REAL HYPERSURFACES WITH KILLING SHAPE OPERATOR IN THE COMPLEX QUADRIC

JUAN DE DIOS PÉREZ, IMSOON JEONG, JUNHYUNG KO, AND YOUNG JIN SUH

ABSTRACT. We introduce the notion of Killing shape operator for real hypersurfaces in the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. The Killing shape operator implies that the unit normal vector field N becomes \mathfrak{A} -principal or \mathfrak{A} -isotropic. Then according to each case, we give a complete classification of real hypersurfaces in $Q^m = SO_{m+2}/SO_mSO_2$ with Killing shape operator.

1. INTRODUCTION

When we consider some Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric spaces $SU_{m+2}/S(U_2U_m)$ and $SU_{2,m}/S(U_2U_m)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [15], [16], and [17]). These are viewed as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure Jand the quaternionic Kähler structure \mathfrak{J} .

In the complex projective space $\mathbb{C}P^{m+1}$ and the quaternionic projective space $\mathbb{Q}P^{m+1}$ some classifications of real hypersurfaces related to commuting Ricci tensor were investigated by Kimura [9], and Pérez and Suh [11], [12] respectively. The classification problems of real hypersurfaces of the complex 2-plane Grassmannian $G_2(\mathbb{C}^{m+2}) = SU_{m+2}/S(U_2U_m)$ with certain geometric conditions were mainly discussed in Jeong, Kim and Suh [2], Jeong, Machado, Pérez and Suh [3], [4], Suh [15], [16], [17], where the classification of *contact* hypersurfaces, parallel Ricci tensor, harmonic curvature and Jacobi operator of a real hypersurface in $G_2(\mathbb{C}^{m+2})$ were extensively studied. Moreover, in [17] we have asserted that the Reeb flow on a real hypersurface in $SU_{2,m}/S(U_2U_m)$ is isometric if and only if M is an open part of a tube around a totally geodesic $SU_{2,m-1}/S(U_2U_{m-1}) \subset SU_{2,m}/S(U_2U_m)$

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we can consider the example of complex quadric $Q^m = SO_{m+2}/SO_mSO_2$, which is a complex hypersurface in complex projective space $\mathbb{C}P^{m+1}$ (see Klein [5], [6], [8] and Smyth [14]). The complex quadric can also be regarded as a

²⁰¹⁰ Mathematics Subject Classification: Primary 53C40. Secondary 53C55.

Key words: Killing shape operator, \mathfrak{A} -isotropic, \mathfrak{A} -principal, Kähler structure, complex conjugation, complex quadric.

This work was supported by grant Proj. No. NRF-2015-R1A2A1A-01002459 from National Research Foundation of Korea. The first author was supported by MCT-FEDER project MTM-2013-47828-C2-1-P, the second and third authors were supported by NRF-2017-R1A2B4005317, and the fourth by Bokhyun Research 2017.

kind of real Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [10]). Accordingly, the complex quadric admits two important geometric structures, a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, AJ = -JA. Then for $m \ge 2$ the triple (Q^m, J, g) is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [5], [7] and Reckziegel [13]).

Apart from the complex structure J there is another distinguished geometric structure on Q^m , namely a parallel rank two vector bundle \mathfrak{A} which contains an S^1 -bundle of real structures, that is, complex conjugations A on the tangent spaces of Q^m . This geometric structure determines a maximal \mathfrak{A} -invariant subbundle \mathcal{Q} of the tangent bundle TM of a real hypersurface M in Q^m .

Moreover, the derivative of the complex conjugation A on Q^m is defined by

$$(\bar{\nabla}_X A)Y = q(X)JAY$$

for any vector fields X and Y on M and q denotes a certain 1-form defined on M.

When the shape operator S of M in Q^m satisfies $(\nabla_X S)Y = (\nabla_Y S)X$ for any X, Yon M in Q^m , we say that the shape operator is of *Codazzi type*. In [18] we gave a nonexistence property of real hypersurfaces of Codazzi type in the complex quadric Q^m with parallel shape operator as follows:

Theorem A. There do not exist any real hypersurfaces in complex quadric Q^m , $m \ge 3$, with shape operator of Codazzi type.

Recall that a nonzero tangent vector $W \in T_{[z]}Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m . There are two types of singular tangent vectors for the complex quadric Q^m :

- 1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -principal.
- 2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W/||W|| = (X + JY)/\sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -isotropic.

When we consider a hypersurface M in the complex quadric Q^m , under the assumption of some geometric properties the unit normal vector field N of M in Q^m can be divided into two classes if either N is \mathfrak{A} -isotropic or \mathfrak{A} -principal (see [18] and [19]). In the first case where N is \mathfrak{A} -isotropic, we have shown in Suh [18] that M is locally congruent to a tube over a totally geodesic $\mathbb{C}P^k$ in Q^{2k} . In the second case, when the unit normal Nis \mathfrak{A} -principal, we proved that a contact hypersurface M in Q^m is locally congruent to a tube over a totally geodesic and totally real submanifold S^m in Q^m (see [19]).

