
G
R
A
D

O

E
N

I
N

G
E
N

I
E
R
Í
A

I
N

F
Ó

R
M

A
T
I
C
A

Gonzalo Abril Paniza is a Computer Scientist from

Granada, Spain. He is the author of this project.

Andrés María Roldán Aranda is the academic head of

the project and the student's tutor. He is professor in the

Department of Electronics and Computer Technologies.

Gonzalo Abril Paniza

Building, Provisioning, and Deployment of
Iot Acoustic Devices

Degree in Computer Engineering

UNIVERSITY OF GRANADA

B
A
C
H

EE
R
LO

R
'S

TH
ES

IS

B
u

il
d

in
g,

 P
ro

vi
si

on
in

g,
 a

n
d

D
ep

lo
ym

en
t

of
 I

oT
 A

co
u

st
ic

 D
ev

ic
es

G
on

za
lo

 A
b

ri
l

P
an

iz
a

D
eg

re
e

in
 C

om
pu

te
r	

 E
ng

in
ee

ri
ng

 his Bacherlor's Thesis aims to present all the steps involved	

in the process of developing a building and automation system	

for an IoT device based on a Raspberry Pi, which will be in

charge of making sure that clubs and entertainment venues 	

comply with the regulations related to acoustic levels.	

	

	

The project has been divided in three parts, the device tests,	

the build system to have a custom Linux Kernel and image, and	

the automation system built to have idempotent deployments of	

the software, firmware and configuration necessary for each

device.

T

Impreso en Granada, Septiembre 2023.

“Building, Provisioning, and Deployment of IoT Acoustic
Devices.”

Degree in Computer Engineering

Bachelor’s Thesis

“Building, Provisioning, and Deployment of IoT
Acoustic Devices.”

AUTHOR:

Gonzalo Abril Paniza

TUTOR:

Prof. Andrés María Roldán Aranda

DEPARTAMENT:

Electronics and Computer Technologies

Gonzalo Abril Paniza, 2022/2023

« 2022/2023 por Gonzalo Abril Paniza y Andrés M. Roldán Aranda:
“Building, Provisioning, and Deployment of IoT Acoustic Devices.”.

Este trabajo se encuentra bajo la licencia Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0).

Este es un resumen comprensible para humanos (y no un sustituto) de la licencia:

Tienes libertad para:

Share — copiar y redistribuir el material en cualquier medio o formato.

Adapt — remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.

La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia.

Bajo los siguientes términos:

Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se
han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que
usted o su uso tienen el apoyo de la licenciante.

CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución
bajo la lamisma licencia del original.

No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que
restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.

Para ver una copia completa de esta licencia, visita https://creativecommons.org/licenses/by-sa/4.0/deed.es

https://creativecommons.org/licenses/by-sa/4.0/deed.es

D. Andrés María Roldán Aranda, Profesor del departamento de Electrónica y Tecnología de los
Computadores de la Universidad de Granada, como director del Trabajo Fin de Grado de D. Gonzalo
Abril Paniza,

Informa:

Que el presente trabajo, titulado:

Building, Provisioning, and Deployment of IoT

Acoustic Devices.

ha sido realizado y redactado por el mencionado alumno bajo mi dirección, y con esta fecha autorizo
a su presentación.

Granada, a 5 de Septiembre de 2023

Fdo. Prof. Andrés María Roldán Aranda

Los abajo firmantes autorizan a que la presente copia de Trabajo Fin de Grado se ubique en la
Biblioteca del Centro y/o departamento para ser libremente consultada por las personas que lo deseen.

Granada, a 5 de Septiembre de 2022

Fdo. Gonzalo Abril Paniza Fdo. Prof. Andrés María Roldán Aranda

“Compilación, despliegue y aprovisionamiento de dispositivos
IoT acústicos.”

Gonzalo Abril Paniza

PALABRAS CLAVE: dispositivos IoT, automatización, despliegue, aprovisionamiento, ansible,

python, docker, raspberry pi.

RESUMEN:

Tras el desarrollo de un limitador de sonido Internet of Things (IoT) por el equipo de GranaSAT,
surge la necesidad de de automatizar las fases de compilación, despliegue y aprovisionamiento del
mismo para facilitar el proceso de desarrollo así como el despliegue de nuevas versiones en dispositivos.
Como solución, en este proyecto se han desarrollado una serie de repositorios enfocados a cada una de
las fases mencionadas, que se han integrado en un flujo de trabajo que permite la compilación de una
imagen de Linux personalizada para el limitador de sonido, así como su despliegue y aprovisionamiento
en un dispositivo IoT.

“Building, Provisioning, and Deployment of IoT Acoustic
Devices.”

Gonzalo Abril Paniza

KEYWORDS: IoT devices, automation, deployment, provisioning, ansible, python, docker, raspberry
pi.

ABSTRACT: After the development of an IoT sound limiter by the GranaSAT team, the need
arises to automate the compilation, deployment and provisioning phases of the same to facilitate the
development process as well as the deployment of new versions on devices. As a solution, in this project
a series of repositories have been developed focused on each of the mentioned phases, which have been
integrated into a workflow that allows the compilation of a custom Linux image for the sound limiter,
as well as its deployment and provisioning on an IoT device.

Acknowledgments

To my mother, who has been there for me in my ups and downs, who has showed me the meaning
of fighting, caring, and has inspired me to become a better man since I was young.

To my fiancé, who has supported me in my journey through college and has motivated me to
become the best version of me I can be. I would not be the person I am without you.

To my brother, who has been a partner in the good times and a shoulder to lean on in the hard
ones.

I would also like to thanks my tutor Andrés Roldán Aranda for giving me the opportunity to work
on such an exciting project, this has been the best way to finish my years at college that I can think
of, for that I am very grateful.

To all of you, thank you.

Contents

Licencia iv

Autorización defensa v

Autorización depósito biblioteca vi

Abstract (Español) vii

Abstract (English) viii

Acknowledgments ix

Contents xi

List of Figures xv

List of Tables xvii

Glossary xviii

Acronyms xxi

1. Introduction 1

1.1. Motivation . 1

1.2. Objectives of the Study . 2

1.3. Context . 3

1.4. Project Structure . 4

2. Software Requirements Specification 5

Building, Provisioning, and Deployment of IoT Acoustic Devices. xi

0
xii Contents

2.1. Heimdal Tests . 5

2.1.1. Functional Requirements . 5

2.1.2. Non-Functional Requirements . 5

2.2. Image Builder . 5

2.2.1. Functional Requirements . 5

2.3. Heimdal Ansible . 7

2.3.1. Functional Requirements . 7

2.3.2. Information Requirements . 8

3. Planning 9

3.1. Project budget . 10

4. Design and Implementation 12

4.1. Introduction . 12

4.2. Heimdal Tests . 12

4.2.1. Design . 13

4.2.2. Implementation . 15

4.2.2.1. Facade . 15

4.2.2.2. Graphical User Interface . 15

4.2.2.3. Command Line Interface . 17

4.2.2.4. Buzzer Tests . 18

4.2.2.5. LEDs Tests . 19

4.3. Image Builder . 20

4.3.1. Design . 20

4.3.2. Implementation . 21

4.3.2.1. Kernel Builder . 25

4.3.2.2. Image Builder . 27

4.3.3. Build times . 29

4.4. Heimdal Ansible . 30

4.4.1. Why Ansible? . 31

4.4.2. Design . 31

Gonzalo Abril Paniza

Contents xiii

0
4.4.2.1. Common Role . 32

4.4.2.2. Testing Role . 33

4.4.2.3. Prod Role . 33

4.4.3. Implementation . 33

4.4.3.1. Common Role . 33

4.4.3.1.1. Installing the Heimdal Kernel or updating it when necessary . 34

4.4.3.1.2. Setting the serial number of the device 36

4.4.3.1.3. Configuring the network interfaces 37

4.4.3.1.4. Setting up a graphical desktop and customizing it 37

4.4.3.2. Testing Role . 39

4.4.3.3. Prod Role . 40

4.4.3.4. Notes about the documentation . 40

5. Validation and Testing 41

5.1. Validation . 41

5.1.1. Heimdal Tests . 41

5.1.1.1. Functional Requirements . 41

5.1.1.2. Non-Functional Requirements . 41

5.1.2. Image Builder . 42

5.1.2.1. Functional Requirements . 42

5.1.2.2. Non-Functional Requirements . 42

5.1.3. Heimdal Ansible . 44

5.1.3.1. Functional Requirements . 44

5.1.3.2. Non-Functional Requirements . 46

5.1.3.3. Information Requirements . 49

5.2. Testing . 49

5.2.1. Heimdal Tests . 49

5.2.2. Image Builder . 49

5.2.3. Heimdal Ansible . 50

6. Conclusions and Future Work 51

Building, Provisioning, and Deployment of IoT Acoustic Devices.

0
xiv Contents

6.1. Future work . 52

Gonzalo Abril Paniza

List of Figures

1.1. The GranaSat logo. 1

1.2. The Raspberry Pi Module 3. 3

1.3. The SoundLimiter4 device. 4

1.4. The SoundLimiter4 device (back). 4

3.1. Gantt diagram of the project. 9

3.2. Waterfall model. 10

4.1. Test deployment to a testing Sound Limiter using Ansible. 12

4.2. User running the hardware tests. 13

4.3. Facade pattern applied to the Heimdal Tests. 14

4.4. Design of the Heimdal Tests GUI. 14

4.5. Final aspect of the Heimdal Tests GUI. 16

4.6. Final aspect of the Heimdal Tests CLI. 18

4.7. Pulse Width Modulation (PWM) signal used. 18

4.8. LEDs of the Sound Limiter while running the test. 20

4.9. Image Builder design. 22

4.10. Arguments of the build script. 23

4.11. Ansible environment design. 30

4.12. Desktop environment with the Heimdal logo as wallpaper. 38

4.13. Login screen with the Heimdal logo as wallpaper. 39

5.1. Original DietPi image size. 44

5.2. Custom DietPi image size. 44

Building, Provisioning, and Deployment of IoT Acoustic Devices. xv

0
xvi List of Figures

5.3. Disk space usage in the previous iteration of the project. 48

5.4. Disk space usage now. 48

5.5. Memory usage in the previous iteration of the project. The available column is the one
that shows all the memory that can be allocated by the system. 48

5.6. Memory usage now. The available column is the one that shows all the memory that
can be allocated by the system. 49

Gonzalo Abril Paniza

List of Tables

1.1. Objectives of this Bachelor Thesis. 2

3.1. Budget of the project. 11

4.1. Build times of Image Builder on different machines. 29

4.2. Comparison between Ansible, Puppet, and Chef based on various criteria. 31

5.1. Validation of the Functional Requirements of Heimdal Tests. 41

5.2. Validation of the Non-Functional Requirements of Heimdal Tests. 42

5.3. Validation of the Functional Requirements of the Image Builder. 42

5.4. Validation of the Non-Functional Requirements of the Image Builder. 44

5.5. Validation of the Functional Requirements of Heimdal Ansible. 46

5.6. Validation of the Non-Functional Requirements of Heimdal Ansible. 48

5.7. Validation of the Non-Functional Requirements of Heimdal Ansible. 49

Building, Provisioning, and Deployment of IoT Acoustic Devices. xvii

Glossary

A | B | C | D | G | H | I | L | N | O | P | Q | R | S | X

A

Ansible Ansible® is an open source, command-line IT automation software application written in
Python. It can configure systems, deploy software, and orchestrate advanced workflows [23].

Ansible Role An Ansible role is a way to have related information, tasks and variables all in one
place to help structuring an Ansible project [9, Chapter 6].

ARM ARM is a family of reduced instruction set computing (RISC) architectures for computer
processors [2] .

B

BuildKit BuildKit is build backend used by Docker for converting source code to build artifacts in
an efficient, expressive and repeatable manner [12] .

C

C C is a general-purpose, procedural computer programming language supporting structured
programming, lexical variable scope, and recursion, with a static type system. By design, C
provides constructs that map efficiently to typical machine instructions [22] .

chroot chroot is a command that allows to change the root directory of a process and its children to
a new location [27] .

D

Desktop Environment A desktop is a set of tools and software that allow users to use their computer
via a graphical interface [34] .

Device Tree A device tree is a flexible way to define the hardware components of a computer system.
Usually, the device tree is loaded by the bootloader and passed to the kernel [31, Chapter 3] .

Device Tree Blob A DTB file is a binary representation of the Linux Device Tree obtained after
compiling a Device Tree Source (DTS) file with the Device Tree Compiler (DTC) tool [31,
Chapter 3] .

DevOps DevOps combines development and operations to increase the efficiency, speed, and security
of software development and delivery compared to traditional processes. A more nimble software
development lifecycle results in a competitive advantage for businesses and their customers [18].

xviii Building, Provisioning, and Deployment of IoT Acoustic Devices.

Glossary xix

0
DietPi DietPi is a lightweight Linux distribution based on Raspbian. It is prepared to be used in

Single Board Computers [3] .

Docker Docker is a platform that allows users to develop, deploy, and run applications with containers,
which is a a standard unit of software that packages up code and all its dependencies so the
application runs quickly and reliably from one computing environment to another. It is similar to
a virtual machine, but it is more lightweight and portable, being the main difference between both
that Docker virtualizes the operating system whereas virtual machines virtualize the hardware
[17] .

Docker Engine An open source containerization technology for building and containerizing
applications. Docker Engine acts as a client-server application with a server running a
long-running daemon process called dockerd, APIs that specify interfaces for programs to talk
to and instruct the Docker daemon, and a command line interface (CLI) client called
docker[14].

Dockerfile A Dockerfile is a text document that contains all the commands a user could call on the
command line to assemble an image [15] .

G

Git Git is a free and open-source distributed version control system for tracking changes in source
code during software development [10].

