are pointed out.66

2. Background67

In order to identify multiple optima of a fitness landscape several techniques68

have been proposed. In this section, we give a brief overview of techniques that69

have been proposed to maintain the diversity in the population in order to pre-70

vent its convergence towards a single optimum. Such techniques are commonly71

called niching strategies and refer to the technique used for the discovery and72

preservation of distinct niches. This term is a reference to the ecological concept73

of niches referring to the formation of distinct species exploiting different niches74

(resources) in an ecosystem.75

The main challenge in multimodal optimisation is the unknown nature and76

characteristics of the objective function, specifically the number of global optima77

and their repartition on the search domain. The main goal of the proposals78

presented in this section is to tackle these issues. Alternatively, [55] proposes a79

preprocessing tool to estimate the number of basins of attraction in the fitness80

landscape.81

We have classified the methods proposed to tackle multimodal optimisation82

into two categories. The first one lists the classical niching strategies which83

mainly affect the replacement criterion of the EA they are applied to. The84

second one works with the idea of creating subgroups of solutions in different85

area of the search space by limiting the cooperation of each individual to its86

nearest neighbours. We refer to them as neighbourhood based techniques.87

In this section, we first describe the different elements composing those two88

categories by giving a general overview of the proposal making use of such89

techniques. In a third section, we briefly introduce proposals combining those90

techniques with MA which demonstrate that the use of a refinement method91

improves the performance of EAs for multimodal optimisation.92
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2.1. Classical niching techniques93

The first niching techniques consist in limiting the presence of multiple so-94

lutions within the same niche in order to keep the population highly diverse.95

When included in a classical EA, those mechanisms are mainly replacement96

strategies designed to remove solutions present in the same vicinity. We de-97

scribe here the four main methods to achieve this objective: crowding, clearing,98

fitness sharing, and speciation.99

2.1.1. Crowding100

Crowding is one of the first techniques proposed to tackle multimodal opti-101

misation problems [7]. After the generation of a new solution, a random sample102

of CF solutions is selected in the population. Each new solution competes with103

the closest solution of the sample to stay in the population. This technique’s104

main drawback is the definition of the crowding factor parameter (CF ). A small105

value can lead to the replacement of a distant solution to the offspring and thus106

a loss of information, and a very large value has a high computational cost. The107

efficiency of this technique has proven to be limited [30] and advanced versions108

have been proposed:109

• Deterministic crowding proposed by [30] tries to limit the problem of110

replacement errors induced by the crowding technique by eliminating the111

need of defining the CF parameter. To do so, an offspring competes with112

its own parents to stay in the population.113

• Probabilistic crowding [31] on the other hand modifies the replacement114

strategy of the original technique. In this scheme, the offspring and its115

most similar individual in the crowding sample compete in a probabilis-116

tic tournament where the probabilities of winning for each individual X,117

p(X), is calculated according to their fitness:118

p(X) =
f(X)

f(X) + f(Y )
(1)

where f(X) is the fitness of the same solution X and f(Y ) is the fitness of119

the other solution. The idea is not to always show preference to solutions120

with higher fitnesses which may lead to the loss of niches.121

In [57], Thomsen proposed the popular crowding differential evolution (CDE)122

applying a classical crowding strategy on a differential evolution (DE) where a123

new solution is created by means of classical DE mutation and crossover scheme124

comparing with its closest solution in the whole population for replacement.125

CDE was then extended to multi-population crowding DE (MCDE) in [63]126

where multiple sub-population evolve in parallel using CDE. When all the sub-127

populations have converged, the optima identified by each of them are stored in128

an archive and the sub-populations are reinitialised.129
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More recently, Qu et al. proposed the dynamic grouping of CDE (DGCDE)130

[45] with ensemble of parameters. The population is divided into three sub-131

population to which a set of control parameters is assigned.132

In [44], Qing et al. proposed a Crowding Clustering Genetic Algorithm133

(CCGA) using a clustering technique to eliminate the genetic drift introduced134

by the crowding strategy.135

2.1.2. Clearing136

Clearing techniques [42] lie in the principle of dedicating the limited re-137

sources of a niche to its best individuals. The population is sorted according138

to the individual fitness values. The solutions are then selected one after the139

other and the solutions with worse fitness falling within their niche radius σclear140

are removed. Clearing has a low complexity and shows the best performances141

amongst the classical techniques but is highly sensitive to the niche radius [51].142

Variations have then been proposed to limit influence of the σclear parameter.143

For instance, in [47], similarly to the previously cited DGCDE, the authors144

propose an ensemble of clearing DE (ECLDE) in which the population was145

equally divided into 3 sub-populations each evolving in parallel using a clearing146

DE with different values of σclear.147

Some techniques use a redefinition of the niche in order to remove the use148

of the parameter σclear. In [11], the niches are defined through a hill-valley149

detection mechanism instead of using a niche radius. In [50], the niches are150

defined by fuzzy clustering of the solutions of the populations.151

2.1.3. Fitness sharing152

Contrarily to the clearing technique which consist in dedicating niche re-
sources to a single solution, fitness sharing [16] consists in reducing the fitness
of individuals present in densely populated regions. The fitness used of the ith
individual, fshared(i), is calculated by:

fshared(i) =
foriginal(i)∑NP
j=1 sh(dij)

(2)

where foriginal is the original fitness function, NP is the population size,
and sh function is calculated by:

sh(dij) =

{
1−

(
dij

σshare

)α
, if dij < σshare

0, otherwise
(3)

where dij is the distance between individual i and j, σshare is the sharing153

radius and α is a constant called sharing level.154

In [57], Thomasen also proposed an DE using sharing where, after each gen-155

eration, the new shared fitnesses are calculated over the population individuals156

and the trial vectors, the best half being kept in the population.157
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2.1.4. Speciation158

Proposed in [22], speciation or species conservation introduces the notion of159

species by separating the population into several groups (species) according to160

their similarity. Those species are identified by a dominating individual called161

the species seed and a species distance σspecies defining the maximum distance162

between two individual of the same species. The set of species seed is build at163

each generation by iteratively adding individuals from the population that are164

further from any species seed than σspecies/2. The individuals are kept from one165

generation to another until a better solution is identified within their species166

while the classical recombination operators are applied.167

In [23], this concept is applied to a speciation-based PSO (SPSO). In SPSO,168

the particles are gathered into species to form sub-populations. This proposal169

was later extended to reduce its dependency to the species distance parameter170

by using population statistics [3] and a time-based convergence measure [49].171

2.2. Neighborhood based technique172

Another class of niching strategies can be referred to as neighbourhood-173

based. Contrarily to the previous section where the niching strategy could be174

seen as replacement strategy, these methods use the geographical information175

of the solutions in a population to modify the recombination scheme of a given176

EA. The main idea is to make solutions by only considering their neighbours in177

order to emphasize the speciation.178

Originally named spatially-structured EAs (SSEA) [58], these algorithms179

form sub-populations of individuals (called deme) based on their similarity and180

perform genetic operations within each deme.181

This idea has then been extended and two kinds of neighbourhoods can be182

identified in the literature:183

• Index-based neighbourhood [24] uses the indices in the population of a PSO184

to identify the neighbourhood of a solution. The velocity of a particle is185

thus influenced by the local best solution instead of the global best.186

• Distance-based neighbourhood uses the euclidean distance between individ-187

uals. In [26], the author proposed the FER-PSO algorithm where parti-188

cles are attracted towards the ”fittest-and-closest” neighbours. Similarly,189

the notion of neighbourhood is applied for DE in [13]. A new mutation190

strategy, DE/nrand/x is proposed. It uses as a base vector the nearest191

neighbour of each individual. This mutation strategy has then been used192

for more advanced models like in [12]. In [4] a neighbourhood mutation193

is proposed that considers normalized distance. Another option is to use194

the distance to create a clustering partition of the population to maintain195

diversity [15].196

Neighbourhood-based strategies have often been coupled with classical nich-197

ing strategies. For instance in [10], the authors propose including in a SSEA a198

fitness sharing and a clearing strategy.199
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In [48], the authors use the DE/nrand/x operator with crowding, sharing200

and species-based niching strategies and obtain better results than the original201

algorithms.202

2.3. Memetic algorithms for multimodal optimisation203

As stated in the introduction, MA are the hybridisation of an EA and a204

LS method. This model is part of the more general Memetic computing (MC)205

family of algorithms which combine various optimisers (memes). The efficiency206

of these models have helped them gain popularity over the past decade [5, 37].207

The coordination of the memes is the main research topic in MC. Ong et al.208

[40] proposed a classification which was later updated by Neri et al. [37]:209

• Adaptive Hyper-heuristic [19]: the memes are coordinated by means of210

heuristic rules.211

• Meta-Lamarckian learning [39]: the probabilities of using the memes are212

based on their success, providing an online adaptability.213

• Self-Adaptive and Co-Evolutionary [20, 54]: the memes are encoded with214

the candidate solutions and evolve in parallel so the most appropriate can215

be selected.216

• Fitness Diversity-Adaptive [38]: the selection of the memes to be operated217

is based on the diversity measure of the population.218

MA are particularly adapted to multimodal optimisation problems as, when219

applied to different solutions, an LS method can offer a strong refinement of220

the promising solutions discovered by the EA, providing great accuracy for the221

identification of multiple optima. The use of such model has raised interest in222

the research community.223

For instance, the Sequential Niching Memetic Algorithm (SNMA) proposed224

by Vitela et al. in [60] and then extended in [61] is an MA which combines a ge-225

netic algorithm (GA) with a gradient-based LS method. Before each generation,226

the LS is applied to each solution of the population.227

In [46], Qu et al. included an LS method to various previously cited PSO for228

multimodal optimisation (FER-PSO, SPSO, rPSO). The LS method used con-229

sisted in generating at each iteration new solutions in the neighbourhood of the230

personal best of each particle to explore its surrounding. They demonstrated231

that the resulting memetic PSO obtained better results than the original algo-232

rithms. Similarly, Wang et al. proposed a memetic SPSO [62] which adaptively233

uses two different LS methods and came to the same conclusions.234

3. Region-based memetic algorithm with archive235

In this section we present the region-based MA with archive (RMAwA), an236

algorithm designed for multimodal optimisation which uses a niching technique237

to obtain as much optima as possible.238
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RMAwA is a MA which alternatively applies an EA through a certain num-239

ber of evaluations and a LS method to the best solution in the population until240

stagnation. It then considers that an optimum has been reached, thus it stores241

that solution in an external archive and the EA is carried on.242

To maintain diversity during the search the algorithm divides each dimension243

in regions of same size, dividing the domain search in hypercubes. RMAwA uses244

these regions in two ways: First, only one solution is allowed in each region,245

thus when a solution generated by the EA falls in a region already occupied by246

a solution of the population the worst is removed. Second, regions in which one247

optimum has been found, by means of LS, are considered to be explored enough248

and discarded from the search space. The size of regions decreases during the249

run, by increasing the number of divisions per dimension.250

In order to efficiently discard regions from further exploration, this model251

maintains an index of the regions represented by a solution in the archive. Also,252

it stores all the found optima to recalculate the regions when its number changes.253

