
1	Introduction
The	construction	of	mathematical	models	to	describe	growth	dynamics	has	been	the	subject	of	several	studies	in	the	last	decades.	The	reason	is	the	variety	of	situations	where	these	phenomena	arise	in	a	natural	way.	Originally,

studies	focused	on	population	growth,	although	nowadays	they	extend	to	many	other	research	fields.	For	instance,	in	recent	years,	these	models	have	been	applied	to	tumor	growth	and	the	spread	of	diseases.

One	of	the	main	problems	associated	with	the	study	of	growth	phenomena	is	the	choice	of	a	suitable	model:	even	though	diverse	representations	by	deterministic	models	based	on	sigmoidal	curves	have	been	used	(Tsoularis

and	Wallace,	2002),	the	presence	of	fixed	inflection	points	restricts	the	adequacy	of	the	model	to	real	circumstances.

In	order	to	deal	with	these	issues,	the	hyperbolastic	curves	of	types	I,	II	and	III	(H1,	H2	and	H3,	respectively),	were	developed	by	Tabatabai	et	al.	(2005),	who	introduced	hyperbolic	functions	into	known	models,	thus	obtaining

mobile	inflection	points	and	increasing	the	capability	of	the	models	to	fit	real	data.

Recent	results	have	proved	the	usefulness	of	these	curves	in	the	description	and	modeling	of	dynamical	phenomena.	In	this	sense,	Eby	et	al.	(2010)	used	hyperbolastic	models	to	study	the	growth	of	the	solid	Ehrlich	carcinoma

under	particular	treatments,	obtaining	a	more	accurate	representation	than	those	yielded	by	other	classic	curves	such	as	Gompertz	or	Weibull.	Tabatabai	et	al.	(2011)	used	the	H3	model	to	describe	the	behavior	of	embryonic	stem

cells,	improving	the	results	of	other	models	such	as	those	in	Deasy	et	al.	(2003).	Recently,	new	models	also	derived	from	hyperbolastic	curves	have	been	introduced,	such	as	the	oscillabolastic	model	(Tabatabai	et	al.,	2012)	or	the	T-

model	(Tabatabai	et	al.,	2013).

Despite	the	good	results	obtained	by	applying	these	deterministic	models,	it	is	clear	that	natural	dynamical	phenomena	occur	under	the	influence	of	unknown	(or	even	immeasurable)	factors	which	can	have	a	significant	effect

on	 the	 evolution	 of	 the	 process.	 Therefore,	 introducing	 into	 the	models	 certain	 elements	 capable	 of	 describing	 such	 influences	 seems	necessary	 and	 justified.	 In	 this	way,	 the	next	 step	 in	 the	mathematical	modeling	 of	 dynamic

phenomena	lies	in	extending	deterministic	models	to	stochastic	models	while	taking	into	account	the	random	influences	affecting	the	dynamics	of	the	phenomenon.
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To	this	end,	stochastic	processes,	and	 in	particular	diffusion	processes,	appear	as	the	most	appropriate	tool.	 In	the	context	of	growth	curves,	 these	processes	arise	when	a	random	factor	 is	 introduced	 into	the	differential

equation	whose	solution	is	the	aforementioned	curve,	thus	becoming	a	stochastic	differential	equation	whose	solution	is	the	final	process.

This	methodology,	used	by	Capocelli	and	Ricciardi	(1974)	for	obtaining	a	diffusion	process	associated	with	the	Gompertz	curve,	has	been	applied	to	a	wide	range	of	curves.	A	modification	of	such	model	has	been	recently

applied	to	tumor	growth	by	Albano	et	al.	(2011,	2013).	Diffusion	processes	based	on	the	Bertalanffy	curve	have	been	applied	to	the	study	of	population	growth	in	animals	and	plants	(Román-Román	et	al.,	2010;	Román-Román	and

Torres-Ruiz,	2014;	Russo	et	al.,	2009).	With	respect	to	the	logistic	curve,	for	which	the	first	model	was	proposed	by	Feller	(1940),	Kolmogorov	equations	have	no	explicit	solution,	so	the	transition	probability	density	function	is	not

known	 in	closed-form.	Therefore,	many	variants	have	been	proposed,	 for	which	a	summary	can	be	consulted	 in	Tuckwell	and	Koziol	 (1987).	Schurz	(2007)	considered	a	more	general	version	of	 the	stochastic	differential	equation

associated	with	 logistic	growth	and	Barrera-García	et	al.	 (2013)	proposed	a	Gaussian	 logistic	diffusion	process,	whereas	Román-Román	et	al.	 (2012)	 established	 a	 diffusion	process	 based	 on	 a	 reformulation	 of	 the	 logistic	 curve.

Recently,	Román-Román	and	Torres-Ruiz	(2015)	generalized	this	last	diffusion	process	to	the	case	of	the	Richards	curve.

In	this	paper	we	introduce	a	diffusion	process	whose	mean	function	is	a	reformulation	of	the	H1	curve.	This	allows	us	to	express	the	asymptotic	behavior	according	to	the	initial	values.	Thanks	to	this,	we	can	consider	situations

where	data	are	available	from	many	individuals,	each	exhibiting	the	same	growth	pattern	but	with	different	bounds	for	the	initial	value.

In	this	way,	we	construct	a	model	such	that	its	mean	function	is	an	H1	curve,	making	it	suitable	for	prediction	purposes.	To	this	end,	data	must	be	used	to	obtain	estimates	for	the	parameters	of	the	process,	an	estimation	that	is

carried	out	by	maximum	likelihood.	This	is	not	problematic	as	far	the	parameters	of	the	initial	distribution	are	concerned,	but	the	estimation	of	the	rest	of	parameters	yields	a	system	of	equations	whose	solution	is	not	guaranteed	by

classical	numerical	procedures.	An	alternative	 is	 the	use	of	metaheuristic	optimization	procedures,	 to	which	purpose	we	propose	using	 the	 firefly	algorithm	(FA).	 Introduced	by	Yang	(2008),	 this	 population-based,	 nature-inspired

metaheuristic	algorithm	is	undergoing	an	important	development	in	fields	such	as	engineering	and	optimization	(e.g.	the	works	of	Alb	et	al.	(2016)	and	Kavousi-Fard	et	al.	(2014)	for	its	efficiency	and	capacity	to	deal	with	NP-hard

problems).	Some	interesting	modifications	have	also	been	made	(Gandomi	et	al.,	2013;	Zhang	et	al.,	2016).	The	low	computational	cost	of	the	algorithm	makes	it	especially	useful	to	address	maximum	likelihood	estimation	in	diffusion

processes.