The shape operator S of M in Q^m is said to be Killing if the operator S satisfies

$$(\nabla_X S)Y + (\nabla_Y S)X = 0$$

for any $X, Y \in T_z M$, $z \in M$. The equation is equivalent to $(\nabla_X S)X = 0$ for any $X \in T_z M$, $z \in M$, because of linearization. Moreover, we can give the geometric meaning of Killing Jacobi tensor as follows:

When we consider a geodesic γ with initial conditions such that $\gamma(0) = z$ and $\dot{\gamma}(0) = X$. Then the transformed vector field $S\dot{\gamma}$ is Levi-Civita *parallel* along the geodesic γ of the vector field X (see Blair [1] and Tachibana [23]).

In the study of real hypersurfaces in the complex quadric Q^m we considered the notion of parallel Ricci tensor, that is, $\nabla \text{Ric} = 0$ (see Suh [19]). But from the assumption of Ricci being parallel, it was difficult for us to derive the fact that either the unit normal N is \mathfrak{A} -isotropic or \mathfrak{A} -principal. So in [19] we gave a classification with the further assumption of \mathfrak{A} -isotropic. But fortunately, when we consider Killing shape operator, first we can assert that the unit normal vector field N becomes either \mathfrak{A} -isotropic or \mathfrak{A} -principal as follows:

Main Theorem 1. Let M be a Hopf real hypersurface in Q^m , $m \ge 3$, with Killing shape operator. Then the unit normal vector field N is singular, that is, N is \mathfrak{A} -isotropic or \mathfrak{A} -principal.

Then motivated by such a result, next we give a complete classification for real hypersurfaces in the complex quadric Q^m with Killing shape operator as follows:

Main Theorem 2. Let M be a Hopf real hypersurface in the complex quadric Q^m , $m \ge 4$, with Killing shape operator. Then M has 4 distinct constant principal curvatures given by

$$\alpha \neq 0, \ \beta = \gamma = 0, \ \lambda = \frac{(\alpha^2 + 1) + \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha}, \ and \\ \mu = \frac{(\alpha^2 + 1) - \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha}$$

with corresponding principal curvature spaces respectively

 $T_{\alpha} = [\xi], T_{\beta} = [AN], T_{\gamma} = [A\xi], \phi(T_{\lambda}) = T_{\mu}, and dim T_{\lambda} = dim T_{\mu} = m - 2.$

Usually, Killing shape operator is a generalization of parallel shape operator S of M in Q^m , that is, $\nabla_X S = 0$ for any tangent vector field X on M. The parallelism of shape operator has a geometric meaning that every eigen spaces of the shape operator S are parallel along any direction on M in Q^m . Then naturally, by Theorem 2 above we give the following

Corollary. There do not exist any Hopf real hypersurfaces in Q^m , $m \ge 3$, with parallel shape operator.

2. The complex quadric

For more background to this section we refer to [5], [10], [13], [18], [19] and [20]. The complex quadric Q^m is the complex hypersurface in $\mathbb{C}P^{m+1}$ which is defined by the equation $z_0^2 + \cdots + z_{m+1}^2 = 0$, where z_0, \ldots, z_{m+1} are homogeneous coordinates on $\mathbb{C}P^{m+1}$. We equip Q^m with the Riemannian metric g which is induced from the Fubini-Study metric \bar{g} on $\mathbb{C}P^{m+1}$ with constant holomorphic sectional curvature 4. The Fubini-Study metric \bar{g} is defined by $\bar{g}(X,Y) = \Phi(JX,Y)$ for any vector fields X and Y on $\mathbb{C}P^{m+1}$ and a globally closed (1,1)-form Φ given by $\Phi = -4i\partial\bar{\partial}\log f_j$ on an open set $U_j = \{[z_0,\ldots,z_j,\ldots,z_{m+1}] \in \mathbb{C}P^{m+1} | z_j \neq 0\}$, where the function f_j denotes $f_j = \sum_{k=0}^{m+1} t_j^k \bar{t}_j^k$, and $t_j^k = \frac{z_k}{z_j}$ for $j, k = 0, \dots, m+1$. Then naturally the Kähler structure on $\mathbb{C}P^{m+1}$ induces canonically a Kähler structure (J, g) on the complex quadric Q^m .

The complex projective space $\mathbb{C}P^{m+1}$ is a Hermitian symmetric space of the special unitary group SU_{m+2} , namely $\mathbb{C}P^{m+1} = SU_{m+2}/S(U_{m+1}U_1)$. We denote by $o = [0, \ldots, 0, 1] \in \mathbb{C}P^{m+1}$ the fixed point of the action of the stabilizer $S(U_{m+1}U_1)$. The special orthogonal group $SO_{m+2} \subset SU_{m+2}$ acts on $\mathbb{C}P^{m+1}$ with cohomogeneity one. The orbit containing ois a totally geodesic real projective space $\mathbb{R}P^{m+1} \subset \mathbb{C}P^{m+1}$. The second singular orbit of this action is the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. This homogeneous space model leads to the geometric interpretation of the complex quadric Q^m as the Grassmann manifold $G_2^+(\mathbb{R}^{m+2})$ of oriented 2-planes in \mathbb{R}^{m+2} . It also gives a model of Q^m as a Hermitian symmetric space of rank 2. The complex quadric Q^1 is isometric to a sphere S^2 with constant curvature, and Q^2 is isometric to the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume $m \geq 3$ from now on.

