
Customizing Fuzzy Partitions for Visual Texture
Representation
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Abstract

Visual textures in images are usually described by humans using lin-
guistic terms related to their perceptual properties, like “very coarse”, “low
directional”, or “high contrasted”. Thus, computational models with the
ability of providing a perceptual texture characterization on the basis of
these terms play a fundamental role in tasks where some interaction with
subjects is needed. In this sense, fuzzy partitions defined on the domain
of computational measures of the corresponding property have been pro-
posed in the literature. However, the main drawback of these proposals is
that they do not take into account the subjectivity associated to the human
perception. For example, the perception of a texture property may change
depending on the user, and in addition, the image context may influence the
global perception of the properties. In this paper, we propose to solve these
problems by means of a methodology that automatically adapts any generic
fuzzy partition modeling a texture property to the particular perception of
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jesus@decsai.ugr.es (Jesús Chamorro-Mart́ınez)
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a user or to the image context. In this method, the membership functions
associated to the fuzzy sets are automatically adapted by means of a func-
tional transformation on the basis of the new perception. For this purpose,
the information given by the user or extracted from the textures present in
the image are employed.

Keywords: image analysis, texture modelling, fuzzy partitions, linguistic
labels, human perception, adaptive models

1. Introduction

Texture is one of the most used low level features for image analysis and
computer vision. In fact, since all the objects in nature have texture (see the
natural image in Figure 1(a)), its analysis plays a fundamental role in their
recognition and classification [7, 13, 19]. An example of this importance
can be appreciated in figures 1(b)-(e), where several images with the same
shape and a similar color are shown, but that can be identified thanks to
the analysis of their texture.

There are many techniques in the literature for texture analysis, and the
use of one or another depends on the particular task in which it is applied. In
this sense, for tasks where a textural description interpretable by humans is
not needed, such as segmentation or texture classification, we can find a lot
of techniques that try to model texture by means of feature vectors. These
types of approaches are based on genetic programming [23, 25], dictionary
learning [8, 31], kernel learning [6, 17], Gabor functions [12, 32] or Wavelets
[11, 15], that are considered as the golden standard in the literature.

However, in tasks where some interaction with subjects is needed, tech-
niques with the ability of providing a perceptual texture characterization
interpretable by humans can be more useful. In these types of approaches,
texture is modeled on the basis of some vague textural properties that are
usually employed by humans, like coarseness, directionality, contrast, line-
likeness or regularity [2, 9, 26]. These perceptual properties are imprecise by
nature, in the sense that, except in extreme cases, we cannot set a precise
threshold between textures that accomplish strictly a property and textures
that do not. In this sense, it is natural for humans to give assessments about
the presence degree of these perceptual properties. For example, regarding
the properties of coarseness and contrast, we can reasonably say that the
texture shown in Figure 2(a) is “very coarse” and “high contrasted”, that the
texture shown in Figure 2(b) is “coarse” and “medium contrasted”, and that
the texture shown in Figure 2(c) is “very fine” and “very low contrasted”.
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Figure 1: Importance of the analysis of texture. (a) All the objects in nature have texture.
(b)-(e) Example of objects with the same shape and color, but different texture.

This way, focusing our attention on the perceptual texture characteriza-
tion, the most interesting approaches arise from the fuzzy set field [1, 3, 14],
as they are able to take into account the inherent uncertainty. In these pro-
posals, a mapping from low-level statistical features (crisp computational
measures of the corresponding property) to high level textural concepts is
performed by defining membership functions for each textural feature. In
particular, fuzzy partitions defined on the domain of computational mea-
sures are proposed in the literature, providing a set of linguistic labels that
are related to the presence degree of the property [5, 20, 18, 24]. In these par-
titions, piecewise linear membership functions, such as triangular or trape-
zoidal functions, are usually employed. These fuzzy approaches can be very
useful in classical tasks where a texture characterization using linguistic
terms is needed, such as semantic description of images or content-based
image retrieval using linguistic queries.

In the majority of these fuzzy techniques [1, 3, 14, 18, 24, 28, 29], the
measures proposed by Tamura et al. in [26] are used as reference set, and
the fuzzy partitions are generated through an unsupervised fuzzy cluster-
ing algorithm on the basis of the measure values obtained from an image
database. In more recent approaches [5, 20], a distinguishability analysis
based on the human perception of the texture properties are proposed to
generate the fuzzy partitions. In this case, several computational measures

3



(a) (b) (c)

Figure 2: Examples showing the imprecision associated to the properties.

are used as reference set, analyzing their capability to discriminate between
different categories of the corresponding property. In addition, the mem-
bership functions are adjusted by considering the relationship between the
measure values and the average human perception of the property, obtain-
ing fuzzy partition that are able to represent the presence of the texture
properties according to this average perception.

However, all these fuzzy techniques have a main drawback that, to the
best of our knowledge, has not been faced in the literature: these approaches
do not take into account the subjectivity associated to the human percep-
tion. On the one hand, the perception of a texture property may change
depending on the user or the application. For example, the concept of “very
fine” may be different for a geologist, who analyzes satellite images, than
for a medical expert, who study the textures present in x-ray or microscopic
images. Moreover, even in the same field of application, two users may have
different perceptions about the texture properties. For example, although
we have considered that the texture shown in Figure 2(a) is very coarse,
another user may consider that this texture is not so coarse.