In the following subsections, we detail the algorithm. First, we briefly de-254

scribe the concept of the region-based niching strategy. Then, we explain the255

general scheme of the algorithm along with how the different components are256

integrated. Finally, we explain how the archive works in detail: its structure,257

which solutions are stored, and how it is used.258

3.1. Region-based niching strategy259

In [21], a novel niching strategy was proposed that redefines the notion260

of niche from the area surrounding each solution in the population to a fixed261

division of the search space. Each dimension of the search space is divided into a262

certain number of divisions, ND, creating a predefined grid of equal hypercubes263

representing the niches.264

In [56, 52], the authors use a similar partitioning of the search space to265

approximate the basin of attractions in multimodal fitness landscapes by means266

of clustered genetic search. In our algorithm, this fragmentation is used to define267

different niches in the search space. Ideally, regions contain a single basin of268

attraction but the unpredictability of the number of optima and their repartition269

in the search domain can not guarantee that. An illustration of the divisions of270

the search space can be seen in Figure 1. A solution sn ∈ RD is a real-parameter271

vector representing a solution to the problem at hand. It is associated with its272

region identified by its indices in each dimension, represented by a vector of273

integer values rn ∈ ND. The advantage of such definition is to allow faster274

retrieval of the existing niches by avoiding the computationally expensive cost275

of calculating the euclidean distance between solutions.276

In a region-based niching strategy, solutions generated in the evolutionary277

process compete with either the current solution present in the same region or278

the worst individual of the population. This technique can thus be assimilated279

to a clearing strategy in the sense that solutions compete to represent each niche280

in the population. The difference with classical niching strategy is the definition281

of the niche going from an euclidean distance-based representation to a region-282

based representation. In order to reduce the influence of the niche/region size, a283
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Figure 1: Example of region-based niches and distance-based niches

commonly critical parameter in niching strategies, following the idea proposed284

in [21], the region size is decreased along the search, as it is detailed in the285

following subsection.286

3.2. General Scheme287

Considering the classification described in Section 2.3, RMAwA uses an288

adaptive hyper-heuristic strategy. It alternatively applies an EA and a LS289

method. The EA is applied over the population during IEA evaluations and290

then the best solution of the population sbest is selected for local improvements291

by the LS until the LS cannot bring about any other significant improvement.292

This loop is repeated until the given maximum number of evaluations MaxFEs293

is reached. The general scheme of the algorithm can be seen in Algorithm 1.294

Algorithm 1 Pseudo-code for general scheme of the RMAwA

1: Initialise population with uniform distribution over the whole search space
2: while MaxFEs is not reached do
3: Apply SSGA with iEA evaluations following Algorithm 2
4: Select the best individual in the population sbest
5: Apply LS method following Algorithm 3 on sbest
6: if conditions for number of divisions update then
7: Update number of divisions: NDi = mu ·NDi−1
8: Update index of the archive
9: end if

10: end while

In the proposal, when the EA generates a solution in a region with a existing295

solution, the worst is removed. By increasing the number of regions, we also try296

to reduce the possibility for the EA to encounter more and more difficulties in297

finding new solutions falling in regions not already represented in the archive.298

With the region definition of a niche, the region size is defined by the number299

of divisions per dimension ND. We consider that the stopping criterion is a300
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predefined maximum number of fitness evaluations MaxFEs. ND starts with301

a initial value ND0. Then, ND is increased u times throughout the search by302

NDi = mu · NDi−1 where mu is the multiplier of the number of division. An303

update occurs every MaxFEs/(u+ 1). The values for parameters ND0, u and304

mu are indicated in Section 4. In order to prevent the search from stalling,305

an update of ND also occurs if every region has been explored by the LS and306

are represented in the archive. This situation is very likely to happen in low307

dimensionality. For each update, the corresponding regions of each solution in308

the population are recalculated and the archive updates the regions according309

to the solutions presented.310

The following two sections describe the EA and the LS method used and311

how they are incorporated in the RMAwA.312

3.3. The EA313

The EA in RMAwA evolves a population of solutions over the whole search314

space seeking promising solutions for the LS method to refine. The evolution315

process is orientated by the region-based niching strategy and the set of excluded316

regions from the archive.317

Algorithm 2 Pseudo-code for the EA in RMAwA

1: i = 0
2: while i < iEA do
3: Select two parents in the population
4: repeat
5: Create an offspring sn using crossover and mutation
6: Calculate the region rn to which sn belongs
7: until rn is not represented in the archive
8: Evaluate sn, i = i+ 1
9: Retrieve from the population the set of solutions Srn of solutions belong-

ing to the region rn
10: if Srn 6= ∅ then
11: set Srn = Srn ∪ sn
12: Remove worst individual from Srn
13: else
14: Replace the worst individual sworst in the population if f(sn) is better

than f(sworst)
15: end if
16: end while

The EA used here, as in the RMA-LSCh, is a steady-state genetic algorithm318

(SSGA). On each application, the algorithm runs over iEA evaluations. Two319

parents are selected by means of negative assortative mating strategy (NAM)320

[1] (with a pool size of 3). Offspring are generated using a BLX-α crossover321

operator [14] and the BGA mutation operator [36]. The EA in the RMAwA is322

described in Algorithm 2.323
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When a new solution sn is generated via the operators described above,324

it goes through different processes before validation. First, the region rn it325

belongs to is calculated. Then, rn is looked for in the archive. If this region is326

already represented by one optimum in the archive, sn is discarded and thus not327

evaluated. Otherwise, sn is evaluated and compared with the set of solutions328

from the population present in the same region rn. The worst solution is then329

removed and replaced by sn. If rn is not yet represented in the population, then330

sn competes with the worst solution of the whole population to replace it.331

3.4. The LS method332

The continuous LS algorithm used here is CMA-ES [17]. This algorithm333

is the state-of-the-art in continuous optimisation. Thanks to the adaptability334

of its parameters, its convergence is very fast and obtains very good results.335

CMA-ES uses a distribution function to obtain new solutions, and adapts the336

distribution around the best created solutions.337

Contrarily to RMA-LSCh, RMAwA does not implement a LS chaining mech-338

anism because the local search here is applied to the same solution until it cannot339

be improved anymore. This modification is due to the fact that this algorithm340

considers as optima solutions those which cannot be improved by LS application.341

As stated before, the best solution sbest of the population is selected for local342

refinement. To ensure that this solution will not take part in further exploration,343

it is removed from the population, placed in the archive and replaced by a344

random solution. The LS is applied multiple times with iLS evaluations until345

the last application does not bring about any other sufficient improvement.346

Between each application, the parameters of the previous LS application are347

retrieved to carry on from the point where it stopped. In the case of CMA-ES,348

the learnt covariance matrix is thus reused from one application to another.349

The final solution is then stored in the archive. The application of the LS is350

described in Algorithm 3.351

Algorithm 3 Pseudo-code for the application of the LS in RMAwA

1: Add sbest to the archive
2: s0LS = sbest
3: Replace sbest by a random solution in the population
4: repeat
5: Apply the LS method to stLS with iLS evaluations, giving st+1

LS

6: until |f(stLS)− f(st+1
LS )| < δminLS

7: Add stLS to archive

3.5. The archive352

As described previously, this algorithm implements an archive aiming at353

storing solutions considered as optimised (solutions that have been refined by354

the LS method) and creating an index of regions of the search space considered355

undesirable for further exploration.356
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We describe in this section the structure of the archive allowing such mech-357

anisms. We then characterise the solutions which are inserted in the archive to358

define their region as undesirable.359

3.5.1. Structure360

The archive is composed of two collections and its size is not limited. The361

first one is a simple list of real-value solutions that store the detected optima.362

The second one is a sorted index of the regions represented by the solutions in363

the previous list. The regions listed in the index are considered as forbidden364

areas for the generation of future solutions by the EA. The index is a self-365

balancing binary search tree which offers an insertion and search complexity of366

O(log n). This low complexity allows a large amount of solutions to be stored in367

the archive with a limited computational cost. Moreover, it only allows unique368

elements to be stored.369

In Figure 2, we show an example of the archive structures in the continuity370

of the representation of the search space in Figure 1. We can see how a new371

solution, composed by the actual real-value solution sn and the indices of the372

region it belongs to rn, are used. The former is stored in the archive while the373

latter is added to the index. If a region is represented by multiple solutions374

in the archive, there will be only one entry in the index for that region. The375

following section describes what regions are considered as restricted to further376

exploration.377

2.1 0.3

4.5 3.8

0.5 0.1

0.3 1.1

1.4 1.6

1 1

0 1 2 0

0 0 1 3 4 3

List Index

1.2 3.9 1 3

s
n

r
n

Solution to be inserted in
the archive

1.2 3.9

Archive

Figure 2: Example of the representation of the archive and its index for two-dimensional
problems