In another way, the complex projective space $\mathbb{C}P^{m+1}$ is defined by using the Hopf fibration

$$\pi: S^{2m+3} \to \mathbb{C}P^{m+1}, \quad z \to [z]$$

which is said to be a Riemannian submersion. Then naturally we can consider the following diagram for the complex quadric Q^m as follows:

The submanifold \tilde{Q} of codimension 2 in S^{2m+3} is called the Stiefel manifold of orthonormal 2-frames in \mathbb{R}^{m+2} , which is given by

$$\tilde{Q} = \{x + iy \in \mathbb{C}^{m+2} | g(x, x) = g(y, y) = \frac{1}{2} \text{ and } g(x, y) = 0\},\$$

where $g(x, y) = \sum_{i=1}^{m+2} x_i y_i$ for any $x = (x_1, \ldots, x_{m+2})$ and $y = (y_1, \ldots, y_{m+2}) \in \mathbb{R}^{m+2}$. Then the tangent space is decomposed as $T_z S^{2m+3} = H_z \oplus F_z$ and $T_z \tilde{Q} = H_z(Q) \oplus F_z(Q)$ at $z = x + iy \in \tilde{Q}$ respectively, where the horizontal subspaces H_z and $H_z(Q)$ are given by $H_z = (\mathbb{C}z)^{\perp}$ and $H_z(Q) = (\mathbb{C}z \oplus \mathbb{C}\bar{z})^{\perp}$, and F_z and $F_z(Q)$ are fibers which are isomorphic to each other. Here $H_z(Q)$ becomes a subspace of H_z of real codimension 2 and orthogonal to the two unit normals $-\bar{z}$ and $-J\bar{z}$. Explicitly, at the point $z = x + iy \in \tilde{Q}$ it can be described as

$$H_z = \{ u + iv \in \mathbb{C}^{m+2} | \quad g(x, u) + g(y, v) = 0, \quad g(x, v) = g(y, u) \}$$

and

 $H_z(Q) = \{ u + iv \in H_z | \quad g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0 \},$ where $\mathbb{C}^{m+2} = \mathbb{R}^{m+2} \oplus i\mathbb{R}^{m+2}$, and $g(u, x) = \sum_{i=1}^{m+2} u_i x_i$ for any $u = (u_1, \dots, u_{m+2}), x = (x_1, \dots, x_{m+2}) \in \mathbb{R}^{m+2}.$

These spaces can be naturally projected by the differential map π_* as $\pi_* H_z = T_{\pi(z)} \mathbb{C}P^{m+1}$ and $\pi_* H_z(Q) = T_{\pi(z)}Q$ respectively. This gives that at the point $\pi(z) = [z]$ the tangent subspace $T_{[z]}Q^m$ becomes a complex subspace of $T_{[z]}\mathbb{C}P^{m+1}$ with complex codimension 1 and has two unit normal vector fields $-\bar{z}$ and $-J\bar{z}$ (see Reckziegel [13]).

Then let us denote by $A_{\bar{z}}$ the shape operator of Q^m in $\mathbb{C}P^{m+1}$ with respect to the unit normal \bar{z} . It is defined by $A_{\bar{z}}w = \bar{\nabla}_w \bar{z} = \bar{w}$ for a complex Euclidean connection $\bar{\nabla}$ induced from \mathbb{C}^{m+2} and all $w \in T_{[z]}Q^m$. That is, the shape operator $A_{\bar{z}}$ is just a complex conjugation restricted to $T_{[z]}Q^m$. Moreover, it satisfies the following for any $w \in T_{[z]}Q^m$ and any $\lambda \in S^1 \subset \mathbb{C}$

$$\begin{aligned} A_{\lambda\bar{z}}^2 w =& A_{\lambda\bar{z}} A_{\lambda\bar{z}} w = A_{\lambda\bar{z}} \lambda \bar{w} \\ =& \lambda A_{\bar{z}} \lambda \bar{w} = \lambda \bar{\nabla}_{\lambda\bar{w}} \bar{z} = \lambda \bar{\lambda} \bar{w} \\ =& |\lambda|^2 w = w. \end{aligned}$$

Accordingly, $A_{\lambda\bar{z}}^2 = I$ for any $\lambda \in S^1$. So the shape operator $A_{\bar{z}}$ becomes an anti-commuting involution such that $A_{\bar{z}}^2 = I$ and AJ = -JA on the complex vector space $T_{[z]}Q^m$ and

$$T_{[z]}Q^m = V(A_{\bar{z}}) \oplus JV(A_{\bar{z}}),$$

where $V(A_{\bar{z}}) = \mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the (+1)-eigenspace and $JV(A_{\bar{z}}) = i\mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the (-1)-eigenspace of $A_{\bar{z}}$. That is, $A_{\bar{z}}X = X$ and $A_{\bar{z}}JX = -JX$, respectively, for any $X \in V(A_{\bar{z}})$.

