REAL HYPERSURFACES WITH KILLING SHAPE OPERATOR IN THE COMPLEX QUADRIC

JUAN DE DIOS PEREZ, IMSOON JEONG, JUNHYUNG KO, ´ AND YOUNG JIN SUH

Abstract. We introduce the notion of Killing shape operator for real hypersurfaces in the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. The Killing shape operator implies that the unit normal vector field *N* becomes A-principal or A-isotropic. Then according to each case, we give a complete classification of real hypersurfaces in Q^m = SO_{m+2}/SO_mSO_2 with Killing shape operator.

1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric spaces $SU_{m+2}/S(U_2U_m)$ and $SU_{2,m}/S(U_2U_m)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [15], [16], and [17]). These are viewed as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure *J* and the quaternionic Kähler structure \mathfrak{J} .

In the complex projective space $\mathbb{C}P^{m+1}$ and the quaternionic projective space $\mathbb{Q}P^{m+1}$ some classifications of real hypersurfaces related to commuting Ricci tensor were investigated by Kimura $[9]$, and Pérez and Suh $[11]$, $[12]$ respectively. The classification problems of real hypersurfaces of the complex 2-plane Grassmannian $G_2(\mathbb{C}^{m+2}) = SU_{m+2}/S(U_2U_m)$ with certain geometric conditions were mainly discussed in Jeong, Kim and Suh [2], Jeong, Machado, Pérez and Suh [3], [4], Suh [15], [16], [17], where the classification of *contact hypersurfaces*, *parallel Ricci tensor*, *harmonic curvature* and *Jacobi operator* of a real hypersurface in $G_2(\mathbb{C}^{m+2})$ were extensively studied. Moreover, in [17] we have asserted that the Reeb flow on a real hypersurface in $SU_{2,m}/S(U_2U_m)$ is isometric if and only if M is an open part of a tube around a totally geodesic $SU_{2,m-1}/S(U_2U_{m-1}) \subset SU_{2,m}/S(U_2U_m)$

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we can consider the example of complex quadric Q^m = SO_{m+2}/SO_mSO_2 , which is a complex hypersurface in complex projective space $\mathbb{C}P^{m+1}$ (see Klein [5], [6], [8] and Smyth [14]). The complex quadric can also be regarded as a

.

²⁰¹⁰ *Mathematics Subject Classification*: Primary 53C40. Secondary 53C55.

Key words: Killing shape operator, 24-isotropic, 24-principal, Kähler structure, complex conjugation, complex quadric.

This work was supported by grant Proj. No. NRF-2015-R1A2A1A-01002459 from National Research Foundation of Korea. The first author was supported by MCT-FEDER project MTM-2013-47828-C2-1-P, the second and third authors were supported by NRF-2017-R1A2B4005317, and the fourth by Bokhyun Research 2017.

kind of real Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [10]). Accordingly, the complex quadric admits two important geometric structures, a complex conjugation structure A and a Kähler structure J , which anti-commute with each other, that is, $AJ = -JA$. Then for $m > 2$ the triple (Q^m, J, q) is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [5], [7] and Reckziegel [13]).

Apart from the complex structure *J* there is another distinguished geometric structure on Q^m , namely a parallel rank two vector bundle $\mathfrak A$ which contains an S^1 -bundle of real structures, that is, complex conjugations *A* on the tangent spaces of Q^m . This geometric structure determines a maximal A-invariant subbundle *Q* of the tangent bundle *TM* of a real hypersurface M in Q^m .

Moreover, the derivative of the complex conjugation *A* on Q^m is defined by

$$
(\bar{\nabla}_X A)Y = q(X)JAY
$$

for any vector fields *X* and *Y* on *M* and *q* denotes a certain 1-form defined on *M*.