GitLab GitLab is a web-based DevOps lifecycle tool that provides a Git-repository manager providing
wiki, issue-tracking and continuous integration/continuous deployment pipeline features, using
an open-source license, developed by GitLab Inc. [19] .

GranaSAT Electronics Aerospace Group. An academic project from the UGR. This organization
has an electronics laboratory where students from different degrees and education levels develop
multidisciplinary projects pagegranasat .

H

Hypervisor A hypervisor is a virtual machine monitor that creates and runs virtual machines. It
allocates resources on the host computer to support multiple virtual machines with their own
operating systems and applications [32] .

I

IoT The Internet of Things is a system in which objects in the physical world could be connected to
the Internet by sensors[30].

L

Linux Linux is an open-source kernel, but it is also used to name the operating system based on it.

Linux Distribution A Linux distribution is an operating system based on the Linux kernel with
added software that provides additional functionality, such as a package manager or a desktop
environment.

Loop Device A loop device is a block device that maps its data blocks not to a physical device such
as a hard disk or optical disk drive, but to the blocks of a regular file in a filesystem or to another
block device. This can be useful for example to provide a block device for a filesystem image
stored in a file, so that it can be mounted with the mount command [4] .

Building, Provisioning, and Deployment of IoT Acoustic Devices.

https://granasat.ugr.es/

0
xx Glossary

N

NTP NTP is a protocol for synchronizing a set of network clocks using a set of distributed clients
and servers [28] .

O

Overlay Directory structure copied on top of the root filesystem that might contain executables and
libraries [31, Chapter 6] .

P

Python Python is an interpreted, high-level and general-purpose programming language. Python’s
design philosophy emphasizes code readability with its notable use of significant indentation [5] .

Q

QEMU QEMU is a free and open-source emulator and virtualizer. As machine emulator, it allows to
run OSs and programs made for one architecture in another [29].

R

Raspberry Pi The Raspberry Pi is a series of small Single Board Computer computers developed
Raspberry Pi Foundation[7].

Raspberry Pi Module 3 The Raspberry Pi Module 3 is a Raspberry Pi model developed by the
Raspberry Pi Foundation which is intended for industrial application[6] .

Raspbian Raspbian is a Debian-based computer operating system for Raspberry Pi .

S

Single Board Computer A single-board computer is a complete computer built on a circuit
board[25]. In our context, the SBC is the Raspberry Pi.

Sound Limiter A sound limiter is a device that is used to limit the volume of amplified music in a
venue to a set level.

Sound Limiter 4 The Sound Limiter 4 is a Sound Limiter developed by the GranaSAT team .

SSH Secure Shell (SSH) is a cryptographic network protocol for operating network services securely
over an unsecured network. The best known example application is for remote login to computer
systems by users [24].

X

x86-64 x86-64 is the 64-bit version of the x86 instruction set used in modern processors [2] .

Gonzalo Abril Paniza

https://www.raspberrypi.com/software/

Acronyms

C | D | G | I | L | O | P | R | S | U

C

CLI Command Line Interface.

D

DHCP Dynamic Host Configuration Protocol.

DTB Device Tree Blob.

DTC Device Tree Compiler.

DTS Device Tree Source.

G

GPIO General Purpose Input/Output.

GUI Graphical User Interface.

I

IoT Internet of Things.

L

LCD Liquid Crystal Display.

O

OS operating system.

P

PCB Printed Circuit Board.

PWM Pulse Width Modulation.

R

RAM Random Access Memory.

Building, Provisioning, and Deployment of IoT Acoustic Devices. xxi

0
xxii Acronyms

S

SSH Secure Shell.

U

UGR University of Granada.

USB Universal Serial Bus.

Gonzalo Abril Paniza

Chapter 1

Introduction

This Bachelor’s Thesis is the final result of a long journey as a Computer Engineering student in
the University of Granada. The last step, where the knowledge and skills obtained during the degree
are put into practice. The present document aims to show how that abilities have been applied to the
development of a real-world application, where not only the technical aspects are of importance, but
also the capabilities to organize, manage and plan a project that will be carried on by other people in
the future.

This document will show the different processes that have been carried out during the development
of the project, from defining the requirements of the task, to design and implementation of the different
repositories that make up the project, as well as the testing and validation of the application, showing
the full cycle of the software development process.

The Project has been realized with collaboration of the academic project GranaSAT, an aerospace
development group of the University of Granada (UGR), formed by students from different fields of
Engineering, under the supervision of Professor Dr. Andrés María Roldán Aranda.

U
n
iversityofGra

n

a
d
a

A
e
r
o
s p

a c
e

G r o u p
G r a n

a
S
A

T

Figure 1.1 – The GranaSAT logo.

1.1. Motivation

The main reason for choosing this project was the opportunity to solve a real-world problem,
using modern technologies and tools, and working in a middle-ground between low level and high
level programming which allowed me to have a broader perspective of the rich world of Computer
Engineering. It was also an important aspect to learn more about automation tools and the DevOps

Building, Provisioning, and Deployment of IoT Acoustic Devices. 1

https://granasat.ugr.es/
https://directorio.ugr.es/static/PersonalUGR/*/show/5a2970babdfe69c2ebe79aa8c0d15e81

1

2 Chapter 1. Introduction

culture, which is becoming more and more relevant in the industry. The insight gained from this
project has proven to be very valuable for my professional carrer, and I am sure it will continue to be
so in the future.

1.2. Objectives of the Study

The main goal of this project was to build on the foundations made by Raúl Rodríguez Pérez and
other students before him, who developed the Heimdal Kernel Module and made some adjustments
to it in their respectives Bachelor’s Theses, so that the Heimdal Sound Limiter could reach a state
where deploying and testing new devices would be a simple and easy process, as well as setting up the
stepstones to facilitate the labor of remote managing already deployed devices.

These objectives are summarized in the table 1.1.

Obj. Nº Description

Obj. 1 Solve the existing technical challenges that difficulted setting up and using the
Sound Limiter.

Obj. 2 Create Hardware Tests to facilitate verifying that new devices work as
expected.

Obj. 3 Configure an idempotent build system for the Kernel Module.

Obj. 4 Set up an automation system to facilitate the deployment, provisioning and
maintenance of devices.

Table 1.1 – Objectives of this Bachelor Thesis.

Apart from the aforementioned main objectives, the project also had the following secondary
objectives:

Create maintanable and scalable solutions, that can be easily adapted to new requirements.

Use good programming practices to ensure the quality of the code and the maintainability of the
project.

Learn about the DevOps culture and the tools that are used in the industry.

Acquire a better insight of how the Linux Kernel works and how to manage custom Kernel
Modules.

Learn about the Raspberry Pi and how to use Single Board Computer to build IoT devices.

Due to the requirements defined in the first meetings with the project supervisor Table 1.1, the
project was divided into three main parts, having each one of them been developed in a different
repository of the GranaSAT GitLab workspace:

Heimdal Tests, to address the Obj. 2.

Image Builder, to address the Obj. 3.

Heimdal Ansible, to address the Obj. 4.

As for the Obj. 1, due to the miscellaneous nature of the changes that were necessary, they haven’t
been addressed in a specific repository, but rather in Image Builder and Heimdal Ansible at the
same time. These challenges and solutions are explined in detail in Design and Implementation.

Gonzalo Abril Paniza

1.3. Context 3

1

1.3. Context

As mentioned earlier, this project is based on the work made by other students in their respectives
Bachelor’s and Master Theses. Alejandro Ruiz Becerra reverse engineered a set of Sound Limiters for
his Computer Engineering Bachelor’s Thesis, and then developed the first version of the Heimdal Kernel
Module. After this, Raúl Rodríguez Pérez carried on the work with the help of other undergraduate
and postgraduate students, modifying the original Kernel Module to work with newer Kernel versions,
as well as defining some of the basic items this project is based on, such as the Linux Distribution, the
Desktop Environment, or the automation tools used to deploy the devices, more specifically, Ansible.

Apart from the work made on the software side, the project also has a hardware component that
has undergone multiple iterations. The device which was mainly used while working on this project
goes by the name of Sound Limiter 4. This specific device (Figure 1.3, Figure 1.4) has the following
features:

A custom Printed Circuit Board (PCB) which connects the different devices. A Raspberry Pi
Module 3 (Figure 1.2) governs the device.

Six balanced audio inputs.

An HDMI output to connect the device to a monitor.

A Universal Serial Bus (USB) port to connect the device to a computer.

A 10/100 Mbps Ethernet connector to connect the device to a network.

A LCD screen to display information about the device.

A hardware clock that keeps track of the time with a higher precision than the Raspberry Pi
system clock.

Figure 1.2 – The Raspberry Pi Module 3.

As a side note, it is important to mention that in some of the previous iterations of the project,
version control software was not used in a proper way, which made it difficult to track the changes
made to the code, as well as to know its state at the beginning. The source code of the Kernel Module
that was used as the starting point for this project was an unfinished one, and it was not until long
after that the correct one was delivered, which hindered the development of the project in the first
weeks. To avoid this happening in the future, the project has relied on using Git as the version control
software, and GitLab as the platform to host the repositories from the very first day.

Building, Provisioning, and Deployment of IoT Acoustic Devices.

1

4 Chapter 1. Introduction

Figure 1.3 – The Sound Limiter 4 device.

Figure 1.4 – The Sound Limiter 4 device.

1.4. Project Structure

The project is divided into six chapters:

1. Introduction: This chapter introduces the project, explaining the motivation behind it, the
objectives that were set, and the context in which it was developed.

2. Software Requirements Specification: In this chapter, the requirements that were defined
at the beginning of the project are described.

3. Planning: This chapter describes how the planning of the project was carried out, as well as
the budget that was set for it.

4. Design and Implementation: This chapter explains the design decisions that were made
during the development of the project, as well as the implementation details of the different
repositories that were made.

5. Validation and Testing: This chapter explains how the different repositories were tested
and validated according to the requirements that were defined in the Software Requirements
Specification chapter.

6. Conclusions and Future Work: This chapter is a retrospective of the project, where the
results obtained are analyzed, and the future work that could be done is discussed, as well as the
lessons learned during the development of the project.

Gonzalo Abril Paniza

Chapter 2

Software Requirements Specification

These are the requirements that were defined in the firsts meetings with the project supervisor, and
that were used as a base to define the scope of the project. Since the project was divided into three
main parts, and each one of them was developed with different technologies in a different repository of
the GranaSAT GitLab workspace (Table 1.2), the requirements were also divided into three different
sections, one for each repository. The requirements of each are divided into three main categories:
Functional Requirements, Non-Functional Requirements and Information Requirements
(when applicable).

2.1. Heimdal Tests

2.1.1. Functional Requirements

FR1 The system will switch on and off all the front LEDs of the Sound Limiter.

FR2 The system will play a start up sound through the buzzers of the Sound Limiter.

FR3 The system will play a shutdown sound through the buzzers of the Sound Limiter.

2.1.2. Non-Functional Requirements

NFR1 The tests must be able to run on a Sound Limiter with a Raspberry Pi Module 3.

NFR2 The tests must have a simple and intuitive Graphical User Interface (GUI).

NFR3 It must be possible to run the tests from the command line.

2.2. Image Builder

2.2.1. Functional Requirements

FR1 The system will be able to compile a custom Kernel with the Heimdal Module for the Sound
Limiter.

FR2 The system will be able to build a Linux image for the Sound Limiter that includes the Heimdal
Kernel Module.

Building, Provisioning, and Deployment of IoT Acoustic Devices. 5

2

6 Chapter 2. Software Requirements Specification

NFR1 The Heimdal Kernel Module will be included as a Kernel built-in in production images to avoid
reverse engineering.

NFR2 The Heimdal Module will be included as a Kernel module in development images.

NFR3 The Linux image built must be based on DietPi.

NFR4 The software must be easy to use.

NFR5 The software must be maintainable.

NFR6 The build system must be idempotent.

NFR7 The resulting Kernel must be built for the ARM architecture.

NFR8 The resulting Linux image must be built for the ARM architecture.

NFR9 The artifacts generated by the build system must be able to be used by the Sound Limiter 4.

NFR10 The resulting image must have basic tools installed and enabled by default.

NFR10.1 The resulting Linux image must have a Secure Shell (SSH) server installed and enabled by
default.

NFR10.2 The resulting Linux image must have a Network Time Protocol client installed and enabled
by default.

NFR11 The resulting Linux image must be ready to be used in the Sound Limiter 4 without any further
configuration.

NFR12 The instructions on how to install the software must be clear and easy to follow.

NFR13 The code must be either self-explanatory or have comments explaining its purpose.

NFR14 The build software must be able to run in x86-64 machines.

NFR15 The resulting image must have a static MAC address set to avoid it being changed everytime
the Sound Limiter boots.

NFR16 It must be possible to generate the Kernel and the image separately.

NFR17 The build system must not require any additional files to be manually added to work.

NFR18 The resulting image must have the Heimdal Kernel Module installed and enabled by default.

NFR19 The resulting artifacts must have the version of the base dependencies used for building them in
their filename.

NFR19.1 The resulting Kernel must have the version of the Linux Kernel used in its filename.

NFR19.2 The resulting Kernel image must have the version of the Heimdal Kernel Module used in
its filename.

NFR19.3 The resulting Linux image must have the version of the DietPi image used in its filename.

NFR20 The final Linux image must be as light as possible.

Gonzalo Abril Paniza

2.3. Heimdal Ansible 7

2

2.3. Heimdal Ansible

2.3.1. Functional Requirements

FR1 After running the automation software the Sound Limiter must be in a working state.

FR1.1 The Heimdal Kernel Module must be loaded.

FR1.2 An Network Time Protocol must be configured and enabled.

FR1.3 The SSH server must be configured and enabled.

FR1.4 The Sound Limiter must be able to connect to the Internet.

FR2 The system will be able to deploy updated firmware to the Sound Limiter.

FR3 The system will to set up the Sound Limiter with a graphical interface.

