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Abstract. We introduce the notion of Killing shape operator for real hypersurfaces
in the complex quadric Qm = SOm+2/SOmSO2 . The Killing shape operator im-
plies that the unit normal vector field N becomes A-principal or A-isotropic. Then
according to each case, we give a complete classification of real hypersurfaces in Qm =
SOm+2/SOmSO2 with Killing shape operator.

1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usually give ex-
amples of Riemannian symmetric spaces SUm+2/S(U2Um) and SU2,m/S(U2Um), which are
said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grass-
mannians respectively (see [15], [16], and [17] ). These are viewed as Hermitian symmetric
spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J
and the quaternionic Kähler structure J.

In the complex projective space CPm+1 and the quaternionic projective space QPm+1

some classifications of real hypersurfaces related to commuting Ricci tensor were investi-
gated by Kimura [9], and Pérez and Suh [11], [12] respectively. The classification problems
of real hypersurfaces of the complex 2-plane Grassmannian G2(Cm+2) = SUm+2/S(U2Um)
with certain geometric conditions were mainly discussed in Jeong, Kim and Suh [2], Jeong,
Machado, Pérez and Suh [3], [4], Suh [15], [16], [17], where the classification of contact
hypersurfaces, parallel Ricci tensor, harmonic curvature and Jacobi operator of a real hy-
persurface in G2(Cm+2) were extensively studied. Moreover, in [17] we have asserted that
the Reeb flow on a real hypersurface in SU2,m/S(U2Um) is isometric if and only if M is
an open part of a tube around a totally geodesic SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um)
.

As another kind of Hermitian symmetric space with rank 2 of compact type dif-
ferent from the above ones, we can consider the example of complex quadric Qm =
SOm+2/SOmSO2, which is a complex hypersurface in complex projective space CPm+1

(see Klein [5], [6], [8] and Smyth [14]). The complex quadric can also be regarded as a
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kind of real Grassmann manifold of compact type with rank 2 (see Kobayashi and No-
mizu [10]). Accordingly, the complex quadric admits two important geometric structures,
a complex conjugation structure A and a Kähler structure J , which anti-commute with
each other, that is, AJ = −JA. Then for m≥2 the triple (Qm, J, g) is a Hermitian sym-
metric space of compact type with rank 2 and its maximal sectional curvature is equal to
4 (see Klein [5], [7] and Reckziegel [13]).

Apart from the complex structure J there is another distinguished geometric structure
on Qm, namely a parallel rank two vector bundle A which contains an S1-bundle of real
structures, that is, complex conjugations A on the tangent spaces of Qm. This geometric
structure determines a maximal A-invariant subbundle Q of the tangent bundle TM of a
real hypersurface M in Qm.

Moreover, the derivative of the complex conjugation A on Qm is defined by

(∇̄XA)Y = q(X)JAY

for any vector fields X and Y on M and q denotes a certain 1-form defined on M .

When the shape operator S of M in Qm satisies (∇XS)Y = (∇Y S)X for any X,Y
on M in Qm, we say that the shape operator is of Codazzi type. In [18] we gave a non-
existence property of real hypersurfaces of Codazzi type in the complex quadric Qm with
parallel shape operator as follows:

Theorem A. There do not exist any real hypersurfaces in complex quadric Qm, m≥3,
with shape operator of Codazzi type.

Recall that a nonzero tangent vector W ∈ T[z]Q
m is called singular if it is tangent to

more than one maximal flat in Qm. There are two types of singular tangent vectors for
the complex quadric Qm:

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular.
Such a singular tangent vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X,Y ∈ V (A) such
that W/||W || = (X+JY )/

√
2, then W is singular. Such a singular tangent vector

is called A-isotropic.

When we consider a hypersurface M in the complex quadric Qm, under the assumption
of some geometric properties the unit normal vector field N of M in Qm can be divided
into two classes if either N is A-isotropic or A-principal (see [18] and [19]). In the first
case where N is A-isotropic, we have shown in Suh [18] that M is locally congruent to
a tube over a totally geodesic CP k in Q2k. In the second case, when the unit normal N
is A-principal, we proved that a contact hypersurface M in Qm is locally congruent to a
tube over a totally geodesic and totally real submanifold Sm in Qm (see [19]).