3.5.2. Solutions stored the archive378

The main purpose of the archive is to store optima identified during the379

search. Knowing when an optima is found can however be complicated if the380
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fitness value of the optima is unknown. Thanks to the use of an LS method, we381

consider a solution as an optimum (local or global) when the last LS application382

does not bring sufficient improvement. Insufficient improvement occurs when383

the difference between the fitness of the starting point of the LS and the fitness384

of the obtained solution is below δminLS .385

Apart from storing the optima found by means of LS, the archive also saves386

the solution that serves as the starting point of each LS application. The idea387

behind this is to also eliminate from the search space regions that lead to already388

identified optima.389

To summarise, the archive stores the solutions that have undergone LS ap-390

plications. The rationale behind this is to ensure that the regions in the archive391

and thus removed from the search space have been intensively explored. How-392

ever, depending on the characteristics of the fitness landscape, it is not guar-393

anteed that several optima are not in the same region. This risk is reduced by394

decreasing the niche size during the search as is described above.395

3.5.3. Updating the niche size396

The update of the number of divisions per dimensions, i.e. the niche size,397

is performed in order to prevent the presence of multiple optima in the same398

region. This process is particularly important in this model as some of the399

regions are completely discarded from the search which may lead to ignoring400

a number of optima. When an update is performed, as the regions indices are401

modified and the archive index is wiped:402

• A new index is created from the resulting list of regions. Because the403

solutions are kept in the population, its corresponding regions (using the404

new size) are calculated again and stored in the archive. The number of405

stored regions is maintained but the indexes make reference to smaller406

regions.407

• The regions of the solutions stored in the archive are recalculated according408

to the new partitioning of the search space.409

In summary, the archive has to be recalculated with each update of the410

niche size, thus its structure is designed to carry out the operation easily and411

efficiently.412

4. Experimental framework413

The experiments in this paper were carried out using the benchmark pro-414

posed for the special session and competition on niching methods for multimodal415

function optimisation of the IEEE Congress on Evolutionary Computation in416

2013 (CEC’2013) [25]. In this section, we describe the framework used to per-417

form these experiments: first we describe the benchmark used and the evaluation418

method, and then we explain the parameter tuning used for the final version of419

the algorithm.420
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4.1. The CEC’2013 benchmark421

The CEC’2013 benchmark offers a set of continuous objective functions f :422

D → R where D ⊂ RD defines the bounded subset of RD. The objective consists423

in identifying every x ∈ D such that x = argminz∈D{f(z)}. Functions in this424

benchmark are to be tackled as black-box problems, i.e. the use of differential425

based methods is not allowed. Each function contains a finite number of global426

of optima.427

The CEC’2013 benchmark is composed of 12 bounded functions :428

• f1 : Five-Uneven-Peak Trap, f1(x) where x ∈ [0, 30], D = 1429

• f2 : Equal Maxima, f2(x) where x ∈ [0, 1], D = 1430

• f3 : Uneven Decreasing Maxima, f3(x) where x ∈ [0, 1], D = 1431

• f4 : Himmelblau, f4(~x) where ~x ∈ [−6, 6]D, D = 2432

• f5 : Six-Hump Camel Back, f5(x1, x2) where x1 ∈ [−1.9, 1.9] and x2 ∈433

[−1.1, 1.1], D = 2434

• f6 : Shubert, f6(~x) where ~x ∈ [−10, 10]D, D = {2, 3}435

• f7 : Vincent, f7(~x) where ~x ∈ [0.25, 10]D, D = {2, 3}436

• f8 : Modified Rastrigin - All Global Optima, f8(~x) where ~x ∈ [0, 1]D,437

D = 2438

• f9 : Composition Function 1, f9(~x) where ~x ∈ [−5, 5]D, D = 2439

• f10 : Composition Function 2, f10(~x) where ~x ∈ [−5, 5]D, D = 2440

• f11 : Composition Function 3, f11(~x) where ~x ∈ [−5, 5]D, D = {2, 3, 5, 10}441

• f12 : Composition Function 4, f12(~x) where ~x ∈ [−5, 5]D, D = {3, 5, 10, 20}442

Some function are presented with different dimensionality creating a total of443

20 problems. Table 1 details the 20 problems and their characteristics. In this444

paper, we refer by fi to i-th function and Fj to the j-th problem, a problem445

consisting of the pair {fi, D} where D is the dimensionality of the problem.446

We are only interested here in identifying the global optima. The number of447

global optima is known and finite, but this information cannot be used in the448

optimisation process. More details on each function can be seen in [25].449

4.2. Evaluation450

For the evaluation of an algorithm’s performance over multiple run (50 runs451

to be executed following the competition requirements), we use the now com-452

monly used peak ratio (PR). The PR is the average percentage of found optima453
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Table 1: CEC’2013 benchmark problems

Problem Function D Number of optima MaxFEs

F1 f1 1 2 5 · 104

F2 f2 1 5 5 · 104

F3 f3 1 1 5 · 104

F4 f4 2 4 5 · 104

F5 f5 2 2 5 · 104

F6 f6 2 18 2 · 105

F7 f7 2 36 2 · 105

F8 f6 3 81 4 · 105

F9 f7 3 216 4 · 105

F10 f8 2 12 2 · 105

F11 f9 2 6 2 · 105

F12 f10 2 8 2 · 105

F13 f11 2 6 2 · 105

F14 f11 3 6 4 · 105

F15 f12 3 8 4 · 105

F16 f11 5 6 4 · 105

F17 f12 5 8 4 · 105

F18 f11 10 6 4 · 105

F19 f12 10 6 4 · 105

F20 f12 20 8 4 · 105

over all global optima within the MaxFEs evaluations, and it is calculated by454

following Eq. 4:455

PR =

∑NR
i=1NPFi

NKP ∗NR (4)

where NPFi is the number of global optima found in the ith run, NKP is456

the number of known global optima and NR is the number of runs (for this457

benchmark, NR = 50). It is considered that an optimum optim is obtained if458

a solution sol is found where dist(sol, optim) ≤ ε, where dim is the Euclidean459

distance, and ε is a real value called accuracy level. The PR are calculated460

according to five different accuracy levels ε = {10−1, 10−2, 10−3, 10−4, 10−5}.461

Comparisons between algorithms have been performed for each accuracy462

level independently. For the comparison of two algorithms we considered non-463

parametric statistical tests [9]. More specifically, we used the Wilcoxon matched-464

pairs signed ranks tests for the direct comparison of two algorithms.465

4.3. Automatic configuration466

Setting the parameters of a new proposal can be a long and tedious task.467

Moreover, it does not ensure an optimal setting for these parameters. Consider-468

ing the novelty of certain components in this algorithm, it is more reliable to use469

an automatic configuration tool to assist in the design of the algorithm tuning470

the most critical parameters. To do so, we have used IRACE [29]. The IRACE471

package has already been extensively tested in several research projects, leading472
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to successful improvement of the state-of-the-art, see for instance [28, 27]. The473

reader may refer to [41] for more information about IRACE and its parameters474

(we have used the recommended parameter values).475

We selected a set of parameters that we considered the most critical, and476

tuned them over the 20 problems of the CEC’2013 benchmark. For the non-477

tuned parameters we have selected commonly used values when not recom-478

mended values where given by from its authors. The list of tuned parameters479

can be seen in Table 2, showing for each parameter the explored range and the480

final value obtained by IRACE.481

Table 2: Tuned parameters and obtained values

Parameters Descriptions Ranges Tuned

iEA

EA intensity, number of
evaluations allocated to
each EA application

[100, 1000] 550

iLS

LS intensity, number of
evaluations allocated to
each LS application

[100, 1000] 150

ND0

Initial number of divi-
sions, defines the size of
the niches/regions

[2, 10] 2

u
Number of update to be
performed

[2, 5] 4

mu Update multiplier [1, 5] 1.7
NP Population size of the EA [40, 120] 70

α
Parameter for the BLX −
α crossover

[0.1, 0.9] 0.9

We can note that the EA intensity is almost four times the LS intensity.482

This is due to the fact that the LS is applied multiple times (until the improve-483

ments brought not significant enough) in each cycle. Concerning the number of484

division, we can see that the smallest number of divisions have been preferred485

(ND0 = 2) along with a slow increase during the search by multiplying four486

times by 1.7: NDi+1 = ceil(1.7 ·NDi). The number of the divisions sequence487

is then [2, 4, 7, 12, 21]. Finally an important thing to note is the value of the α488

parameter for the BLX-α. Set to a high value (α = 0.9), it gives the EA a great489

exploration range.490

The other parameters listed in Table 3 were left to their default values taken491

from the corresponding papers. δminLS defines the accuracy required for the search492

and is set to 10−6 as the highest accuracy level required is 10−5. Concerning493

CMA-ES problems, we have set them to the default values as given in [17]. and494

the size of NAM selection method is taken from the previous work in [21].495

The parameters presented in Table 2 and 3 are the ones used in every ex-496

periment performed on every function and dimension of the benchmark.497
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Table 3: Other parameters

Parameters Descriptions Value

λ
Parameter to define the
CMA-ES population size
p = 4 + λln(D)

3 [17]

µ
Defines the parent size for the
CMA-ES p/µ

2 [17]

NAMsize
Size of the NAM selection
method

3 [21]

δminLS
Threshold for the LS stopping
criterion

10−6

4.4. Possibility of finding all optima498

In this section, we discuss the ability of RMAwA to find all optima with an499

unlimited number evaluation. In other words, we wish to ensure that the search500

is not restricted to any subset of the whole search domain. For this model, we501

identify two phenomena that can cause such restriction and we discuss here if502

their occurrence is possible in the proposal.503

First, in population-based algorithm the risk of premature convergence of504

the population may lead to a genetic drift. The fact that RMAwA regularly505

generates new random solutions (when a solution is placed in the archive, it is506

replaced by a random solution) ensures sufficient diversity in the population to507

prevent premature convergence.508

The second risk that can be identified in this model is due to the restriction509

of the search to regions represented in the archive. Indeed, if a region repre-510

sented in the archive contains more that one optimum, some optima might be511

ignored. The probability of having more than one optimum present in the same512

region (noted M) is directly proportional to the hyper-volume of the regions Vr513

calculated by Eq. 5:514

P (M) = a.Vr (5)

where a is a variable that is dependent on the objective function f and the515

search domain. Basically, the smaller the region, the less probable that it will516

contain multiple optima. Thanks to the region size update, Vr keeps decreasing517

during the search. In our algorithm, we make a limited number of reductions518

because the fitness evaluation number is also very limited. For an extremely519

large fitness evaluation number, the reductions would be applied repeatedly,520

reducing the hyper-volume of the regions each time. Thus, for an unlimited521

number of evaluations MaxFEs:522

lim
MaxFEs→+∞

Vr = 0 (6)
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Hence:523

lim
MaxFEs→+∞

P (M) = 0 (7)