When the shape operator *S* of *M* in Q^m satisies $(\nabla_X S)Y = (\nabla_Y S)X$ for any X, Y on *M* in Q^m , we say that the shape operator is of *Codazzi type*. In [18] we gave a nonexistence property of real hypersurfaces of Codazzi type in the complex quadric *Q^m* with parallel shape operator as follows:

Theorem A. *There do not exist any real hypersurfaces in complex quadric* Q^m , $m \geq 3$ *, with shape operator of Codazzi type.*

Recall that a nonzero tangent vector $W \in T_{[z]}Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m . There are two types of singular tangent vectors for the complex quadric *Q^m*:

- 1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then *W* is singular. Such a singular tangent vector is called $\mathfrak A$ -principal.
- 2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W/||W|| = (X + JY)/\sqrt{2}$, then *W* is singular. Such a singular tangent vector is called A-isotropic.

When we consider a hypersurface *M* in the complex quadric Q^m , under the assumption of some geometric properties the unit normal vector field *N* of *M* in *Q^m* can be divided into two classes if either *N* is $\mathfrak A$ -isotropic or $\mathfrak A$ -principal (see [18] and [19]). In the first case where N is $\mathfrak A$ -isotropic, we have shown in Suh [18] that M is locally congruent to a tube over a totally geodesic $\mathbb{C}P^k$ in Q^{2k} . In the second case, when the unit normal N is \mathfrak{A} -principal, we proved that a contact hypersurface *M* in Q^m is locally congruent to a tube over a totally geodesic and totally real submanifold S^m in Q^m (see [19]).

The shape operator *S* of *M* in Q^m is said to be *Killing* if the operator *S* satisfies

$$
(\nabla_X S)Y + (\nabla_Y S)X = 0
$$

for any $X, Y \in T_z M$, $z \in M$. The equation is equivalent to $(\nabla_X S)X = 0$ for any $X \in T_z M$, *z∈M*, because of linearization. Moreover, we can give the geometric meaning of Killing Jacobi tensor as follows:

When we consider a geodesic γ with initial conditions such that $\gamma(0) = z$ and $\dot{\gamma}(0) = X$. Then the transformed vector field $S\dot{\gamma}$ is Levi-Civita *parallel* along the geodesic γ of the vector field *X* (see Blair [1] and Tachibana [23]).

In the study of real hypersurfaces in the complex quadric Q^m we considered the notion of parallel Ricci tensor, that is, *∇*Ric = 0 (see Suh [19]). But from the assumption of Ricci being parallel, it was difficult for us to derive the fact that either the unit normal *N* is A-isotropic or A-principal. So in [19] we gave a classification with the further assumption of A-isotropic. But fortunately, when we consider Killing shape operator, first we can assert that the unit normal vector field N becomes either \mathfrak{A} -isotropic or \mathfrak{A} -principal as follows:

Main Theorem 1. *Let M be a Hopf real hypersurface in* Q^m *, m* \geq 3*, with Killing shape operator. Then the unit normal vector field N is singular, that is, N is* A*-isotropic or* A*-principal.*

Then motivated by such a result, next we give a complete classification for real hypersurfaces in the complex quadric Q^m with Killing shape operator as follows:

Main Theorem 2. *Let M be a Hopf real hypersurface in the complex quadric* Q^m *, m≥*4*, with Killing shape operator. Then M has* 4 *distinct constant principal curvatures given by*

$$
\alpha \neq 0
$$
, $\beta = \gamma = 0$, $\lambda = \frac{(\alpha^2 + 1) + \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha}$, and

$$
\mu = \frac{(\alpha^2 + 1) - \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha}
$$

with corresponding principal curvature spaces respectively

 $T_{\alpha} = [\xi], T_{\beta} = [AN], T_{\gamma} = [A\xi], \phi(T_{\lambda}) = T_{\mu}$, and dim $T_{\lambda} = \dim T_{\mu} = m - 2$.