The shape operator S of M in Qm is said to be Killing if the operator S satisfies

(∇XS)Y + (∇Y S)X = 0

for any X, Y ∈TzM , z∈M . The equation is equivalent to (∇XS)X = 0 for any X∈TzM ,
z∈M , because of linearization. Moreover, we can give the geometric meaning of Killing
Jacobi tensor as follows:
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When we consider a geodesic γ with initial conditions such that γ(0) = z and γ̇(0) = X.
Then the transformed vector field Sγ̇ is Levi-Civita parallel along the geodesic γ of the
vector field X (see Blair [1] and Tachibana [23]).

In the study of real hypersurfaces in the complex quadric Qm we considered the notion
of parallel Ricci tensor, that is, ∇Ric = 0 (see Suh [19]). But from the assumption of Ricci
being parallel, it was difficult for us to derive the fact that either the unit normal N is
A-isotropic or A-principal. So in [19] we gave a classification with the further assumption
of A-isotropic. But fortunately, when we consider Killing shape operator, first we can
assert that the unit normal vector field N becomes either A-isotropic or A-principal as
follows:

Main Theorem 1. Let M be a Hopf real hypersurface in Qm, m≥3, with Killing shape
operator. Then the unit normal vector field N is singular, that is, N is A-isotropic or
A-principal.

Then motivated by such a result, next we give a complete classification for real hyper-
surfaces in the complex quadric Qm with Killing shape operator as follows:

Main Theorem 2. Let M be a Hopf real hypersurface in the complex quadric Qm,
m≥4, with Killing shape operator. Then M has 4 distinct constant principal curvatures
given by

α ̸=0, β = γ = 0, λ =
(α2 + 1) +

√
(α2 + 1)2 + 2α2

2α
, and

µ =
(α2 + 1)−

√
(α2 + 1)2 + 2α2

2α
with corresponding principal curvature spaces respectively

Tα = [ξ], Tβ = [AN ], Tγ = [Aξ], ϕ(Tλ) = Tµ, and dim Tλ = dim Tµ = m− 2.

Usually, Killing shape operator is a generalization of parallel shape operator S of M in
Qm , that is, ∇XS = 0 for any tangent vector field X on M . The parallelism of shape
operator has a geometric meaning that every eigen spaces of the shape operator S are
parallel along any direction on M in Qm. Then naturally, by Theorem 2 above we give
the following

Corollary. There do not exist any Hopf real hypersurfaces in Qm, m≥3, with parallel
shape operator.

2. The complex quadric

For more background to this section we refer to [5], [10], [13], [18], [19] and [20].
The complex quadric Qm is the complex hypersurface in CPm+1 which is defined by
the equation z20 + · · · + z2m+1 = 0, where z0, . . . , zm+1 are homogeneous coordinates on
CPm+1. We equip Qm with the Riemannian metric g which is induced from the Fubini-
Study metric ḡ on CPm+1 with constant holomorphic sectional curvature 4. The Fubini-
Study metric ḡ is defined by ḡ(X,Y ) = Φ(JX, Y ) for any vector fields X and Y on
CPm+1 and a globally closed (1, 1)-form Φ given by Φ = −4i∂∂̄logfj on an open set

Uj = {[z0, . . . , zj, . . . , zm+1]∈CPm+1|zj ̸=0}, where the function fj denotes fj =
∑m+1

k=0 t
k
j t̄

k
j ,
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and tkj =
zk
zj

for j, k = 0, · · ·,m+1. Then naturally the Kähler structure on CPm+1 induces

canonically a Kähler structure (J, g) on the complex quadric Qm.

The complex projective space CPm+1 is a Hermitian symmetric space of the special uni-
tary group SUm+2, namely CPm+1 = SUm+2/S(Um+1U1). We denote by o = [0, . . . , 0, 1] ∈
CPm+1 the fixed point of the action of the stabilizer S(Um+1U1). The special orthogonal
group SOm+2 ⊂ SUm+2 acts on CPm+1 with cohomogeneity one. The orbit containing o
is a totally geodesic real projective space RPm+1 ⊂ CPm+1. The second singular orbit
of this action is the complex quadric Qm = SOm+2/SOmSO2. This homogeneous space
model leads to the geometric interpretation of the complex quadric Qm as the Grassmann
manifold G+

2 (Rm+2) of oriented 2-planes in Rm+2. It also gives a model of Qm as a Her-
mitian symmetric space of rank 2. The complex quadric Q1 is isometric to a sphere S2

with constant curvature, and Q2 is isometric to the Riemannian product of two 2-spheres
with constant curvature. For this reason we will assume m ≥ 3 from now on.