This	paper	is	structured	as	follows:	Section	Section	2	presents	a	reformulation	of	the	H1	curve,	 including	some	relevant	properties.	The	scope	of	this	work	is	restricted	to	the	case	of	 increasing	curves	showing	at	 least	one

inflection	point.	The	hyperbolastic	type-I	diffusion	process	(from	now	on	referred	to	as	H1	diffusion	process)	is	introduced	as	a	particular	case	of	the	lognormal	diffusion	process	with	exogenous	factors.	Section	Section	3	deals	with	the

estimation	of	the	parameters	of	the	model	by	means	of	the	maximum	likelihood	procedure,	showing	the	complexity	of	the	system	of	equations.	This	question	leads	to	our	proposal	of	using	FA	as	a	valid	tool	for	maximizing	the	likelihood

function.	A	summary	of	the	algorithm	and	its	properties	is	then	shown,	as	well	as	the	modifications	required	in	our	context.	In	this	sense,	a	procedure	for	bounding	the	parametric	space	is	proposed.	Finally,	in	Section	Section	4,	the

methodology	is	applied	to	two	examples:	the	first	over	simulated	data,	and	the	second	over	real	data	from	a	study	about	a	molecular	biology	technique	called	quantitative	polymerase	chain	reaction.

2	The	model
2.1	Reformulation	of	the	H1	curve

The	H1	curve	is	the	solution	of	the	Bernoulli	differential	equation

with	 initial	 value	x(t0)	=	x0	>	0.	Here,	x(t)	 represents	 the	 size	of	a	population	at	 time	 instant	 t	and	M	 denotes	 the	maximum	sustainable	population	 (carrying	 capacity),	whereas	parameters	θ	 and	 ρ	 jointly	 determine	 growth	 rate.

Note	that	when	θ	=	0	this	equation	is	the	well-known	logistic	differential	equation.

The	solution	to	(1)	is

where

Note	that	 if	ρ	>	0,	and	 if	ρ	<	0.	So,	if	ρ	>	0,	the	curve	increases	to	the	asymptote	M,	whereas	ρ	<	0	leads	to	decay	profiles.

( (Please,	note	the	formatting	of	this	expression	in	the	pdf	proofs)1)
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In	the	above	remark	we	have	shown	that	the	asymptote	M	is	independent	from	the	initial	value,	something	that	can	become	an	important	restriction	for	some	applications.	In	practice,	there	are	situations	in	which	the	growth

phenomenon	under	study	shows	an	H1-type	sigmoidal	growth	and	several	sample	paths	are	available,	each	with	the	same	growth	pattern	but	with	different	initial	values	and	upper	bounds	(as	the	weight	of	individuals	in	a	population).

For	these	reasons,	in	order	to	model	the	situations	in	which	the	limit	value	depends	on	the	initial	one,	we	consider	a	reformulation	of	curve	(2).	Setting	η	=	1/a,	λ	=	e−ρ,	and	μ	=	e−θ	we	obtain

where	ξ(t)	=	λtμarcsinh(t).	In	the	following	we	will	deal	with	increasing	curves.	This	question	leads	to	conditions	0	<	λ	<	1	and	μ	<	cλ(t),	∀t	≥	t0,	where	 is	an	 increasing	 function	 for	all	 t.	 Therefore,	 in	 the	 following	we

will	consider	μ	<	cλ(t0).

Another	 important	characteristic	of	 the	H1	curve	 is	 the	mobility	of	 its	 inflections,	which	gives	 it	 a	 flexibility	 superior	 to	 that	of	other	commonly	used	curves,	allowing	 for	more	precise	modeling	of	phenomena	showing	a

sigmoidal	behavior.	From	x″(t)	=	0	it	follows	that	inflections	of	the	curve	verify	the	following	equation,	which	corresponds,	after	the	reparametrization	made	in	the	curve,	with	that	obtained	by	Tabatabai	et	al.	(2005):

2.2	The	H1	diffusion	process
In	this	section	we	will	introduce	a	diffusion	process	associated	with	the	curve	(3).	To	this	end,	we	will	proceed	with	the	general	procedure	of	obtaining	a	stochastic	differential	equation	from	an	ordinary	differential	equation

associated	with	the	curve.	We	will	then	verify	that	the	mean	function	of	the	resulting	process	is	an	H1	curve,	which	is	useful	for	the	purpose	of	making	predictions	in	situations	modeled	by	this	type	of	growth.

From	(3)	we	can	confirm	that	the	curve	verifies	the	differential	equation

where

which	is	a	generalization	of	the	Malthusian	growth	model	with	a	time-dependent	fertility	rate	h(t).

Replacing	this	fertility	rate	with	h(t)	+	σ	 Λ(t),	where	 Λ(t)	denotes	the	 Gaussian	white	noise	and	σ	>	0,	we	obtain	the	Langevin	equation

which,	rewritten	as	a	stochastic	differential	equation	leads	to

Taking	into	account	that	h	is	a	continuous	and	bounded	function,	Eq.	(4)	verifies	the	conditions	for	the	existence	and	uniqueness	of	solution	(see	Oksendal,	2003).	The	solution	is	a	stochastic	diffusion	process	taking	values	on	

and	characterized	by	infinitesimal	moments	A1(x,	t)	=	h(t)x	and	A2(x)	=	σ2x2.	In	addition,	a	closed-form	expression	for	the	solution	can	be	provided.	In	fact,	by	considering	the	initial	condition	X(t0)	=	X0,	independent	from	W(t)	for

t	≥	t0,	we	have

This	process	is	a	particular	case	of	the	lognormal	diffusion	process	with	exogenous	factors.	Several	applied	works	have	been	developed	around	this	process.	For	instance,	Gutiérrez	et	al.	(1999),	Gutiérrez	et	al.	(2003),	performed

an	inferential	analysis	and	assessed	its	usefulness	for	studies	in	Economics,	including	the	consideration	of	first-passage-time	problems,	a	topic	already	considered	in	Gutiérrez	et	al.	(1995).