On the other hand, the image context may affect the global perception
of these properties, i.e. the perception of a texture may change depending
on the presence of the surrounding ones. An example of this fact can be
shown in Figure 3, where several textures with different fineness degrees are
present. The images in figures 3(a) and 3(b) are very similar, but in the
last one a new texture has been added. The presence of this texture, that
is much coarser than the others, can inhibit the rest of textures, and they
may be perceived as finer than in Figure 3(a). Considering the property of
contrast, it can be noticed that the texture added in Figure 3(b) is much
more contrasted than the others. Thus, the presence of the new texture can
also influence the perception of this property, and the rest of textures may
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Figure 3: Example showing the influence of the image context in the perception of fineness
and contrast properties. The presence of the very coarse and very contrasted texture in
(b) can inhibit the rest of textures, and they may be perceived as finer and less contrasted
than in (a).

be perceived as less contrasted than in Figure 3(a)1.
In this paper we propose to face the problem related with the subjectivity

of the human perception commented above. For this purpose, we propose a
methodology that automatically adapts any generic fuzzy partition model-
ing a texture property to the particular perception of a user or to the image
context. In this method, the membership functions associated to the fuzzy
sets are automatically adapted by means of a functional transformation on
the basis of the new perception. Since piecewise linear membership func-
tions, such as triangular or trapezoidal functions, are usually employed in the
fuzzy partitions, the proposed functional transformation consist basically in
the adaptation of their parameters values. In order to take into account the
particular perception of a new user, a set of texture images representing the
particular profile of the user is employed in the transformation process. In
the case of the adaptation to the image context, the information used in the
transformation process is obtained by analyzing the textures present in the
image.

The rest of the paper is organized as follows. In section 2 a general
overview of our methodology, as well as the used notation, are presented.
The technique proposed in this paper to obtain fuzzy partitions adapted

1Notice that this fact is more noticeable if the images are observed separately.
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to the perception of different users or to the image context is described in
sections 3 and 4, respectively. In section 5 some results obtained by applying
these models are shown, and the main conclusions and future works are
summarized in section 6.

2. Preliminaries and notations

As mentioned in the above section, the majority of the approaches in the
literature that allow to obtain semantic descriptions of visual texture are
based on fuzzy partitions defined on the domain of a given computational
measure. In these approaches, piecewise linear membership functions, such
as triangular or trapezoidal functions, are usually employed. From now on,
let Π be a fuzzy partition modeling a texture property, and let D be the
domain of the computational measure used as reference set. Let also N be
the number of fuzzy sets in Π, let Tn be the n-th fuzzy set in the partition
(with n = 1, . . . , N) 2, and let L = {l1, . . . , lN} be the set of linguistic terms
modeled by Π.

The aim of this paper is to obtain, from a generic fuzzy partition Π,
adaptive ones, allowing to represent the particular perception of a user or
the influence of the image context. From now on, let Π̃ be the adapted fuzzy
partition obtained from Π, and let T̃n be the n-th fuzzy set in Π̃.

In the proposed adaptation methodology, we assume Tn(x), n = 1, . . . , N
to be piecewise linear functions, such as triangular or trapezoidal functions.
That is,

Tn(x) = T (x, an1 , a
n
2 , . . . , a

n
k) (1)

with k being the number of parameters of the piecewise function3. Consid-
ering this condition, we propose to obtain Π̃ from Π by transforming the
parameters that define these membership functions according to the partic-
ular perception of the user or the image context, as we will explain in the
following sections. This way, the adapted fuzzy partition Π̃ obtained with
this methodology will satisfy the following properties:

2To simplify the notation, as it is usual in the scope of fuzzy sets, we will use the same
notation Tn for the fuzzy set and for the membership function that defines it.

3Notice that in the case of triangular functions three parameters are used (k = 3), with
an
1 and an

3 being the support limits, and with an
2 being the kernel; while in the case of

trapezoidal functions four parameters are employed (k = 4), with an
1 and an

4 being the
support limits, and with an

2 and an
3 being the kernel limits.
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� Π̃ will have the same reference set as Π (the domain D of the compu-
tational measure on which the partition is defined).

� Π̃ will have the same number N of fuzzy sets as Π (modeling the same
linguistic labels L = {l1, . . . , lN}).

� Π̃ will have the same type of membership functions as Π, i.e. the type
of T̃n(x) will be the same as Tn(x) (triangular, trapezoidal, etc.), but
with different parameter values (ãn1 , . . . , ã

n
k).

3. Adaptation to user’s profiles

Our aim is to obtain a fuzzy partition Π̃ representing the particular
perception of a user about a texture property. In our adaptation approach,
we propose to obtain Π̃ by adapting a certain generic fuzzy partition Π on
the basis of the information given by the user. Specifically, the user should
provide a collection of texture images R = {R1, . . . , RZ}, each one with an
associated linguistic label li ∈ L of the corresponding property, in order to
represent his/her particular perception. Notice that the user can associate
the same linguistic term to different images in R. From now on, let P ≤ N
be the number of different labels given by the user.

On the basis of R, our approach proposes to obtain Π̃ from Π by means
of what we call the adaptation points, which are defined as pairs pi = (mi ∈
D, li ∈ L) for i = 1, . . . , P ; these points associate each linguistic label li
given by the user in R with a representative value mi of the computational
texture measure4. Let

Ω = {pi, pi < pi+1}i=1,...,P (2)

be the ordered set of adaptation points, where the inequality < is defined
as pi < pj iff mi < mj ∀i, j. In addition, we also impose the constraint
li < lj ∀i, j for measures that increase according to the presence of the
property, and the constraint li > lj ∀i, j for those that decrease. Notice that
the number of points in Ω is P (the number of different labels in R), so we
need a procedure to obtain Ω from R.