Geometrically this means that the shape operator $A_{\bar{z}}$ defines a real structure on the complex vector space $T_{[z]}Q^m$, or equivalently, is a complex conjugation on $T_{[z]}Q^m$. Since the real codimension of Q^m in $\mathbb{C}P^{m+1}$ is 2, this induces an S^1 -subbundle \mathfrak{A} of the endomorphism bundle $\operatorname{End}(TQ^m)$ consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q^m can be viewed as the complexification of the *m*-dimensional sphere S^m . Through each point $[z] \in Q^m$ there exists a one-parameter family of real forms of Q^m which are isometric to the sphere S^m . These real forms are congruent to each other under action of the center SO_2 of the isotropy subgroup of SO_{m+2} at [z]. The isometric reflection of Q^m in such a real form S^m is an isometry, and the differential at [z] of such a reflection is a conjugation on $T_{[z]}Q^m$. In this way the family \mathfrak{A} of conjugations on $T_{[z]}Q^m$ corresponds to the family of real forms S^m of Q^m containing [z], and the subspaces $V(A) \subset T_{[z]}Q^m$ correspond to the tangent spaces $T_{[z]}S^m$ of the real forms S^m of Q^m .

The Gauss equation for $Q^m \subset \mathbb{C}P^{m+1}$ implies that the Riemannian curvature tensor \overline{R} of Q^m can be described in terms of the complex structure J and the complex conjugations $A \in \mathfrak{A}$:

$$\overline{R}(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY - 2g(JX,Y)JZ +g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY.$$

Note that J and each complex conjugation A anti-commute, that is, AJ = -JA for each $A \in \mathfrak{A}$.

For every unit tangent vector $W \in T_{[z]}Q^m$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$W = \cos(t)X + \sin(t)JY$$

for some $t \in [0, \pi/4]$. The singular tangent vectors correspond to the values t = 0 and $t = \pi/4$. When W = X for $X \in V(A)$, t = 0, there exist many kinds of maximal 2-flats $\mathbb{R}X + \mathbb{R}Z$ for $Z \in V(A)$ orthogonal to $X \in V(A)$. So the tangent vector X is said to be singular. When $W = (X + JY)/\sqrt{2}$ for $t = \frac{\pi}{4}$, it becomes also a singular tangent vector, which belongs to many kinds of maximal 2-flats given by $\mathbb{R}(X + JY) + \mathbb{R}Z$ for any $Z \in V(A)$ orthogonal to $X \in V(A)$ or $\mathbb{R}(X + JY) + \mathbb{R}JZ$ for any $JZ \in JV(A)$. If $0 < t < \pi/4$ then the unique maximal flat containing W is $\mathbb{R}X \oplus \mathbb{R}JY$.

3. Some general equations

Let M be a real hypersurface in Q^m and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that $\xi = -JN$, where N is a (local) unit normal vector field of M and η the corresponding 1-form defined by $\eta(X) = g(\xi, X)$ for any tangent vector field X on M. The tangent bundle TM of M splits orthogonally into $TM = \mathcal{C} \oplus \mathbb{R}\xi$, where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C} , and $\phi\xi = 0$.

At each point $z \in M$ we define a maximal \mathfrak{A} -invariant subspace of T_zM , $z\in M$ as follows:

$$\mathcal{Q}_z = \{ X \in T_z M \mid AX \in T_z M \text{ for all } A \in \mathfrak{A}_z \}.$$

Then we want to introduce an important lemma which will be used in the proof of our main Theorem in the introduction.

Lemma 3.1. ([18]) For each $z \in M$ we have

- (i) If N_z is \mathfrak{A} -principal, then $\mathcal{Q}_z = \mathcal{C}_z$.
- (ii) If N_z is not \mathfrak{A} -principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $N_z = \cos(t)X + \sin(t)JY$ for some $t \in (0, \pi/4]$. Then we have $\mathcal{Q}_z = \mathcal{C}_z \ominus \mathbb{C}(JX + Y)$.

We now assume that M is a Hopf hypersurface. Then the Reeb vector field $\xi = -JN$ satisfies the following

$$S\xi = \alpha\xi,$$

where S denotes the shape operator of the real hypersurface M for a smooth function $\alpha = g(S\xi, \xi)$ on M. When we consider the transformed JX by the Kähler structure J on Q^m for any vector field X on M in Q^m , we may put

$$JX = \phi X + \eta(X)N$$

for a unit normal N to M. Then we now consider the equation of Codazzi

$$g((\nabla_X S)Y - (\nabla_Y S)X, Z) = \eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y) + g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z) + g(X, A\xi)g(JAY, Z) - g(Y, A\xi)g(JAX, Z).$$
(3.1)

Putting $Z = \xi$ in (3.1) we get

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi) = -2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) - g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi).$$

On the other hand, we have

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$

= $g((\nabla_X S)\xi, Y) - g((\nabla_Y S)\xi, X)$
= $(X\alpha)\eta(Y) - (Y\alpha)\eta(X) + \alpha g((S\phi + \phi S)X, Y) - 2g(S\phi SX, Y).$