In another way, the complex projective space CPm+1 is defined by using the Hopf
fibration

π : S2m+3→CPm+1, z→[z],

which is said to be a Riemannian submersion. Then naturally we can consider the follow-
ing diagram for the complex quadric Qm as follows:

Q̃ = π−1(Q)
ĩ−−−→ S2m+3⊂Cm+2

π

y π

y
Q = Qm i−−−→ CPm+1

The submanifold Q̃ of codimension 2 in S2m+3 is called the Stiefel manifold of orthonor-
mal 2-frames in Rm+2, which is given by

Q̃ = {x+ iy∈Cm+2|g(x, x) = g(y, y) =
1

2
and g(x, y) = 0},

where g(x, y) =
∑m+2

i=1 xiyi for any x = (x1, . . ., xm+2) and y = (y1, . . ., ym+2)∈Rm+2. Then

the tangent space is decomposed as TzS
2m+3 = Hz⊕Fz and TzQ̃ = Hz(Q)⊕Fz(Q) at

z = x + iy∈Q̃ respectively, where the horizontal subspaces Hz and Hz(Q) are given by
Hz = (Cz)⊥ and Hz(Q) = (Cz⊕Cz̄)⊥, and Fz and Fz(Q) are fibers which are isomorphic
to each other. Here Hz(Q) becomes a subspace of Hz of real codimension 2 and orthogonal
to the two unit normals −z̄ and −Jz̄. Explicitly, at the point z = x + iy∈Q̃ it can be
described as

Hz = {u+ iv∈Cm+2| g(x, u) + g(y, v) = 0, g(x, v) = g(y, u)}
and

Hz(Q) = {u+ iv∈Hz| g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0},
where Cm+2 = Rm+2⊕iRm+2, and g(u, x) =

∑m+2
i=1 uixi for any u = (u1, . . ., um+2), x =

(x1, . . ., xm+2)∈Rm+2.

These spaces can be naturally projected by the differential map π∗ as π∗Hz = Tπ(z)CPm+1

and π∗Hz(Q) = Tπ(z)Q respectively. This gives that at the point π(z) = [z] the tangent
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subspace T[z]Q
m becomes a complex subspace of T[z]CPm+1 with complex codimension 1

and has two unit normal vector fields −z̄ and −Jz̄ (see Reckziegel [13]).

Then let us denote by Az̄ the shape operator of Qm in CPm+1 with respect to the
unit normal z̄. It is defined by Az̄w = ∇̄wz̄ = w̄ for a complex Euclidean connection ∇̄
induced from Cm+2 and all w ∈ T[z]Q

m. That is, the shape operator Az̄ is just a complex
conjugation restricted to T[z]Q

m. Moreover, it satisfies the following for any w ∈ T[z]Q
m

and any λ∈S1⊂C

A2
λz̄w =Aλz̄Aλz̄w = Aλz̄λw̄

=λAz̄λw̄ = λ∇̄λw̄z̄ = λλ̄ ¯̄w

=|λ|2w = w.

Accordingly, A2
λz̄ = I for any λ∈S1. So the shape operator Az̄ becomes an anti-commuting

involution such that A2
z̄ = I and AJ = −JA on the complex vector space T[z]Q

m and

T[z]Q
m = V (Az̄)⊕ JV (Az̄),

where V (Az̄) = Rm+2 ∩ T[z]Q
m is the (+1)-eigenspace and JV (Az̄) = iRm+2 ∩ T[z]Q

m is
the (−1)-eigenspace of Az̄. That is, Az̄X = X and Az̄JX = −JX, respectively, for any
X∈V (Az̄).

Geometrically this means that the shape operator Az̄ defines a real structure on the
complex vector space T[z]Q

m, or equivalently, is a complex conjugation on T[z]Q
m. Since

the real codimension of Qm in CPm+1 is 2, this induces an S1-subbundle A of the endo-
morphism bundle End(TQm) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Qm can
be viewed as the complexification of the m-dimensional sphere Sm. Through each point
[z] ∈ Qm there exists a one-parameter family of real forms of Qm which are isometric to
the sphere Sm. These real forms are congruent to each other under action of the center
SO2 of the isotropy subgroup of SOm+2 at [z]. The isometric reflection of Qm in such a
real form Sm is an isometry, and the differential at [z] of such a reflection is a conjugation
on T[z]Q

m. In this way the family A of conjugations on T[z]Q
m corresponds to the family

of real forms Sm of Qm containing [z], and the subspaces V (A) ⊂ T[z]Q
m correspond to

the tangent spaces T[z]S
m of the real forms Sm of Qm.