In order to obtain these adaptation points, we propose to analyze the
information given by the user by following the method detailed in Algorithm
1. The input of this algorithm are the collection of labeled texture images

4Notice that only one adaptation point is defined for each different linguistic label given
by the user.
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Algorithm 1 Calculation of the adaptation points

Input:
R = {R1, . . . , RZ}: the collection of labeled texture images

Let:
Rli : the subset of images in R with label li
m(R): the value of the computational measure applied to R
l1 < l2 < . . . < lP : the semantically sorted linguistic labels in R

Body:
m1 = median{m(X)}X∈Rl1

p1 = (m1, l1)
Ω = {p1}
for each label li, i = 2, . . . , P :

mi = median{m(X)}X∈Rli

while mi−1 ≥ mi:
Delete from Rli the image with lowest measure value
if card(Rli) = 0:

//incoherent information in R
Ω = ∅
goto Output

Recalculate mi = median{m(X)}X∈Rli

pi = (mi, li)
Ω = Ω + {pi}

Output: Ω

R, and the output is the ordered set Ω. First of all, let us denote by Rli the
subset of images in R with label li, and let us denote by m(R) the value of
the computational measure used as reference set applied to the image R. In
addition, let l1 < l2 < . . . < lP be the semantically sorted linguistic labels in
R, e.g. if we are modeling the contrast property the labels are sorted from
the lowest contrast to the highest contrast5.

In our algorithm, a representative valuemi of the computational measure
is obtained for each linguistic label li. Since the user can provide several tex-
ture images associated to the same linguistic label, we propose to calculate
this representative value as the median of the measure values obtained from

5This is only valid for measures that increase according to the presence of the property.
For those that decrease, the labels should be sorted from the highest presence to the lowest
presence of the property
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the images in Rli . Notice that, some of these images may generate abnor-
mal computational values (due to their low quality, the effect of brightness,
etc.), so the use of the median allows us to reduce the influence of these
outliers. However, as has been commented above, the obtained represen-
tative values should maintain the same order as the linguistic labels, i.e.
m1 < m2 < . . . < mP . In order to accomplish this constraint, each repre-
sentative value mi is compared with the previous one mi−1. If mi−1 < mi,
the adaptation point pi = (mi, li) is added to Ω. However, if mi−1 ≥ mi,
an iterative process is applied. In this process, the image with lowest mea-
sure value in Rli is deleted, and mi is recalculated. This iterative process
continues until mi−1 < mi. In this case, the adaptation point pi = (mi, li)
is added to Ω. However, if the subset of images Rli becomes empty during
the iterative process, the adaptation will be not possible (Ω = ∅), because
incoherent information has been given by the user in R (the measure values
for all the images with a linguistic label are lower than the representative
value of the previous label).

Once Algorithm 1 has been applied, our aim is to obtain Π̃ by perform-
ing a suitable transformation of Π using the collection of adaptation points
Ω. In our approach, the center of the kernel of the fuzzy set Ti associ-
ated to each linguistic label li in Ω, denoted by ci in the following6, will
be translated to the corresponding measure value mi. To do this, since
Tn(x) are piecewise linear functions, we propose to transform the parame-
ters anj ;n = 1, . . . , N ; j = 1, . . . , k that define these membership functions
in order to obtain the corresponding adapted parameters ãnj . According to
our adaptation method, the transformation applied to anj will depend on the
interval [mi,mi+1] in which it is included. Thus, the adapted parameters
ãnj ;n = 1, . . . , N ; j = 1, . . . , k can be calculated as follows

ãnj =



m2−m1
c2−c1

(anj − c1) +m1 anj ≤ c1 or c1 < anj ≤ c2,
...
mi+1−mi

ci+1−ci
(anj − ci) +mi ci < anj ≤ ci+1,

...
mP−mP−1

cP−cP−1
(anj − cP−1) +mP−1 cP−1 < anj ≤ cP or anj > cP

(3)

6Notice that in the case of triangular membership functions the center of the kernel
matches with the second parameter of the function, i.e. ci = ai

2, while in the case of
trapezoidal functions it is calculated as the mean value between the second and third
parameter, i.e. ci = (ai

2 + ai
3)/2.
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(a)

R1 R2 R3 R4 R5

m(R) 0.6 0.56 0.12 0.43 1.06
label “C” “VC” “VF” “VC” “VC”

(b)

Figure 4: Example of adaptation of the generic fuzzy partition Π (a-top) proposed in
[21] to model the fineness property. The adapted partition Π̃ (a-bottom) is obtained by
transforming Π according to the particular fineness perception of a new user (b).

It should be noticed that (3) is valid only for P > 1. In the particular
case of P = 1 (only information about one label is provided by the user) the
transformation applied to all the parameters is reduced to a translation

ãnj = anj +m1 − c1 (4)

Figure 4 shows a real example that illustrates the proposed adaptation
method: first, Algorithm 1 is applied in order to obtain the adaptation
points; and then, they are used to calculate the adapted parameters ãnj
according to equation (3). In this example, we have used the generic fuzzy
partition Π proposed in [21] to model the fineness property (shown at the
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top of Figure 4(a)). The parameter values anj that define the trapezoidal
membership functions used in Π are listed in Table 1(a).