FR3.1 If configured, the system will start with a Desktop Environment enabled.

FR3.2 The boot Linux boot output will be hidden.

FR3.3 The system will allow to modify the Desktop Environment with a custom theme.

FR3.4 The system will be able to modify the wallpaper of the Desktop Environment.

FR4 The system will install the software necessary to reproduce music using the Sound Limiter.

FR5 The system will be able to provision a Sound Limiter with a static IP address.

FR6 The system will be able to provision production-ready Sound Limiters.

FR7 The system will be able to provision testing Sound Limiters.

FR8 The system will create a serial number for each Sound Limiter if it doesn’t have one.

NFR1 The automation system must be as easy to use as possible.

NFR2 The system will configure production devices.

NFR2.1 Only unprivileged users will be able to login production devices.

NFR2.2 Production devices won’t have any testing software installed.

NFR2.3 Production devices will have a unique MAC address.

NFR2.4 The unprivileged user will automatically login at startup if the graphical interface is enabled.

NFR3 The system will configure testing devices.

NFR3.1 Privileged users will be able to login testing devices.

NFR3.2 The Hardware Tests will be installed in testing devices.

NFR3.3 A testing MAC address will be set in testing devices.

NFR3.4 The Desktop Environment will be configured to allow to log in with a privileged user if the
graphical interface is enabled.

NFR4 The automation software must be based on Ansible.

NFR5 The system will be able to use different Ansible inventories to configure the Sound Limiters.

NFR6 The system will be able to cache the Ansible facts of every Sound Limiter in the inventory to
speed up the provisioning process.

Building, Provisioning, and Deployment of IoT Acoustic Devices.

2

8 Chapter 2. Software Requirements Specification

NFR7 The automation system will be idempotent.

NFR8 The automation software must be easy to use.

NFR9 The automation software must be maintainable.

NFR10 There must be clear documentation on how to use the automation software.

NFR11 The deployed devices must have spare disk space.

NFR12 The deployed devices must have a light Random Access Memory (RAM) footprint.

2.3.2. Information Requirements

IR1 The serial number of the Sound Limiters will be a unique identifier for each device.

IR2 Information about every Sound Limiter will be stored in an Ansible inventory.

Gonzalo Abril Paniza

Chapter 3

Planning

The next image (Figure 3.1) shows see the Gantt diagram of the project. It represents the time
that has taken to complete each task. The tasks are divided in the three main parts of the project,
which have been already mentioned in section 1.3. For a more detail view of the diagram, it is possible
to access the Notion page of the project, where all the subtasks that make up each task can be seen.

Figure 3.1 – Gantt diagram of the project.

The project has been developed using a waterfall model (Figure 3.2), which divides the project into
different phases, each one of them with a specific goal[33, Chapter 2]. The phases are the following:

1. Requirements analysis and definition.

Building, Provisioning, and Deployment of IoT Acoustic Devices. 9

https://resolute-braid-121.notion.site/05661be72f70463993dea1a6d97e7e90?v=4bfda9a8a7e5468186f9b98837dff787&pvs=4

3

10 Chapter 3. Planning

2. System and software design.

3. Implementation and unit testing.

4. Integration and system testing.

5. Operation and maintenance.

Requirements

Design

Implementation

Integration

Maintenance

Figure 3.2 – Waterfall model.

In the waterfall model, the phases are carried out sequentially, and the next phase can not start
until the previous one has finished. It is a simple model that is easy to understand and use, however,
it is not suitable for projects where the requirements might change or it is necessary to deliver the
software as fast as possible -even if it is not fully finished- and it is feasible to gradually improve it
while it is being shipped to the client at the same time. Considering that this is not the case of this
project, because the requirements where well defined after the very firsts meetings with the tutor it
was a good choice to use this model for this particular case.

Since the project has been divided into three different subprojects, only the first phase was carried
out for the whole project at the same time to be able to focus on each of the parts separately. The
rest of the phases of the waterfall model were applied for every subproject individually, and each part
of the project started once the previous one had finished, as the Grantt diagram shows (Figure 3.1),
except for some eventual fixes that had to be done in some cases. The Operaion and maintenance
phase (item 5) would not apply to this project, as it will be carried out by other students that will
continue this work in the future.

Over the course of the Bachelor’s Thesis, the communication with the project supervisor, which
would act as the client of the project too, was done eventually to show the progress of the project and
ask for feedback on specific aspects of it. This communication was conducted both in person and using
Telegram. Also, some technical questions, were addressed to the GranaSAT team using a Telegram
group for the team working on the Sound Limiters.

3.1. Project budget

The project has been developed using either free and open source software or free software, so most
of the budget of this project would be spent on the hardware that was needed as well as on the salary of

Gonzalo Abril Paniza

https://web.telegram.org/k/

3.1. Project budget 11

3

the team involved. Because of that, the software costs were none. The Sound Limiters were provided
by the GranaSAT team, and the salary of the team was calculated using the average salary of a junior
software engineer in Spain[21] and the average salary of a senior hardware engineer in Spain[20]. The
final budget of the project can be seen in Table 3.1.

Concept Cost Amount Total

Sound Limiter 1200e 2 2.000,00e

Junior Software Engineer/h 12.50e 300 3.750,00e

Senior Hardware Engineer/h 29.50e 70 2.088,26e

Software 0e 0,00e

Computer 1,200.00e 1 1.200,00e

Total 9.038.26e

Table 3.1 – Budget of the project.

Building, Provisioning, and Deployment of IoT Acoustic Devices.

Chapter 4

Design and Implementation

4.1. Introduction

In this chapter, the design and implementation of each of the three parts of the project will be
explained. The first part is the Heimdal Tests, which are the tests that were developed to test the
Sound Limiter hardware. The second part is the Image Builder, which is the software is used to build
the Linux images for the Sound Limiter. The last part is the Heimdal Ansible, which is the automation
software used to deploy and provision the Sound Limiter.

Each part will be explained in a different section, and each section will be divided into two
subsections: Design, Implementation. The Design subsection will explain the design decisions
that were made before the implementation of the software. The Implementation subsection will
explain the implementation details of the software.

4.2. Heimdal Tests

The hardware tests are meant to be deployed to testing Sound Limiter using Heimdal Ansible as
part of the deployment process, as Figure 4.1 shows.

Deploys tests

Host machine
Testing sound limiter

Figure 4.1 – Test deployment to a testing Sound Limiter using Ansible.

After the deployment, they can be used by testers to verify that the hardware installed on new
Sound Limiters works as expected, either using the GUI or the Command Line Interface (CLI), as seen
in Figure 4.2.

12 Building, Provisioning, and Deployment of IoT Acoustic Devices.

4.2. Heimdal Tests 13

4

Rings

Tester

Using CLI/GUI

Buzzer

Turns on

LEDs

Figure 4.2 – User running the hardware tests.

4.2.1. Design

The tests developed in this project are a complete rework of the tests that were developed in previous
iteration of the project. The previous tests were developed using the C programming language, and
making use of the sourced code of the python’s library RPi.GPIO. The main problem this approach
had was that copying the source code of the library into the project was not a good idea, since it was
not an easy task to update the tests afterwards because they were mixed with the source code of the
library, making it very difficult to track the changes made to both the library and the tests.

Since one of the requirements of this part of the project (item NFR2) was to include a GUI for the
tests, and the previous tests were a bit problematic to maintain, it was decided to rewrite them from
scratch using the Python programming language, which is a suitable language for developing simple
applications and has plenty of well-maintained libraries that support the development of applications
for IoT devices [11].

The design of the tests was based on the Facade pattern (Figure 4.3), which is a pattern that uses
a single class to provide a simple interface for a complex subsystem. This Facade class is the one
that is used by the GUI and CLI views to perform their operations, and is the one responsible for
instantiating the classes that control the different devices of the Sound Limiter. [8]

One of the most interesting advantages of using the Facade pattern is that the views are completely
decoupled from the different subsystems. That means that the development of the views and the
subsystems can be done in parallel after having agreed on the interface of the Facade class. It also
means that any changes in how the subsystems work will not affect the views, since the interface of
the Facade class will remain the same.

Building, Provisioning, and Deployment of IoT Acoustic Devices.

https://pypi.org/project/RPi.GPIO/

4

14 Chapter 4. Design and Implementation

GUI

CLI

Tests Service

Buzzer class

Leds class

Use
Uses

Manages

Manages

Figure 4.3 – Facade pattern applied to the Heimdal tests.

The interface (Figure 4.4) has a simple design, with one button for each test, and a text box that
shows the output of the tests. This allows to debug any possible problems that might have occurred
during the execution of the tests without having to execute the tests again using the CLI, which can
be useful for test users that are not familiar with the Linux command line.

Hardware Tests

Buzzer test

LEDs test

Output:

Figure 4.4 – Design of the Heimdal Tests GUI.

As for the dependencies used to develop the different parts of the tests, the following ones were
used:

Python: The programming language used to develop the tests.

RPi.GPIO: The library used to communicate with the General Purpose Input/Output (GPIO)
pins of the Raspberry Pi.

Gonzalo Abril Paniza

https://pypi.org/project/RPi.GPIO/

4.2. Heimdal Tests 15

4

PyQt5: The library used to develop the GUI of the tests. It was chosen over other alternatives
because of the familiarity with the tool as well as being well supported and documented.

adafruit-circuitpython-neopixel: The library used to control the LEDs of the Sound Limiter.
It was chosen because it is the library recommended by the manufacturer of the LEDs.

4.2.2. Implementation

The implementation of the tests was divided into five main parts: the Facade class, the Graphical
User Interface, the Command Line Interface, the Buzzer Tests, and the LEDs tests. The GUI and the
CLI are the views of the Facade class, and the tests are the subsystems controlled by it.

4.2.2.1. Facade

The Facade class has been implemented in the following way:

1 import logging
2 import time
3

4 from heimdal_tests_python.buzzer import Buzzer
5 from heimdal_tests_python.leds import Leds
6

7

8 class TestsService():
9 SLEEP_TIME = 0.3

10

11 def __init__(self):
12 self.logger = logging.getLogger(self.__class__.__name__)
13

14 def run_buzzer_tests(self):
15 buzzer = Buzzer()
16 self.logger.info("Test: buzzer success...")
17 buzzer.buzz_success()
18 time.sleep(self.SLEEP_TIME)
19 self.logger.info("Test: buzzer failure...")
20 buzzer.buzz_fail()
21

22 def run_leds_tests(self):
23 self.logger.info("Test: tinkle the LEDs...")
24 Leds().tinkle_leds_test()

In this case, it is a pretty simple class, since it only has two methods, one for each type of test.
This interface is used by the different views to perform the tests.

4.2.2.2. Graphical User Interface

In the case of the GUI, the interface is used in the following way:

Building, Provisioning, and Deployment of IoT Acoustic Devices.

https://pypi.org/project/PyQt5/
https://pypi.org/project/adafruit-circuitpython-neopixel/

4

16 Chapter 4. Design and Implementation

1 def __init__(self):
2 super().__init__()
3 self.tests_service = TestsService()
4 ...
5 def _add_buzzer_button(self):
6 self.buzzer_button = QPushButton("Buzzer test")
7 self.buzzer_button.setFixedWidth(self.BUTTONS_WIDTH)
8 self.buzzer_button.clicked.connect(
9 self.tests_service.run_buzzer_tests

10)
11 self.addWidget(
12 self.buzzer_button, alignment=QtCore.Qt.AlignmentFlag.

AlignCenter
13)
14 ...

The final aspect of the GUI can be seen in Figure 4.5. It follows closely the design (Figure 4.4), and
allows the user to perform the different tests that were defined in the requirements (subsection 2.1.1).

Figure 4.5 – Final aspect of the Heimdal Tests GUI running in the Sound Limiter 4.

Gonzalo Abril Paniza

4.2. Heimdal Tests 17

4

4.2.2.3. Command Line Interface

On the other hand, the CLI reads the parameters passed to it and it calls the corresponding methods
of the Facade class:

1 ...
2 service = TestsService()
3

4 tests = {
5 "leds": service.run_leds_tests,
6 "buzzer": service.run_buzzer_tests,
7 }
8 ...
9 def main():

10 logging.info("Running the hardware tests...")
11 args = vars(parse_args())
12 if args["debug"]:
13 logger.setLevel(logging.DEBUG)
14 args.pop("debug", None)
15 if args["all"]:
16 for key, value in tests.items():
17 value()
18 else:
19 args.pop("all", None)
20 for arg in args:
21 if args[arg]:
22 tests[arg]()

The CLI, it is a simple command line interface that allows the user to perform the same tests that
can be executed using the GUI. The CLI is useful to be used either directly in the Sound Limiter or
remotely using SSH.

Building, Provisioning, and Deployment of IoT Acoustic Devices.

4

18 Chapter 4. Design and Implementation

Figure 4.6 – Final aspect of the Heimdal Tests CLI. Executed remotely using SSH.

4.2.2.4. Buzzer Tests

These tests have been implemented using a Buzzer class, which provides methods to ring a buzzer
with success or failure sounds using PWM on one of the GPIO channels of the Raspberry Pi, using
the library described in Figure 4.2.1. The signal is set to a increasing frequency for the success sound,
and to a decreasing frequency for the failure sound, and its duty cycle (Figure 4.7)is set to 70% in
both cases.

70% duty cicle

Period

Figure 4.7 – PWM signal used.

Gonzalo Abril Paniza

4.2. Heimdal Tests 19

4

After setting up the GPIO channel used -which is the 13th channel in the Raspberry Pi GPIO
header- as the PWM output, the buzzer is used in the following way:

1 def __iterate_freqs(self, freqs: list[float]):
2 """
3 Set the frequency of the GPIO channel from a list of frequencies
4 sleeping between every change.
5

6 Args:
7 freqs (list[float]): List of frequencies.
8 """
9 self.pwm.start(self.DUTY_CYCLE)

10 for freq in freqs:
11 self.pwm.ChangeFrequency(freq)
12 time.sleep(self.SLEEP_TIME)

This method receives a list of frequency, which depends on the sound that will be played, and it iterates
over it, setting the frequency of the PWM signal to the value of the current element of the list. It also
sleeps for a short period of time between every change, to allow the tester to hear the sound.