Usually, Killing shape operator is a generalization of parallel shape operator *S* of *M* in Q^m , that is, $\nabla_X S = 0$ for any tangent vector field *X* on *M*. The parallelism of shape operator has a geometric meaning that every eigen spaces of the shape operator *S* are parallel along any direction on *M* in Q^m . Then naturally, by Theorem 2 above we give the following

Corollary. *There do not exist any Hopf real hypersurfaces in* Q^m *,* $m > 3$ *, with parallel shape operator.*

2. The complex quadric

For more background to this section we refer to [5], [10], [13], [18], [19] and [20]. The complex quadric Q^m is the complex hypersurface in $\mathbb{C}P^{m+1}$ which is defined by the equation $z_0^2 + \cdots + z_{m+1}^2 = 0$, where z_0, \ldots, z_{m+1} are homogeneous coordinates on $\mathbb{C}P^{m+1}$. We equip Q^m with the Riemannian metric *g* which is induced from the Fubini-Study metric \bar{g} on $\mathbb{C}P^{m+1}$ with constant holomorphic sectional curvature 4. The Fubini-Study metric \bar{g} is defined by $\bar{g}(X, Y) = \Phi(JX, Y)$ for any vector fields X and Y on $\mathbb{C}P^{m+1}$ and a globally closed (1*,* 1)-form Φ given by $\Phi = -4i\partial\bar{\partial}logf_j$ on an open set $U_j = \{ [z_0, \ldots, z_j, \ldots, z_{m+1}] \in \mathbb{C}P^{m+1} | z_j \neq 0 \},\$ where the function f_j denotes $f_j = \sum_{k=0}^{m+1} t_j^k \bar{t}_j^k$,

and $t_j^k = \frac{z_k}{z_j}$ $\frac{z_k}{z_j}$ for $j, k = 0, \dots, m+1$. Then naturally the Kähler structure on $\mathbb{C}P^{m+1}$ induces canonically a Kähler structure (J, g) on the complex quadric Q^m .

The complex projective space $\mathbb{C}P^{m+1}$ is a Hermitian symmetric space of the special unitary group SU_{m+2} , namely $\mathbb{C}P^{m+1} = SU_{m+2}/S(U_{m+1}U_1)$. We denote by $o = [0, \ldots, 0, 1] \in$ $\mathbb{C}P^{m+1}$ the fixed point of the action of the stabilizer $S(U_{m+1}U_1)$. The special orthogonal group $SO_{m+2} \subset SU_{m+2}$ acts on $\mathbb{C}P^{m+1}$ with cohomogeneity one. The orbit containing *o* is a totally geodesic real projective space $\mathbb{R}P^{m+1} \subset \mathbb{C}P^{m+1}$. The second singular orbit of this action is the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. This homogeneous space model leads to the geometric interpretation of the complex quadric Q^m as the Grassmann manifold $G_2^+(\mathbb{R}^{m+2})$ of oriented 2-planes in \mathbb{R}^{m+2} . It also gives a model of Q^m as a Hermitian symmetric space of rank 2. The complex quadric Q^1 is isometric to a sphere S^2 with constant curvature, and Q^2 is isometric to the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume $m \geq 3$ from now on.

In another way, the complex projective space $\mathbb{C}P^{m+1}$ is defined by using the Hopf fibration

$$
\pi : S^{2m+3} {\rightarrow} {\mathbb{C}}P^{m+1}, \quad z {\rightarrow} [z],
$$

which is said to be a Riemannian submersion. Then naturally we can consider the following diagram for the complex quadric Q^m as follows:

$$
\tilde{Q} = \pi^{-1}(Q) \xrightarrow{\tilde{i}} S^{2m+3} \subset \mathbb{C}^{m+2}
$$

$$
\pi \downarrow \qquad \pi \downarrow
$$

$$
Q = Q^m \xrightarrow{\tilde{i}} \mathbb{C}P^{m+1}
$$

The submanifold \tilde{Q} of codimension 2 in S^{2m+3} is called the Stiefel manifold of orthonormal 2-frames in \mathbb{R}^{m+2} , which is given by