Let us suppose that a new user gives five texture images to represent
his/her particular fineness perception (R = {R1, . . . , R5}). In addition, let
us suppose that the values obtained by applying the fineness measure used
as reference set for these images, as well as the linguistic labels given by the
user, are the ones shown in Figure 4(b). Notice that three different labels
are given by the user (“C” or coarse, “VF” or very fine and “VC” or very
coarse), i.e. P = 3.

Our aim at this point is to obtain the ordered set Ω by applying Al-
gorithm 1. Since the computational measure used as reference set in [21]
decreases according to the presence of the property, the labels should be
sorted from the highest fineness presence to the lowest fineness presence, i.e.
l1 > l2 > l3 with l1 =“VF”, l2 =“C” and l3 =“VC”. As we have commented
above, a representative value mi of the fineness measure should be obtained
for each linguistic label. First, the value associated to the label l1 =“VF”
is calculated as m1 = median{0.12} = 0.12, and the adaptation point p1 =
(0.12, “VF”) is added to Ω. In a similar way, we can calculate the value
m2 = 0.6, and, since m1 < m2, the adaptation point p2 = (0.6, “C”) is
also added to Ω. Finally, the representative value for the label l3 =“VC”
is calculated as m3 = median{0.43, 0.56, 1.06} = 0.56. Since m2 > m3,
the iterative process shown in Algorithm 1 should be applied. In this pro-
cess, the image with lowest measure value from the ones with label “VC”
is deleted, and m3 is recalculated as7 m3 = median{0.56, 1.06} = 0.81.
In this case m2 < m3, so the iterative process stops, and the point p3
= (0.81, “VC”) is added to Ω. Thus, the output of Algorithm 1 is Ω =
{(0.12, “V F ′′), (0.6, “C ′′), (0.81, “V C ′′)}.

The first adaptation point (0.12, “VF”) imposes that the center of the
kernel8 of the fuzzy set l1 =“VF”, that is c1 = 0.2008 in Π, should be
translated to m1 = 0.12 in Π̃. In a similar way, the center of the kernels
corresponding to l2 =“C” and l3 =“VC”, that are c2 = 0.4165 and c3 =
0.7430 in Π respectively, should be set to m2 = 0.6 and m3 = 0.81 in
the adapted partition Π̃. In this case, the adapted parameters ãnj can be

7Notice that if there is an even number of values, the median is calculated as the mean
(average) of the middle pair of numbers.

8Notice that for the extreme fuzzy sets in the partition (the fuzzy sets associated to the
labels “VF” and “VC” in this example) the kernel extends to ∞ and −∞, respectively.
Thus, we propose to set the center of the kernel as the value where the membership
function reach the degree 1.
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obtained by using (3) as:

ãnj =

{ 0.6−0.12
0.4165−0.2008(a

n
j − 0.2008) + 0.12 anj ≤ 0.4165,

0.81−0.6
0.7430−0.4165(a

n
j − 0.4165) + 0.6 anj > 0.4165

Table 1(b) shows the parameter values of the adapted fuzzy partition Π̃
(shown at the bottom of Figure 4(a)), which are calculated by applying the
values anj listed in Table 1(a).

Table 1: Parameter values an,j corresponding to the generic partition Π (a), and adapted
parameters ãn,j obtained with the proposed method.

n an,1 an,2 an,3 an,4
1 −∞ −∞ 0.2008 0.3326
2 0.2008 0.3326 0.3551 0.4062
3 0.3551 0.4062 0.4267 0.7430
4 0.4267 0.7430 ∞ ∞

(a)

n ãn,1 ãn,2 ãn,3 ãn,4
1 −∞ −∞ 0.1200 0.4133
2 0.1200 0.4133 0.4633 0.5771
3 0.4633 0.5771 0.6066 0.8100
4 0.6066 0.8100 ∞ ∞

(b)

4. Adaptation to image context

It is widely known in psychology and neurophysiology fields that objects
perceived by the human visual system compete with each other to selectively
focus our attention. Consequently, some of these objects are inhibited by
the presence of those that predominate in the visual cortex [4, 16, 30]. This
inhibitory effect imply that the human perception of an object is strongly
affected by its context (i.e. the object’s surroundings) [10, 22, 27]. In this
sense, the image context, understood as the set of surrounding visual el-
ements of a given region or object, may influence the perception of the
different image features. In the case of visual textures, this means that the
perception of a texture may change depending on the presence of the sur-
rounding ones. In particular, it is natural to assume that the textures with
the maximum and the minimum presence of a property in the image may
affect the perception of this property for the rest of textures. In addition,
the inhibitory effect induced by the context seems to be stronger or weaker
depending on these extreme textures. For example, in the case of the fine-
ness property shown in Figure 3(b), the coarsest and the finest texture in the
image may inhibit the rest of textures, and this inhibition is strong because
there is a great difference in the fineness presence of these extreme textures.
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In this section, we propose a methodology to automatically adapt a
generic fuzzy partition Π to the image context. In our approach, we con-
sider that the inhibitory effect induced by the image context will depend on
the difference between the textures with the minimum and the maximum
presence of the property in the image (e.g. the coarser and the finer texture
in the case of fineness), in the sense that the greater this difference, the
stronger the inhibition. If no inhibition is present in the image, the fuzzy
partition do not need to be adapted (i.e. Π̃ = Π).