Comparing the previous two equations and putting $X = \xi$ yields

$$Y\alpha = (\xi\alpha)\eta(Y) - 2g(\xi, AN)g(Y, A\xi) + 2g(Y, AN)g(\xi, A\xi).$$

Reinserting this into the previous equation yields

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$

= $-2g(\xi, AN)g(X, A\xi)\eta(Y) + 2g(X, AN)g(\xi, A\xi)\eta(Y)$
 $+2g(\xi, AN)g(Y, A\xi)\eta(X) - 2g(Y, AN)g(\xi, A\xi)\eta(X)$
 $+\alpha g((\phi S + S\phi)X, Y) - 2g(S\phi SX, Y).$

Altogether this implies

$$0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) - g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi) + 2g(\xi, AN)g(X, A\xi)\eta(Y) - 2g(X, AN)g(\xi, A\xi)\eta(Y) - 2g(\xi, AN)g(Y, A\xi)\eta(X) + 2g(Y, AN)g(\xi, A\xi)\eta(X).$$
(3.2)

At each point $z \in M$ we can choose $A \in \mathfrak{A}_z$ such that

 $N = \cos(t)Z_1 + \sin(t)JZ_2$

for some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$ (see Proposition 3 in [13]). Note that t is a function on M. First of all, since $\xi = -JN$, we have

$$AN = \cos(t)Z_{1} - \sin(t)JZ_{2},$$

$$\xi = \sin(t)Z_{2} - \cos(t)JZ_{1},$$

$$A\xi = \sin(t)Z_{2} + \cos(t)JZ_{1}.$$

(3.3)

This implies $g(\xi, AN) = 0$ and hence

$$0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) - g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi) - 2g(X, AN)g(\xi, A\xi)\eta(Y) + 2g(Y, AN)g(\xi, A\xi)\eta(X).$$
(3.4)

4. KILLING SHAPE OPERATOR AND A KEY LEMMA

By the equation of Gauss, the curvature tensor R(X, Y)Z for a real hypersurface M in Q^m induced from the curvature tensor \overline{R} of Q^m can be described in terms of the complex

8 JUAN DE DIOS PÉREZ, IMSOON JEONG, JUNHYUNG KO, AND YOUNG JIN SUH

structure J and the complex conjugation $A \in \mathfrak{A}$ as follows:

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z +g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY +g(SY,Z)SX - g(SX,Z)SY$$

for any $X, Y, Z \in T_z M, z \in M$.

Now let us put

$$AX = BX + \rho(X)N,$$

for any vector field $X \in T_z Q^m$, $z \in M$, $\rho(X) = g(AX, N)$, where BX and $\rho(X)N$ respectively denote the tangential and normal component of the vector field AX. Then $A\xi = B\xi + \rho(\xi)N$ and $\rho(\xi) = g(A\xi, N) = 0$. Then it follows that

$$AN = AJ\xi = -JA\xi = -J(B\xi + \rho(\xi)N)$$
$$= -(\phi B\xi + \eta(B\xi)N).$$

The shape operator S of M in Q^m is said to be Killing if the operator S satisfies

$$(\nabla_X S)Y + (\nabla_Y S)X = 0. \tag{4.1}$$

for any $X, Y \in T_z M, z \in M$.

From (4.1), together with the equation of Codazzi (3.1), it follows that

$$2g((\nabla_X S)Y, Z) = \eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y) + g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z) + g(X, A\xi)g(JAY, Z) - g(Y, A\xi)g(JAX, Z).$$
(4.2)

Since we have assumed the real hypersurface M in Q^m is Hopf, then $S\xi = \alpha\xi$. This gives

$$(\nabla_X S)\xi = (X\alpha)\xi + \alpha\phi SX - S\phi SX$$

From this, let us put $Y = \xi$ in (4.2) and use $g(A\xi, N) = 0$, we see that

$$2g((X\alpha)\xi + \alpha\phi SX - S\phi SX, Z) = -g(\phi X, Z) + g(X, AN)g(A\xi, Z) + g(X, A\xi)g(JA\xi, Z) - g(\xi, A\xi)g(JAX, Z).$$

$$(4.3)$$

Here, let us put $X = \xi$ in (4.3) and also use $g(\xi, AN) = 0$, we have

$$2(\xi\alpha)\eta(Z) = g(\xi, A\xi)g(JA\xi, Z) - g(\xi, A\xi)g(JA\xi, Z) = 0.$$

From this we get $\xi \alpha = 0$. Then the derivative $Y \alpha$ in section 3 becomes

$$Y\alpha = 2g(Y, AN)g(\xi, A\xi).$$

From this, together with (4.3), it follows that

$$2g(2g(X,AN)g(\xi,A\xi)\xi + \alpha\phi SX - S\phi SX,Z) = -g(\phi X,Z) + g(X,AN)g(A\xi,Z) + g(X,A\xi)g(JA\xi,Z) - g(\xi,A\xi)g(JAX,Z).$$

$$(4.4)$$

Then by putting $Z = \xi$ into (4.3), we have

$$4g(X, AN)g(\xi, A\xi) = g(X, AN)g(A\xi, \xi) + g(X, A\xi)g(JA\xi, \xi) - g(\xi, A\xi)g(JAX, \xi) = 2g(X, AN)g(A\xi, \xi).$$

$$(4.5)$$

Since $g(A\xi, N) = 0$, (4.5) gives that

$$g(A\xi,\xi)g(AN,X) = 0.$$

Then we have $g(A\xi,\xi) = 0$ or $(AN)^T = 0$, where $(AN)^T$ denotes the tangential part of the vector AN.