$$
\tilde{Q} = \{x + iy \in \mathbb{C}^{m+2} | g(x, x) = g(y, y) = \frac{1}{2} \text{ and } g(x, y) = 0\},\
$$

where $g(x, y) = \sum_{i=1}^{m+2} x_i y_i$ for any $x = (x_1, \ldots, x_{m+2})$ and $y = (y_1, \ldots, y_{m+2}) \in \mathbb{R}^{m+2}$. Then the tangent space is decomposed as $T_z S^{2m+3} = H_z \oplus F_z$ and $T_z \tilde{Q} = H_z(Q) \oplus F_z(Q)$ at $z = x + iy \in \tilde{Q}$ respectively, where the horizontal subspaces H_z and $H_z(Q)$ are given by $H_z = (\mathbb{C}z)^\perp$ and $H_z(Q) = (\mathbb{C}z \oplus \mathbb{C}\overline{z})^\perp$, and F_z and $F_z(Q)$ are fibers which are isomorphic to each other. Here $H_z(Q)$ becomes a subspace of H_z of real codimension 2 and orthogonal to the two unit normals $-\bar{z}$ and $-J\bar{z}$. Explicitly, at the point $z = x + i\psi \in \tilde{Q}$ it can be described as

$$
H_z = \{ u + iv \in \mathbb{C}^{m+2} | \quad g(x, u) + g(y, v) = 0, \quad g(x, v) = g(y, u) \}
$$

and

 $H_z(Q) = \{u + iv \in H_z | g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0\},\$ where $\mathbb{C}^{m+2} = \mathbb{R}^{m+2} \oplus i \mathbb{R}^{m+2}$, and $g(u, x) = \sum_{i=1}^{m+2} u_i x_i$ for any $u = (u_1, \ldots, u_{m+2}), x =$ $(x_1, \ldots, x_{m+2}) \in \mathbb{R}^{m+2}$.

These spaces can be naturally projected by the differential map π_* as $\pi_* H_z = T_{\pi(z)} \mathbb{C}P^{m+1}$ and $\pi_* H_z(Q) = T_{\pi(z)} Q$ respectively. This gives that at the point $\pi(z) = |z|$ the tangent

subspace $T_{[z]}Q^m$ becomes a complex subspace of $T_{[z]}{\mathbb C}P^{m+1}$ with complex codimension 1 and has two unit normal vector fields $-\bar{z}$ and $-J\bar{z}$ (see Reckziegel [13]).

Then let us denote by $A_{\bar{z}}$ the shape operator of Q^m in $\mathbb{C}P^{m+1}$ with respect to the unit normal \bar{z} . It is defined by $A_{\bar{z}}w = \bar{\nabla}_w \bar{z} = \bar{w}$ for a complex Euclidean connection $\bar{\nabla}$ induced from \mathbb{C}^{m+2} and all $w \in T_{[z]}Q^m$. That is, the shape operator $A_{\bar{z}}$ is just a complex conjugation restricted to $T_{[z]}Q^m$. Moreover, it satisfies the following for any $w \in T_{[z]}Q^m$ and any $\lambda \in S^1 \subset \mathbb{C}$

$$
A_{\lambda \bar{z}}^2 w = A_{\lambda \bar{z}} A_{\lambda \bar{z}} w = A_{\lambda \bar{z}} \lambda \bar{w}
$$

= $\lambda A_{\bar{z}} \lambda \bar{w} = \lambda \bar{\nabla}_{\lambda \bar{w}} \bar{z} = \lambda \bar{\lambda} \bar{w}$
= $|\lambda|^2 w = w$.