Thus, there is no risk of limiting the search.524

5. Experimental results525

In this section, we are going to study the behaviour of the different compo-526

nents of our proposal, and we are going to compare our algorithm to previous527

algorithms in the literature. All the experiments are carried out following the528

experimental framework explained in previous section.529

The analysis of our proposal include the following experiments: First, we530

prove that using the region definition of a niche compared to the euclidean def-531

inition is more efficient in terms of computational time and exploration. Then,532

we demonstrate that using the solutions in the archive as excluding regions en-533

hance the performance of the model. We also analyse the influence of the region534

based niching strategy with the archive on the diversity of the population and in535

the exploration factor. Then, we analyse the memory and computational cost of536

the archive and the different components of the algorithm. Finally, we compare537

the proposed algorithm RMAwA with existing algorithms.538

5.1. Region niches versus classical niches539

Here, we assess the efficiency in terms of computation time and performance540

of the region definition of niches against the classical definition which implies541

calculating the euclidean distance between solutions. To do so, we consider the542

model presented without the use of the archive.543

The resulting algorithm here simply referred to as region based memetic544

algorithm (Region-MA) is opposed to an equivalent algorithm which uses the545

euclidean distance based definition of a niche as it is used in the classical clear-546

ing algorithm. This version is referred to as euclidean-distance based memetic547

algorithm (Euclidean-MA). On the generation of a new solution by the EA, the548

offspring created compete with the solutions falling within its niche radius σ,549

which is set to half the size of a region. In Region-MA, as it is explained in550

Section 3.1, new solutions created by the EA compete with the solutions already551

in the same regions.552

In order to simplify the display of the results, we will only focus on the553

highest level of accuracy (ε = 10−5). Indeed, the definition of a niche only554

affects the ability of the algorithm to explore the search space and not the555

precision of the solutions obtained.556

In Table 4, we show the PRs obtained by both versions along with the exe-557

cution time difference in percentage. We can see that the results of Region-MA558

are clearly better, and with significant differences (comparing with Wilcoxon’s559

test, the use of regions is statistically better with a p-value< 0.001, see Table 5).560

Also, the execution time is much smaller, over the whole benchmark, using the561

region-based niches saves up to 17.4% of time.562
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Table 4: PRs (for ε = 10−5) obtained by Region-MA and Euclidean-MA and execution time
difference (in percentage)

Problem F1 F2 F3 F4 F5

Region-MA 0.81 0.42 1 0.97 0.99
Euclidean-MA 0.77 0.56 1 0.36 0.87
Time difference (%) -35.88 -26.10 -28.36 -45.20 -43.57
Problem F6 F7 F8 F9 F10

Region-MA 0 0.7 0.06 0.22 0.94
Euclidean-MA 0 0.05 0.06 0.01 0.13
Time difference (%) -30.26 -39.05 -42.13 -38.96 -24.89
Problem F11 F12 F13 F14 F15

Region-MA 0.68 0.86 0.63 0.64 0.15
Euclidean-MA 0.27 0.14 0.2 0.18 0.14
Time difference (%) -19.42 -20.90 -28.38 -19.20 -21.11
Problem F16 F17 F18 F19 F20

Region-MA 0.36 0.16 0.17 0.13 0.13
Euclidean-MA 0.19 0.13 0.17 0.13 0.13
Time difference (%) -15.93 -1.56 -25.74 -21.19 -7.42

Table 5: Wilcoxon comparison of the PR obtained by Region-MA and Euclidean-MA (for
ε = 10−5)

R+ R-
Region-MA Euclidean-MA p-value

189 21 0.0008
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5.2. Using the archive to reduce the search space563

The archive is used to store solutions considered as optima to allow the564

algorithm to remove them from the population without losing them. In our565

algorithm, it is used also to mark some regions as areas excluded for the search.566

In this section, we are interested in assessing how using the regions represented567

in the archive as excluded areas for the exploration of the EA improves the568

exploration of the search space and thus the discovery of more optima.569

In order to perform this comparison, we ran two versions of the algorithm.570

The first one is as presented in Section 3. The second one is the same algorithm571

without verifying that each solution created by the EA is present or not in572

the archive (steps 4-7 in Algorithm 2 are ignored). We thus compare here the573

proposed algorithm which uses an excluding archive (RMAwA) against one with574

a simple archive called RMA with Simple Archive (RMAwSA).575

As in the previous experiment, we will only focus on the highest level of576

accuracy (ε = 10−5). Indeed, the specific use of the archive mainly affects577

the algorithm’s ability to explore the search space and not the precision of the578

solutions obtained.579

Table 6: PRs of the RMA using an excluding archive (RMAwA) and a simple archive
(RMAwSA) for ε = 10−5 and computational time difference between the two versions.

Problem F1 F2 F3 F4 F5

RMAwA 1.000 1.000 1.000 1.000 1.000
RMAwSA 1.000 0.312 1.000 1.000 1.000

Time difference (%) 22.6 23.3 7.7 15.5 3.1
Problem F6 F7 F8 F9 F10

RMAwA 0.000 0.917 0.824 0.513 1.000
RMAwSA 0.000 0.658 0.908 0.343 0.983

Time difference (%) 46.3 34.8 50.8 43.4 4.1
Problem F11 F12 F13 F14 F15

RMAwA 1.000 1.000 0.997 0.813 0.703
RMAwSA 0.667 0.930 0.667 0.667 0.648

Time difference (%) 5.8 1.5 2.2 21.8 15.3
Problem F16 F17 F18 F19 F20

RMAwA 0.670 0.660 0.233 0.128 0.125
RMAwSA 0.667 0.323 0.183 0.125 0.125

Time difference (%) 5.0 14.1 2.4 0.7 1.2

In Table 6, we show the PRs obtained by both versions of the algorithm and580

the time difference. Thanks to the excluding property of the archive, the per-581

formances of the algorithm are significantly improved (see Table 7 for Wilcoxon582

comparison). We also display in this table the CPU time increase caused by583

the use of the archive in the search. As we could have expected, this prop-584

erty implies more computational effort. However, the percentage increase in the585
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computational time is reduced with the complexity and the dimensionality of586

the problem. This can be easily explained by the fact that in higher dimensions,587

the computational time of the evaluation increases while the time cost of the588

archive remains steady regardless the dimensionality. Also, considering the sum589

of the computational time for the whole benchmark, the runtime of RMAwA590

is 8.2% higher than RMAwSA’s (it cannot be calculated from table 6 because591

some functions take longer than others).592

Table 7: Wilcoxon comparison of the PR of the RMA with and without archive (for ε = 10−5)

R+ R-
RMAwA RMAwSA p-value

186.5 23.5 0.00132

5.3. Diversity and Exploration593

In this section we analyse how RMAwA explores the search domain. First,594

we are going to study how the population diversity evolves along the search.595

Then, we visually analyse the exploration of the algorithm by plotting for several596

functions the solutions generated during the exploration phase.597

5.3.1. Population diversity: Influence of the Number of Divisions598

In this section we analyse the evolution of the population diversity during599

the search, and the influence of ND over the diversity. To do so, additional runs600

have been carried out and a diversity measure has been applied to the solutions601

into the population. The diversity measure applied is the following:602

DiversityPop =

∑N−1
i=1

∑N
j=i+1 dist(xi, xj)

N · (N − 1)/2
(8)

where Pop is the current population, N is the population size, dist is the603

Euclidean distance, and xi, xj are solutions in the population.604

To study the influence of the current ND over the diversity, we are going605

to visualise and compare the diversity of the proposal (using the adaptive ND606

mechanism described in 3.2), with using a fixed ND.607

Figure 3 shows the evolution of the diversity for functions F7, F16 and F18.608

These functions have been selected for being representative of the different be-609

haviours detected in this benchmark. In axis x there is the number of evalua-610

tions, and in axis y the diversity measure. The vertical lines mark the updates611

of number of divisions (it only has influence over the adaptive ND version),612

dividing the axis x in five stages of the algorithm (each stage using a different613

ND). In the following, we are going to describe the main tendencies:614

1. In functions with a small dimension, like F7 (where D=2), we can observe615

two phases. In the initial stages of the search (ND=2, ND=4), because616
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(a) F7

(b) F16

(c) F18

Figure 3: Diversity of the RMAwA population using adaptive number of divisions and using
different fixed number of divisions during one run
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there are few regions, when a region is avoided the search space is reduced617

very quickly to a small portion of the whole space, thus the diversity618

decreases very quickly. Indeed, for these ND values the fixed ND version619

prematurely stops because all possible regions have a local optima. The620

subsequent updates in ND increase the number of regions, releasing space621

for the EA to explore and thus increasing the diversity. As compared with622

fixed ND, the diversity of adaptive ND is very similar in the first two and623

final stages, with a greater diversity in the stages inbetween.624

2. In functions with medium dimensionality, like F16 (D=5), the same phe-625

nomena is observed. However, after reaching a certain number of divisions626

per dimensions (third update) the diversity decreases, because the algo-627

rithm allows solutions more closer between them, reducing the diversity628

to enforce the exploitation of found solutions. Comparing adaptive ND629

with fixed ND, we can observe that diversity adaptive ND is actually very630

similar to ND in each stage.631

3. In functions with higher dimensionality, like F18 (D=10), we can see that632

the diversity constantly decreases at each increase of the number of divi-633

sions. In these functions, it seems that the niching model does not provide634

a good balance in the population diversity during the search. Comparing635

adaptive ND with fixed ND, we can observe that adaptive ND obtains636

very close results to obtained by the fixed ND in each stage.637

The previous section has shown the diversity differences comparing several638

fixed ND and the proposed dynamic ND. However, diversity itself is not our639

goal, thus we are going to compare the obtained PRs for each case. Table 8640

show the results, highlighting the results for those functions whose diversity has641

been analysed. We can observe that:642

• In functions with a small dimension, like F7, in which a higher ND implies643

a better diversity, the number of optima increases also with the ND. Better644

results are obtained with dynamic ND.645

• In functions with medium dimensionality, like F16, in which for certain646

ND values the diversity is reduced very quickly, the PR decreases when647

ND increases. Dynamic ND, on the contrary, obtains the best PR value.648

• Results obtained in functions with higher dimensionality, like F18, proves649

that there is noy a good balance in the diversity, and that it has bad650

consecuences for the obtained PR. In this case, dynamic ND obtains worse651

results than using ND=2 but better than the other values.652

In summary, Figure 3 shows that the number of regions and problem di-653

mensionality have strong influence over the diversity in the population and the654

number of found optima, and that diversity using an adaptive ND is very close655

to that obtained with a fixed ND in each stage, obtaining the most robust656

behaviour when finding the optima.657
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Table 8: PRs of the RMAwA using different fixed numbers of divisions (ND) and with dynamic
ND.