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature tensor R̄
of Qm can be described in terms of the complex structure J and the complex conjugations
A ∈ A:

R̄(X,Y )Z = g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = −JA for each
A ∈ A.

For every unit tangent vector W ∈ T[z]Q
m there exist a conjugation A ∈ A and or-

thonormal vectors X, Y ∈ V (A) such that

W = cos(t)X + sin(t)JY
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for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0 and
t = π/4. When W = X for X∈V (A), t = 0, there exist many kinds of maximal 2-flats
RX + RZ for Z∈V (A) orthogonal to X∈V (A). So the tangent vector X is said to be
singular. When W = (X + JY )/

√
2 for t = π

4
, it becomes also a singular tangent vector,

which belongs to many kinds of maximal 2-flats given by R(X+JY )+RZ for any Z∈V (A)
orthogonal to X∈V (A) or R(X + JY ) + RJZ for any JZ∈JV (A). If 0 < t < π/4 then
the unique maximal flat containing W is RX ⊕ RJY .

3. Some general equations

LetM be a real hypersurface in Qm and denote by (ϕ, ξ, η, g) the induced almost contact
metric structure. Note that ξ = −JN , where N is a (local) unit normal vector field of
M and η the corresponding 1-form defined by η(X) = g(ξ,X) for any tangent vector
field X on M . The tangent bundle TM of M splits orthogonally into TM = C ⊕ Rξ,
where C = ker(η) is the maximal complex subbundle of TM . The structure tensor field ϕ
restricted to C coincides with the complex structure J restricted to C, and ϕξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of TzM , z∈M as
follows:

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.
Then we want to introduce an important lemma which will be used in the proof of our

main Theorem in the introduction.

Lemma 3.1. ([18]) For each z ∈ M we have

(i) If Nz is A-principal, then Qz = Cz.
(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vectors

X, Y ∈ V (A) such that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we
have Qz = Cz ⊖ C(JX + Y ).

We now assume that M is a Hopf hypersurface. Then the Reeb vector field ξ = −JN
satisfies the following

Sξ = αξ,

where S denotes the shape operator of the real hypersurface M for a smooth function
α = g(Sξ, ξ) on M . When we consider the transformed JX by the Kähler structure J on
Qm for any vector field X on M in Qm, we may put

JX = ϕX + η(X)N

for a unit normal N to M . Then we now consider the equation of Codazzi

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(ϕY, Z)− η(Y )g(ϕX,Z)− 2η(Z)g(ϕX, Y )

+ g(X,AN)g(AY,Z)− g(Y,AN)g(AX,Z)

+ g(X,Aξ)g(JAY, Z)− g(Y,Aξ)g(JAX,Z).

(3.1)

Putting Z = ξ in (3.1) we get

g((∇XS)Y − (∇Y S)X, ξ) = −2g(ϕX, Y )

+ g(X,AN)g(Y,Aξ)− g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ).
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On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ)

= g((∇XS)ξ, Y )− g((∇Y S)ξ,X)

= (Xα)η(Y )− (Y α)η(X) + αg((Sϕ+ ϕS)X,Y )− 2g(SϕSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Y α = (ξα)η(Y )− 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ).

Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ)

= −2g(ξ, AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ, Aξ)η(Y )

+2g(ξ, AN)g(Y,Aξ)η(X)− 2g(Y,AN)g(ξ, Aξ)η(X)

+αg((ϕS + Sϕ)X,Y )− 2g(SϕSX, Y ).

Altogether this implies

0 =2g(SϕSX, Y )− αg((ϕS + Sϕ)X, Y )− 2g(ϕX, Y )

+ g(X,AN)g(Y,Aξ)− g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

+ 2g(ξ, AN)g(X,Aξ)η(Y )− 2g(X,AN)g(ξ, Aξ)η(Y )

− 2g(ξ, AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ, Aξ)η(X).

(3.2)

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4
(see Proposition 3 in [13]).

Note that t is a function on M . First of all, since ξ = −JN , we have

AN =cos(t)Z1 − sin(t)JZ2,

ξ =sin(t)Z2 − cos(t)JZ1,

Aξ =sin(t)Z2 + cos(t)JZ1.