4.2.2.5. LEDs Tests

The LEDs tests have been implemented using a Leds class, which provides a method to turn on
and off the LEDs of the Sound Limiter using the GPIO channels of the Raspberry Pi via Figure 4.2.1
as well as the library provided by the manufacturer of the LEDs Figure 4.2.1. The LEDs are managed
using the GPIO channel 12 of the Raspberry Pi. The method used to turn on and off the LEDs is the
following:

1 def tinkle_leds_test(self):
2 """
3 Light and turn off every LED sequentially.
4 """
5 pixel = neopixel.NeoPixel(
6 self.LEDS_PIN, self.NUM_LEDS,
7 brightness=self.BRIGHTNESS,
8 pixel_order=neopixel.RGB
9)

10 for i in range(self.NUM_LEDS):
11 pixel[i] = Colors.white.value
12 time.sleep(self.SLEEP_LAPSE)
13 pixel[i] = (0, 0, 0)
14 time.sleep(self.SLEEP_LAPSE)

This method initializes the Neopixel object, which is the one that is used to control the LEDs, and
then it iterates over the LEDs, turning them on and off sequentially, with a short pause between every
change. In Figure 4.8 it can be seen how the LEDs look like while the test is running.

Building, Provisioning, and Deployment of IoT Acoustic Devices.

4

20 Chapter 4. Design and Implementation

Figure 4.8 – LEDs of the Sound Limiter while running the test.

4.3. Image Builder

4.3.1. Design

The build system developed in this project has been developed using Docker and bash scripts.
Docker is a tool that allows to create, deploy and run applications using containers, which are isolated
environments that contain all the necessary dependencies to run the application. [17] The main
advantages of using Docker for this task over virtual machines are:

Portability: Docker containers are portable, which means that they can be run in any machine
that has the Docker Engine installed, regardless of the operating system or the hardware of the
machine. A virtual machine, on the other hand, requires a Hypervisor to run, which means that
it can only be run in machines that have one installed, and it can only be run in machines that
have the same architecture as the Hypervisor.

Lightweight: Docker containers are lightweight, which means that they don’t require a lot of
resources to run. A virtual machine, on the other hand, requires a Hypervisor to run, which also
requires a guest operating system (OS) to run. That means it adds to the resources required to
run the build system, since the Docker containers use the same OS as the host machine.

To be able to build both the Kernel and the Linux image, the build system has been divided into
two main parts: the Kernel Builder and the Image Builder. The Kernel Builder is the part of the
build system that is responsible for building the Kernel and the Kernel Module, and the Image Builder
is the part of the build system that is responsible for building the Linux image. The Kernel Builder
is completely independent from the Image Builder, which means that it can be used to build the
Kernel and the Kernel Module without having to build the Linux image. However, to avoid duplicating

Gonzalo Abril Paniza

4.3. Image Builder 21

4

any logic, the Image Builder uses the Kernel Builder to build the Kernel and the Kernel Module.
This has been achieved using multi-stage builds, which is a feature of Docker that allows to use the
artifacts generated by a container in another container. [16]

The only problem left to address is the architecture incompatibility between the Raspberry Pi and
the host machine. To overcome this on the Kernel Builder side, we can cross-compile the Kernel
using the necessary toolchain. The Raspberry Pi documentation has a guide on how to achieve this.

As for the Image Builder the problem is a bit more complex. To initialize and configure a custom
Linux image for the Sound Limiters, we need to mount that image in the host machine, chroot into it,
and use its binaries to configure it. Because of the architecture incompatibility, it is not possible to
do this directly, since the binaries of DietPi have been built for the ARM architecture, and the host
machine is most likely using the x86-64 architecture. QEMU has been used to solve this issue, since
it allows to use programs compiled for one architecture in another architecture using its user-mode
emulation. [29]

Finally, it is not possible to extract the build artifacts of the Kernel Builder phase, which will
be generated on the build phase of the Docker container, using the legacy Docker builder. To be able
to do that, it is necessary to use the new BuildKit backend, which is not enabled by default.[13]
According to the Docker documentation, the buildx plugin uses that build backend by default, apart
from other features that are not available in the legacy builder, so it has been used in the build system.

Once the technical challenges have been addressed, it is worth mentioning that the build system
has been designed to be as simple as possible to use, to comply with item NFR4. It will be explained
in detail in subsection 4.3.2. The final design of the build system can be seen in Figure 4.9.

The build system has a number of convenient additional features that are worth mentioning, as
they facilitate working with newly deployd Sound Limiters, as well as debugging any possible issues
that the build system might have in future iterations:

Possibility of including a SSH public key[1, Chapter 10] in the Linux image, which will be used
to allow the user to connect to the Sound Limiter using SSH without having to use a password.
This is useful to be able to connect to the Sound Limiter without having to use a keyboard and a
monitor. The key is stored in a .env file, which could also be used in the future to store any API
keys or sensitive information that the user might want to include in the resulting Linux image.

Debug flag that allows to view all the commands that are being executed by the build system,
as well as their output.

The Raspberry Pi fork of the Linux Kernel is automatically cloned into the Docker container,
which minimizes the manual steps that the user has to take to build the Kernel, which helps
achieving item NFR17.

The DietPi base image is automatically downloaded from the DietPi website, which also helps
achieving item NFR17.

Any build artifacts that are not necessary for the following build steps are removed, which helps
decreasing the size of the Docker image.

4.3.2. Implementation

The instructions to install the necessary requirements have been included in the README.md file
of the repository and are easy to follow as required in item NFR12. They have been described for
Debian-based distributions as well as for Arch-based distributions, since they are the most popular

Building, Provisioning, and Deployment of IoT Acoustic Devices.

https://www.raspberrypi.com/documentation/computers/linux_kernel.html#cross-compiling-the-kernel
https://docs.docker.com/build/architecture/#buildx
https://github.com/raspberrypi/linux

4

22 Chapter 4. Design and Implementation

Kernel Builder Stage

Input: Heimdal
Kernel
Module

Downloads Raspberry Pi Kernel

Cross-compiles for ARM

Image Builder Stage

Output: Raspberry Kernel
with the Heimdal Module

Downloads Dietpi image (ARM)

Installs new Kernel

x86-64 host
running Docker

Mounts it using QEMU's
user-mode emulation

Configures image

Output: Ready-to-use custom DietPi image

Figure 4.9 – Image Builder design.

distributions in the IoT community. But only the Debian installation instructions will be displayed
here, as they are both very similar.

1 # To be able to use this repository, you need to have Docker
installed on your computer.

2 # Follow the [official Docker installation instructions](https://
docs.docker.com/engine/install/) to install it on your computer.

3 apt install qemu qemu-user-static docker-buildx

After executing the installation instructions, the build script is ready to be used. It is a bash script
that uses a set of arguments to configure the build process, and acts as a wrapper for the Dockerfile,
making the build system easy to use even for users without technical knowledge about how Docker
works. The arguments it can use are the following Figure 4.10:

The build script is in charge of executing Docker with the necessary arguments to build the required
artifacts for that execution. Excluding the argument parsing, the build script is the following:

Gonzalo Abril Paniza

4.3. Image Builder 23

4

Figure 4.10 – Arguments of the build script.

1 parseArgs $@
2

3 # Prepare the system to emulate ARM architecture in Docker
4 docker run --rm --privileged=true multiarch/qemu-user-static --reset

-p yes
5

6 BUILD_ARGS=$(["$PROD_BUILD" = "false"] && echo "--build-arg
PROD_BUILD=false" || echo "")

7 BUILD_ARGS+=$(["$KERNEL_ONLY" = "true"] && echo " --target
kernel_exporter" || echo "")

8 BUILD_ARGS+=$(["$NO_CACHE" = "true"] && echo " --no-cache" || echo
"")

9 BUILD_ARGS+=$(["$VERBOSE" = "true"] && echo " --progress=plain --
build-arg VERBOSE=true" || echo "")

10

11 DOCKER_BUILDKIT=1 docker build -t img_builder ./docker $BUILD_ARGS
12

13 if ["$KERNEL_ONLY" = "true"]; then
14 # We need to repeat the build command so that first we cache
15 # the image and now we can export the output files to the host
16 DOCKER_BUILDKIT=1 docker build -t kernel_exporter ./docker

$BUILD_ARGS \
17 --output build
18 exit 0
19 fi
20

21 # Mount /dev in the container, otherwise new device nodes
22 # won't be available there (https://github.com/moby/moby/issues

/27886)
23 docker run --rm --privileged -v $PWD/build:/app/build -v /dev:/dev -e

CONTAINER_OWNER=$(id -u) -e VERBOSE=$VERBOSE --env-file .env
img_builder

As can be seen in the code, any steps that are not self-explanatory has been commented to improve
the maintainability of the project, as required by item NFR5.

The multi-stage Dockerfile that is used to build both the Kernel and the Linux image is the
following:

Building, Provisioning, and Deployment of IoT Acoustic Devices.

4

24 Chapter 4. Design and Implementation

1 ARG DIETPI_VERSION=ARMv8-Bullseye
2 ARG KERNEL_VERSION=6b945e6f
3 ARG HEIMDAL_VERSION=0.1
4 ARG VERBOSE=false
5

6 FROM debian:bookworm-20221024-slim AS kernel_builder
7 WORKDIR /app
8 ARG KERNEL_VERSION
9 ARG HEIMDAL_VERSION

10 ARG VERBOSE
11 RUN apt update && apt install -y \
12 bc \
13 bison \
14 cpio \
15 crossbuild-essential-armhf \
16 crossbuild-essential-arm64 \
17 curl \
18 flex \
19 git \
20 kmod \
21 libc6-dev \
22 libssl-dev \
23 libncurses5-dev \
24 make \
25 rsync \
26 sshfs \
27 xz-utils && \
28 curl -L https://api.github.com/repos/raspberrypi/linux/

tarball/$KERNEL_VERSION -o linux.tar.gz
29 COPY ./kernel_builder .
30 RUN chmod +x ./kernel_build.sh
31 ARG PROD_BUILD=true
32 RUN "./kernel_build.sh"
33

34 FROM scratch AS kernel_exporter
35 COPY --from=kernel_builder /app/heimdal_kernel_*.tar.gz /
36

37 FROM alpine:3.17.0 AS img_builder
38 ARG DIETPI_VERSION
39 ARG KERNEL_VERSION
40 ARG HEIMDAL_VERSION
41 ARG VERBOSE
42 ARG PROD_BUILD
43 WORKDIR /app
44 ENV DIETPI_VERSION=$DIETPI_VERSION \
45 KERNEL_VERSION=$KERNEL_VERSION \
46 HEIMDAL_VERSION=$HEIMDAL_VERSION \
47 VERBOSE=${VERBOSE} \
48 PROD_BUILD=${PROD_BUILD}
49 RUN apk update && apk add \
50 coreutils \

Gonzalo Abril Paniza

4.3. Image Builder 25

4

51 curl \
52 p7zip \
53 util-linux && \
54 curl https://dietpi.com/downloads/images/DietPi_RPi-

$DIETPI_VERSION.7z -O && \
55 7z x DietPi_RPi-$DIETPI_VERSION.7z -so > DietPi.img \
56 && rm DietPi_RPi-$DIETPI_VERSION.7z
57 COPY --from=kernel_exporter /heimdal_kernel_*.tar.gz ./
58 COPY ./img_builder .
59 RUN chmod +x ./img_build.sh
60 ENTRYPOINT ["./img_build.sh"]

The versions of both the Linux Kernel and the DietPi base image are set as build arguments, and
are part of the repository. This means that git tags can be created to track the versions of each of those
dependencies and the changes in the build scripts that modifying those versions might require. This
is specially important for the Linux Kernel, since it is the dependency that is most likely to require
those kind of changes in the future, as happened in the previous iteration of the project.

As can be seen in the code excerpt, there are three build stages:

1. kernel_builder: This stage is in charge of building the Kernel and the Kernel Module. It uses
the kernel_build.sh script to build the Kernel and the Kernel Module.

2. kernel_exporter: Due to how the BuildKit output feature works, it is necessary to add an
intermediate stage to export only the required build artifacts to the host machine. If this stage
was not added, the BuildKit output flag would end up exporting all the files generated by the
kernel_builder stage, which would include unnecessary files.

3. img_builder: This stage is in charge of building the Linux image. It uses the Kernel compiled
in the previous stage, and the img_build.sh script to build the custom DietPi image.

4.3.2.1. Kernel Builder

The Kernel Builder is the part of the build system that is in charge of building the Kernel and the
Kernel Module. It is a bash script that uses the Raspberry Pi documentation as the base instructions
to cross-compile the Kernel and the Kernel Module. Depending on the arguments passed to the script,
it will build either the production Kernel or the development Kernel, being the difference between
the two that the production Kernel is built with the Heimdal Kernel Module built-in (as required
by item NFR1), and the development Kernel is built with the Heimdal Kernel Module as a Kernel
Module (as required by item NFR2).

The specific configuration required to build the Heimdal Kernel Module is injected into the Kernel
configuration before the compilation process starts. This is an improvement over the previous build
system, since it used to copy all the files that were necessary from the source Linux Kernel and then
modified them, which was not the cleanest approach, since it was not possible to update the source
Linux Kernel without having to manually update the files that were copied.