Dynamic
Function ND=2 ND=4 ND=7 ND=12 ND=21 ND

F1 0.900 1.000 1.000 1.000 1.000 1.000
F2 1.000 1.000 1.000 1.000 1.000 1.000
F3 1.000 1.000 1.000 1.000 1.000 1.000
F4 0.750 1.000 1.000 1.000 1.000 1.000
F5 1.000 1.000 1.000 1.000 1.000 1.000
F6 0.000 0.000 0.000 0.000 0.000 0.000
F7 0.084 0.429 0.612 0.790 0.829 0.917
F8 0.023 0.290 0.610 0.458 0.853 0.824
F9 0.035 0.172 0.433 0.660 0.618 0.513

F10 0.923 1.000 1.000 1.000 1.000 1.000
F11 0.733 1.000 1.000 1.000 1.000 1.000
F12 0.470 0.840 0.875 0.955 1.000 1.000
F13 0.680 0.993 1.000 1.000 1.000 0.997
F14 0.760 0.813 0.940 0.727 0.647 0.813
F15 0.665 0.725 0.675 0.640 0.275 0.703
F16 0.667 0.667 0.533 0.300 0.273 0.670
F17 0.660 0.680 0.250 0.185 0.165 0.660
F18 0.473 0.167 0.167 0.167 0.167 0.233
F19 0.160 0.125 0.125 0.125 0.125 0.128
F20 0.125 0.125 0.125 0.125 0.125 0.125

Mean 0.555 0.651 0.667 0.657 0.654 0.729
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5.3.2. Exploration of the domain search658

In this section, we study the exploration over the search space that RMAwA659

carries out. First, we observe the solutions generated for each stage of the algo-660

rithm to visualise the influence of the number of divisions over the exploration.661

Then, we analyse if the exploration of the domain search is adapted to the662

landscape of the function to optimise.663

Figures 4, 5, and 6 show the generated and evaluated solutions by RMAwA664

for the 2-D functions: f5, f6, and f7. Solutions generated by the LS have been665

excluded, because they were too similar to previous solutions to be useful for666

the analysis. In order to explore the influence of the current ND value over667

the degree of exploration, in each figure the generated solutions for each stage668

are shown differently (when the same ND value is applied). From these figures,669

several conclusions can be extracted:670

• In the initial stage the distribution of solutions is around the complete671

domain search. There are two reasons for this: First, the initial population672

has been randomly generated. Also, while there are no detected local673

optima in one region, the new solutions are evaluated to check if they674

have better fitness than the existing ones.675

• In the following stages, several solutions have been detected as local op-676

tima, so no more solutions are generated in the same regions. Thus, the677

exploration shows several empty spaces around the detected optima.678

• While the ND value decreases, these empty spaces are reduced, generating679

solutions closer to current local optimum.680

• In subfigures (f) with all the generated solutions, regions can be visualised681

but not very clearly because they contain solutions generated in the first682

stage, previous to the detection of local optima.683
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(a) First stage (b) Second stage

(c) Third stage (d) Fourth stage

(e) Fifth stage (f) Total

Figure 4: Generated solutions in function F5 for each stage
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(a) First stage (b) Second stage

(c) Third stage (d) Fourth stage

(e) Fifth stage (f) Total

Figure 5: Generated solutions in function F6 for each stage
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(a) First stage (b) Second stage

(c) Third stage (d) Fourth stage

(e) Fifth stage (f) Total

Figure 6: Generated solutions in function F7 for each stage
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In order to show the exploration done for the algorithm, we plot for functions684

F5, F6 and F7 in Figures 7, 8, 9 respectively, the total solutions generated and685

evaluated by the algorithm (no using the LS method). To help the analysis, the686

contour of the studied functions are also plotted.687

(a) Explored Solutions (b) Contour of real function

Figure 7: Function F5

In Figure 7, we can see that all the domain search is explored, even when688

the best values are concentrated in one particular area. Also, the area close to689

each optimum has a reduced number of solutions, because the algorithm has690

identified them as optima and the region niching avoids solutions in the same691

region.692

(a) Explored Solutions (b) Contour of real function

Figure 8: Function F6

In Figures 8 and 9 we can observe the same behaviour, showing less dense693

areas surrounding each optimum, thus concentrating the majority of the solu-694

tions in regions with no detected optima. It is remarkable that the area of the695

landscape with the optima have been correctly identified.696

In summary, the pattern drawn by the solutions generated during the explo-697

ration phase matches the landscape of the objective function. Also, RMAwA698

behaves as expected: exploring around all the domain search and avoiding at the699
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(a) Explored Solutions (b) Contour of real function

Figure 9: Function F7

same time solutions which are very close to detected optima, defining regions700

with decreasing size.701

5.4. Time and memory cost of RMAwA702

In this section, we study the time and memory cost of RMAwA. First, we703

assess the memory used by the archive. Then we study the computational cost704

implied by the exclusive property of the archive and the different components705

of the algorithm.706

5.4.1. Memory cost707

We present in this section the memory cost implied by the archive. As ex-708

plained in Section 3.5, the archive list stores two kinds of solutions, the starting709

and final points of LS applications. In order to evaluate the memory cost of710

the archive in both cases, we retrieved the number of solutions stored in the711

archive’s list and the number of their corresponding regions represented in the712

index at the end of each run. From these data, we estimate the total memory713

size of the archive. The archive’s list is a collection of real-value vectors and the714

index is a collection of integer vectors. In our implementation, real values are715

represented by ”double”, coded on eight bytes and integers are represented by716

”int” coded on four bytes, the space used by the archive is thus calculated by:717

ArchiveSize = |S| ·D · 8 + |R| ·D · 4 (9)

where |S| is the number of solutions in the archive’s list, |R| is the number718

of regions in the index and D is the dimensionality of the problem. The final719

size is thus proportionate to the dimensionality. It is also dependant on the720

maximum number of evaluations allowed by the problem. Indeed, an increase721

in the number of evaluations increases the number of LS applications and thus722

the number of solutions stored in the archive. In Table 9, we present the average723

of 50 runs of these data along with the dimensionality and the maximum number724

of evaluation for each function of the CEC’2013 benchmark.725
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As expected, we can observe a strong increase of the physical size used726

by the archive for the most complex problems. However, the memory used727

remains reasonable for today’s machines. In the most extreme problem, F20728

whereD = 20, the archive only uses 64.88 kB of memory. Even if it might appear729

irrelevant for such problems, the size of the archive can increase exponetially730

with the dimensionality and the number of evaluation. When tackling large731

scale problems, one may consider limiting the size of the archive.732

Table 9: Average number of elements in the archive’s list (|S|), the index (|R|) and total
memory used by the archive (in kB) at the end of each run

Problem D MaxFEs |S| |R| ArchiveSize
F1 1 5.00 · 104 135.92 4.58 1.08
F2 1 5.00 · 104 130.24 9.96 1.06
F3 1 5.00 · 104 129.32 10.52 1.05
F4 2 5.00 · 104 106 22.76 1.83
F5 2 5.00 · 104 112.76 14.5 1.88
F6 2 2.00 · 105 425.52 112.64 7.53
F7 2 2.00 · 105 448.28 100.18 7.79
F8 3 4.00 · 105 681.84 398.62 20.65
F9 3 4.00 · 105 811.64 389.08 23.58
F10 2 2.00 · 105 431.28 100.68 7.53
F11 2 2.00 · 105 372.72 106.42 6.66
F12 2 2.00 · 105 326.04 104.42 5.91
F13 2 2.00 · 105 349.52 121.84 6.41
F14 3 4.00 · 105 583 283.48 16.99
F15 3 4.00 · 105 581.6 278.68 16.90
F16 5 4.00 · 105 524 259.42 25.54
F17 5 4.00 · 105 516.64 270.26 25.46
F18 10 4.00 · 105 446.84 187.36 42.23
F19 10 4.00 · 105 338.52 168.28 33.02
F20 20 4.00 · 105 343.8 142.92 64.88

5.4.2. Computational time of the different components of RMAwA733

In this section, we analyse the amount of time taken by the different com-734

ponents of RMAwA over a whole run, namely:735

• LS operations: the operations performed by CMA-ES during its search736

process.737

• EA operations: the operations performed by the SSGA to evolve the pop-738

ulation.739

• Niching: the time it takes for a new solution to go through the niching740

process (retrieval and comparison of the solutions present in the same741
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region in the population).742

• Archive: the time implied by the excluding property of the archive (as-743

sessing the presence of the solution’s region in the archive’s index).744

First, to assess the computational time of each component, we use function745

f12. This function presents the advantage of being implemented in 4 dimensions,746

D = {3, 5, 10, 20}, allowing us to evaluate the scalability of the proposal. For747

those four problems, we calculate the CPU time used by each component to748

assess their scalability. The search effort is unequally divided between the LS749

and the EA (the number of evaluation at each EA application is fixed while the750

number of evaluation for each LS application is not limited). Thus, to perform751

a fair comparison, we only select the average time per evaluation. We plot the752

results in Figure 10.753

As far as we can see, the complexity of the niching strategy and the use of754

the archive are barely affected by an increase of the dimensionality. In the same755

way, the operations of the SSGA algorithms show interesting scalable properties.756