(3.3)

This implies g(ξ, AN) = 0 and hence

0 =2g(SϕSX, Y )− αg((ϕS + Sϕ)X, Y )− 2g(ϕX, Y )

+ g(X,AN)g(Y,Aξ)− g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

− 2g(X,AN)g(ξ, Aξ)η(Y ) + 2g(Y,AN)g(ξ, Aξ)η(X).

(3.4)

4. Killing shape operator and a Key Lemma

By the equation of Gauss, the curvature tensor R(X, Y )Z for a real hypersurface M in
Qm induced from the curvature tensor R̄ of Qm can be described in terms of the complex
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structure J and the complex conjugation A ∈ A as follows:

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y + g(ϕY, Z)ϕX − g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ

+g(AY,Z)AX − g(AX,Z)AY + g(JAY, Z)JAX − g(JAX,Z)JAY

+g(SY, Z)SX − g(SX,Z)SY

for any X, Y, Z∈TzM , z∈M .
Now let us put

AX = BX + ρ(X)N,

for any vector field X∈TzQ
m, z∈M , ρ(X) = g(AX,N), where BX and ρ(X)N re-

spectively denote the tangential and normal component of the vector field AX. Then
Aξ = Bξ + ρ(ξ)N and ρ(ξ) = g(Aξ,N) = 0. Then it follows that

AN =AJξ = −JAξ = −J(Bξ + ρ(ξ)N)

=− (ϕBξ + η(Bξ)N).

The shape operator S of M in Qm is said to be Killing if the operator S satisfies

(∇XS)Y + (∇Y S)X = 0. (4.1)

for any X, Y ∈TzM , z∈M .

From (4.1), together with the equation of Codazzi (3.1), it follows that

2g((∇XS)Y, Z) = η(X)g(ϕY, Z)− η(Y )g(ϕX,Z)− 2η(Z)g(ϕX, Y )

+ g(X,AN)g(AY,Z)− g(Y,AN)g(AX,Z)

+ g(X,Aξ)g(JAY,Z)− g(Y,Aξ)g(JAX,Z).

(4.2)

Since we have assumed the real hypersurface M in Qm is Hopf, then Sξ = αξ. This gives

(∇XS)ξ = (Xα)ξ + αϕSX − SϕSX.

From this, let us put Y = ξ in (4.2) and use g(Aξ,N) = 0, we see that

2g((Xα)ξ+αϕSX − SϕSX,Z) = −g(ϕX,Z) + g(X,AN)g(Aξ, Z)

+ g(X,Aξ)g(JAξ, Z)− g(ξ, Aξ)g(JAX,Z).
(4.3)

Here, let us put X = ξ in (4.3) and also use g(ξ, AN) = 0, we have

2(ξα)η(Z) = g(ξ, Aξ)g(JAξ, Z)− g(ξ, Aξ)g(JAξ, Z) = 0.

From this we get ξα = 0. Then the derivative Y α in section 3 becomes

Y α = 2g(Y,AN)g(ξ, Aξ).

From this, together with (4.3), it follows that

2g(2g(X,AN)g(ξ, Aξ)ξ+αϕSX − SϕSX,Z) = −g(ϕX,Z) + g(X,AN)g(Aξ, Z)

+ g(X,Aξ)g(JAξ, Z)− g(ξ, Aξ)g(JAX,Z).
(4.4)

Then by putting Z = ξ into (4.3), we have

4g(X,AN)g(ξ, Aξ) =g(X,AN)g(Aξ, ξ) + g(X,Aξ)g(JAξ, ξ)

− g(ξ, Aξ)g(JAX, ξ)

=2g(X,AN)g(Aξ, ξ).

(4.5)
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Since g(Aξ,N) = 0, (4.5) gives that

g(Aξ, ξ)g(AN,X) = 0.

Then we have g(Aξ, ξ) = 0 or (AN)T = 0, where (AN)T denotes the tangential part of
the vector AN .

Summing up above discussions, we conclude the following

Lemma 4.1. Let M be a Hopf real hypersurface in Qm, m≥3, with Killing shape
operator. Then the unit normal vector field N is singular, that is, N is A-isotropic or
A-principal.

Proof. In above discussion, let us consider the first case g(Aξ, ξ) = 0. Then it implies
that

0 = g(Aξ, ξ) = g(AJN, JN) = −g(JAN, JN) = −g(AN,N).