Now these changes are applied to the existing Kernel configuration files without having to copy
them. This is done in the following excerpt of the kernel_build.sh script:

1 ##### CUSTOM CONFIGS #####

Building, Provisioning, and Deployment of IoT Acoustic Devices.

https://www.raspberrypi.com/documentation/computers/linux_kernel.html#cross-compiling-the-kernel

4

26 Chapter 4. Design and Implementation

2 cp ./config_kernel/configs/bcm2711_defconfig ./linux/arch/arm64/
configs/bcm2711_defconfig

3 cp ./config_kernel/dts/* ./linux/arch/arm64/boot/dts/overlays/
4 cp ./config_kernel/heimdal_module/* ./linux/sound/soc/bcm/
5

6 # Customize Makefile
7 cat >> ./linux/sound/soc/bcm/Makefile << EOF
8

9 snd-soc-heimdalsoundcard-objs := heimdalsoundcard.o
10 obj-\$(CONFIG_SND_HEIMDALSOUNDCARD) += snd-soc-heimdalsoundcard.o
11 EOF
12

13 # Customize Kconfig
14 cat >> ./linux/sound/soc/bcm/Kconfig << EOF
15

16 config SND_HEIMDALSOUNDCARD
17 tristate "Support for Heimdal Sound Card"
18 depends on SND_BCM2708_SOC_I2S || SND_BCM2835_SOC_I2S
19 select SND_SOC_CS42XX8_I2C
20 help
21 Say Y or M if you want to add support for Heimdal

Loader Sound Card add on
22 EOF
23

24 if ["$PROD_BUILD" = "false"]; then
25 # Compile the heimdal module as an external module instead of

embedded in the kernel
26 sed -i "s/\(CONFIG_SND_HEIMDALSOUNDCARD=\)y/\1m/" ./linux/

arch/arm64/configs/bcm2711_defconfig
27 fi
28 # Compile kernel
29

30 cd ./linux
31 make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

bcm2711_defconfig
32 make -j$(nproc) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- Image

modules dtbs

After the Kernel has been compiled, it is compressed and archived in the following way:

1 # Store result files
2 make modules_install INSTALL_MOD_PATH="../$OUTDIR/modules"
3 cd ..
4

5 cp ./linux/arch/arm64/boot/dts/broadcom/*.dtb $OUTDIR
6 cp -r ./linux/arch/arm64/boot/dts/overlays/ $OUTDIR
7 cp ./linux/arch/arm64/boot/Image $OUTDIR/${OUTNAME}.img
8

9 tar -cavf ${OUTNAME}.tar.gz $OUTDIR

Gonzalo Abril Paniza

4.3. Image Builder 27

4

The resulting tar file has the following file name to indicate the version of the Kernel and the
Kernel Module that it contains: heimdal_kernel_<prod||dev>_<LINUX_KERNEL_VERSION>
_<HEIMDAL_MODULE_VERSION>.tar.gz. This helps achieve item NFR19, and more specifically,
item NFR19.1 and item NFR19.2.

An example of the filename of a compiled Kernel would be: heimdal_kernel_prod_6b945e6f_
0.1.tar.gz.

4.3.2.2. Image Builder

The Image Builder is the part of the build system that builds the custom DietPi image. It
uses the Kernel generated in the previous steps, and uses two different bash scripts to apply all the
modifications that are necessary:

img_build.sh: This script is in charge of mounting the DietPi image, chrooting into it, and
executing the img_init.sh script. After that, it cleans any temporary files that might have been
generated and stores the resulting image in the build folder.

img_init.sh: A plain bash script that is executed by a running DietPi OS. It performs all the
customizations the OS might need to have a Linux image ready to use on any Sound Limiter.

The most relevant excerpt of the img_build.sh script is the following:

1 cnt=0
2 LOOP_DEV="$(losetup --show --find --partscan "$IMG")"
3 BOOT_DEV="${LOOP_DEV}p1"
4 ROOT_DEV="${LOOP_DEV}p2"
5

6 # Mount DietPi image
7 ROOT_FS_TYPE="ext4"
8 BOOT_FS_TYPE="vfat"
9 mount -v $ROOT_DEV $WORKDIR/ -t $ROOT_FS_TYPE

10 mount -v $BOOT_DEV ${WORKDIR}/boot/ -t $BOOT_FS_TYPE
11

12 # Mount virtual filesystems
13 mount -t proc /proc "$WORKDIR/proc"
14 mount --rbind /sys "$WORKDIR/sys"
15 mount --rbind /dev "$WORKDIR/dev"
16

17 # Add custom kernel and customize it
18 mkdir heimdal_kernel
19 tar -xvf ./heimdal_kernel_*.tar.gz --strip-components 2 -C ./

heimdal_kernel
20 cp -a ./heimdal_kernel/*dtb ./heimdal_kernel/*img "$WORKDIR/boot"
21 cp -a ./heimdal_kernel/overlays/* "$WORKDIR/boot/overlays"
22 cp $IMG_INIT_SCRIPT "$WORKDIR/"
23 cp -a ./heimdal_kernel/modules/lib/modules/* "$WORKDIR/lib/modules"
24 chroot "$WORKDIR" /bin/sh -c "SSH_PUB_KEY=\"$SSH_PUB_KEY\"

KERNEL_VERSION=$KERNEL_VERSION /$IMG_INIT_SCRIPT"

Building, Provisioning, and Deployment of IoT Acoustic Devices.

4

28 Chapter 4. Design and Implementation

As can be seen in the code, the script creates a Loop Device, mounts the DietPi image there, and
then mounts the virtual filesystems that are necessary to be able to chroot into the DietPi image.
After that, it decompresses and copies the Kernel and the Kernel Modules into the mounted /boot
partition, and executes the img_init.sh script. After this, all the temporary files, like the loop devices,
are cleaned, and the resulting image is stored in the build folder. This part of the build system has
been implemented after studying how the DietPi image is built as a main resource.

On the other hand, the img_init.sh script is in charge of performing all the customizations to the
DietPi image. The operations it performs are implemented in functions that are called in the bottom
of the script. This way, it is easy to understand what the script does at a quick glance, as well as to
add new operations in the future.

The customization script carries out the following tasks:

1 printf "Updating repositories"
2

3 apt update
4

5 # Setup an NTP client to update the system clock
6 ntp_message="Setting up the NTP service to configure the system clock

.
7 Please, take into account that this process might be noticeably slow.
8 "
9 printf "$ntp_message"

10

11 setup_ntp
12

13 printf "Installing OpenSSH as SSH server."
14 install_openssh
15

16 # Setup a static and randomized MAC address to avoid having to
reconfigure

17 # the DHCP server on every reboot
18 mac_message="Setting up a static MAC address."
19 printf "$ntp_message"
20 set_static_mac
21

22 # Configure the raspberry pi to use the heimdal kernel
23 # and the different chips in the PCB
24 printf "Setting up the /boot/config.txt file."
25 setup_config_txt
26

27 # Install programs that require no special configuration
28 # from our side
29 printf "Installing other programs"
30 install_other_programs # Currently only python3
31

32 add_ssh_pub_key
33

34 printf "Done! Enjoy your custom Image!"

Gonzalo Abril Paniza

https://github.com/MichaIng/DietPi/blob/26e266c158e1d74405e4e145975ee688e9d0b3c7/.build/images/dietpi-imager

4.3. Image Builder 29

4

These tasks are the ones that are necessary to achieve item NFR11. The reasoning behind each
of them is the following:

Updating repositories: This is necessary in order to install any program in the DietPi image.

Setting up the NTP service: This is necessary to be able to set the clock of the Sound
Limiter to the correct time. The NTP client configured by default, systemd-timesyncd, was not
working properly because every time the device was disconnected from the power supply, the
clock was reset to a high value, which caused the Network Time Protocol client to malfunction.
To solve this, the ntp package was installed, which is a more robust NTP client. This achieves
item NFR10.2

Installing OpenSSH: The OpenSSH SSH client and server, which is the most widely used SSH
implementation, is installed to allow the user to connect to the Sound Limiter remotely. This
accomplishess the item NFR10.1.

Setting up a static MAC address: This is necessary to prevent the need to reconfigure the
Dynamic Host Configuration Protocol (DHCP) server on every reboot, accomplishing
item NFR15.

Setting up the /boot/config.txt file: This is necessary to configure the Sound Limiter to
use the Heimdal Kernel and the different chips in the PCB, to comply with item NFR18.

Installing Python3: Installing Python3 is a prerequisite for using Ansible to manage the device
later on, which is required by item NFR11.

Adding the SSH public key: This is a convenience feature that allows the user to connect to
the Sound Limiter without having to use a keyboard and a monitor to configure the SSH keys for
the first time. This is not explicitely required, but it is a nice to have feature that helps achieve
item NFR11.

4.3.3. Build times

The build times of the build system are an important metric to take into account, since they can
be a bottleneck in the development process. The build times have been measured using date +%s
-which returns the number of seconds since the Unix Epoch-[26] before and after the build process,
since time did not return the expected results because of the way the Docker containers are executed.
The results of the build times, as well as the specifications of the machines they have been measured
on, can be seen in Table 4.1. Differences between prod and testing builds have been omitted, since
they are negligible.

Build type Desktop Computer(4.3.3) Laptop(4.3.3)

Build Kernel from scratch 8m 31s 12m 30s
Build Image from scratch 2m 11s 2m 39s
Build Image and Kernel
from scratch

10m 46s 15m 20s

Table 4.1 – Build times of Image Builder on different machines.

Machine Specifications:

Building, Provisioning, and Deployment of IoT Acoustic Devices.

4

30 Chapter 4. Design and Implementation

Desktop Computer: AMD Ryzen 7 3700X (8 cores), RAM: 32GB, OS: Arch Linux.

Laptop: AMD Ryzen 5 5700U (8 cores), RAM: 16GB, OS: Ubuntu 22.04.

4.4. Heimdal Ansible

In this section, the design and implementation of the Ansible environment that has been developed
to deploy and provision the Sound Limiters will be explained, as well as the reasoning behind choosing
Ansible instead of other automation tools. Being this an integral part of the project, as well as a
complex one, it will be explained in detail. A diagram that shows how the automation system would
manage different sets of Sound Limiters can be seen in Figure 4.11.

Prod Testing Prod Testing

Prod

Production Granada (Inventory C)

Staging (Inventory B)Development (Inventory A)

Workstation
running Ansible

Manages

Manages
Manages

Figure 4.11 – Ansible environment design.

The Ansible environment has been designed to be as simple as possible to use, to comply with
item NFR1. It will be used in Sound Limiters that has already been flashed with the custom DietPi
image that has been built using the Image Builder.

Gonzalo Abril Paniza

4.4. Heimdal Ansible 31

4

4.4.1. Why Ansible?

The first question that arises when talking about the automation system developed for this project
is why Ansible has been chosen over other automation tools. In (Table 4.2), a comparison between
Ansible and other popular solutions can be observed.

Ansible Puppet Chef

Agentless

Idempotent

Declarative

Ease of Use

High ease of use
due to YAML-
based playbooks and
agentless architecture.

Lower ease of use
for newcomers
due to Puppet’s
DSL and complex
configurations.

Moderate ease of use
with a steeper learning
curve for setting up
Chef recipes and
cookbooks.

Scalability High Medium High

Community and
Support

Large Large Large

Integration
Ecosystem

Extensive Moderate Extensive

Platform Support Linux/Unix, Windows Linux/Unix, Windows Linux/Unix, Windows

Table 4.2 – Comparison between Ansible, Puppet, and Chef based on various criteria.

Althought Ansible and its primary competitors share similarities, they have some key differences
that make Ansible the optimal choice for this project. Ansible is an agentless tool, which means that
it can manage devices without having to install any additional software on them, it only necessitates
an SSH server and a Python interpreter on the clients. Given that this tool will be used to manage IoT
devices, which have very limited resources, it is crucial to minimize the footprint of any administrative
software used on these devices. It is also slightly easier to use - specially for newcomers to the DevOps
world - than its competitors. These are the main reasons why Ansible has been chosen as the preferred
automation tool in this Bachelor’s Thesis.

4.4.2. Design

When a project has a certain complexity, it is important to have the best practices of the tools
used in mind to avoid reaching a state where the project is not maintainable anymore due to the lack
of a good design. This part of the project could be prone to that, because it involves many different
tasks that need to be carried out to leave the Sound Limiters in the desired state, and it would be
easy to end up with an Ansible environment that is hard to maintain.

To avoid that, the first design decision that has been taken is to use Ansible Roles. This has been
done to abstract the different tasks that need to be performed for each kind of device, and to be able
to reuse them. The roles that have been defined for this project are the following:

Common Role: This role is in charge of performing the common tasks that need to be done for
all the Sound Limiters. It is the role which has the most responsibilities.

Building, Provisioning, and Deployment of IoT Acoustic Devices.

4

32 Chapter 4. Design and Implementation

Testing Role: This role performs the tasks that are necessary only for devices that are still in
the testing phase.

Prod Role: This role performs tasks for devices that have passed the testing phase and are either
ready for production or already in production.

All of these roles and the tasks that they perform have been developed to be idempotent. This
means that, if the role is executed multiple times, the result will be the same as if it was executed
only once. This is important to avoid having to manually check the state of the Sound Limiters after
executing the Ansible environment, which is a requirement of item NFR7. This property of the ansible
roles developed, along with having a separate role for production devices, helps having clear which
hardening tasks are applied to devices deployed in production, and making sure that all of them are
in the same state, which usually is a business critical requirement.

The organization of the inventary file has been designed to be as simple as possible. To achieve
item FR8, the serial number of every device has been added as a property of each host. An example
of an inventary file is the following:

1 ---
2 heimdal_devices:
3 children:
4 testing:
5 hosts:
6 test01:
7 ansible_host: 192.168.100.146
8 serial_number: 92398ac4-1974-4c56-85f6-3ba5ce519e9a
9 prod:

10 hosts:
11 prod01:
12 ansible_host: 192.168.100.148
13 serial_number: ef8e19cf-7f40-4953-bc10-7d7097c3d5a5

The automation system can also be configured to use different inventories, which is useful to deploy
the Sound Limiters in different environments, and it also allows to have a testing inventory with a set
of devices that simulate the behavior they would have in production to test any new changes before
shipping them to production.