As	regards	the	distribution	of	the	process,	if	X0	is	distributed	according	to	a	lognormal	distribution	 or	X0	is	a	degenerate	variable	(P[X0	=	x0]	=	1),	all	the	finite-dimensional	distributions	of	the	process	are	lognormal.

Concretely,	 and	t1	<	…⋯	<	tn,	vector	(X(t1),	…,	X(tn))T	has	a	n-dimensional	lognormal	distribution	ΛΛn[δ,	Σ],	where	the	components	of	vector	δ	and	matrix	Σ	are

(3)

		 	

W(t) W(t) standard	Wiener	process

(4)

	

(5)

		 	

		 	



and

respectively.	The	transition	probability	density	function	can	be	obtained	from	the	distribution	of	(X(s),	X(t))T,	being

that	is,	X(t)|X(s)	=	y	follows	a	lognormal	distribution

From	the	previous	distributions	the	main	characteristics	of	the	process	can	be	found.	If	we	note

then

In	particular,	the	mean	function	of	the	process	and	the	one	conditioned	to	an	initial	value	x0	are

and

respectively,	which	are	H1	curves	of	the	type	(3)	described	previously.	This	justifies	considering	the	stochastic	model	herein	proposed.

3	Estimation	of	the	model
Let	us	consider	a	discrete	sampling	of	the	process,	based	on	d	sample	paths,	for	times	tij,	(i	=	1,	…,	d,	j	=	1,	…,	ni)	with	ti1	=	t1,	i	=	1,	…,	d.	That	is,	we	observe	variables	X(tij),	the	values	of	which:	 ,	make

up	the	sample	for	the	inferential	study.

By	considering	the	most	general	case	in	which	the	initial	distribution	is	lognormal,	 ,	the	log-likelihood	function	of	the	sample	is

where	f1	is	the	density	function	of	X(t1).

Denoting	 ,	we	have

		 	

		 	

		 	



where

From	(6)	the	ML	estimates	of	μ1	and	 are

However,	 estimating	 the	 rest	 of	 the	 parameters	 poses	 some	 difficulties.	 Concretely,	 the	 resulting	 system	 of	 equations	 (see	 Appendix)	 is	 exceedingly	 complex	 and	 does	 not	 have	 an	 explicit	 solution.	 Therefore,	 numerical

procedures	must	be	employed	to	find	its	approximate	solution.	Since	the	likelihood	system	of	equations	depends	on	sample	data,	it	is	impossible	to	carry	out	a	general	study	about	it.	For	instance,	the	conditions	of	convergence	of	the

most	widely	used	numerical	methods	are	impossible	to	verify.	Such	methods	(as	Newton-–Raphson	and	its	variants)	require	calculating	and	inverting	the	Jacobian	and	Hessian	matrices	of	the	vectorial	function	that	determines	the

system	of	equations.	The	sample	data	may	then	lead	to	singular	matrices	and,	consequently,	to	a	failure	of	the	numerical	procedure.	Román-Román	et	al.	(2012)	contains	an	example	of	 this	 (for	a	Gompertz-type	diffusion	process).

Adding	to	this	problem,	we	must	also	select	an	initial	solution.

For	 these	 reasons,	 we	 propose	 the	 use	 of	 the	 local	 search	metaheuristic	 firefly	 algorithm	 in	 order	 to	maximize	 the	 likelihood	 function.	 The	 study	 and	 development	 of	metaheuristic	 optimization	 algorithms	 have	 grown

considerably	in	the	last	years,	with	applications	having	been	developed	to	several	fields,	including	estimations	in	diffusion	processes.	For	example,	Román-Román	et	al.	(2012)	used	simulated	annealing	for	estimating	the	parameters	of

a	Gompertz-type	diffusion	process,	whereas	Román-Román	and	Torres-Ruiz	(2015)	suggested	the	variable	neighborhood	search	method	in	combination	with	simulated	annealing	in	the	context	of	the	Richards	diffusion	process.

Once	we	have	found	the	estimates	of	μ1	and	 ,	the	problem	becomes	maximizing	function	 .	So,	from	(6),	the	target	function	we	will	consider	is (Please,	note	the	alignment	of	the	following	equation	in	the	pdf
proofs-)

3.1	Application	of	the	firefly	algorithm
FA	is	a	stochastic,	population-based,	and	nature-inspired	metaheuristic	algorithm	developed	by	Yang	(2008).	It	has	been	successfully	applied	in	many	fields	such	as	optimization	and	engineering	(see	Kavousi-Fard	et	al.	(2014),

Niknam	et	al.	(2012),	2014;	Niknam	et	al.,	2012)	because	of	its	efficiency	and	ability	to	deal	with	NP-hard	problems,	becoming	one	of	the	most	important	tools	of	swarm	intelligence,	a	research	subfield	of	artificial	intelligence	focused	on	the

collective	behavior	of	decentralized	and	self-organized	systems.	In	the	last	years	many	works	have	explored	in	detail	the	theory	of	the	firefly	algorithm	and	its	applications.	See,	for	instance,	Fister	et	al.	(2013)	and	Yang	and	He	(2013),	as

well	as	Fister	et	al.	(2014)	and	Gandomi	et	al.	(2013)	where	some	modifications	of	the	algorithm	have	been	introduced.