If we insert N = cos tZ1 + sin tJZ2 for Z1, Z2∈V (A) into the above equation, we have
cos2 t− sin2 t = 0. Then by section 2, we have t = π

4
, that is, N = 1√

2
(X + JY ) for some

X,Y ∈V (A). So the unit normal N is A-isotropic.
Next we consider the case that (AN)T = 0. Then AN = (AN)T + g(AN,N)N =

g(AN,N)N . So it follows that

N = A2N = g(AN,N)AN = g2(AN,N)N.

So g(AN,N) = ±1 gives that AN = ±N . That is, the unit normal N is A-principal. �

Then we are able to consider the classification of Killing shape operator S of M in Qm

into two cases, that the unit normal N is A-principal or N is A-isotropic. In section 5
we will discuss a classification of real hypersurfaces in Qm with Killing shape operator
and A-isotropic unit normal and in section 6 a non-existence of Killing shape operator for
hypersurfaces in Qm when N is A-principal will be explained in detail.

5. Proof of Main Theorem with A-isotropic unit normal

In this section let us assume that the unit normal vector field N is A-isotropic. Then
the normal vector field N can be written

N =
1√
2
(Z1 + JZ2)

for Z1, Z2∈V (A), where V (A) denotes the (+1)-eigenspace of the complex conjugation
A∈A. Then it follows that

AN =
1√
2
(Z1 − JZ2), AJN = − 1√

2
(JZ1 + Z2), and JN =

1√
2
(JZ1 − Z2).

From this, together with (3.3) and the anti-commuting AJ = −JA, it follows that

g(ξ, Aξ) = g(JN,AJN) = 0, g(ξ, AN) = 0 and g(AN,N) = 0.

Then (4.3) gives the following for any X,Z∈TzM , z∈M
2g(αϕSX − SϕSX,Z) =− g(ϕX,Z) + g(X,AN)g(Aξ, Z) + g(X,Aξ)g(JAξ, Z)

=− g(ϕX,Z) + g(X,AN)g(Aξ, Z)− g(X,Aξ)g(AN,Z).
(5.1)
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Since Aξ,AN∈TxM , x∈M , it implies

2(αϕSX − SϕX) = −ϕX + g(X,AN)Aξ − g(X,Aξ)AN. (5.2)

On the other hand, from the formula (5.6) of Suh [19] for a Hopf real hypersurface M
with A-isotropic unit normal N

2SϕSX = α(Sϕ+ ϕS)X + 2ϕX − 2g(X,AN)Aξ + 2g(X,Aξ)AN. (5.3)

Then by virtue of (5.2) and (5.3), we have

−2SϕSX = αSϕX − 3αϕSX. (5.4)

We know that the tangent space TzM , z∈M is decomposed as follows:

TzM = [ξ]⊕[Aξ,AN ]⊕Q,

where C⊖Q = Q⊥ = Span[Aξ,AN ].

Lemma 5.1. Let M be a Hopf real hypersurface in the complex quadric Qm, m≥3, with
A-isotropic unit normal vector field. Then

SAN = 0, and SAξ = 0.

Proof. Let us denote by C⊖Q = Q⊥ = Span[Aξ,AN ]. Since N is isotropic, g(AN,N) =
0 and g(Aξ, ξ) = 0. By differentiating g(AN,N) = 0 and using (∇̄XA)Y = q(X)JAY
and the equation of Weingarten, we know that

0 =g(∇̄X(AN), N) + g(AN, ∇̄XN)

=g(q(X)JAN − ASX,N)− g(AN,SX)

=− 2g(ASX,N).

Then SAN = 0. Moreover, by differentiating g(Aξ,N) = 0 and using g(AN,N) = 0, we
have the following formula

0 =g(∇̄X(Aξ), N) + g(Aξ, ∇̄XN)

=g(q(X)JAξ + A(ϕSX + g(SX, ξ)N), N)− g(SAξ,X)

=− 2g(SAξ,X)

for any X∈TzM , z∈M , where in the third equality we have used ϕAN = JAN =
−AJN = Aξ. Then it follows that

SAξ = 0.