Summing up above discussions, we conclude the following

Lemma 4.1. Let M be a Hopf real hypersurface in Q^m , $m \ge 3$, with Killing shape operator. Then the unit normal vector field N is singular, that is, N is \mathfrak{A} -isotropic or \mathfrak{A} -principal.

Proof. In above discussion, let us consider the first case $g(A\xi,\xi) = 0$. Then it implies that

$$0 = g(A\xi,\xi) = g(AJN,JN) = -g(JAN,JN) = -g(AN,N).$$

If we insert $N = \cos t Z_1 + \sin t J Z_2$ for $Z_1, Z_2 \in V(A)$ into the above equation, we have $\cos^2 t - \sin^2 t = 0$. Then by section 2, we have $t = \frac{\pi}{4}$, that is, $N = \frac{1}{\sqrt{2}}(X + JY)$ for some $X, Y \in V(A)$. So the unit normal N is \mathfrak{A} -isotropic.

Next we consider the case that $(AN)^T = 0$. Then $AN = (AN)^T + g(AN, N)N = g(AN, N)N$. So it follows that

$$N = A^2 N = g(AN, N)AN = g^2(AN, N)N.$$

So $g(AN, N) = \pm 1$ gives that $AN = \pm N$. That is, the unit normal N is \mathfrak{A} -principal. \Box

Then we are able to consider the classification of Killing shape operator S of M in Q^m into two cases, that the unit normal N is \mathfrak{A} -principal or N is \mathfrak{A} -isotropic. In section 5 we will discuss a classification of real hypersurfaces in Q^m with Killing shape operator and \mathfrak{A} -isotropic unit normal and in section 6 a non-existence of Killing shape operator for hypersurfaces in Q^m when N is \mathfrak{A} -principal will be explained in detail.

5. Proof of Main Theorem with \mathfrak{A} -isotropic unit normal

In this section let us assume that the unit normal vector field N is \mathfrak{A} -isotropic. Then the normal vector field N can be written

$$N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)$$

for $Z_1, Z_2 \in V(A)$, where V(A) denotes the (+1)-eigenspace of the complex conjugation $A \in \mathfrak{A}$. Then it follows that

$$AN = \frac{1}{\sqrt{2}}(Z_1 - JZ_2), AJN = -\frac{1}{\sqrt{2}}(JZ_1 + Z_2), \text{ and } JN = \frac{1}{\sqrt{2}}(JZ_1 - Z_2).$$

From this, together with (3.3) and the anti-commuting AJ = -JA, it follows that

$$g(\xi, A\xi) = g(JN, AJN) = 0, \ g(\xi, AN) = 0 \text{ and } g(AN, N) = 0.$$

Then (4.3) gives the following for any $X, Z \in T_z M, z \in M$

$$2g(\alpha\phi SX - S\phi SX, Z) = -g(\phi X, Z) + g(X, AN)g(A\xi, Z) + g(X, A\xi)g(JA\xi, Z) = -g(\phi X, Z) + g(X, AN)g(A\xi, Z) - g(X, A\xi)g(AN, Z).$$
(5.1)

Since $A\xi$, $AN \in T_xM$, $x \in M$, it implies

$$2(\alpha\phi SX - S\phi X) = -\phi X + g(X, AN)A\xi - g(X, A\xi)AN.$$
(5.2)

On the other hand, from the formula (5.6) of Suh [19] for a Hopf real hypersurface M with \mathfrak{A} -isotropic unit normal N

$$2S\phi SX = \alpha(S\phi + \phi S)X + 2\phi X - 2g(X, AN)A\xi + 2g(X, A\xi)AN.$$
(5.3)

Then by virtue of (5.2) and (5.3), we have

$$-2S\phi SX = \alpha S\phi X - 3\alpha\phi SX. \tag{5.4}$$

We know that the tangent space T_zM , $z \in M$ is decomposed as follows:

$$T_z M = [\xi] \oplus [A\xi, AN] \oplus \mathcal{Q},$$

where $\mathcal{C} \ominus \mathcal{Q} = \mathcal{Q}^{\perp} = \operatorname{Span}[A\xi, AN].$

Lemma 5.1. Let M be a Hopf real hypersurface in the complex quadric Q^m , $m \ge 3$, with \mathfrak{A} -isotropic unit normal vector field. Then

$$SAN = 0$$
, and $SA\xi = 0$.