The	algorithm	works	over	population	subgroups,	and	thus	it	can	deal	efficiently	with	nonlinear	and	multimodal	optimization	problems.	Indeed,	FA	can	be	viewed	as	a	generalization	of	well-known	algorithms	such	as	particle

swarm	optimization	(PSO),	differential	evolution,	and	simulated	annealing	(SA).

It	is	inspired	by	the	flashing	lights	of	fireflies,	produced	by	a	bioluminescence	phenomenon	and	used	for	attraction	purposes	between	them.	Thus,	in	basic	terms,	n	fireflies	are	randomly	distributed	over	the	search	space,	with

each	of	them	having	an	associated	light	intensity	that	is	dependent	on	its	position.	Then,	at	every	generation,	fireflies	are	attracted	(attractiveness	is	proportional	to	light	intensity)	by	the	brighter	neighbors	according	to	the	distance

between	them;	that	is,	if	a	firefly	flashes	with	high	intensity,	the	closer	ones	will	detect	high	attractiveness	and	fly	towards	it.

With	the	movement	of	fireflies,	the	attraction	between	them	is	updated	to	the	new	distances	and	light	intensities,	and	the	generation	finishes	by	ranking	the	fireflies	from	the	dimmest	to	the	brightest	one,	which	correspond	to

those	that	provide	a	lowest	and	highest	value	of	the	objective	function,	respectively.	This	procedure	is	repeated	for	a	fixed	number	of	generations,	with	each	one	reducing	the	randomness	of	fireflies’	movements.

(6 (Please,	note	the	alignment	of	the	right	side	of	this	equation))

		 	

		 	 		 	



Looking	at	the	matter	in	more	detail,	it	is	obvious	that	light	intensity,	and	therefore	attractiveness,	varies	according	to	the	distance	between	fireflies	and	to	the	medium	and	its	light-absorbing	properties.	The	firefly	algorithm

uses	thisese	characteristics	in	order	to	search	for	the	local	and	global	maxima	of	a	given	function,	defining	the	search	space	as	the	domain	of	the	objective	function	and	the	light	intensity	as	proportional	to	the	value	of	the	function	at

every	point	occupied	by	a	firefly.	Therefore,	measures	of	the	attraction	between	fireflies	must	decrease	when	the	distance	and/or	the	absorption	coefficient	increase.	Usually,	this	is	formulated	as

where	β0	is	the	attractiveness	at	r	=	0	and	γ	is	the	absorption	coefficient	of	the	medium.

Thus,	if	firefly	i	detects	the	greater	light	intensity	of	firefly	j	at	distance	rij,	it	results	on	a	movement	of	i	towards	j	according	to

where	 and	 are	 the	 k-th	 component	 of	 the	 position	 of	 the	 ith	 and	 jth	 fireflies,	 respectively,	 ϵk	 is	 a	 random	 value	 of	 the	 form	 u	−	 1/2	 for	 u	 from	 an	 uniform	 distribution	 (it	 can	 be	 substituted	 by	 a	 Gaussian	 or	 other

distribution),	and	α	is	the	randomization	parameter,	which	controls	the	stochastic	influence	on	the	movement	and	is	reduced	recursively	at	every	generation	by	a	factor	δ	∈	(0,	1)	on	form	α	→	δα.

It	is	noteworthy	that	FA	is	essentially	managed	by	three	parameters:	randomization	parameter	(α),	attractiveness	(β0),	and	light	absorption	coefficient	(γ).	This	can	be	displayed	as	an	asymptotic	behavior:	for	instance,	if	γ	tends

to	0,	the	resulting	constant	attractiveness	β	=	β0	leads	to	a	special	case	of	PSO,	and	when	γ	tends	to	∞,	FA	becomes	a	random	walk,	parallel	version	of	SA.

Algorithm	1	Pseudocode	of	the	firefly	algorithm

3.1.1	Initial	parameters	of	the	algorithm	and	bounding	of	the	parametric	space	of	the	process

(7)

		 	 		 	

Define	objective	function	f(x)	where	x	=	(x1,	…,	xd)T

Assign	values	for	γ,	β0,	α,	δ	and	MaxGenerations	(maximum	number	of	generations)

Generate	initial	population	of	fireflies	xi	for	i	=	1,	2,	…,	n

Determine	light	intensity	Ii	at	xi	via	f(xi)

while	t	<	MaxGeneration	do

	for	i	=	1	:	n	all	n	fireflies	do

	for	j	=	1	:	i	all	n	fireflies	do

		if	Ii	<	Ij	then

		Move	firefly	i	towards	j	according	(7)

		end	if

		Vary	attractiveness	with	distance	r	via	exp(−γr2)

		Update	light	intensity	by	evaluating	new	solutions

	 	end	for

	end	for

	Rank	the	fireflies	(from	lowest	to	highest	value	of	the	objective	function)	and	find	the	current	best	(i.e.,	the	last	one).

	Update	α	by	applying	the	reduction	factor	δ

end	while

Postprocess	results	and	visualization



As	regards	the	initial	parameters	of	the	algorithm,	and	following	the	comments	of	Yang	(2008),	the	next	considerations	can	be	made:

• 	α:	The	randomization	parameter	controls	randomness	in	the	movement	of	the	fireflies.	It	usually	takes	values	between	0	and	1,	with	a	value	around	0.2	being	recommended.

• 	δ:	This	parameter	reduces	α	at	every	generation.	Usually	this	value	is	chosen	to	be	between	0.95	and	0.99.

• 	β0:	Since	the	attractiveness	at	distance	r	=	0	is	usually	considered	to	be	1,	β0	=	1	is	taken	in	most	cases.

• 	γ:	Absorption	coefficient	is	a	critical	parameter	that	strongly	influences	the	velocity	of	convergence.	It	simulates	the	environment	conditions	in	which	fireflies	can	detect	light.	In	most	cases,	suitable	values	range	from	1	to	10.

• 	n:	The	number	of	fireflies	may	vary	in	a	wide	range	depending,	for	example,	on	the	number	of	local	maxima.	Of	course,	having	a	high	n	ensures	a	better	coverage	of	the	parametric	space.