The adaptation method proposed in this section is very similar to the
technique shown in the previous one, but in this case the information used to
adapt the generic partition Π is obtained by analyzing the textures present
in the image. In particular, we propose to associate the extreme fuzzy sets
in the partition (e.g. “very coarse” and “very fine” in the case of fineness) to
the minimum and the maximum texture values in the image. However, this
solution may not be appropriate for images where the difference between
these extreme values is not very significant, as it may produce undesirable
artifact. In order to solve this problem, we propose to introduce a correction
factor that we call inhibition factor.

From now on, let mmin and mmax be the values obtained by applying the
computational measure to the textures with the minimum and the maximum
presence of the property in the image, respectively; let λ be the inhibition
factor related to the image for the corresponding property; and let m∗

min and
m∗

max be the values obtained by applying the inhibition factor λ to mmin

and mmax, respectively. At this point, our first aim is to obtain the values
mmin and mmax of the corresponding image. Secondly, these values will be
used to estimate the inhibition factor λ. Finally, this inhibition factor will
be used to calculate the adaptation values m∗

min and m∗
max. This way, the

fuzzy partition Π̃ adapted to the image context can be obtained by applying
the same transformation shown in the previous section on the basis of the
set

Ω = {(m∗
min, l1), (m

∗
max, lN )} (5)

with l1 and lN being the labels associated to the extreme fuzzy sets T1 and
TN , respectively (e.g. “very coarse” and “very fine” in the case of fineness).

In order to obtain the textures with the minimum and the maximum
presence of the property in the image, for each pixel in the original image,
the value of the measure used for the reference set is calculated using a
window centered at this pixel. Let M = {mi, mi ≤ mi+1}i=1,...,W be the
ordered set of these values calculated from the W pixels in the image. It
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is natural to assume that the first and the last element in this set will
correspond with the textures with the minimum and the maximum presence
of the property9, respectively, i.e. mmin = m1 and mmax = mW . However,
in natural images it is usual to find isolated pixels in a texture with very
low or very large measure values, which do not fit with the values of the rest
of pixels in the texture. In order to avoid the influence of these outliers, we
propose to choose the elements z > 1 and z′ < W in M, i.e. mmin = mz and
mmax = mz′ . In particular, the 20th percentile and the 80th percentile in M
have been used, i.e. z = round(0.2W + 0.5) and z′ = round(0.8W + 0.5),
with round(x) being the function that returns the nearest integer to x.

Once the values mmin and mmax are calculated, our aim is to estimate
the inhibition factor λ present in the image. In this paper, we consider that
λ will reach the highest degree (λ = 1) if the difference |mmax −mmin| is
large enough, and it will decrease as this difference is smaller. Thus, we
propose to define the inhibition factor as a value between 0 and 1 of the
form

λ =

{ |mmax−mmin|
U |mmax −mmin| < U,

1 |mmax −mmin| ≥ U
(6)

with U being the threshold value for considering that the difference between
the textures with the maximum and the minimum presence of the property
in the image is large enough. In our approach, we consider that the difference
between textures corresponding to the extreme fuzzy sets T1 and TN in the
generic fuzzy partition Π is large enough. In this paper, we propose to define
this threshold as

U = |cN − c1| (7)

with c1 and cN being the center of the kernel of the fuzzy sets T1 and TN in
Π, respectively.

Finally, once the inhibition factor is estimated, the values m∗
min and

m∗
max imposing the minimum and the maximum presence of the property in

Π̃ are calculated. In our approach, if no inhibition is present in the image
(λ = 0), m∗

min and m∗
max will coincide with the corresponding values of the

generic fuzzy partition, i.e. m∗
min = c1 and m∗

max = cN . On the contrary,
if the inhibition is strong (λ = 1), m∗

min and m∗
max will be imposed by the

textures with the minimum and the maximum presence of the property in

9For measures that increase according to the perception of the property.
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the image, i.e. m∗
min = mmin and m∗

max = mmax. Thus, in general, we
propose to calculate m∗

min and m∗
max as

m∗
min = c1 + λ · (mmin − c1) (8)

m∗
max = cN + λ · (mmax − cN ) (9)

5. Results

In this section, the adaptation method proposed in this paper is applied
to several experiments with natural images. In particular, we propose to
adapt the generic fuzzy partitions Π defined in [21]. In the first three exper-
iments (section 5.1), these generic partitions are adapted to the particular
perception of different users, analyzing the ability of the adapted models to
represent the corresponding profile. The last three experiments (section 5.2)
show examples where the fuzzy partitions are adapted to the image context,
analyzing their ability to represent the perception of the texture properties
influenced by the context.

In order to analyze the ability of a fuzzy partition (adapted or not)
to represent the perception of a texture property, we propose to obtain a
mapping from the original image to the membership degree associated to the
different fuzzy sets in the partition. To obtain this mapping, for each pixel
in the original image, a centered window of size 32× 32 is analyzed and its
membership degree to each fuzzy set is calculated. This degree is mapped
into a gray level from 0 to 255, with a white level meaning maximum degree,
and a dark one meaning zero degree. This way, we can easily check whether
the mapping agree with the perception of the property corresponding to the
different textures present in the image.

5.1. Adaptation to user’s profiles

For the first experiment, the image shown in Figure 5(a) has been used,
where we can see a spherical colony of green cells, that is composed by
several daughter colonies inside a main one. Figures 5(b)-(e) show a mapping
from this image using the generic fuzzy partition Π proposed in [21] for the
fineness property, as has been commented above. The labels associated to
these images are “very fine”, “fine”, “coarse” and “very coarse”, respectively.