Accordingly, $A_{\lambda \bar{z}}^2 = I$ for any $\lambda \in S^1$. So the shape operator $A_{\bar{z}}$ becomes an anti-commuting involution such that $A_{\bar{z}}^2 = I$ and $AJ = -JA$ on the complex vector space $T_{[z]}Q^m$ and

$$
T_{[z]}Q^m = V(A_{\bar{z}}) \oplus JV(A_{\bar{z}}),
$$

where $V(A_{\bar{z}}) = \mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the $(+1)$ -eigenspace and $JV(A_{\bar{z}}) = i\mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the (-1) -eigenspace of $A_{\bar{z}}$. That is, $A_{\bar{z}}X = X$ and $A_{\bar{z}}JX = -JX$, respectively, for any $X \in V(A_{\overline{z}})$.

Geometrically this means that the shape operator $A_{\bar{z}}$ defines a real structure on the complex vector space $T_{[z]}Q^m$, or equivalently, is a complex conjugation on $T_{[z]}Q^m$. Since the real codimension of Q^m in $\mathbb{C}P^{m+1}$ is 2, this induces an S^1 -subbundle $\mathfrak A$ of the endomorphism bundle $\text{End}(TQ^m)$ consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric *Q^m* can be viewed as the complexification of the *m*-dimensional sphere *S ^m*. Through each point $[z] \in Q^m$ there exists a one-parameter family of real forms of Q^m which are isometric to the sphere *S ^m*. These real forms are congruent to each other under action of the center SO_2 of the isotropy subgroup of SO_{m+2} at [*z*]. The isometric reflection of Q^m in such a real form S^m is an isometry, and the differential at $[z]$ of such a reflection is a conjugation on $T_{z|}Q^m$. In this way the family $\mathfrak A$ of conjugations on $T_{z|}Q^m$ corresponds to the family of real forms S^m of Q^m containing [*z*], and the subspaces $V(A) \subset T_{[z]}Q^m$ correspond to the tangent spaces $T_{[z]}S^m$ of the real forms S^m of Q^m .

The Gauss equation for $Q^m \subset \mathbb{C}P^{m+1}$ implies that the Riemannian curvature tensor \bar{R} of Q^m can be described in terms of the complex structure J and the complex conjugations $A \in \mathfrak{A}$:

$$
\bar{R}(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY - 2g(JX,Y)JZ \n+g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY.
$$

Note that *J* and each complex conjugation *A* anti-commute, that is, $AJ = -JA$ for each $A \in \mathfrak{A}$.

For every unit tangent vector $W \in T_{\lbrack z]}Q^m$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$
W = \cos(t)X + \sin(t)JY
$$

for some $t \in [0, \pi/4]$. The singular tangent vectors correspond to the values $t = 0$ and $t = \pi/4$. When $W = X$ for $X \in V(A)$, $t = 0$, there exist many kinds of maximal 2-flats $\mathbb{R}X + \mathbb{R}Z$ for $Z \in V(A)$ orthogonal to $X \in V(A)$. So the tangent vector *X* is said to be singular. When $W = (X + JY)/\sqrt{2}$ for $t = \frac{\pi}{4}$ $\frac{\pi}{4}$, it becomes also a singular tangent vector, which belongs to many kinds of maximal 2-flats given by $\mathbb{R}(X+JY)+\mathbb{R}Z$ for any $Z\in V(A)$ orthogonal to $X \in V(A)$ or $\mathbb{R}(X + JY) + \mathbb{R}JZ$ for any $JZ \in JV(A)$. If $0 < t < \pi/4$ then the unique maximal flat containing *W* is $\mathbb{R}X \oplus \mathbb{R}JY$.

3. Some general equations

Let *M* be a real hypersurface in Q^m and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that $\xi = -JN$, where *N* is a (local) unit normal vector field of *M* and *η* the corresponding 1-form defined by $\eta(X) = g(\xi, X)$ for any tangent vector field *X* on *M*. The tangent bundle *TM* of *M* splits orthogonally into $TM = C \oplus \mathbb{R}\xi$, where $\mathcal{C} = \text{ker}(\eta)$ is the maximal complex subbundle of *TM*. The structure tensor field ϕ restricted to *C* coincides with the complex structure *J* restricted to *C*, and $\phi \xi = 0$.