Proof. Let us denote by $\mathcal{C} \ominus \mathcal{Q} = \mathcal{Q}^{\perp} = \text{Span}[A\xi, AN]$. Since N is isotropic, g(AN, N) = 0 and $g(A\xi, \xi) = 0$. By differentiating g(AN, N) = 0 and using $(\bar{\nabla}_X A)Y = q(X)JAY$ and the equation of Weingarten, we know that

$$0 = g(\nabla_X(AN), N) + g(AN, \nabla_X N)$$

= $g(q(X)JAN - ASX, N) - g(AN, SX)$
= $-2g(ASX, N).$

Then SAN = 0. Moreover, by differentiating $g(A\xi, N) = 0$ and using g(AN, N) = 0, we have the following formula

$$0 = g(\nabla_X(A\xi), N) + g(A\xi, \nabla_X N)$$

= $g(q(X)JA\xi + A(\phi SX + g(SX, \xi)N), N) - g(SA\xi, X)$
= $-2g(SA\xi, X)$

for any $X \in T_z M$, $z \in M$, where in the third equality we have used $\phi AN = JAN = -AJN = A\xi$. Then it follows that

$$SA\xi = 0.$$

It completes the proof of our assertion.

By Lemma 5.1 we know that the distribution \mathcal{Q}^{\perp} for a Hopf real hypersurface M in Q^m is invariant by the shape operator S, so the distribution \mathcal{Q} is also S-invariant. From this fact we may consider a principal curvature vector $X \in \mathcal{Q}$ such that $SX = \lambda X$, because the distribution \mathcal{Q} can be diagonalized. Then (5.4) gives

$$S\phi X = \frac{3\alpha\lambda}{2\lambda + \alpha}\phi X.$$
(5.5)

Here we note that $2\lambda + \alpha \neq 0$. In fact, if $2\lambda + \alpha = 0$, then $\alpha = \lambda = 0$, and from (5.3), it gives us a contradiction. For $X \in \mathcal{Q}$, we know that $g(X, AN) = g(X, A\xi) = 0$. So (5.3) gives the following

$$2S\phi SX = \alpha(S\phi + \phi S)X + 2\phi X.$$
(5.6)

Then we consider two cases for $X \in \mathcal{Q}$ or $X \in \mathcal{Q}^{\perp}$.

As a first, for $X \in \mathcal{Q}$ such that $SX = \lambda X$ the formula (5.6) gives

$$2\lambda S\phi X = \alpha S\phi X + (\alpha\lambda + 2)\phi X. \tag{5.7}$$

If $\alpha = 2\lambda$, we should have $2(\lambda^2 + 1)\phi X = 0$, which is impossible. Then we have for $S\phi X = \mu\phi X$

$$S\phi X = \frac{\alpha\lambda + 2}{2\lambda - \alpha}\phi X.$$
(5.8)

Then (5.5) and (5.8) give

$$\frac{\alpha\lambda+2}{2\lambda-\alpha}\phi X = \frac{3\alpha\lambda}{2\lambda+\alpha}\phi X.$$

From this, any principal curvatures λ and μ of the distribution Q satisfy the following quadratic equation

$$2\alpha\lambda^2 - 2(\alpha^2 + 1)\lambda - \alpha = 0.$$
(5.9)

The solutions become the following constant principal curvatures given by

$$\lambda, \mu = \frac{(\alpha^2 + 1) \pm \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha},$$
(5.10)

because the Reeb function α is constant for \mathfrak{A} -isotropic unit normal N. Here we note that the Reeb function α can not vanish. If the function α identically vanishes, then (5.9) gives $\lambda = 0$. From this, together with (5.7), we have $\phi X = 0$, which implies a contradiction.

From this, together with Lemma 5.1, the expression of the shape operator becomes the following

$$S = \begin{bmatrix} \alpha & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \lambda & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & \mu & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \mu \end{bmatrix}$$

where the principal curvatures λ and μ are given by (5.10) with multiplicities m-2 respectively.

Summing up the above discussions, we give the following

Theorem 5.2. Let M be a real hypersurface in the complex quadric Q^m with \mathfrak{A} -isotropic unit normal vector field. Then M has 4 distinct constant principal curvatures given by

$$\begin{array}{l} \alpha \neq 0, \ \beta = \gamma = 0, \ \lambda = \frac{(\alpha^2 + 1) + \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha}, and \\ \mu = \frac{(\alpha^2 + 1) - \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha} \end{array}$$

with corresponding principal curvature spaces respectively

 $T_{\alpha} = [\xi], T_{\beta} = [AN], T_{\gamma} = [A\xi], \phi(T_{\lambda}) = T_{\mu}, and dim T_{\lambda} = dim T_{\mu} = m - 2.$