As we can see, this mapping represents the fineness of the different tex-
tures present in the image according to the average human perception used
in [21]: the region corresponding to the daughter colonies is considered as
“very fine” (white levels in Figure 5(b) and dark levels in the rest), the main
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“very fine” “fine” “coarse” “very coarse”

(a) (b) (c) (d) (e)

User 1
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User 2

Ri Ci

“VC”

(k) (l) (m) (n) (o)

Figure 5: Results for the fineness property. (a) Original image. (b)-(e) Mapping from the
original image obtained by applying the generic fuzzy partition Π for the fineness property.
(f) Sample representing the particular fineness perception of the user 1. (g)-(j) Mapping
from the original image obtained by applying the fuzzy partition adapted to the particular
perception of the user 1. (k) Sample representing the particular fineness perception of the
user 2. (l)-(o) Mapping from the original image obtained by applying the fuzzy partition
adapted to the particular perception of the user 2.

colony is considered as a “fine” texture (white levels in Figure 5(c)), and
the background is “very coarse” (white levels in Figure 5(e)). Note that,
as can be seen in Figure 5(d), pixels in the border of two adjacent regions
with different texture have high membership degrees to the intermediate
fuzzy sets. This happens because the windows used for these pixels in the
mapping process contain both textures, so the fineness measure gives an
intermediate value.

Now suppose that we have two different users and we want to adapt
the generic fuzzy partition to the particular fineness perception of each one.
In this case, let us suppose that both users give only one sample image,
selected by a white square in Figure 5(a), to represent their particular per-
ception. Specifically, it contains the texture of the main colony, that, as it
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was commented above, is considered as “fine” according to Π. However, as
it is shown in figures 5(f) and 5(k), the user 1 considers that this texture
is very fine (“VF”), while the user 2 thinks that it is a very coarse texture
(“VC”).

The method proposed in this paper is used to obtain the fuzzy partition
Π̃ adapted to the particular perception of the user 1, and the corresponding
mapping is shown in figures 5(g)-(j). As we can see in Figure 5(g), in this
case the main colony is also considered as a “very fine” texture, together
with the daughter colonies. This result matches the perception of the user
1, who considers that the texture of the main colony is very fine.

In a similar way, the fuzzy partition Π̃ adapted to the particular percep-
tion of the user 2 is obtained, and the corresponding mapping is shown in
figures 5(l)-(o). In this case, the main colony is considered as a “very coarse”
texture (Figure 5(o)), together with the background, while the daughter
colonies are considered as a “coarse” texture (Figure 5(n)). This matches
the particular perception of the user 2, who considers that all textures are
coarser than the average perception represented by the generic fuzzy parti-
tion.

For the second experiment, we have used the image shown in Figure
6(a). It can be noticed that in this case the textures present in the image,
corresponding to the leopard skin, the branch and the background, have
different perception degrees of contrast. In fact, these three textures can
be differentiated in the mapping shown in figures 6(b)-(f), that has been
obtained using the generic fuzzy partition proposed in [21] for the contrast
property. The labels associated to this mapping are “very low contrasted”,
“low contrasted”, “medium contrasted”, “high contrasted” and “very high
contrasted”, respectively. In this mapping, we can see that, according to
the average human perception, the texture of the leopard skin is considered
as “very high contrasted” (Figure 6(f)), the region corresponding to the
branch is considered as a “medium contrasted” texture (Figure 6(d)), and
the background is “very low contrasted” (Figure 6(b)). As in the previous
experiment, due to the windows used in the mapping process, pixels in the
border of two adjacent regions with different texture have high membership
degrees to the intermediate fuzzy sets (figures 6(c) and 6(e)).

Now let’s modify the non-adaptive model to the particular contrast per-
ception of a user. Figure 6(g) shows six texture images given by this user
to represent his/her particular perception, each one with an associated lin-
guistic label. It can be noticed that the last texture in the first row, that
is considered as “high contrasted” according to the non-adaptive model, is
perceived as “medium contrasted” (“MC”) by this user. In addition, the
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“very low contrasted” “low contrasted”

(a) (b) (c)

“medium contrasted” “high contrasted” “very high contrasted”

(d) (e) (f)

“very low contrasted” “low contrasted”

VLC VLC MC

HC VHC VHC

(g) (h) (i)

“medium contrasted” “high contrasted” “very high contrasted”

(j) (k) (l)

Figure 6: Results for the contrast property. (a) Original image. (b)-(f) Mapping from the
original image obtained by applying the generic fuzzy partition for the contrast property.
(g) Samples representing the particular contrast perception of a user. (h)-(l) Mapping
from the original image obtained by applying the fuzzy partition adapted to the particular
perception of the user.
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Figure 7: Results for the contrast property. (a) Original image. (b)-(f) Mapping from the
original image obtained by applying the generic fuzzy partition for the contrast property.
(g) Samples representing the particular contrast perception of a user. (h)-(l) Mapping
from the original image obtained by applying the fuzzy partition adapted to the particular
perception of the user.