The main weakness lies in the use of CMA-ES as LS method. Although it offers757

a low complexity in the lowest dimensions, with more than ten variables, CMA-758

ES shows poor scalability in terms of complexity.759

In order to counterbalance the importance of this drawback, we show in ta-760

ble 10 the CPU time of each of the components along with the evaluation time.761

Here, we remind the reader of the notation used in this paper, we grouped the762

problems Fj by function fi in order to make for easier reading and see the rela-763

tions between the different dimensions of each function. From this table, when764

increasing the dimensionality, even if the proportion of the LS (i.e. CMA-ES)765

operations increases, the total CPU time is particularly affected by the compu-766

tational time of the evaluation which is independent of the algorithm. However,767

as the complexity of CMA-ES increases exponentially with the dimension, larger768

scale problems may require the use of another LS method.769
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Figure 10: CPU time (in ms) of each component per evaluations for problem f12 for different
dimensions
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Table 10: CPU time (in seconds) details of RMAwA for each problem Fj = {fi, D} with the
percentage in the whole optimisatioc process

Problem F1 = {f1, 1} F2 = {f2, 1} F3 = {f3, 1} F4 = {f4, 2}
Archive 0.150 (18.41%) 0.355 (40.84%) 0.148 (18.99%) 0.099 (14.96%)
Niching 0.236 (28.91%) 0.221 (25.39%) 0.254 (32.43%) 0.180 (27.17%)
EA 0.260 (31.86%) 0.257 (29.59%) 0.282 (36.08%) 0.207 (31.18%)
LS 0.164 (20.08%) 0.027 (3.07%) 0.064 (8.23%) 0.172 (25.93%)
Evaluations 0.006 (0.73%) 0.010 (1.11%) 0.033 (4.27%) 0.005 (0.76%)
Total 0.816 0.869 0.782 0.664
Problem F5 = {f5, 2} F6 = {f6, 2} F8 = {f6, 3} F7 = {f7, 2}
Archive 0.127 (9.96%) 1.085 (35.82%) 1.512 (29.74%) 1.354 (40.56%)
Niching 0.204 (16.01%) 0.759 (25.05%) 1.188 (23.37%) 0.787 (23.58%)
EA 0.233 (18.27%) 0.884 (29.18%) 1.513 (29.75%) 0.942 (28.23%)
LS 0.696 (54.67%) 0.159 (5.24%) 0.494 (9.72%) 0.173 (5.18%)
Evaluations 0.014 (1.10%) 0.143 (4.70%) 0.377 (7.41%) 0.081 (2.44%)
Total 1.273 3.029 5.085 3.338
Problem F9 = {f7, 3} F10 = {f8, 2} F11 = {f9, 2} F12 = {f10, 2}
Archive 2.210 (35.27%) 0.740 (28.09%) 0.615 (6.15%) 0.521 (5.38%)
Niching 1.403 (22.38%) 0.759 (28.80%) 0.675 (6.74%) 0.586 (6.05%)
EA 1.793 (28.61%) 0.934 (35.41%) 0.903 (9.02%) 0.802 (8.28%)
LS 0.661 (10.55%) 0.153 (5.82%) 0.332 (3.32%) 0.207 (2.13%)
Evaluations 0.200 (3.19%) 0.050 (1.88%) 7.479 (74.77%) 7.571 (78.16%)
Total 6.267 2.636 10.003 9.687
Problem F13 = {f11, 2} F14 = {f11, 3} F16 = {f11, 5} F18 = {f11, 10}
Archive 0.604 (6.15%) 0.910 (3.88%) 0.853 (2.60%) 1.065 (1.81%)
Niching 0.630 (6.42%) 1.028 (4.39%) 0.951 (2.90%) 0.868 (1.48%)
EA 0.852 (8.69%) 1.441 (6.15%) 1.300 (3.96%) 1.267 (2.16%)
LS 0.210 (2.14%) 0.412 (1.76%) 0.671 (2.04%) 2.099 (3.58%)
Evaluations 7.515 (76.59%) 19.641 (83.82%) 29.054 (88.50%) 53.400 (90.97%)
Total 9.812 23.431 32.829 58.698
Problem F15 = {f12, 3} F17 = {f12, 5} F19 = {f12, 10} F20 = {f12, 20}
Archive 0.982 (4.15%) 0.773 (2.33%) 0.723 (1.22%) 0.891 (0.71%)
Niching 1.020 (4.31%) 0.932 (2.81%) 0.663 (1.12%) 0.714 (0.57%)
EA 1.387 (5.86%) 1.282 (3.87%) 1.144 (1.93%) 1.435 (1.15%)
LS 0.399 (1.69%) 0.580 (1.75%) 2.267 (3.81%) 12.974 (10.37%)
Evaluations 19.867 (83.98%) 29.560 (89.23%) 54.636 (91.93%) 109.063 (87.20%)
Total 23.655 33.127 59.434 125.077
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5.5. Comparison with existing algorithms770

In this section we compare the results obtained by our algorithm, RMAwA.771

We selected a number of algorithms from the literature along with algorithms772

presented for the CEC’2013 competition:773

• PNA-NSGAII [2] proposed for the competition, this algorithm is an im-774

provement of A-NSGAII [8]. These algorithms tackle the multimodal op-775

timisation problem by turning them into bi-objective problems. The first776

objective is the minimisation of the original function and the second one777

is the maximisation of the diversity brought by the evaluated individual.778

• dADE/nrand/1/bin [12] : a DE using a neighbourhood based mutation779

strategy and a dynamically updated archive.780

• DE/nrand/2 [13] : a DE using the neighbourhood based mutation strategy.781

• NVMO [34]: a Variable Mesh optimisation algorithm with niching strat-782

egy.783

• CMA-ES [18]: A version of CMA-ES that implements a simple archive.784

• NEA2 [43]: A version of CMA-ES that uses nearest-better clustering as785

niching strategy.786

These algorithms are the top six algorithms of the CEC’2013 competition.787

All the results used here were provided by the authors and used during the788

competition. The detailed results of each algorithm can be seen in the Appendix.789

We first analyse the overall performance of each algorithm on the benchmark790

and compare them with RMAwA. Then we study in detail their behaviour791

according to the problem’s characteristics.792

5.5.1. Accuracy level analysis793

We analyse here the general performance of these algorithms on the CEC’2013794

benchmark for each accuracy level. To support this analysis, we show in Ta-795

ble 11 the mean rankings of each algorithm according to the different accuracy796

levels and in Table 12 the Wilcoxon comparison of RMAwA with the other797

algorithms.798

First, when comparing with other algorithms using CMA-ES, we can see that799

RMAwA significantly outperforms the classical CMA-ES (with α = 0.1). This800

algorithm is not particularly designed for multimodal optimisation as it does801

not implement any niching mechanism. When comparing with NEA2, RMAwA802

offers similar performance.803

Then, we can see that RMAwA is third best for the smallest accuracy level804

(ε = 1E−1) behind NVMO and dADE although no statistical difference can be805

observed in Table 12.806

Excluding NEA2, RMAwA obtains better results than the other algorithms,807

and this superiority increases with the accuracy level, being specially remarkable808

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 11: Mean rankings obtained by different algorithms over all functions CEC’2013 bench-
mark for each accuracy level

Accuracy level 1E−1 1E−2 1E−3 1E−4 1E−5
PNA-NSGAII 4.53 5.18 5.28 5.45 5.43
DE/nrand/2 5.53 5.05 4.95 4.83 4.30
CMA-ES 4.58 4.00 4.08 3.93 3.90
NVMO 2.73 3.68 4.15 4.43 5.08
dADE 3.43 4.10 4.10 4.08 3.90
NEA2 3.70 2.75 2.55 2.68 2.70
RMAwA 3.53 3.25 2.90 2.63 2.70

for ε = {1E−4, 1E−5}. Between NEA2 and RMAwA there is no statistical809

difference detected.810

This analysis highlights the difficulty of algorithms to properly balance the811

exploration and the exploitation. Indeed, when algorithms use the original812

CMA-ES, a very efficient method to obtain accurate solutions but also very813

costly, they generally perform better for higher accuracy levels. On the other814

hand, other algorithms (DE-based, NVMO, PNA-NSGAII) have better explo-815

ration efficiency but fail to identify accurate solutions.816

5.5.2. Problem specific performance analysis817

Let us now consider every problem individually. As it is the most challenging818

for this benchmark, we will consider here only the highest accuracy level (ε =819

1E−5). Table 13 lists the PRs obtained by each algorithm for this accuracy820

level.821

In this analysis we will focus on the problems offering the major differences822

between the results obtained by the compared algorithms. Concerning problems823

with highly multimodal fitness landscapes, F7 to F9 where the number of optima824

ranges from 36 to 216, RMAwA ranks amongst the best algorithm. It obtains825

the best results for problem F7 and obtains the second best results of problem826

F8 and F9 after respectively dADE and NEA2.827

RMAwA also shows the best results in the problems with composition func-828

tions (F10 to F17). However the quality of the results decreases with the dimen-829

sionality (F18 to F20), being clearly worse than that obtained by NEA2.830

The improvable behaviour of RMAwA when the dimensionality increases is831

clear because for f11 and f12 results are very good with dimension 2, but not832

good with a higher dimension, like 10 (F18-F20). In Section 5.3.1, it can be833

observed that for these functions the results obtained are low for each possible834

ND, thus the results are not due to the ND adaptation mechanism. Another835

possible reason of the improvable results could be that the parameter values836

have been automatically tuned considering all functions, in which the majority837

has a very low dimension. Because of this, these parameter values could not be838

the more adequate for lower dimension problems. In order to reject or confirm839
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(for ε = {1E−1, 1E−2, 1E−3, 1E−4, 1E−5})