At each point $z \in M$ we define a maximal \mathfrak{A} -invariant subspace of T_zM , $z \in M$ as follows:

$$
\mathcal{Q}_z = \{ X \in T_z M \mid AX \in T_z M \text{ for all } A \in \mathfrak{A}_z \}.
$$

Then we want to introduce an important lemma which will be used in the proof of our main Theorem in the introduction.

Lemma 3.1. $([18])$ For each $z \in M$ we have

- (i) If N_z is \mathfrak{A} -principal, then $\mathcal{Q}_z = \mathcal{C}_z$.
- (ii) If N_z *is not* \mathfrak{A} -principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ *such that* $N_z = \cos(t)X + \sin(t)JY$ *for some* $t \in (0, \pi/4]$ *. Then we have* $\mathcal{Q}_z = \mathcal{C}_z \ominus \mathbb{C}(JX + Y)$ *.*

We now assume that *M* is a Hopf hypersurface. Then the Reeb vector field $\xi = -JN$ satisfies the following

$$
S\xi = \alpha \xi,
$$

where *S* denotes the shape operator of the real hypersurface *M* for a smooth function $\alpha = g(S\xi, \xi)$ on *M*. When we consider the transformed *JX* by the Kähler structure *J* on Q^m for any vector field *X* on *M* in Q^m , we may put

$$
JX = \phi X + \eta(X)N
$$

for a unit normal *N* to *M*. Then we now consider the equation of Codazzi

$$
g((\nabla_X S)Y - (\nabla_Y S)X, Z) = \eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y) + g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z) + g(X, A\xi)g(JAY, Z) - g(Y, A\xi)g(JAX, Z).
$$
\n(3.1)

Putting $Z = \xi$ in (3.1) we get

$$
g((\nabla_X S)Y - (\nabla_Y S)X, \xi) = -2g(\phi X, Y)
$$

+ $g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi)$
- $g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi).$

On the other hand, we have

$$
g((\nabla_X S)Y - (\nabla_Y S)X, \xi)
$$

=
$$
g((\nabla_X S)\xi, Y) - g((\nabla_Y S)\xi, X)
$$

=
$$
(X\alpha)\eta(Y) - (Y\alpha)\eta(X) + \alpha g((S\phi + \phi S)X, Y) - 2g(S\phi SX, Y).
$$

Comparing the previous two equations and putting $X = \xi$ yields

$$
Y\alpha = (\xi \alpha)\eta(Y) - 2g(\xi, AN)g(Y, A\xi) + 2g(Y, AN)g(\xi, A\xi).
$$

Reinserting this into the previous equation yields

$$
g((\nabla_X S)Y - (\nabla_Y S)X, \xi)
$$

= -2g(\xi, AN)g(X, A\xi)\eta(Y) + 2g(X, AN)g(\xi, A\xi)\eta(Y)
+2g(\xi, AN)g(Y, A\xi)\eta(X) - 2g(Y, AN)g(\xi, A\xi)\eta(X)
+ \alpha g((\phi S + S\phi)X, Y) - 2g(S\phi SX, Y).