first texture in the second row, that is considered as “very high contrasted”
according to the non-adaptive model, is also perceived as less contrasted by
the user. In fact, only extremely contrasted textures, as the last two ones,
are considered as “very high contrasted” by this user. The fuzzy partition
Π̃ adapted to the particular perception of the user is obtained using the
method proposed in this paper, and the corresponding mapping is shown in
figures 6(h)-(l). It can be seen that in this case all the leopard skin is not
considered as a “very high contrasted” texture, but only the legs, where the
skin is white and the spots are more salient. The rest of the body is now
considered as a “high contrasted” texture, except the head, that is “medium
contrasted”. In addition, we can see that the branch is now considered as a
“low contrasted” texture. Thus, the obtained mappings are in accordance
with the contrast perception of the user. It should be noticed that our goal
in this experiment is not to segment the whole leopard body, but to identify
the different contrast degrees in textures.
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In the third experiment, we show an example where the adaptation to
user’s profiles is applied in the field of medical images analysis. For this
experiment, we considered Figure 7(a), corresponding to a microscopic image
of a basal cell carcinoma. The basal layer is the innermost layer of the
epidermis, and it is located just above the dermis. In this image we can see
the basal layer (top) penetrating into the dermis (bottom) to surround a hair
follicle (the rounded area with white regions). Since the tumor basal cells
are darker than the normal cells, the neoplastic region has a more contrasted
texture than the tumor-free tissue. As in the previous experiment, figures
7(b)-(f) show a mapping from this image using the generic fuzzy partition Π
proposed in [21] for the contrast property. In this mapping, we can see that,
according to the average human perception, the texture of the neoplastic
basal cells is considered as “very high contrasted”, as well as the hair follicle
and part of the region corresponding to the tumor-free tissue (Figure 7(f)).
Thus, the neoplastic region can not be clearly identified using the generic
model.

Now suppose that a medical expert gives the texture images shown in
Figure 7(g) to represent the contrast perception that should be used in this
field of application. Figures 7(h)-(l) show the mapping obtained by using
the adapted fuzzy partition Π̃. It can be seen that in this case only the hair
follicle is considered as a “very high contrasted” texture (Figure 7(l)), while
the region corresponding to the neoplastic basal cells is now considered as
“high contrasted” (Figure 7(k)). In addition, the whole region of the tumor-
free tissue is now considered as less contrasted than the neoplastic cells.
Thus, results obtained with the adapted fuzzy partition are in accordance
with the particular perception that should be used in this type of medical
images according to the expert.

5.2. Adaptation to image context

In the fourth experiment, shown in figures 8 and 9, we propose to adapt
the generic fuzzy partition Π for the fineness property to the image context.
For the first part of this experiment, we have considered the image shown in
Figure 8(a), where two textures with different fineness degrees are present.
The mapping from this image obtained with the generic fuzzy partition is
shown in figures 8(b)-(e). We can see that the region of the white beans
is considered as a “very coarse” texture according to the average human
perception, while the texture of the grains of pasta has intermediate mem-
bership degrees to the fuzzy sets “fine” and “very fine”. The fuzzy partition
Π̃ adapted to the image context is obtained using the method proposed in
section 4. In this method, the coarsest and the finest texture in the image
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Figure 8: Adaptation to the image context. (a) Original image. (b)-(e) Mapping from the
original image obtained by applying the generic fuzzy partition for the fineness property.
(f)-(i) Mapping from the original image obtained by applying the fuzzy partition adapted
to the image context.

(the texture of the beans and the grains of pasta, respectively) are used to
estimate the inhibition present in the image, and this inhibition imposes
the adaptation points. In this case, the mapping obtained with Π̃ (figures
8(f)-(i)) is very similar to the non-adapted mapping, as the inhibition fac-
tor related to this image is not very high (the only difference is that the
texture of the grains of pasta is considered as finer than in the non-adapted
mapping, due to the presence of the other texture, that is very coarse).

For the second part of this fourth experiment, we have considered the
image shown in Figure 9(a), where a new texture has been added to Figure
8(a). The texture of the white beans is the same as in Figure 8(a), but in
this case it may be perceived as finer by humans, because of the inhibition
introduced by the new texture, that is much coarser10. The mapping from
this image obtained with the generic fuzzy partition is shown in figures
9(b)-(e). We can see that the texture corresponding to the white beans, as
well as the new texture, is still considered as very coarse, because we have

10This effect is more noticeable if the images are observed separately.
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Figure 9: Adaptation to the image context. (a) Original image. (b)-(e) Mapping from the
original image obtained by applying the generic fuzzy partition for the fineness property.
(f)-(i) Mapping from the original image obtained by applying the fuzzy partition adapted
to the image context.

not taken into account the changes in the fineness perception due to the
image context. The mapping obtained with the fuzzy partition Π̃ adapted
to the image context is shown in figures 9(f)-(i). In this case, only the new
texture is considered as very coarse (Figure 9(i)), while the texture of the
white beans has high membership degrees to the fuzzy set “coarse” (Figure
9(h)), which matches the human fineness perception influenced by the image
context.

Figure 10 presents another example where the non-adaptive fineness
model is adapted to the image context. For this experiment, first let’s
consider Figure 10(a), corresponding to a microscopic image of a corneal
cell. Figures 10(b)-(e) show the mapping from this image obtained with
the generic fuzzy partition. It can be noticed that the texture of the cell
nucleus, that is much finer than the other textures in the image, is consid-
ered as “very fine” according to the non-adaptive model (Figure 10(b)). In
addition, the rest of the corneal cell is considered as a “fine” texture (Figure
10(c)), while the region outside the cell is “very coarse” (Figure 10(e)). Now
let’s consider Figure 10(f), which is a zoom of a section of the image shown in
Figure 10(a). The corresponding mapping using the non-adaptive model is
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Figure 10: Adaptation to the image context for images with different zoom level. (a)(f)
Original images. (b)-(e) and (g)-(j) Mappings obtained by applying the generic fuzzy
partition for the fineness property to (a) and (f), respectively. (k)-(n) and (o)-(r) Mappings
obtained by applying the fuzzy partition adapted to the image context to (a) and (f),
respectively.

shown in figures 10(g)-(j). It can be noticed that, due to the absolute nature
of the non-adaptive model, the obtained degrees depend on the zoom level
of the image. In this case, the texture of the nucleus is considered as “fine”
instead of “very fine”, and the rest of the corneal cell has high membership
degrees to the fuzzy set “coarse”.