6. Proof of Main Theorem with \mathfrak{A} -principal

In this section let us consider a real hypersurface M in Q^m with Killing shape operator for the case that the unit normal N is \mathfrak{A} -principal. In this case the Killing shape operator (4.3) gives that

$$2g(\{\alpha\phi SX - S\phi SX\}, Z) = -g(\phi X, Z) + g(\phi AX, Z),$$

where we have used $g(\xi, A\xi) = -1$ and $JAX = \phi AX + \eta (AX)N$. Then it follows that

$$2(\alpha\phi SX - S\phi SX) = -\phi X + \phi AX. \tag{6.1}$$

Since the unit normal vector field N is \mathfrak{A} -principal, $A\xi = -\xi$. Then differentiating this and using Gauss equation give

$$\nabla_X(A\xi) = \bar{\nabla}_X(A\xi) - g(SX, A\xi)N = -q(X)N + \alpha\eta(X)N, \tag{6.2}$$

where q denotes a certain 1-form defined on M as in the introduction. From this, together with $\nabla_X(A\xi) = -\nabla_X \xi = -\phi SX$, we have

$$\phi X = \phi A X$$

This gives that

$$AX = X - 2\eta(X)\xi.$$

Then we have

$$TrA = g(AN, N) + \sum_{i=1}^{2m-1} g(Ae_i, e_i)$$

= $\sum_{i=1}^{2m-1} g(e_i - 2\eta(e_i)\xi, e_i)$
= $2(m-1).$ (6.3)

But TrA = 0, because $T_zQ^m = V(A) \oplus JV(A)$, where $V(A) = \{X \in T_zQ^m | AX = X\}$ and $JV(A) = \{X \in T_zQ^m | AX = -X\}$. This gives us a contradiction. So we assert another theorem as follows:

Theorem 6.1. There do not exist any real hypersurface in the complex quadric Q^m with Killing shape operator if the unit normal vector field is \mathfrak{A} -principal.

Summing up all of discussions including sections 4 and 5, by Theorems 4.1, 5.2 and 6.1, we give a complete proof of our Main Theorem 2 in the introduction.

References

- D.E. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. of Math. 39 (1971), 285-292.
- [2] I. Jeong, H.J. Kim and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator, Publ. Math. Debrecen 76 (2010), 203-218.
- [3] I. Jeong, C.J.G. Machado, J.D. Pérez and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with D[⊥]-parallel structure Jacobi operator, International J. Math. 22 (2011), 655-673.
- [4] I. Jeong, C.J.G. Machado, J.D. Pérez and Y.J. Suh, *D*-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians, Ann Mat Pura Appl. 193, (2014), 591-608.
- [5] S. Klein, Totally geodesic submanifolds in the complex quadric, Diff. Geom. and Its Appl. 26 (2008), 79–96.
- [6] S. Klein, Totally geodesic submanifolds of the complex quadric and the quaternionic 2-Grassmannians, Trans. of Amer. Math. Soc. 361 (2009), 4927-4967.

- S. Klein, Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram, Geom. Dedicata 138 (2009), 25-50.
- [8] S. Klein, Totally geodesic submanifolds of the exceptional Riemannian symmetric spaces of rank 2, Osaka J. Math. 47 (2010), 1077-1157.
- M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137–149.
- [10] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, A Wiley-Interscience Publ., Wiley Classics Library Ed., 1996.
- [11] J.D. Pérez and Y.J. Suh, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0$, Diff. Geom. and Its Appl. 7 (1997), 211–217.
- [12] J.D. Pérez and Y.J. Suh, Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective space, Acta Math. Hungar. 91 (2001), 343–356.
- [13] H. Reckziegel, On the geometry of the complex quadric, Geometry and Topology of Submanifolds VIII (Brussels/Nordfjordeid 1995), World Sci. Publ., River Edge, NJ, 1995, pp. 302–315.
- [14] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246-266.
- [15] Y.J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math. 147 (2006), 337-355.
- [16] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Royal Soc. Edinb. A. 142 (2012), 1309-1324.
- [17] Y.J. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Advances in Applied Math. 50 (2013), 645–659.
- [18] Y.J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, International J. Math. 25 (2014), 1450059, 17pp.
- [19] Y.J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Advances in Math. 281 (2015), 886-905.
- [20] Y.J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. 106 (2016), 393-410..
- [21] Y.J. Suh and D.H. Hwang, Real hypersurfaces in the complex quadric with commuting Ricci tensor, Sci. China Math., 59 (2016), 21852198.
- [22] Y.J. Suh and C. Woo, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor, Math. Nachr. 55 (2014), 1524-1529.
- [23] S. Tachibana, On Killing tensors in a Riemannian space, Tohoku Math. J. 20 (1968), 257-264.

UNIVERSITY OF GRANADA, DEPARTMENT OF GEOMETRY AND TOPOLOGY, GRANADA 18071, SPAIN *E-mail address*: jdperez@ugr.es

PAI CHAI UNIVERSITY, DIVISION OF FUTURE CAPABILITY EDUCATION, DAEJEON 35345, REPUBLIC OF KOREA *E-mail address*: isjeong@pcu.ac.kr

KYUNGPOOK NATIONAL UNIVERSITY, COLLEGE OF NATURAL SCIENCES, DEPARTMENT OF MATHEMATICS, AND RESEARCH INSTITUTE OF REAL & COMPLEX MANIFOLDS, DAEGU 41566, REPUBLIC OF KOREA *E-mail address*: biryu111@naver.com *E-mail address*: yjsuh@knu.ac.kr