ε = 1E−1
RMAwA vs R+ R− p-value

PNA-NSGAII 128.5 65 2.27E-1
DE/nrand/2 180.5 29.5 3.40E-3

CMA-ES 168.5 41.5 1.62E-2
NVMO 62 132.5 1.96E-1
dADE 71.5 122 3.44E-1
NEA2 117.5 92.5 6.41E-1

ε = 1E−2
RMAwA vs R+ R− p-value

PNA-NSGAII 199.5 10.5 9.35E-5
DE/nrand/2 171.5 38.5 1.14E-2

CMA-ES 150.5 59.5 9.35E-2
NVMO 124.5 85.5 4.67E-1
dADE 134.5 75.5 2.71E-1
NEA2 82.5 127.5 4.01E-1

ε = 1E−3
RMAwA vs R+ R− p-value

PNA-NSGAII 185 7.5 8.39E-5
DE/nrand/2 171.5 38.5 1.14E-2

CMA-ES 139 53.5 9.98E-2
NVMO 166.5 43.5 2.04E-2
dADE 147.5 62.5 1.19E-1
NEA2 91.5 118.5 6.14E-1

ε = 1E−4
RMAwA vs R+ R− p-value

PNA-NSGAII 185 7.5 8.39E-5
DE/nrand/2 171.5 38.5 1.14E-2

CMA-ES 139 53.5 9.98E-2
NVMO 185.5 24.5 1.56E-3
dADE 165.5 44.5 2.27E-2
NEA2 95 97.5 1.00E+0

ε = 1E−5
RMAwA vs R+ R− p-value

PNA-NSGAII 199.5 10.5 9.35E-5
DE/nrand/2 151.5 42 3.23E-2

CMA-ES 138 54.5 1.09E-1
NVMO 189.5 20.5 7.79E-4
dADE 151.5 42 3.23E-2
NEA2 96.5 96 9.68E-1

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

T
a
b

le
1
3
:

P
R

s
o
b

ta
in

ed
b
y

ea
ch

a
lg

o
ri

th
m

fo
r
ε

=
1
E
−

5
o
n

th
e

C
E

C
’2

0
1
3

b
en

ch
m

a
rk

.
V

a
lu

es
in

th
e

p
a
re

n
th

es
is

re
p

re
se

n
t

th
e

st
a
n

d
a
rd

co
m

p
et

it
io

n
ra

n
k
in

g
o
f

ea
ch

a
lg

o
ri

th
m

fo
r

ea
ch

p
ro

b
le

m

P
ro

b
le

m
P

N
A

-N
S

G
A

II
D

E
/
n

ra
n

d
/2

C
M

A
-E

S
N

V
M

O
d

A
D

E
N

E
A

2
R

M
A

w
A

F
1

1
.0

00
(1

)
1.

0
00

(1
)

1.
00

0
(1

)
1.

00
0

(1
)

1.
00

0
(1

)
1.

0
00

(1
)

1.
00

0
(1

)
F
2

1
.0

00
(1

)
1.

0
00

(1
)

1.
00

0
(1

)
1.

00
0

(1
)

1.
00

0
(1

)
1.

0
00

(1
)

1.
00

0
(1

)
F
3

1
.0

00
(1

)
1.

0
00

(1
)

1.
00

0
(1

)
1.

00
0

(1
)

1.
00

0
(1

)
1.

0
00

(1
)

1.
00

0
(1

)
F
4

0
.8

05
(7

)
1.

0
00

(1
)

0.
99

0
(5

)
1.

00
0

(1
)

1.
00

0
(1

)
0.

9
90

(5
)

1.
00

0
(1

)
F
5

1
.0

00
(1

)
1.

0
00

(1
)

1.
00

0
(1

)
1.

00
0

(1
)

1.
00

0
(1

)
1.

0
00

(1
)

1.
00

0
(1

)
F
6

0
.0

00
(1

)
0.

0
00

(1
)

0.
00

0
(1

)
0.

00
0

(1
)

0.
00

0
(1

)
0.

0
00

(1
)

0.
00

0
(1

)
F
7

0
.6

83
(5

)
0.

2
75

(7
)

0.
51

6
(6

)
0.

80
4

(3
)

0.
71

4
(4

)
0.

9
11

(2
)

0.
91

7
(1

)
F
8

0
.2

52
(4

)
0.

3
63

(3
)

0.
11

5
(6

)
0.

02
7

(7
)

0.
94

7
(1

)
0.

2
39

(5
)

0.
82

4
(2

)
F
9

0
.2

76
(4

)
0.

0
65

(7
)

0.
27

2
(5

)
0.

19
4

(6
)

0.
34

9
(3

)
0.

5
79

(1
)

0.
51

3
(2

)
F
1
0

1
.0

00
(1

)
1.

0
00

(1
)

0.
97

8
(6

)
0.

96
7

(7
)

1.
00

0
(1

)
0.

9
80

(5
)

1.
00

0
(1

)
F
1
1

0
.6

63
(7

)
0.

6
67

(5
)

0.
95

3
(3

)
0.

66
7

(4
)

0.
66

7
(5

)
0.

9
60

(2
)

1.
00

0
(1

)
F
1
2

0
.5

73
(7

)
0.

6
18

(5
)

0.
76

0
(3

)
0.

59
3

(6
)

0.
73

5
(4

)
0.

8
33

(2
)

1.
00

0
(1

)
F
1
3

0
.6

23
(7

)
0.

6
67

(4
)

0.
94

7
(2

)
0.

66
3

(6
)

0.
66

7
(4

)
0.

9
47

(2
)

0.
99

7
(1

)
F
1
4

0
.6

10
(7

)
0.

6
67

(4
)

0.
74

3
(3

)
0.

62
7

(6
)

0.
66

7
(4

)
0.

8
00

(2
)

0.
81

3
(1

)
F
1
5

0
.4

43
(5

)
0.

4
00

(6
)

0.
65

3
(3

)
0.

37
8

(7
)

0.
62

0
(4

)
0.

7
13

(1
)

0.
70

3
(2

)
F
1
6

0
.3

23
(7

)
0.

6
67

(3
)

0.
66

3
(5

)
0.

65
3

(6
)

0.
66

7
(3

)
0.

6
73

(1
)

0.
67

0
(2

)
F
1
7

0
.2

45
(7

)
0.

2
80

(6
)

0.
58

3
(3

)
0.

32
5

(5
)

0.
35

8
(4

)
0.

6
95

(1
)

0.
66

0
(2

)
F
1
8

0
.0

93
(7

)
0.

5
07

(3
)

0.
34

0
(4

)
0.

32
7

(5
)

0.
60

3
(2

)
0.

6
63

(1
)

0.
23

3
(6

)
F
1
9

0
.0

10
(6

)
0.

1
80

(3
)

0.
59

7
(2

)
0.

09
3

(5
)

0.
00

0
(7

)
0.

6
67

(1
)

0.
12

8
(4

)
F
2
0

0
.0

00
(5

)
0.

2
30

(3
)

0.
42

5
(1

)
0.

00
0

(5
)

0.
00

0
(5

)
0.

3
50

(2
)

0.
12

5
(4

)

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

that hypothesis, we have carried out another automatic tuning considering only840

functions F18 − F20, but the results obtained were very similar. Thus, the841

improvable behaviour or RMAwA in higher dimensionality problems is kept as842

a open issue to be solved in the future.843

However, this previous behaviour is not unsurprising, because it has hap-844

pened to many others, as can be observed in Table 13. As was formulated by845

the No Free Lunch Theorem, designing an algorithm for an heterogeneous test846

bed of problems is very challenging. It is common for algorithms to perform847

well in problems with certain characteristics and poorly on others.848

In summary, the algorithm proposed of this paper, RMAwA, offers an overall849

performance significantly superior to the other algorithms by obtaining competi-850

tive if not better results in most problems (except in higher dimension problems)851

proposed in the CEC’2013 benchmark. Only NEA2, the winner of the CEC’2013852

competition obtains equivalent results.853

6. Conclusions854

In this paper, we present a novel model based on region-based MA to tackle855

multimodal optimisation problems. It uses a clearing strategy where niches are856

defined as regions. It implements an archive of solutions and indexed regions857

considered as explored and thus excluded from further exploration.858

In order to asses the efficiency of the model against existing ones, we have859

tested it on a MA which alternatively applies an EA (SSGA) to explore the860

search space and an LS (CMA-ES) to the best one until it does not improve for861

a certain number of evaluations.862

Various studies have been performed to study the performances of this863

model. First, we have demonstrated that the use of region-based niches was864

more efficient than that of the classical euclidean niches. We have shown that865

excluding regions explored by the LS allows the algorithm to reduce the search866

space leading to a more efficient exploration. Also, we have analysed the popu-867

lation diversity during the run and the degree of exploration in several functions.868

Finally, complexity testing show the good scalability of the proposal.869

We compared the resulting algorithm using the benchmark issued for the870

special session and competition on niching methods for multimodal function871

optimisation of the IEEE Congress on Evolutionary Computation in 2013. We872

noted that our algorithm was fairly independent to the different accuracy levels873

tested in this benchmark compared to the other algorithms obtaining signifi-874

cantly better results than most algorithms and similar performance to NEA2.875

This work opens the way of various potential future studies:876

• First, the behaviour of RMAwA with higher dimension problems should877

be studied more in detailed and improved it. Also, the memory cost of the878

archive may become consequent when tackling higher dimension problems879

and it could be interesting to study techniques which reduce or limit the880

size of the archive or remove similar solutions representing the same region.881
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• As is often the case when the parameter defining the size of a niche, the882

number of divisions per dimensions is highly sensitive. Although the idea883

of a constant increasing during the search might offer interesting results,884

it may not be optimal in some cases. A more adapted strategy could be885

identified and researched. An other option would be to implement multi-886

population where, as it is done in Hierarchical Genetic Strategy [53], each887

population uses different numbers of divisions.888

• This model has proved to obtain interesting results when applied with889

both SSGA and CMAES as its EA and LS. Further experiments using890

different components or in a different memetic framework could lead to891

new efficient algorithms. If tested in higher dimensions, the necessity of892

changing CMAES to a more scalable LS method would be compulsory.893
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Appendix: Detailed Peak Ratio on the CEC’2013 benchmark1106