Since the duties every role perform are very different between them, the rest of this section will be
divided into three parts, one for each role.

4.4.2.1. Common Role

This is the role that performs the most tasks, and the other roles are built on top of it and
responsible of testing-only and production-only tasks respectively. The tasks that this role performs
are the following:

Installing necessary packages.

Making sure that NTP is setup correctly.

Installing the Heimdal Kernel or updating it when necessary.

Gonzalo Abril Paniza

4.4. Heimdal Ansible 33

4

Setting the serial number of the device.

Configuring the network interfaces. This will set the testing MAC address if the device is in the
testing inventory, and a randomized MAC address if it is in the production inventory.

Setting up a graphical desktop and customizing it.

Add an unprivileged user to the device to be used by the end user.

Disable the dietpi user from logging in into the device.

Configuring autologin for the unprivileged user if the device is in the production inventory.

4.4.2.2. Testing Role

This role is in charge of deploying the tests in the device and making sure that they are ready to
be executed without any additional steps. The tasks that this role performs are the following:

Install testing packages that will be necessary to deploy the tests.

Check if the heimdal_tests have been cloned.

Install the tests dependencies in the device. The tests will be included in the repository as a git
submodule, so that any changes to them can be tracked.

Copy the heimdal_tests directory to the remote host.

Allow privileged users to log in into the device.

4.4.2.3. Prod Role

The last role is in charge of cleaning up any packages and files that are not necessary in production,
as well as to harden the device. The tasks that this role performs are the following:

Cleaning up testing packages.

Removing the test files.

Disabling privileged users from logging in into the device.

4.4.3. Implementation

Now that it is clear how the automation system has been designed, it is time to explain how it has
been implemented, as well as the technical challenges that have been faced to develop the tasks. Since
some of the tasks could be performed using basic Ansible modules, and others required more complex
logic, the most basic tasks will be just mentioned, and the most complex ones will be explained in
detailed sections.

4.4.3.1. Common Role

The tasks that could me implemented using just Ansible modules are the following:

Building, Provisioning, and Deployment of IoT Acoustic Devices.

4

34 Chapter 4. Design and Implementation

Installing necessary packages: This is done using the apt module.

Making sure that NTP is setup correctly: This is done using the systemd module.

Add an unprivileged user to the device to be used by the end user, and disable the dietpi user
from logging in into the device: Performed using the user module.

4.4.3.1.1. Installing the Heimdal Kernel or updating it when necessary

For this task, a separate playbook that handles the logic of deploying new firmware when necessary
has been developed. To check the current version of the Kernel, the following tasks are executed by
Ansible:

1 - name: Check target kernel state
2 stat:
3 path: "/boot/{{kernel_img}}"
4 register: kernel_img_stat
5 tags:
6 - kernel
7

8 - name: Register if the target kernel is installed or not
9 set_fact:

10 kernel_installed: "{{kernel_img_stat.stat.exists}}"
11 tags:
12 - kernel
13

14 - name: Install kernel
15 include_tasks: install_kernel.yml
16 when: not kernel_installed or force_kernel_install
17 tags:
18 - kernel

As can be seen in the code, the install_kernel.yml playbook is only executed if the Kernel is not
installed or if the force_kernel_install variable is set to true. The file check by the stat module is
set in the kernel_img variable, which has the format set by the Kernel Builder section. To install the
Kernel, the following tasks are executed:

1 ---
2 - name: Create temporary directory
3 tempfile:
4 state: directory
5 register: tempdir
6

7 - name: Install kernel
8 block:
9 - name: Copy and unarchive kernel

10 unarchive:
11 src: "{{kernel_tar}}"
12 dest: "{{tempdir.path}}"
13 owner: root

Gonzalo Abril Paniza

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/systemd_service_module.html#ansible-collections-ansible-builtin-systemd-service-module
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html

4.4. Heimdal Ansible 35

4

14 group: root
15 mode: 0600
16

17 - name: Install kernel modules
18 copy:
19 src: "{{tempdir.path}}/kernel_build/modules/lib/modules/"
20 dest: /lib/modules/
21 owner: root
22 group: root
23 mode: 0755
24 remote_src: yes
25

26 - name: Install kernel binary
27 copy:
28 src: "{{tempdir.path}}/kernel_build/{{kernel_img}}"
29 dest: /boot/{{kernel_img}}
30 owner: root
31 group: root
32 mode: 0755
33 force: true
34 remote_src: yes
35

36 - name: Register all dtb
37 find:
38 paths: "{{tempdir.path}}/kernel_build"
39 patterns: "*.dtb"
40 register: dtb_files
41

42 - name: Install dtb files
43 copy:
44 src: "{{item.path}}"
45 dest: /boot/
46 owner: root
47 group: root
48 mode: 0755
49 remote_src: yes
50 with_items: "{{dtb_files.files}}"
51

52 - name: Install overlays
53 copy:
54 src: "{{tempdir.path}}/kernel_build/overlays/"
55 dest: /boot/overlays/
56 owner: root
57 group: root
58 mode: 0755
59 remote_src: yes
60

61 - name: Clean old heimdal kernels
62 import_tasks: clean_old_kernels.yml
63 when: clean_old_kernels
64

65 always:

Building, Provisioning, and Deployment of IoT Acoustic Devices.

4

36 Chapter 4. Design and Implementation

66 # Cleanup temporary files on failure
67 - name: Remove temporary directory
68 file:
69 path: "{{tempdir.path}}"
70 state: absent

These task copy and unarchive the kernel, install the kernel modules and binary, registering and
installing Device Tree Blob (DTB) files, installing Overlays, and cleaning up old kernels. The playbook
also removes the temporary directory used for the kernel installation to avoid wasting disk space in
the device. Note that the target Kernel tarball must be first available in the host machine under the
kernel_tar variable, which is by default set to /roles/common/files/kernels/<target_kernel>.

4.4.3.1.2. Setting the serial number of the device

After searching through the available Ansible modules, it was not possible to find any that could
be used for this specific task, since it requires to register information at runtime in the host that is
running the Ansible environment. To solve this, a custom Ansible module has been developed. It is a
Python script that has been developed using the official Ansible documentation as a guideline. This
module stores the serial number of the device in the inventory (section 4.4.2) that is being used, so
that it might be used by other roles as well as by administrators, being the inventory a human readable
file.

The custom module is used in the following way:

1 - name: Generate and store the serial number in the inventory
2 store_serial_number:
3 host: "{{inventory_hostname}}"
4 inventory: "{{inventory_file}}"
5 device_group: "{{group_names | select('match', 'testing|prod

') | first}}"
6 delegate_to: localhost
7 become: false
8 throttle: 1
9 when: not serial_number_was_set

10 tags:
11 - serial_number

The target host, inventory file, and the group the device belongs to must be passed to the module,
since Ansible modules have not access to facts or variables that have not been explicitely passed.
It is important to mention that it is necessary to use the ’throttle: 1’ option to avoid having
concurrency issues when multiple hosts are being provisioned at the same time, since the inventory
file is a shared resource between all the hosts. To be able to use the module, it must be placed in the
/library folder of the Ansible environment with the name store_serial_number.py.

Since at the moment there is not a default library to work with YAML files in Python, the
ruamel.yaml library has been used to parse the inventory file instead of other popular option,
PyYAML, because it allows to preserve the comments in the inventory file, which is important in a
human-managed file like the inventory. The code of the custom module is rather simple, it just opens
the inventory file, parses it, searches for the host and, if it does not already have a serial number,

Gonzalo Abril Paniza

https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html
https://pypi.org/project/ruamel.yaml/
https://pypi.org/project/PyYAML/

4.4. Heimdal Ansible 37

4

generates a random UUID4 and stores it in the inventory file. It also checks for possible errors (like
missing the ruamel.yaml library) and returns meaningful error messages in those cases.

4.4.3.1.3. Configuring the network interfaces

This task achieves two different goals, setting up a static MAC address and a static IP address,
restart the network service to apply the changes, and wait for the device to be reachable again. The
MAC address can be either a set one or a randomized one, depending on the inventory group the
device belongs to. The IP address is configurable, if it is set in the host variables a static one will be
used, and if not, it will be assigned by the DHCP server. The network configuration is made via the
Debian interfaces file using a template, that will be only applied after checking that the configuration
is not already in place to avoid unnecessary restarts of the network service.

4.4.3.1.4. Setting up a graphical desktop and customizing it

Previous versions of the Sound Limiter used lxqt as the desktop environment, because it is
lightweight and easily configurable, so this task is in charge of automating both its installation and
its customization.

The software installed in the device to provide a graphical desktop and some utilities for the end
users is the following:

xserver-xorg: X display server, which provides the graphical interface for Linux.

lxqt-core: Lightweight desktop environment that uses the Qt toolkit, as well as some utilities
that are part of the LXQt project, such as a file manager, a terminal emulator, a text editor,
and a task manager.

openbox: Lightweight window manager that provides window decorations and manages
windows, used because LXQt does not provide a window manager by default.

lightdm: Display manager that provides a graphical login screen and manages user sessions.

firefox-esr: Web browser.

rhythmbox: Music player.

The task copies the Heimdal wallpaper to /usr/share/wallpapers/heimdal_wallpaper.png so that it
can be used by both the desktop environment and the display manager. After installing the packages,
it configures the display manager (paragraph 4.4.3.1.4) to autologin the unprivileged user if the device
is in the production inventory, and sets the wallpaper on both the desktop environment Figure 4.12
and the login screen Figure 4.13.

Those configurations are done using the configuration files that the different programs use, being
/etc/xdg/pcmanfm-qt/lxqt/settings.conf the one used by the desktop environment,
/etc/lightdm/lightdm.conf which is used by the display manager to configure the autologin, and
/etc/lightdm/lightdm-gtk-greeter.conf which is used by the display manager to configure the login
screen. Those files are set using templates, so that the configuration can be easily changed in the
future if necessary. Since /etc/xdg/pcmanfm-qt/lxqt/settings.conf is a rather long file that includes
many different options, only the relevant parts will be shown:

Desktop environment configuration file:

Building, Provisioning, and Deployment of IoT Acoustic Devices.

https://manpages.debian.org/jessie/ifupdown/interfaces.5.en.html
https://lxqt-project.org/

4

38 Chapter 4. Design and Implementation

Figure 4.12 – Desktop environment with the Heimdal logo as wallpaper.

1 [Desktop]
2 ...
3 Wallpaper={{wallpaper_path}}

Display manager configuration files (user autologin and greeter):

1 [LightDM]
2

3 [Seat:*]
4 {% if group_names | select('match', 'prod') | list | length > 0 %}
5 autologin-user={{ client_user }}
6 autologin-user-timeout=0
7 {% endif %}

1 [greeter]
2 background={{wallpaper_path}}

Gonzalo Abril Paniza

4.4. Heimdal Ansible 39

4
Figure 4.13 – Login screen with the Heimdal logo as wallpaper.

4.4.3.2. Testing Role

To deploy the tests in the device, they must first be available in the host. To ease the task of tracking
any changes that future updates to the tests might imply, they have been added as a Git submodule
under /roles/testing/files/heimdal_tests. To pull them from the GranaSAT GitLab repository, it’s
necessary to execute the following command inside the root folder of the Ansible environment:

1 git submodule update --init --recursive --remote

If the submodule has not been added yet, the role will fail with a helpful error message that will
indicate the command that needs to be run
"The heimdal_tests submodule is not available. Please run `git submodule
update --init --recursive --remote` to download it.".

Once the submodule is available, the tests will be copied to the device using the synchronize module,
which is a wrapper around the rsync command. It must be installed in the device along with other
packages necessary to run the tests, which are the following:

gcc

python3-dev

rsync

Building, Provisioning, and Deployment of IoT Acoustic Devices.

https://docs.ansible.com/ansible/latest/collections/ansible/posix/synchronize_module.html
https://www.man7.org/linux/man-pages/man1/rsync.1.html

4

40 Chapter 4. Design and Implementation

python3-pyqt5

python3-pip

To install those packages, the role uses the Ansible apt module. After that, the role uses the pip
module to install the tests dependencies, and uses the user module to allow privileged users to log in
into the device.

4.4.3.3. Prod Role

This role cleans up all the pip packages installed for the tests using the pip module, and removes
the test files using the file module. It also removes the testing-only packages (section 4.4.3.2) using
the aforementioned apt module, and disables privileged users from logging in into the device using the
user module.

4.4.3.4. Notes about the documentation

Since the different roles and tasks use a big set of configuration variables, tasks, files, Ansible
modules not available in the default installation, and even a custom Ansible module, it can be a bit
overwhelming to fully understand how the automation system works. To minimize this, a general
README file has been added to the root of the project which explains the installation process,
the responsibilities every role has and a brief description of every one of them, how to execute the
automation system, as well as how to execute only specific tasks or roles using tags. The README
also explains how to use the Ansible environment with a different set of inventories to be able to have
a staging and a production inventory, and how to configure specific Sound Limiters or groups of them.

A README file has also been added to every role, which explains the responsibilities of the role,
the variables that can be configured, and the tasks that the role performs. This way, it is easy to
understand the purpose of every role, how they work internally and only focus in the roles that might
be of interest without having to read the whole documentation.

The main README file is available in /README.md, and the role README files are available
in /roles/<role_name>/README.md. They will not be included in this document since they cover
information that has been already explained in detail in this section.

Gonzalo Abril Paniza

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/pip_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/pip_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/pip_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/file_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/user_module.html

Chapter 5

Validation and Testing

In this chapter, the different repositories that were developed during the project will be validated
according to the requirements that were defined in chapter 2. Some testing cases that were carried out
during the development of the project will be explained too.

5.1. Validation

5.1.1. Heimdal Tests

5.1.1.1. Functional Requirements

ID Description Comments Result

FR1 The system will switch on and off
all the front LEDs of the Sound
Limiter.