• Generations:	Usually	a	value	between	50	and	100	is	considered,	although	a	value	below	50	can	also	provide	good	results.

In	any	case,	the	high	degree	of	efficiency	of	FA	allows	us	to	test	it	with	different	initial	values	without	incurring	excessive	computational	costs.

To	determine	 the	 initial	population	of	 fireflies,	n	points	of	 the	parametric	space	of	 the	process	must	be	randomly	selected.	To	 facilitate	 this	choice,	we	propose	bounding	such	space.	To	 this	end,	we	will	use	 the	curve	reformulation	made	 in

section	Section	2.1	and	the	information	provided	by	the	sample	paths:

• 	λ:	It	is	between	0	and	1,	in	order	to	guarantee	strictly	increasing	curves.

• 	μ:	It	holds	 for	a	previously	established	λ.

• 	η:	This	parameter	can	be	bounded	taking	into	account	the	asymptote	of	the	curve	verifying	k	=	x0(1	+	ξ(t0)/η)).	From	that	expression,	and	if	we	denote	by	ki	the	maximum	value	of	the	i-th	sample	path,	the	following	expression	holds

where	xi0	is	the	initial	value	of	the	ith	sample	path.	In	practice,	when	t0	≠	0,	the	algorithm	must	choose	values	for	λ	and	μ	to	finally	construct	an	interval	for	η.	Otherwise,	in	the	case	t0	=	0,	the	interval	does	not	depend	on	λ	and	μ.

• 	σ:	Regarding	parameter	σ,	when	it	has	high	values	it	leads	to	sample	paths	with	great	variability	around	the	mean	of	the	process.	Thus,	excessive	variability	in	available	paths	would	make	an	H1-type	modeling	inadvisable.	Some	simulations	performed	for	several	values

of	σ	have	led	us	to	consider	that	0	<	σ	<	0.5,	so	that	we	may	have	paths	compatible	with	an	H1-type	growth.

4	Applications
4.1	Application	to	simulated	data

We	will	now	proceed	to	introduce	some	simulation	studies.	These	will	be	aimed	at	validating	the	procedures	described	above	as	they	apply	to	estimating	the	parameters	of	the	process.

The	general	pattern	of	simulations	is	based	on	generating	30	sample	paths	of	the	H1	diffusion	process	in	interval	[0,	50]	from	(5).	All	sample	paths	have	the	same	length,	and	ti	=	(i	−	1)	·	0.1,	i	=	1,	…,	501	are	the	time	instants	at

which	observations	are	made.	Each	example	has	been	replicated	50	times,	that	is,	for	each	combination	of	the	parameters	of	the	model	that	we	have	considered,	the	simulation	of	the	trajectories	and	the	estimation	procedure	has	been

carried	out	50	times.	The	final	results	are	the	average	of	those	obtained	in	each	replication.

A	first	simulation	example	has	been	performed	by	taking	a	degenerate	initial	state	at	x0	=	0.1	and	parameters	η	=	0.5,	λ	=	0.8,	μ	=	0.8	and	σ	=	0.015	for	the	process.	Fig.	1	shows	the	simulated	paths.
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We	have	considered	n	=	40	fireflies,	that	is	40	4-uples	of	the	parametric	space,	and	selected	each	one	as	follows:	firstly,	for	λ,	we	choose	a	random	value	(uniformly	distributed)	between	0	and	1	and	then,	for	μ,	we	take	a

random	value	in	the	interval	(0,	1/λ)	since	t0	=	0	in	this	case.	The	4-uple	is	completed	by	selecting	a	random	value	for	η	in	the	interval	(0.3562706,	0.5612756)	(by	virtue	of	(8))	and	for	σ	in	the	interval	(0,	0.5).

As	regards	the	parameters	for	FA,	we	have	made	the	following	choices:

• 80	generations.

• 	α	=	0.2.

• 	δ	=	0.97.

• 	β0	=	1.

• 	γ	=	1.

Table	1	contains	the	real	and	estimated	values	of	the	parameters,	as	well	as	the	value	of	the	objective	function	f0	at	the	resulting	point.	As	a	measure	of	the	estimation	error	we	have	also	included	the	absolute	relative	error,	i.e.,

the	difference	in	absolute	value	between	real	and	estimated	value,	divided	by	the	real	one.	From	here	we	can	observe	very	good	results	in	terms	of	estimated	values	and	absolute	relative	errors.

Table	1	Results	of	the	firefly	algorithm	over	simulated	data.

λ μ η σ fo

Real	value 0.8 0.8 0.5 0.015 55554.17

Estimated	value 0.7873909 0.8184537 0.5001565 0.0149564 55554.58

Abs.	relative	error 0.0157614 0.0230670 0.0003129 0.0029034 0.0000073

The	behavior	of	the	algorithm	over	generations	is	shown	with	more	detail	in	Figs.	2	and	3.	For	each	parameter	of	the	process,	that	is,	for	each	coordinate	of	the	fireflies,	each	line	of	Fig.	2	represents	a	generation	(from	lighter

gray	to	dark	black)	showing	the	estimated	values	of	the	parameter	for	each	firefly.	Fig.	3	shows,	for	each	parameter	of	the	process,	the	evolution	of	its	estimated	value	for	each	firefly	over	the	last	60	generations.	Green	and	red	lines

represent	the	evolution	of	the	estimation	provided	by	the	best	and	the	worst	firefly	in	each	generation,	respectively.	Remember	that	the	best	firefly	is	the	one	that	provides	the	highest	value	of	the	objective	function,	whereas	the	worst

produces	the	smaller	one.

Fig.	1	Some	simulated	sample	paths	of	the	H1-type	diffusion	process.



Fig.	2	First	simulation	example:	evolution	(from	light	gray	to	black)	of	80	generations	of	40	fireflies	for	η	=	0.5,	λ	=	0.8,	μ	=	0.8	and	σ	=	0.015	(left	to	right,	top	to	bottom).	Original	values	in	red.	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred

to	the	web	version	of	the	article.)