Altogether this implies

$$
0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) - g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi) + 2g(\xi, AN)g(X, A\xi)\eta(Y) - 2g(X, AN)g(\xi, A\xi)\eta(Y) - 2g(\xi, AN)g(Y, A\xi)\eta(X) + 2g(Y, AN)g(\xi, A\xi)\eta(X).
$$
\n(3.2)

At each point $z \in M$ we can choose $A \in \mathfrak{A}_z$ such that

 $N = \cos(t)Z_1 + \sin(t)JZ_2$

for some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $0 \le t \le \frac{\pi}{4}$ $\frac{\pi}{4}$ (see Proposition 3 in [13]). Note that *t* is a function on *M*. First of all, since $\xi = -JN$, we have

$$
AN = \cos(t)Z_1 - \sin(t)JZ_2,
$$

\n
$$
\xi = \sin(t)Z_2 - \cos(t)JZ_1,
$$

\n
$$
A\xi = \sin(t)Z_2 + \cos(t)JZ_1.
$$
\n(3.3)

This implies $g(\xi, AN) = 0$ and hence

$$
0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y)
$$

+ $g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi)$
- $g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi)$
- $2g(X, AN)g(\xi, A\xi)\eta(Y) + 2g(Y, AN)g(\xi, A\xi)\eta(X).$ (3.4)

4. Killing shape operator and a Key Lemma

By the equation of Gauss, the curvature tensor $R(X, Y)Z$ for a real hypersurface M in Q^m induced from the curvature tensor \bar{R} of Q^m can be described in terms of the complex

8 JUAN DE DIOS PÉREZ, IMSOON JEONG, JUNHYUNG KO, AND YOUNG JIN SUH

structure *J* and the complex conjugation $A \in \mathfrak{A}$ as follows:

$$
R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z
$$

+g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY
+g(SY,Z)SX - g(SX,Z)SY

for any *X*, *Y*, *Z*∈*T*_{*z}M*, *z*∈*M*.</sub>

Now let us put

$$
AX = BX + \rho(X)N,
$$

for any vector field $X \in T_z Q^m$, $z \in M$, $\rho(X) = g(AX, N)$, where *BX* and $\rho(X)N$ respectively denote the tangential and normal component of the vector field *AX*. Then $A\xi = B\xi + \rho(\xi)N$ and $\rho(\xi) = g(A\xi, N) = 0$. Then it follows that

$$
AN = AJ\xi = -JA\xi = -J(B\xi + \rho(\xi)N)
$$

= -(\phi B\xi + \eta(B\xi)N).

The shape operator *S* of *M* in Q^m is said to be *Killing* if the operator *S* satisfies

$$
(\nabla_X S)Y + (\nabla_Y S)X = 0.
$$
\n(4.1)

for any $X, Y \in T_zM, z \in M$.

From (4.1), together with the equation of Codazzi (3.1), it follows that

$$
2g((\nabla_X S)Y, Z) = \eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y) + g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z) + g(X, A\xi)g(JAY, Z) - g(Y, A\xi)g(JAX, Z).
$$
\n(4.2)

Since we have assumed the real hypersurface *M* in Q^m is *Hopf*, then $S\xi = \alpha \xi$. This gives

$$
(\nabla_X S)\xi = (X\alpha)\xi + \alpha\phi SX - S\phi SX.
$$

From this, let us put $Y = \xi$ in (4.2) and use $q(A\xi, N) = 0$, we see that

$$
2g((X\alpha)\xi + \alpha\phi SX - S\phi SX, Z) = -g(\phi X, Z) + g(X, AN)g(A\xi, Z)
$$

+
$$
g(X, A\xi)g(JA\xi, Z) - g(\xi, A\xi)g(JAX, Z).
$$
 (4.3)

Here, let us put $X = \xi$ in (4.3) and also use $g(\xi, AN) = 0$, we have

$$
2(\xi\alpha)\eta(Z) = g(\xi, A\xi)g(JA\xi, Z) - g(\xi, A\xi)g(JA\xi, Z) = 0.
$$

From this we get $\xi \alpha = 0$. Then the derivative $Y \alpha$ in section 3 becomes

$$
Y\alpha = 2g(Y, AN)g(\xi, A\xi).
$$

From this, together with (4.3), it follows that

$$
2g(2g(X, AN)g(\xi, A\xi)\xi + \alpha\phi SX - S\phi SX, Z) = -g(\phi X, Z) + g(X, AN)g(A\xi, Z) + g(X, A\xi)g(JA\xi, Z) - g(\xi, A\xi)g(JAX, Z).
$$
 (4.4)