The LEDs’ test switch on and off the
LEDs sequentially.

Pass

FR2 The system will play a start up
sound through the buzzers of the
Sound Limiter.

The buzzer’s test play a low to high
pitch sound at the beginning.

Pass

FR3 The system will play a shutdown
sound through the buzzers of the
Sound Limiter.

The buzzer’s test play a high to low
pitch sound at the end.

Pass

Table 5.1 – Validation of the Functional Requirements of Heimdal Tests.

5.1.1.2. Non-Functional Requirements

Building, Provisioning, and Deployment of IoT Acoustic Devices. 41

5

42 Chapter 5. Validation and Testing

ID Description Comments Result

NFR1 The tests must be able to run on a
Sound Limiter with a Raspberry Pi
Module 3.

Validated using the Sound Limiter
4.

Pass

NFR2 The tests must have a simple and
intuitive GUI.

Figure 4.5. Pass

NFR3 It must be possible to run the tests
from the command line.

Figure 4.6 Pass

Table 5.2 – Validation of the Non-Functional Requirements of Heimdal Tests.

5.1.2. Image Builder

5.1.2.1. Functional Requirements

ID Description Comments Result

FR1 The system will be able to compile
a custom Kernel with the Heimdal
Module for the Sound Limiter.

Running the create_image.sh
script with the -k flag.

Pass

FR2 The system will be able to build a
Linux image for the Sound Limiter
that includes the Heimdal Kernel
Module.

Running the create_image.sh
script without the -k flag.

Pass

Table 5.3 – Validation of the Functional Requirements of the Image Builder.

5.1.2.2. Non-Functional Requirements

ID Description Comments Result

NFR1 The Heimdal Kernel Module will
be included as a Kernel built-in in
production images to avoid reverse
engineering.

Running the create_image.sh
script without the -d flag.

Pass

NFR2 The Heimdal Module will be
included as a Kernel module in
development images.

Running the create_image.sh
script without the -d flag.

Pass

NFR3 The Linux image built must be
based on DietPi.

The DietPi is downloaded and used
to build the image (section 4.3.2).

Pass

NFR4 The software must be easy to use. A script that wraps the Docker
environment was developed to
facilitate its use (section 4.3.2).

Pass

Continued on the next page

Gonzalo Abril Paniza

5.1. Validation 43

5

Table 5.4 (continued)

ID Description Comments Result

NFR5 The software must be maintainable. The Kernel and image creation build
steps were split into different parts
so that every one of them has only
one main responsibility.

Pass

NFR6 The build system must be
idempotent.

Running the build system twice with
the same configuration will generate
the same artifacts.

Pass

NFR7 The resulting Kernel must be built
for the ARM architecture.

The Kernel is built for the ARM
architecture by cross-compiling the
Kernel.

Pass

NFR8 The resulting Linux image must be
built for the ARM architecture.

The image is built for the ARM
architecture using a base DietPi
image.

Pass

NFR9 The artifacts generated by the build
system must be able to be used by
the Sound Limiter 4.

The resulting Kernel and image
were tested in the Sound Limiter 4
successfully.

Pass

NFR10 The resulting image must have
basic tools installed and enabled by
default.

The DietPi image includes the SSH
server, the Network Time Protocol
client and Python.

Pass

NFR10.1 The resulting Linux image must
have a SSH server installed and
enabled by default.

The DietPi image includes the SSH
server.

Pass

NFR10.2 The resulting Linux image must
have a Network Time Protocol client
installed and enabled by default.

The DietPi image includes the
Network Time Protocol client.

Pass

NFR11 The resulting Linux image must
be ready to be used in the Sound
Limiter 4 without any further
configuration.

The resulting image can be used
after flashing it to the Raspberry Pi.

Pass

NFR12 The instructions on how to install
the software must be clear and easy
to follow.

The README file of the
repository includes a step by
step guide on how to install the
image on the Sound Limiter with
screenshots of every step involved.

Pass

NFR13 The code must be either self-
explanatory or have comments
explaining its purpose.

This requirement has been
thoroughly followed in the code.

Pass

NFR14 The build software must be able to
run in x86-64 machines.

The build software has been tested
and developed in an x86-64 machine.

Pass

NFR15 The resulting image must have a
static MAC address set to avoid it
being changed everytime the Sound
Limiter boots.

A static testing MAC address is set
by default.

Pass

Continued on the next page

Building, Provisioning, and Deployment of IoT Acoustic Devices.

5

44 Chapter 5. Validation and Testing

Table 5.4 (continued)

ID Description Comments Result

NFR16 It must be possible to generate the
Kernel and the image separately.

The create_image.sh script can
be run with the -k flag to only
generate the Kernel or without that
flag to generate only the image.

Pass

NFR17 The build system must not require
any additional files to be manually
added to work.

The Linux Kernel and DietPi
base image are automatically
downloaded based on the versions
configured for each one.

Pass

NFR18 The resulting image must have the
Heimdal Kernel Module installed
and enabled by default.

The Heimdal Kernel Module is
installed and enabled by default.

Pass

NFR19 The resulting artifacts must have
the version of the base dependencies
used for building them in their
filename.

Pass

NFR19.1 The resulting Kernel must have the
version of the Linux Kernel used in
its filename.

The version of the Linux Kernel is
in the filename (4.3.2.1).

Pass

NFR19.2 The resulting Kernel image must
have the version of the Heimdal
Kernel Module used in its filename.

The version of the Heimdal Kernel
Module is in the filename (4.3.2.1).

Pass

NFR19.3 The resulting Linux image must
have the version of the DietPi image
used in its filename.

The version of the DietPi base image
is in the filename (4.3.2.1).

Pass

NFR20 The final Linux image must be as
light as possible.

The resulting image (Figure 5.2) is
only 8MB bigger than the original
DietPi image (Figure 5.1).

Pass

Table 5.4 – Validation of the Non-Functional Requirements of the Image Builder.

Figure 5.1 – Original DietPi image size.

Figure 5.2 – Custom DietPi image size.

5.1.3. Heimdal Ansible

5.1.3.1. Functional Requirements

Gonzalo Abril Paniza

5.1. Validation 45

5

ID Description Comments Result

FR1 After running the automation
software the Sound Limiter must be
in a working state.

Pass

FR1.1 The Heimdal Kernel Module must
be loaded.

A task to update the Kernel
with either a production or a
development version of the Kernel
with the Heimdal Module enabled
has been added.

Pass

FR1.2 An Network Time Protocol must be
configured and enabled.

A task makes sure that the Network
Time Protocol client is installed and
enabled.

Pass

FR1.3 The SSH server must be configured
and enabled.

A task makes sure that the SSH
server is installed and enabled.

Pass

FR1.4 The Sound Limiter must be able to
connect to the Internet.

The network interfaces are
configured to allow the device
to connect to the Internet.

Pass

FR2 The system will be able to deploy
updated firmware to the Sound
Limiter.

A task to update the Kernel
depending on the version set in
the configuration variables has been
added.

Pass

FR3 The system will to set up the Sound
Limiter with a graphical interface.

A task to install and configure
a customized desktop environment
has been added.

Pass

FR3.1 If configured, the system will
start with a Desktop Environment
enabled.

It is possible to specify if the
Desktop Environment is enabled or
not for every specific device or for a
group of them.

Pass

FR3.2 The boot Linux boot output will be
hidden.

The boot output is hidden by
default.

Pass

FR3.3 The system will allow to modify
the Desktop Environment with a
custom theme.

A custom wallpaper and Desktop
icons are added by default.

Pass

FR3.4 The system will be able to modify
the wallpaper of the Desktop
Environment.

The wallpaper can be modified by
updating the one that is stored in
the Ansible repository.

Pass

FR4 The system will install the software
necessary to reproduce music using
the Sound Limiter.

rhythmbox is installed by default,
and the browser has been configured
using firefox policies to add default
bookmarks linking to the most
popular music streaming services.

Pass

FR5 The system will be able to provision
a Sound Limiter with a static IP
address.

A task to configure a static IP
address has been added.

Pass

Continued on the next page

Building, Provisioning, and Deployment of IoT Acoustic Devices.

https://github.com/mozilla/policy-templates/blob/master/README.md

5

46 Chapter 5. Validation and Testing

Table 5.5 (continued)

ID Description Comments Result

FR6 The system will be able to provision
production-ready Sound Limiters.

A role for production devices has
been added which includes all the
tasks needed to leave a device ready
for production.

Pass

FR7 The system will be able to provision
testing Sound Limiters.

A role for testing devices has been
added which includes all the tasks
needed to leave a device ready for
testing.

Pass

Table 5.5 – Validation of the Functional Requirements of Heimdal Ansible.

5.1.3.2. Non-Functional Requirements

ID Description Comments Result

NFR1 The automation system must be as
easy to use as possible.

The Ansible roles and playbooks
can all be executed with a simple
command after the completing the
installation process.

Pass

NFR2 The system will configure
production devices.

A role has been to provision
production devices.

Pass

NFR2.1 Only unprivileged users will be able
to login production devices.

Login with the privileged user is
disabled in production devices.

Pass

NFR2.2 Production devices won’t have any
testing software installed.

All the testing software is removed
from production devices.

Pass

NFR2.3 Production devices will have a
unique MAC address.

A task has been added to generate
a random unique MAC address for
production devices.

Pass

NFR2.4 The unprivileged user will
automatically login at startup
if the graphical interface is enabled.

The display manager
(paragraph 4.4.3.1.4) is configured
to automatically login the
unprivileged user.

Pass

NFR3 The system will configure testing
devices.

A role has been to provision testing
devices.

Pass

NFR3.1 Privileged users will be able to login
testing devices.

A privileged user is created with a
default password for testing devices.

Pass

NFR3.2 The Hardware Tests will be installed
in testing devices.

The Hardware Tests and all their
dependencies are installed in testing
devices.

Pass

NFR3.3 A testing MAC address will be set
in testing devices.

A testing MAC address is set by
default in testing devices.

Pass

Continued on the next page

Gonzalo Abril Paniza

5.1. Validation 47

5

Table 5.6 (continued)

ID Description Comments Result

NFR3.4 The Desktop Environment will be
configured to allow to log in with
a privileged user if the graphical
interface is enabled.

The display manager
(paragraph 4.4.3.1.4) is configured
to allow to log in with a privileged
user.

Pass

NFR4 The automation software must be
based on Ansible.

The automation software has been
developed using Ansible roles, tasks
and custom modules.

Pass

NFR5 The system will be able to use
different Ansible inventories to
configure the Sound Limiters.

A folder to include diferent
inventories has been added to
the repository. Using a non-
default repository can be done by
specifying the -i flag when running
the Ansible playbooks.

Pass

NFR6 The system will be able to cache the
Ansible facts of every Sound Limiter
in the inventory to speed up the
provisioning process.

The Ansible facts are cached in the
.ansible_facts folder.

Pass

NFR7 The automation system will be
idempotent.

Running the automation software
twice will not change the state of the
Sound Limiters.

Pass

NFR8 The automation software must be
easy to use.

The Ansible playbooks can be
executed with a single command,
which is explained in the
README.

Pass

NFR9 The automation software must be
maintainable.

The Ansible playbooks have been
split into different roles and tasks to
make them easier to maintain.

Pass

NFR10 There must be clear documentation
on how to use the automation
software.

The README on the root
folder includes detailed instructions
on how to use and configure
the automation software.
Additionally, every role has its
own documentation where more
specific information is provided.

Pass

NFR11 The deployed devices must have
spare disk space.

The free disk space of the Sound
Limiter 4 now (Figure 5.4) is bigger
than in the previous iteration of the
project (Figure 5.3).

Pass

NFR12 The deployed devices must have a
light RAM footprint.

The memory footprint of the
Sound Limiter 4 with the Desktop
Environment running is now
(Figure 5.6) lighter than in the
previous iteration of the project
(Figure 5.5).

Pass

Building, Provisioning, and Deployment of IoT Acoustic Devices.

5

48 Chapter 5. Validation and Testing

Table 5.6 – Validation of the Non-Functional Requirements of Heimdal Ansible.

Figure 5.3 – Disk space usage in the previous iteration of the project.

Figure 5.4 – Disk space usage now.

Figure 5.5 – Memory usage in the previous iteration of the project. The available column is the one that shows
all the memory that can be allocated by the system.

Gonzalo Abril Paniza

5.2. Testing 49

5

Figure 5.6 – Memory usage now. The available column is the one that shows all the memory that can be
allocated by the system.

5.1.3.3. Information Requirements

ID Description Comments Result

IR1 The serial number of the Sound
Limiters will be a unique identifier
for each device.

The serial number is a randomly
generetaed UUID.

Pass

IR2 Information about every Sound
Limiter will be stored in an Ansible
inventory.

The serial number, host, and group
is stored in the Ansible inventory.

Pass

Table 5.7 – Validation of the Non-Functional Requirements of Heimdal Ansible.

5.2. Testing

To make sure that the software developed during the project works as expected, some tests cases
were carried out during the development process. To help illustrate and validate how every repository
works, one video was recorded for each one of them. The videos can be found in this Google Drive
folder.

5.2.1. Heimdal Tests

After having installed the tests on a Sound Limiter 4, the tests were executed both by using the
GUI and the CLI. The results of the tests were as expected, and the Sound Limiter and no installation
or executed errors were found. An screenshot of the GUI can be seen in Figure 4.5 and an screenshot
of the CLI can be seen in Figure 4.6, but they can also be seen working in the video that was recorded
for the repository.

5.2.2. Image Builder

To test that the image builder works as expected, a production image and a development image were
built and flashed to a Raspberry Pi and the Sound Limiter was booted with each of them sequentially.
The Sound Limiter booted correctly and was accessible through the SSH connection. The GUI can be
seen in Figure 4.12 and the SSH connection can be seen in Figure 4.6. The video that was recorded
for the repository shows how the image is built with the different options.