Since	the	parametric	space	is	4-dimensional,	it	is	impossible	to	visualize	the	evolution	of	the	fireflies.	For	this	reason,	in	Fig.	4	we	have	included	graphs	of	the	dynamics	of	the	best	firefly	in	each	generation,	for	each	pair	of

parameters.

Fig.	3	First	simulation	example:	evolution	of	fireflies	over	the	last	60	generations	for	every	parameter	(in	the	same	order	as	in	the	previous	figure).	In	green,	evolution	of	best	firefly;	in	red,	evolution	of	worst	one.	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the

reader	is	referred	to	the	web	version	of	the	article.)



Fig.	5	shows	the	evolution	of	the	objective	function	f0	for	the	best	firefly	in	each	generation.	Obviously	this	graph	is	increasing	since	the	best	firefly	of	each	generation	improves	the	value	of	the	objective	function	of	the	best	of

the	previous	generation.	Finally,	Fig.	6	shows	the	real	and	estimated	mean	function	of	the	H1	diffusion	process.

Fig.	4	First	simulation	example:	for	each	pair	of	parameters,	bidimensional	path	projection	representing	the	evolution	of	the	last	firefly	(the	best)	over	successive	generations	(from	light	to	dark	red	point).(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader

is	referred	to	the	web	version	of	the	article.)

Fig.	5	First	simulation	example:	value	of	objective	function	at	the	best	firefly.	Comparison	between	observed	and	fitted	mean	(red).	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	the	article.)



In	order	to	observe	the	behavior	of	the	algorithm	for	different	values	of	the	parameters,	we	have	simulated	a	new	dataset	taking,	η	=	0.0003,	λ	=	0.6,	μ	=	0.8,	σ	=	0.025	and	x0	=	0.000125.	Over	this	data	let	us	apply	FA,	varying

parameters	α,	γ,	δ	and	the	number	of	fireflies	n,	and	considering	60	generations.	The	efficiency	of	the	algorithm	allows	this	type	of	studies	to	be	carried	out	without	incurring	in	an	excessive	computational	cost.	For	example,	for	this

simulation	study,	with	40	fireflies	and	60	generations,	the	computation	time	has	been	6	seconds	for	each	replication,	that	is,	5	minutes	for	the	total	50	replications.

Next,	we	analyze	the	behavior	of	absolute	errors	related	to	each	pair	of	parameters	considered	when	applying	FA.	These	errors	have	been	calculated	by	averaging	over	all	other	parameters.

Table	2	shows	such	errors	by	varying	α	and	γ.	It	can	be	seen	that,	in	general,	the	error	increases	when	γ	grows,	regardless	of	the	α	value,	with	the	most	appropriate	γ	values	being	those	between	1	and	5.	Conversely,	for	each	γ,

biggest	errors	are	associated	with	extreme	values	of	α,	being	0.2	and	0.4	the	values	for	which	the	observed	errors	are	smaller.

Table	2	Second	simulation	example:	absolute	relative	error	of	 for	α	vs.	γ.

γαα γ
1 5 10 20 35

0.1 0.0199 0.0311 0.0295 0.0502 0.0454

0.2 0.0089 0.0095 0.0123 0.0220 0.0395

0.4 0.0073 0.0048 0.0111 0.0270 0.0394

0.6 0.0125 0.0115 0.0142 0.0298 0.0495

0.8 0.0112 0.0160 0.0274 0.0479 0.0642

0.9 0.0126 0.0209 0.0306 0.0459 0.0548

Table	3	compares	absolute	relative	errors	as	a	function	of	α	and	δ.	These	two	parameters	are	related	since	they	mark	the	level	of	randomness	with	which	the	fireflies	move	in	the	space.	A	priori,	it	seems	logical	to	think	that

when	setting	a	small	α	value	(low	randomness),	it	should	decrease	slowly	in	later	stages,	which	is	associated	with	higher	δ	values.	The	situation	should	be	reversed	as	a	larger	α	initial	value	is	selected,	in	which	case	a	smaller	δ	value

should	be	selected.	This	intuition	is	confirmed	after	observing	this	table.	Specifically,	the	optimal	combination	is	given	by	α	=	0.2	(as	suggested	by	Yang	(2008))	and	δ	=	0.99.

Table	3	Second	simulation	example:	absolute	relative	error	of	 for	α	vs.	δ.

δαα δ

Fig.	6	First	simulation	example:	comparison	between	observed	and	fitted	mean	(red).	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	the	article.)

		 	

		 	



0.9 0.95 0.97 0.99

0.1 0.0331 0.0090 0.0052 0.0079

0.2 0.0167 0.0075 0.0047 0.0043

0.4 0.0115 0.0114 0.0114 0.0254

0.6 0.0109 0.0151 0.0166 0.0442

0.8 0.0135 0.0337 0.0426 0.0748

0.9 0.0099 0.0351 0.0461 0.0767

Table	4	considers	δ	and	γ	parameters.	It	can	be	seen	how,	in	general,	for	fixed	γ	errors	grow	as	δ	increases.	Regardless	of	the	value	of	δ,	the	smallest	errors	are	associated	with	γ	values	between	1	and	5.

Table	4	Second	simulation	example:	absolute	relative	error	of	 for	γ	vs.	δ.

δγγ δ
0.9 0.95 0.97 0.99

1 0.0276 0.0229 0.0203 0.0228

5 0.0186 0.0161 0.0252 0.0435

10 0.0243 0.0238 0.0343 0.0489

20 0.0331 0.0364 0.0443 0.0614

35 0.0516 0.0574 0.0494 0.0635

Tables	56	and	7–7	consider	 the	combination	of	 the	number	of	 fireflies,	n,	with	 the	others	parameters.	 In	all	cases,	 it	 is	observed	how	the	error	always	decreases	 (as	seems	 logical)	with	n,	 regardless	of	 the	other	parameter

considered.