It completes the proof of our assertion. �

By Lemma 5.1 we know that the distribution Q⊥ for a Hopf real hypersurface M in Qm

is invariant by the shape operator S, so the distribution Q is also S-invariant. From this
fact we may consider a principal curvature vector X∈Q such that SX = λX, because the
distribution Q can be diagonalized. Then (5.4) gives

SϕX =
3αλ

2λ+ α
ϕX. (5.5)

Here we note that 2λ + α ̸=0. In fact, if 2λ + α = 0, then α = λ = 0, and from (5.3), it
gives us a contradiction. For X∈Q, we know that g(X,AN) = g(X,Aξ) = 0. So (5.3)
gives the following

2SϕSX = α(Sϕ+ ϕS)X + 2ϕX. (5.6)
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Then we consider two cases for X∈Q or X∈Q⊥.

As a first, for X∈Q such that SX = λX the formula (5.6) gives

2λSϕX = αSϕX + (αλ+ 2)ϕX. (5.7)

If α = 2λ, we should have 2(λ2 + 1)ϕX = 0, which is impossible. Then we have for
SϕX = µϕX

SϕX =
αλ+ 2

2λ− α
ϕX. (5.8)

Then (5.5) and (5.8) give
αλ+ 2

2λ− α
ϕX =

3αλ

2λ+ α
ϕX.

From this, any principal curvatures λ and µ of the distribition Q satisfy the following
quadratic equation

2αλ2 − 2(α2 + 1)λ− α = 0. (5.9)

The solutions become the following constant principal curvatures given by

λ, µ =
(α2 + 1)±

√
(α2 + 1)2 + 2α2

2α
, (5.10)

because the Reeb function α is constant for A-isotropic unit normal N . Here we note that
the Reeb function α can not vanish. If the function α identically vanishes, then (5.9) gives
λ = 0. From this, together with (5.7), we have ϕX = 0, which implies a contradiction.

From this, together with Lemma 5.1, the expression of the shape operator becomes the
following

S =



α 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 λ · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · · ...

0 0 0 0 · · · λ 0 · · · 0
0 0 0 0 · · · 0 µ · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · µ


where the principal curvatures λ and µ are given by (5.10) with multiplicities m − 2
respectively.

Summing up the above discussions, we give the following

Theorem 5.2. Let M be a real hypersurface in the complex quadric Qm with A-isotropic
unit normal vector field. Then M has 4 distinct constant principal curvatures given by

α ̸=0, β = γ = 0, λ =
(α2 + 1) +

√
(α2 + 1)2 + 2α2

2α
, and

µ =
(α2 + 1)−

√
(α2 + 1)2 + 2α2

2α
with corresponding principal curvature spaces respectively

Tα = [ξ], Tβ = [AN ], Tγ = [Aξ], ϕ(Tλ) = Tµ, and dim Tλ = dim Tµ = m− 2.
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6. Proof of Main Theorem with A-principal

In this section let us consider a real hypersurface M in Qm with Killing shape operator
for the case that the unit normal N is A-principal. In this case the Killing shape operator
(4.3) gives that

2g({αϕSX − SϕSX}, Z) = −g(ϕX,Z) + g(ϕAX,Z),

where we have used g(ξ, Aξ) = −1 and JAX = ϕAX + η(AX)N . Then it follows that

2(αϕSX − SϕSX) = −ϕX + ϕAX. (6.1)

Since the unit normal vector field N is A-principal, Aξ = −ξ. Then differentiating this
and using Gauss equation give

∇X(Aξ) = ∇̄X(Aξ)− g(SX,Aξ)N = −q(X)N + αη(X)N, (6.2)

where q denotes a certain 1-form defined on M as in the introduction. From this, together
with ∇X(Aξ) = −∇Xξ = −ϕSX, we have

ϕX = ϕAX.

This gives that
AX = X − 2η(X)ξ.

Then we have

TrA =g(AN,N) +
∑2m−1

i=1
g(Aei, ei)

=
∑2m−1

i=1
g(ei − 2η(ei)ξ, ei)

=2(m− 1).

(6.3)

But TrA = 0, because TzQ
m = V (A)⊕JV (A), where V (A) = {X∈TzQ

m|AX = X} and
JV (A) = {X∈TzQ

m|AX = −X}. This gives us a contradiction. So we assert another
theorem as follows:

Theorem 6.1. There do not exist any real hypersurface in the complex quadric Qm

with Killing shape operator if the unit normal vector field is A-principal.

Summing up all of discussions including sections 4 and 5, by Theorems 4.1, 5.2 and 6.1,
we give a complete proof of our Main Theorem 2 in the introduction.
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