The adaptation to the image context proposed in this paper can be used
to reduce the influence of the zoom level. In both original images (figures
10(a) and 10(f)) the difference between the finest and the coarsest textures in
the image is “large enough” (greater than the threshold defined in equation
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Figure 11: Adaptation to the image context with and without using the inhibition factor
λ. (a) Original image. (b)-(f) Mapping from the original image obtained by applying
the fuzzy partition adapted to the image context using the inhibition factor λ. (g)-(k)
Mapping without using the inhibition factor λ.

(7)), i.e. the inhibition degree is strong (λ = 1). This imply that the
fuzzy set corresponding to the label “very fine” in the adapted partition is
directly imposed by the finest texture in the image (corresponding to the
cell nucleus). Figures 10(k)-(n) and 10(o)-(r) show the mapping from 10(a)
and 10(f) respectively using the corresponding adapted model. It can be
seen that the region of the cell nucleus is now considered as “very fine”
in both mappings (figures 10(k) and 10(o)), and the rest of the corneal
cell is considered as a “fine” texture (figures 10(l) and 10(p)). Thus, the
influence of the zoom level has been reduced, and the obtained results are
in accordance with the change in the fineness perception due to the image
context.

In the last experiment, shown in Figure 11, our aim is to highlight the
importance of the inhibition factor λ in the adaptation to the image context.
In the two previous experiments, the difference between the minimum and
the maximum texture values in the image is large, which implies that the
extreme fuzzy sets in the adapted partition are directly imposed by these
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extreme values. However, for images where this difference is not very signif-
icant, a correction factor λ is needed, as has been shown in section 4. For
this experiment, we have considered Figure 11(a), corresponding to a micro-
scopic image of human skin tissue. In this case, only one texture is present
in the image and the perceptual degree of contrast is almost homogeneous.
Thus, the inhibition associated to this property is very weak (λ ≈ 0), which
implies that the fuzzy partition adapted to the image context is very similar
to the non-adaptive model. Figures 11(b)-(f) show the mapping obtained
by applying the adapted fuzzy partition for the contrast property. It can be
noticed that the whole image is considered as a “low contrasted” texture,
which is in accordance with the contrast perception of this image.

Now suppose that the inhibition factor λ is not taken into account in the
adaptation process, i.e. the extreme fuzzy sets in the adapted partition are
directly imposed by the least contrasted and the most contrasted textures
in the image. Figures 11(g)-(k) show the mapping obtained by applying
the adapted fuzzy partition without using the inhibition factor λ. It can
be noticed that in this case results are not in accordance with the human
perception, because the adapted model imposes the lowest and the highest
contrast degree for textures that are really similar.

6. Conclusions and future works

In this paper, we have proposed a methodology to adapt any generic
fuzzy partition modeling a texture property to the particular perception of
different user and to the changes in perception influenced by the image con-
text. Some experiments have been performed in order to analyze the ability
of the adapted models obtained with the proposed methodology to repre-
sent different perceptions of the properties. In particular, in the experiments
shown in section 5, the generic fuzzy partitions Π defined in [21] have been
used, although the proposed adaptation method is valid for any other fuzzy
partitions representing the presence degree of texture properties. In these
experiments we have shown that, in the case of the adaptation to users’ pro-
files, the perception degrees provided by the obtained models match what
each particular user would expect. In addition, in the case of the adaptation
to the image context, we have shown that the obtained models are able to
represent the perception of the texture properties influenced by the context.

The proposed approach can be very useful in applications where a per-
ceptual texture characterization is employed, and, in particular, in tasks
that need some interaction with subjects, where the subjectivity of human’s
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perception may be an important issue. For example, it can be applied in ex-
pert systems, where the information provided by the expert is related to the
presence of the texture properties. In this case, the perception of a texture
property may change depending on the field of application: the concept of
“very fine” may be different for a geologist, who analyzes satellite images,
than for a medical expert, who study the textures present in x-ray or micro-
scopic images. Moreover, even in the same field of application, two experts
may have different perceptions about the texture properties. Thus, using
the adaptive multidimensional fuzzy approach proposed in this paper, the
systems can be adapted to the particular perception of the corresponding ex-
pert. In addition, the proposed approach can be used for context-awareness
in different applications, such as semantic description of images or segmen-
tation, as has been shown in the experiments of section 5.2.

In this work, several lines of research have been left open. First, we are
working on a solution that allows to adapt fuzzy partitions defined on the
domain of more than one dimension. Second, we will take into account the
possibility of inconsistencies in the images given by subjects to represent his
particular perception. And finally, we will extend the proposed methodology
to other image features that can be modeled by a fuzzy partition Π, such as
fuzzy colors. In fact, the proposed adaptive technique can be generalized,
and it can be applied to any other domain (not necessarily related to image
analysis), as long as the linguistic labels can be semantically sorted. In
this sense, our approach can be applied to any piecewise linear function
(triangular, trapezoidal, etc.), or any other type of membership function if
we can define a central point and two parameters determining a left limit
and a right limit with respect to this central point.
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TIN2014-58227-P Descripción lingǘıstica de información visual mediante
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