Table	5	Second	simulation	example:	absolute	relative	error	of	 for	α	vs.	n.

nαα n

5 10 20 40 60

0.1 0.1484 0.0387 0.0070 0.0025 0.0013

0.2 0.0787 0.0167 0.0031 0.0014 0.0013

0.4 0.0687 0.0150 0.0074 0.0021 0.0018

0.6 0.0788 0.0248 0.0098 0.0054 0.0057

0.8 0.0936 0.0331 0.0187 0.0116 0.0094

0.9 0.0795 0.0380 0.0202 0.0126 0.0128

Table	6	Second	simulation	example:	absolute	relative	error	of	 for	γ	vs.	n.

nγγ n

		 	

		 	

		 	



5 10 20 40 60

1 0.0820 0.0365 0.0195 0.0075 0.0059

5 0.0831 0.0363 0.0234 0.0112 0.0103

10 0.0955 0.0399 0.0191 0.0173 0.0126

20 0.1584 0.0545 0.0214 0.0148 0.0144

35 0.1672 0.0747 0.0334 0.0185 0.0113

Table	7	Second	simulation	example:	absolute	relative	error	of	 for	δ	vs.	n.

n

δ510204060δ 5 10 20 40 60

0.9 0.0911 0.0362 0.0170 0.0071 0.0038

0.95 0.0843 0.0386 0.0187 0.0080 0.0071

0.97 0.0784 0.0381 0.0259 0.0162 0.0148

0.99 0.1097 0.0568 0.0318 0.0217 0.0201

On	the	other	hand,	regardless	of	n,	the	smallest	errors	are	associated	with	the	central	values	of	α,	specifically	for	α	=	0.2,	0.4,	as	can	be	observed	in	Table	5.	For	fixed	n,	Table	6	shows	that	the	preferable	γ	values	are	those

between	1	and	10,	with	γ	=	1	being	the	most	recommendable.	Finally,	Table	7	does	not	show	large	differences	in	error	when	δ	varies.

4.2	Application	to	real	data
In	order	to	show	a	practical	application	of	the	process	herein,	we	consider	a	real	case	in	the	context	of	the	qPCR	(Quantitative	Polymerase	Chain	Reaction)	technique.	This	is	a	method	used	in	molecular	biology	to	amplify	DNA

or	RNA	pieces	(nucleic	acids)	by	taking	advantage	of	the	polymerase	enzyme.

Different	qPCR	techniques	allow	the	simultaneous	amplification	and	quantification	of	the	obtained	product.	In	particular,	kinetic	PCR	can	quantify	the	product	from	the	cycle	at	which	certain	threshold	of	amplicon	DNA	is

reached	(the	exponential	phase).	In	order	to	calculate	this	cycle,	this	technique	(as	well	as	other	methods)	employ	fluorescence	monitoring,	and	consider	the	first	cycle	that	exceeds	a	certain	level	of	fluorescence.	Rutledge	and	Cote

(2003)	established	the	criteria	for	the	mathematical	development	of	kPCR	technique,	focusing	on	the	threshold	of	 log-fluorescence.	Absolute	quantification	is	achieved	using	a	standard	curve	constructed	by	amplification	of	known

amounts	of	target	DNA	and	plotting	the	values	obtained	for	the	threshold	cycle,	Ct,	against	target	DNA	concentration.

As	can	be	seen,	the	determination	of	the	Ct	cycle	is	vital	for	this	technique.	Since	we	are	dealing	with	a	dynamic	phenomenon,	we	consider	fitting	an	H1-type	diffusion	process	in	order	to	model,	at	each	instant	of	time	(cycle	in

this	case),	the	level	of	fluorescence.	Please	note	that	when	considering	a	stochastic	process,	at	each	time	instant	we	have	a	random	variable	that	models	the	behavior	of	the	variable	under	study,	which	allows	us	to	take	into	account	the

random	fluctuations	that	exist	in	this	type	of	phenomena.	In	addition,	it	is	possible	to	introduce	the	use	of	techniques	associated	with	the	study	of	temporal	variables	such	as	first-passage	times,	that	is,	the	time	at	which	the	process

verifies,	for	the	first	time,	a	certain	property.

The	data	(available	as	supplementary	material	in	the	paper	mentioned	above)	corresponds	to	fluorescence	emitted	for	several	replicate	amplifications	(concretely	20)	in	a	given	concentration	of	DNA	(as	a	matter	of	fact,	in	the

paper	the	authors	considered	six	magnitudes	of	target	concentration,	the	first	of	which	is	being	considered	in	our	study)	over	45	cycles	(Fig.	7).	We	have	to	note	that,	given	the	characteristics	of	the	process	introduced,	the	values

considered	in	our	study	are	those	of	fluorescence,	and	not	its	logarithm.

		 	



In	order	to	apply	FA	to	estimating	the	parameters	of	the	process,	we	have	considered,	for	the	initial	parameters	of	the	algorithm,	a	combination	of	values	suggested	from	the	simulation	study	previously	performed.	Concretely,

α	=	0.2,	0.4,	γ	=	1,	5,	δ	=	0.9,	0.95,	0.97,	0.99.	In	addition,	we	have	considered	n	=	20	fireflies	over	110	generations.	The	initial	time	instant	for	the	observed	values	is	t1	=	0,	whereas	for	the	initial	value	we	have	considered	the	mean	of

the	initial	values	of	the	sample	paths,	being	x1	=	0.000125.

The	results	are	summarized	in	Table	8.	For	each	combination	of	the	initial	values	of	the	algorithm	we	have	calculated	the	absolute	relative	errors	between	the	observed	data	of	the	fluorescence	and	the	corresponding	estimate

from	the	mean	function	of	the	estimated	process,	once	the	parameters	of	the	process	have	been	estimated.	From	this	table	we	conclude	that	the	optimal	combination	of	the	initial	parameters	for	FA	are	α	=	0.2,	γ	=	1	and	δ	=	0.99.