Building, Provisioning, and Deployment of IoT Acoustic Devices.

https://drive.google.com/drive/folders/1ewXkAbTHfviZv6Hyy3w2KJR5tnjzsKPH?usp=sharing
https://drive.google.com/drive/folders/1ewXkAbTHfviZv6Hyy3w2KJR5tnjzsKPH?usp=sharing

5

50 Chapter 5. Validation and Testing

5.2.3. Heimdal Ansible

Finally, to test that the automation software works as expected, some key test cases were carried
out:

1. Running the automation software with a production image on a Sound Limiter 4 that had just
been flashed with the image.

2. Running the automation software with a development image on a Sound Limiter 4 that had just
been flashed with the image.

3. Changing a device from production to testing and running the automation software.

4. Running the automation software with two devices at the same time, one of them fresh and the
other changing from production to testing.

5. Using two already provisioned devices, one in production and the other in testing, executing the
automation software to make sure that it is idempotent.

6. Running the automation software with a device that had already been provisioned to test that
it is idempotent.

7. Using two devices without serial number, running the task that generates the serial number to
make sure that there are no concurrency issues.

Apart from those test cases, every task that was added to the automation software was tested
individually to make sure that it worked as expected. The video that was recorded for the repository
shows how the Heimdal Ansible is installed, how it works, and how to use it.

Gonzalo Abril Paniza

Chapter 6

Conclusions and Future Work

After completing the project, it is time to analyse the results obtained and to discuss any future work
that could be done to improve the project by future students. I think that the resulting repositories
have been a satisfactory solution to challenges identified at the beginning of the project, since they have
been able to streamlined many laborious tasks that were done manually before, and more importantly,
they have been able to do it in a reliable and reproducible way.

When I began working on the project, I faced a lot of problems during the onboarding process
because it was not clear how to get the Sound Limiter 4 to a working and reliable state, as a result
of this, I have put much effort into leaving the project in a state where it is not possible for that to
happen again. I think that the project has been a success in that regard, because of the focus put
on the idempotency of the Image Builder and Heimdal Ansible repositories, as well as because of
the extensive documentation that has been written for each one of the parts of the project, which I
am sure will help any future project member to get started with the project and to understand how it
works and how to use and maintain it.

Regarding the requirements, I think all of them were covered in a adequate way, and this Bachelor’s
Thesis has left the project in a state where any new work can build upon it as a solid foundation rather
than focus on fixing problems inherited from it. I think this is crucial given the state of the Heimdal
project as a whole, since it has been in development for some years now, and it is close to a state where
it can be deployed in a real scenario.

Moreover, working on this Bachelor’s Thesis has helped me grow professionally too. I have acquired
a greater insight into how Docker and Ansible work, enabling me to tackle more complex projects and
become a more experienced and dependable developer. I have also gained experience in building
software intended for future use and maintenance by others, the kind of software that requires a
dedicated focus on writing clean code and dividing responsibilities into small, logical components. I
believe this is a crucial skill for any developer aiming to improve their craft.

From a personal standpoint, I am very grateful to have been able to work in such an interesting
project that made me use the skills I learnt throughout my journey as a Computer Engineering student
to a full extent. I had to put into practice a great part of the knowledge that I have acquired in the
degree, focus on learning about new technologies and tools, and develop the autonomy needed to face
all the technical challenges that I have encountered along the last months.

Building, Provisioning, and Deployment of IoT Acoustic Devices. 51

6

52 Chapter 6. Conclusions and Future Work

6.1. Future work

After finishing the project, I realise that there is room for future work that could be of interest
for the GranaSAT team working on the Heimdal project, aside from any other product requirements
that might need to be implemented. The following list contains some ideas that could be implemented
in the future:

Creating a new repository for the Heimdal Kernel Module and removing it from the Image Builder
repository. It was not done in this project because I mainly focused on scripting, configuration
and automation, and therefore I didn’t add any new features to the Kernel Module.

Integrating Image Builder and Heimdal Ansible into a Continuous Integration pipeline, so that
the Sound Limiter images and Kernels are built automatically by whenever a new branch is
merged into the aforementioned repository used for the development of the Kernel Module.

Adding additional logic to the Prod Role to increase the security of the Sound Limiters.

Customize further the Desktop Environment to give final users a more polished experience.

Adding a new test to Heimdal Tests to verify the correct functioning of the Liquid Crystal Display
(LCD) screen that future displays will have.

Gonzalo Abril Paniza

Bibliography

[1] Jean-Philippe Aumasson. Serious cryptography : a practical introduction to modern encryption
/ by Jean-Philippe Aumasson ; foreword by Matthew D. Green. eng. 1st edition. San Francisco:
No Starch Press, 2018. isbn: 1-4920-6751-2.

[2] Computer organization and embedded systems / Carl Hamacher... [et al.] eng. 6th ed. New York,
NY: McGraw-Hill, 2012. isbn: 9780073380650.

[3] DietPi. DietPi. url: https://dietpi.com/.
[4] Linux Foundation. Loop device. url: https://man7.org/linux/man-pages/man4/

loop.4.html.
[5] Python Software Foundation. Python. url: https://www.python.org/about.
[6] Raspberry Pi Foundation. Raspberry Pi Module 3. 2015. url: https://www.raspberrypi.

com/products/compute-module-3/.
[7] Raspberry Pi Foundation. What is a Raspberry Pi? url: https://www.raspberrypi.org/

help/what-%20is-a-raspberry-pi/.
[8] Erich Gamma. Design patterns : elements of reusable object-oriented software / Erich Gamma ...

[et al.]. [electronic resource]. eng. 37th printing. Addison-Wesley professional computing series.
Reading, Mass: Addison-Wesley, 1995. isbn: 0-321-70069-4.

[9] J. Geerling. Ansible for DevOps: Server and Configuration Management for Humans. Leanpub,
2017. isbn: 9780986393402.

[10] Git. Git. url: https://git-scm.com/.
[11] Gastón C Hillar. Internet of things with python. Packt Publishing Ltd, 2016.
[12] Docker Inc. BuildKit. url: https://github.com/moby/buildkit#buildkit-.
[13] Docker Inc. BuildKit. url:

https://docs.docker.com/engine/reference/commandline/build/#output.
[14] Docker Inc. Docker Engine. url: https://docs.docker.com/engine/.
[15] Docker Inc. Dockerfile reference. url: https://docs.docker.com/engine/reference/

builder/.
[16] Docker Inc. Multi-stage builds. url: https://docs.docker.com/build/building/

multi-stage/.
[17] Docker Inc. What is a Docker container? url: https://www.docker.com/resources/

what-container/.
[18] GitLab Inc. DevOps. url: https://about.gitlab.com/topics/devops/.
[19] GitLab Inc. GitLab. url: https://about.gitlab.com/.
[20] InfoJobs. Sueldo medio en España de un ingeniero de hardware senior. url: https://www.

glassdoor.es/Sueldos/senior-hardware-engineer-sueldo-SRCH_KO0,24.htm.

Building, Provisioning, and Deployment of IoT Acoustic Devices. 53

https://dietpi.com/
https://man7.org/linux/man-pages/man4/loop.4.html
https://man7.org/linux/man-pages/man4/loop.4.html
https://www.python.org/about
https://www.raspberrypi.com/products/compute-module-3/
https://www.raspberrypi.com/products/compute-module-3/
https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/
https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/
https://git-scm.com/
https://github.com/moby/buildkit#buildkit-
https://docs.docker.com/engine/reference/commandline/build/#output
https://docs.docker.com/engine/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://about.gitlab.com/topics/devops/
https://about.gitlab.com/
https://www.glassdoor.es/Sueldos/senior-hardware-engineer-sueldo-SRCH_KO0,24.htm
https://www.glassdoor.es/Sueldos/senior-hardware-engineer-sueldo-SRCH_KO0,24.htm

6

54 Bibliography

[21] InfoJobs. Sueldo medio en España de un ingeniero de software junior. url: https://www.
glassdoor.es/Sueldos/ingeniero-de-software-junior-sueldo-SRCH_KO0,28.
htm.

[22] Brian W. Kernighan. The C programming language. eng. 2nd ed. Englewood Cliffs, New Jersey:
Prentice-Hall, 1988. isbn: 0131103628.

[23] Red Hat Enterprise Linux. Ansible. url: https://www.ansible.com/overview/how-
ansible-works.

[24] Chris M. Lonvick and Tatu Ylonen. The Secure Shell (SSH) Transport Layer Protocol. RFC
4253. Jan. 2006. doi: 10.17487/RFC4253. url: https://www.rfc-editor.org/info/
rfc4253.

[25] DSL Ltd. What is a single board computer? url: https://www.dsl-ltd.co.uk/what-
are-single-board-computers-and-how-are-they-used/.

[26] David MacKenzie. date. url: https://man7.org/linux/man-pages/man1/date.1.
html.

[27] Roland McGrath. chroot. url: https://man7.org/linux/man-pages/man1/chroot.1.
html.

[28] Network Time Protocol (NTP). RFC 958. Sept. 1985. doi: 10.17487/RFC0958. url: https:
//www.rfc-editor.org/info/rfc958.

[29] QEMU Project. QEMU. url: https://wiki.qemu.org/Main_Page.

[30] Karen Rose, Scott Eldridge, and Lyman Chapin. «The internet of things: An overview». In: The
internet society (ISOC) 80 (2015), pp. 1–50.

[31] Chris Simmonds. Mastering embedded Linux programming : harness the power of Linux to create
versatile and robust embedded solutions / Chris Simmonds ; [foreword by Richard Purdie, Yocto
project architect, Linux Foundation Fellow]. eng. 1st edition. Community experience distilled.
Birmingham: Packt Publishing, 2015. isbn: 1-5231-0613-1.

[32] James E. (James Edward) Smith. Virtual machines [electronic resource] : versatile platforms for
systems and processes / James E. Smith, Ravi Nair. eng. 1st edition. The Morgan Kaufmann
Series in Computer Architecture and Design. Amsterdam ; Morgan Kaufmann Publishers, 2005.
isbn: 1-281-22771-4.

[33] Ian Sommerville. Software engineering / Ian Sommerville. eng. 10th ed. Harlow, Essex: Addison
Wesley, 2016. isbn: 9781292096131.

[34] Arch Wiki. Desktop environment. url: https://wiki.archlinux.org/title/desktop_
environment.

Gonzalo Abril Paniza

https://www.glassdoor.es/Sueldos/ingeniero-de-software-junior-sueldo-SRCH_KO0,28.htm
https://www.glassdoor.es/Sueldos/ingeniero-de-software-junior-sueldo-SRCH_KO0,28.htm
https://www.glassdoor.es/Sueldos/ingeniero-de-software-junior-sueldo-SRCH_KO0,28.htm
https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://doi.org/10.17487/RFC4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.dsl-ltd.co.uk/what-are-single-board-computers-and-how-are-they-used/
https://www.dsl-ltd.co.uk/what-are-single-board-computers-and-how-are-they-used/
https://man7.org/linux/man-pages/man1/date.1.html
https://man7.org/linux/man-pages/man1/date.1.html
https://man7.org/linux/man-pages/man1/chroot.1.html
https://man7.org/linux/man-pages/man1/chroot.1.html
https://doi.org/10.17487/RFC0958
https://www.rfc-editor.org/info/rfc958
https://www.rfc-editor.org/info/rfc958
https://wiki.qemu.org/Main_Page
https://wiki.archlinux.org/title/desktop_environment
https://wiki.archlinux.org/title/desktop_environment

	Licencia
	Autorización defensa
	Autorización depósito biblioteca
	Abstract (Español)
	Abstract (English)
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives of the Study
	1.3 Context
	1.4 Project Structure

	2 Software Requirements Specification
	2.1 Heimdal Tests
	2.1.1 Functional Requirements
	2.1.2 Non-Functional Requirements

	2.2 Image Builder
	2.2.1 Functional Requirements

	2.3 Heimdal Ansible
	2.3.1 Functional Requirements
	2.3.2 Information Requirements

	3 Planning
	3.1 Project budget

	4 Design and Implementation
	4.1 Introduction
	4.2 Heimdal Tests
	4.2.1 Design
	4.2.2 Implementation
	4.2.2.1 Facade
	4.2.2.2 Graphical User Interface
	4.2.2.3 Command Line Interface
	4.2.2.4 Buzzer Tests
	4.2.2.5 LEDs Tests

	4.3 Image Builder
	4.3.1 Design
	4.3.2 Implementation
	4.3.2.1 Kernel Builder
	4.3.2.2 Image Builder

	4.3.3 Build times

	4.4 Heimdal Ansible
	4.4.1 Why Ansible?
	4.4.2 Design
	4.4.2.1 Common Role
	4.4.2.2 Testing Role
	4.4.2.3 Prod Role

	4.4.3 Implementation
	4.4.3.1 Common Role
	4.4.3.1.1 Installing the Heimdal Kernel or updating it when necessary
	4.4.3.1.2 Setting the serial number of the device
	4.4.3.1.3 Configuring the network interfaces
	4.4.3.1.4 Setting up a graphical desktop and customizing it

	4.4.3.2 Testing Role
	4.4.3.3 Prod Role
	4.4.3.4 Notes about the documentation

	5 Validation and Testing
	5.1 Validation
	5.1.1 Heimdal Tests
	5.1.1.1 Functional Requirements
	5.1.1.2 Non-Functional Requirements

	5.1.2 Image Builder
	5.1.2.1 Functional Requirements
	5.1.2.2 Non-Functional Requirements

	5.1.3 Heimdal Ansible
	5.1.3.1 Functional Requirements
	5.1.3.2 Non-Functional Requirements
	5.1.3.3 Information Requirements

	5.2 Testing
	5.2.1 Heimdal Tests
	5.2.2 Image Builder
	5.2.3 Heimdal Ansible

	6 Conclusions and Future Work
	6.1 Future work