This section shows the Peak Ratio obtained on the CEC’2013 benchmark in1107

the 5 accuracy levels by:1108

• RMAwA (Table 14)1109

• CMA-ES (Table 15)1110

• DE/nrand/2 (Table 16)1111

• dADE/nrand/1/bin (Table 17).1112

• PNA-NSGAII (Table 18)1113

• NVMO (Table 19)1114

• NEA2 (Table 20)1115

Table 14: Results with RMAwA

Pb Fun Dim
Accuracy level

1E−1 1E−2 1E−3 1E−4 1E−5
F1 f1 1 1.000 1.000 1.000 1.000 1.000
F2 f2 1 1.000 1.000 1.000 1.000 1.000
F3 f3 1 1.000 1.000 1.000 1.000 1.000
F4 f4 2 1.000 1.000 1.000 1.000 1.000
F5 f5 2 1.000 1.000 1.000 1.000 1.000
F6 f6 2 0.992 0.992 0.992 0.992 0.000
F7 f7 2 1.000 0.920 0.917 0.917 0.917
F8 f6 3 0.824 0.824 0.824 0.824 0.824
F9 f7 3 1.000 0.519 0.515 0.514 0.513
F10 f8 2 1.000 1.000 1.000 1.000 1.000
F11 f9 2 1.000 1.000 1.000 1.000 1.000
F12 f10 2 1.000 1.000 1.000 1.000 1.000
F13 f11 2 0.997 0.997 0.997 0.997 0.997
F14 f11 3 0.823 0.813 0.813 0.813 0.813
F15 f12 3 0.705 0.703 0.703 0.703 0.703
F16 f11 5 0.683 0.670 0.670 0.670 0.670
F17 f12 5 0.668 0.660 0.660 0.660 0.660
F18 f11 10 0.377 0.237 0.237 0.233 0.233
F19 f12 10 0.128 0.128 0.128 0.128 0.128
F20 f12 20 0.253 0.125 0.125 0.125 0.125
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Table 15: Results with CMA-ES

Pb Fun Dim
Accuracy level

1E−1 1E−2 1E−3 1E−4 1E−5
F1 f1 1 1.000 1.000 1.000 1.000 1.000
F2 f2 1 1.000 1.000 1.000 1.000 1.000
F3 f3 1 1.000 1.000 1.000 1.000 1.000
F4 f4 2 1.000 1.000 1.000 1.000 0.990
F5 f5 2 1.000 1.000 1.000 1.000 1.000
F6 f6 2 0.783 0.783 0.782 0.776 0.000
F7 f7 2 0.531 0.529 0.521 0.518 0.516
F8 f6 3 0.115 0.115 0.115 0.115 0.115
F9 f7 3 0.282 0.278 0.274 0.273 0.272
F10 f8 2 1.000 1.000 0.998 0.992 0.978
F11 f9 2 0.990 0.977 0.970 0.963 0.953
F12 f10 2 0.788 0.788 0.778 0.760 0.760
F13 f11 2 0.980 0.967 0.957 0.950 0.947
F14 f11 3 0.760 0.750 0.743 0.743 0.743
F15 f12 3 0.680 0.658 0.655 0.655 0.653
F16 f11 5 0.667 0.667 0.667 0.667 0.663
F17 f12 5 0.585 0.585 0.585 0.585 0.583
F18 f11 10 0.340 0.340 0.340 0.340 0.340
F19 f12 10 0.597 0.597 0.597 0.597 0.597
F20 f12 20 0.448 0.448 0.448 0.448 0.425
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Table 16: Results with DE/nrand/2

Pb Fun Dim
Accuracy level

1E−1 1E−2 1E−3 1E−4 1E−5
F1 f1 1 1.000 1.000 1.000 1.000 1.000
F2 f2 1 1.000 1.000 1.000 1.000 1.000
F3 f3 1 1.000 1.000 1.000 1.000 1.000
F4 f4 2 1.000 1.000 1.000 1.000 1.000
F5 f5 2 1.000 1.000 1.000 1.000 1.000
F6 f6 2 0.669 0.669 0.669 0.669 0.000
F7 f7 2 0.276 0.276 0.276 0.276 0.275
F8 f6 3 0.365 0.365 0.365 0.365 0.363
F9 f7 3 0.066 0.066 0.066 0.066 0.065
F10 f8 2 1.000 1.000 1.000 1.000 1.000
F11 f9 2 0.667 0.667 0.667 0.667 0.667
F12 f10 2 0.635 0.628 0.628 0.618 0.618
F13 f11 2 0.667 0.667 0.667 0.667 0.667
F14 f11 3 0.667 0.667 0.667 0.667 0.667
F15 f12 3 0.413 0.408 0.405 0.400 0.400
F16 f11 5 0.667 0.667 0.667 0.667 0.667
F17 f12 5 0.288 0.283 0.283 0.280 0.280
F18 f11 10 0.517 0.513 0.507 0.507 0.507
F19 f12 10 0.230 0.218 0.203 0.190 0.180
F20 f12 20 0.230 0.230 0.230 0.230 0.230
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Table 17: Results with dADE/nrand/1/bin

Pb Fun Dim
Accuracy level

1E−1 1E−2 1E−3 1E−4 1E−5
F1 f1 1 1.000 1.000 1.000 1.000 1.000
F2 f2 1 1.000 1.000 1.000 1.000 1.000
F3 f3 1 1.000 1.000 1.000 1.000 1.000
F4 f4 2 1.000 1.000 1.000 1.000 1.000
F5 f5 2 1.000 1.000 1.000 1.000 1.000
F6 f6 2 1.000 1.000 1.000 0.988 0.000
F7 f7 2 1.000 0.960 0.878 0.808 0.714
F8 f6 3 0.990 0.991 0.985 0.958 0.947
F9 f7 3 0.829 0.592 0.552 0.436 0.349
F10 f8 2 1.000 1.000 1.000 1.000 1.000
F11 f9 2 0.867 0.667 0.667 0.667 0.667
F12 f10 2 0.750 0.748 0.738 0.740 0.735
F13 f11 2 0.737 0.667 0.667 0.667 0.667
F14 f11 3 0.943 0.667 0.667 0.667 0.667
F15 f12 3 1.000 0.643 0.623 0.600 0.620
F16 f11 5 0.890 0.667 0.667 0.667 0.667
F17 f12 5 0.963 0.480 0.420 0.400 0.358
F18 f11 10 0.663 0.630 0.630 0.613 0.603
F19 f12 10 0.495 0.118 0.080 0.020 0.000
F20 f12 20 0.080 0.005 0.000 0.000 0.000
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Table 18: Results with PNA-NSGA

Pb Fun Dim
Accuracy level

1E−1 1E−2 1E−3 1E−4 1E−5
F1 f1 1 1.000 1.000 1.000 1.000 1.000
F2 f2 1 1.000 1.000 1.000 1.000 1.000
F3 f3 1 1.000 1.000 1.000 1.000 1.000
F4 f4 2 1.000 1.000 0.995 0.985 0.805
F5 f5 2 1.000 1.000 1.000 1.000 1.000
F6 f6 2 0.562 0.536 0.523 0.473 0.000
F7 f7 2 1.000 0.741 0.726 0.709 0.683
F8 f6 3 0.352 0.330 0.310 0.275 0.252
F9 f7 3 0.480 0.326 0.318 0.298 0.276
F10 f8 2 1.000 1.000 1.000 1.000 1.000
F11 f9 2 0.877 0.677 0.670 0.680 0.663
F12 f10 2 0.752 0.715 0.672 0.642 0.573
F13 f11 2 0.697 0.667 0.667 0.663 0.623
F14 f11 3 0.933 0.667 0.667 0.663 0.610
F15 f12 3 0.665 0.495 0.485 0.470 0.443
F16 f11 5 1.000 0.523 0.523 0.417 0.323
F17 f12 5 0.917 0.347 0.338 0.300 0.245
F18 f11 10 0.640 0.117 0.113 0.110 0.093
F19 f12 10 0.020 0.020 0.043 0.017 0.010
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Table 19: Results with NVMO

Pb Fun Dim
Accuracy level

1E−1 1E−2 1E−3 1E−4 1E−5
F1 f1 1 1.000 1.000 1.000 1.000 1.000
F2 f2 1 1.000 1.000 1.000 1.000 1.000
F3 f3 1 1.000 1.000 1.000 1.000 1.000
F4 f4 2 1.000 1.000 1.000 1.000 1.000
F5 f5 2 1.000 1.000 1.000 1.000 1.000
F6 f6 2 1.000 0.996 0.944 0.681 0.000
F7 f7 2 1.000 1.000 0.953 0.901 0.804
F8 f6 3 0.411 0.300 0.276 0.198 0.027
F9 f7 3 1.000 0.686 0.409 0.279 0.194
F10 f8 2 1.000 1.000 1.000 1.000 0.967
F11 f9 2 1.000 0.667 0.667 0.667 0.667
F12 f10 2 0.838 0.743 0.730 0.705 0.593
F13 f11 2 0.997 0.667 0.667 0.667 0.663
F14 f11 3 1.000 0.667 0.667 0.667 0.627
F15 f12 3 1.000 0.723 0.675 0.640 0.378
F16 f11 5 1.000 0.673 0.663 0.663 0.653
F17 f12 5 1.000 0.483 0.453 0.438 0.325
F18 f11 10 0.997 0.470 0.460 0.460 0.327
F19 f12 10 0.273 0.133 0.133 0.127 0.093
F20 f12 20 0.000 0.000 0.000 0.000 0.000
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Table 20: Results with NEA2

Pb Fun Dim
Accuracy level

1E−1 1E−2 1E−3 1E−4 1E−5
F1 f1 1 1.000 1.000 1.000 1.000 1.000
F2 f2 1 1.000 1.000 1.000 1.000 1.000
F3 f3 1 1.000 1.000 1.000 1.000 1.000
F4 f4 2 1.000 1.000 1.000 1.000 0.990
F5 f5 2 1.000 1.000 1.000 1.000 1.000
F6 f6 2 0.963 0.963 0.958 0.950 0.000
F7 f7 2 0.946 0.925 0.918 0.914 0.911
F8 f6 3 0.241 0.240 0.240 0.240 0.239
F9 f7 3 0.622 0.595 0.584 0.581 0.579
F10 f8 2 1.000 1.000 1.000 0.988 0.980
F11 f9 2 0.980 0.967 0.967 0.960 0.960
F12 f10 2 0.853 0.850 0.843 0.840 0.833
F13 f11 2 0.977 0.970 0.960 0.957 0.947
F14 f11 3 0.830 0.817 0.810 0.807 0.800
F15 f12 3 0.743 0.723 0.720 0.718 0.713
F16 f11 5 0.673 0.673 0.673 0.673 0.673
F17 f12 5 0.695 0.695 0.695 0.695 0.695
F18 f11 10 0.667 0.667 0.667 0.667 0.663
F19 f12 10 0.667 0.667 0.667 0.667 0.667
F20 f12 20 0.363 0.360 0.360 0.360 0.350
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