Table	8	Estimated	parameter	values	and	absolute	relative	errors	from	the	application	of	FA	to	real	data.

α γ δ Error

0.2

1

0.9 0.00031 0.46869 1.89661 0.02499 0.22549

0.95 0.00029 0.46847 1.88574 0.02500 0.22092

0.97 0.00030 0.46274 1.94778 0.02500 0.23296

0.99 0.00030 0.44580 2.27941 0.02500 0.17487

5

0.9 0.00030 0.44996 2.05263 0.02500 0.26564

0.95 0.00029 0.46062 1.93521 0.02500 0.26507

0.97 0.00030 0.47582 1.80397 0.02500 0.22722

0.99 0.00032 0.43198 2.45740 0.02499 0.20623

0.4

1

0.9 0.00032 0.46943 1.88993 0.02500 0.23309

0.95 0.00029 0.44280 2.26997 0.02499 0.22014

0.97 0.00034 0.44229 2.33465 0.02499 0.22091

0.99 0.00032 0.45137 2.21121 0.02500 0.19202

0.9 0.00028 0.48461 1.66431 0.02489 0.29521

0.95 0.00029 0.42797 2.53649 0.02500 0.18941

Fig.	7	Real	application:	Ffluorescence	versus	cycle.

		 		 		 		



5
0.97 0.00028 0.46580 1.86436 0.02500 0.29821

0.99 0.00031 0.45165 2.17721 0.02500 0.19100

From	these	values,	we	have	estimated	the	model	again	by	increasing	the	number	of	fireflies,	following	the	conclusions	obtained	in	the	second	simulation	study.	Specifically,	we	have	considered	60	fireflies.	Table	9	contains	the

estimates	of	the	parameters	of	the	process.

Table	9	Real	application:	estimates	of	the	parameters	after	applying	FA.

Estimated	value 0.483548 1.6539 0.0002902 0.025

In	Fig.	8	the	stabilization	of	four	estimated	parameters	(for	the	last	replication)	is	presented.

Once	the	estimates	of	the	parameters	have	been	obtained,	we	simulated	the	H1-type	diffusion	process	under	the	conditions	of	the	experiment.	Fig.	9	shows	the	mean	of	the	observed	values	together	with	the	theoretical	mean

function	and	the	mean	of	the	simulated	sample	paths	of	the	estimated	process.

		 		 		 		

Fig.	8	Real	application:	evolution	of	the	estimates	of	the	parameters	by	applying	FA.



With	this	method,	we	can	simulate	the	fluorescence	of	the	amplification	procedure	in	different	reactions,	which	enables	us	to	use	simulated	instead	of	real	data.	Even	when	the	simulated	process	differs	from	the	original	in	the

firsts	cycles,	the	important	question	is	whether	we	can	find	the	cycles	at	which	the	fluorescence	threshold	is	reached	(see	Fig.	10,	showing	log-fluorescence	values	for	the	original	data	and	the	logarithm	of	the	simulated	sample	paths	of

the	estimated	process.	The	horizontal	line	represents	a	fluorescence	threshold).	This	issue	can	be	approached	using	techniques	associated	with	the	study	of	temporal	variables	in	the	context	of	diffusion	processes,	as	in	the	case	of	first-

passage	times.

5	Conclusions
The	hyperbolastic	type	I	diffusion	process	is	obtained,	showing	to	be	advantageous	over	the	deterministic	hyperbolastic	type-I	curve,	of	wide	use	in	many	research	fields.	This	diffusion	process	allows	us	to	introduce	into	the

model	all	 the	 information	coming	 from	data,	as	well	as	 the	random	factors	which	must	be	 taken	 into	account	 in	order	 to	explain	different	growth	phenomena.	Nevertheless,	 improvements	resulting	 from	the	use	of	 this	curve	are

dependent	on	the	number	of	parameters	to	estimate,	and	even	though	in	this	work	we	have	reduced	this	quantity	in	one	element,	this	complicates	the	development	of	the	inference	procedure.	Computationally	efficient	methods	are

therefore	necessary,	among	which	metaheuristic	algorithms,	such	as	the	firefly	algorithm,	are	able	to	reduce	computational	cost.

In	this	work	we	have	developed	the	theoretical	base	for	the	practical	use	of	hyperbolastic	type-I	diffusion	processes	as	a	particular	case	of	the	lognormal	process	with	exogenous	factors,	and	applying	the	firefly	algorithm	in

order	to	solve	inference	problems.

Simulations	were	performed,	which	show	that	the	strategy	used	for	bounding	the	parametric	space	behaves	well,	as	does	the	firefly	algorithm	for	different	choices	of	its	parameters.	From	the	simulations	we	have	obtained

several	combinations	of	the	parameters	of	the	algorithm	that	can	be	considered	optimal.	An	example	based	on	real	data	from	a	study	about	quantitative	polymerase	chain	reaction	is	also	developed,	showing	the	capability	of	the	process

Fig.	9	Real	application:	mean	of	original	fluorescence	(grey)	vs.	simulated	fluorescence	(red)	vs.	fitted	theoretical	(green).	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	the	article.)

Fig.	10	Real	application:	log-fluorescence	for	original	data	(grey)	and	logarithm	of	the	simulated	sample	paths	of	the	simulated	process	(red).	(For	interpretation	of	the	references	to	color	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	the	article.)



for	fitting	the	fluorescence	levels	associated	with	the	amplification	of	amplicons	of	DNA.
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Appendix
From	the	log-likelihood	function	(6),	the	estimates	of	η,	λ,	μ	and	σ2	follow	from	the	solution	of	the	system	of	equations

where

Solving	the	last	equation	for	σ	we	obtain

where

This	expression	depends	only	on	η,	λ	and	μ.	Substituting	in	the	other	three	equations,	the	following	system	of	equations	appears

where (Please,	note	the	alignment	of	the	following	equation	in	the	pdf	proofs.)

The	solution	of	the	above	system	of	equations	provides	the	maximum	likelihood	estimates	 and	 ,	from	which	 .
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