Then by putting $Z = \xi$ into (4.3), we have

$$
4g(X, AN)g(\xi, A\xi) = g(X, AN)g(A\xi, \xi) + g(X, A\xi)g(JA\xi, \xi)
$$

$$
- g(\xi, A\xi)g(JAX, \xi)
$$

$$
= 2g(X, AN)g(A\xi, \xi).
$$
 (4.5)

Since $g(A\xi, N) = 0$, (4.5) gives that

$$
g(A\xi, \xi)g(AN, X) = 0.
$$

Then we have $g(A\xi, \xi) = 0$ or $(AN)^T = 0$, where $(AN)^T$ denotes the tangential part of the vector *AN*.

Summing up above discussions, we conclude the following

Lemma 4.1. *Let M be a Hopf real hypersurface in* Q^m *, m* \geq 3*, with Killing shape operator. Then the unit normal vector field N is singular, that is, N is* A*-isotropic or* A*-principal.*

Proof. In above discussion, let us consider the first case $q(A\xi,\xi) = 0$. Then it implies that

$$
0 = g(A\xi, \xi) = g(AJN, JN) = -g(JAN, JN) = -g(AN, N).
$$

If we insert $N = \cos t Z_1 + \sin t J Z_2$ for $Z_1, Z_2 \in V(A)$ into the above equation, we have $\cos^2 t - \sin^2 t = 0$. Then by section 2, we have $t = \frac{\pi}{4}$ $\frac{\pi}{4}$, that is, $N = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(X+JY)$ for some *X*, $Y \in V(A)$. So the unit normal *N* is \mathfrak{A} -isotropic.

Next we consider the case that $(AN)^T = 0$. Then $AN = (AN)^T + g(AN, N)N =$ *g*(*AN, N*)*N*. So it follows that

$$
N = A^2 N = g(AN, N)AN = g^2(AN, N)N.
$$

So $g(AN, N) = \pm 1$ gives that $AN = \pm N$. That is, the unit normal *N* is \mathfrak{A} -principal. \Box

Then we are able to consider the classification of Killing shape operator *S* of *M* in *Q^m* into two cases, that the unit normal N is $\mathfrak A$ -principal or N is $\mathfrak A$ -isotropic. In section 5 we will discuss a classification of real hypersurfaces in *Q^m* with Killing shape operator and A-isotropic unit normal and in section 6 a non-existence of Killing shape operator for hypersurfaces in Q^m when *N* is $\mathfrak A$ -principal will be explained in detail.

5. PROOF OF MAIN THEOREM WITH 24-ISOTROPIC UNIT NORMAL

In this section let us assume that the unit normal vector field *N* is A-isotropic. Then the normal vector field *N* can be written

$$
N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)
$$

for $Z_1, Z_2 \in V(A)$, where $V(A)$ denotes the $(+1)$ -eigenspace of the complex conjugation *A*∈Q. Then it follows that

$$
AN = \frac{1}{\sqrt{2}}(Z_1 - JZ_2), AJN = -\frac{1}{\sqrt{2}}(JZ_1 + Z_2), \text{and } JN = \frac{1}{\sqrt{2}}(JZ_1 - Z_2).
$$

From this, together with (3.3) and the anti-commuting $AJ = -JA$, it follows that

$$
g(\xi, A\xi) = g(JN, AJN) = 0
$$
, $g(\xi, AN) = 0$ and $g(AN, N) = 0$.

Then (4.3) gives the following for any *X*, $Z \in T_zM$, $z \in M$

$$
2g(\alpha\phi SX - S\phi SX, Z) = -g(\phi X, Z) + g(X, AN)g(A\xi, Z) + g(X, A\xi)g(JA\xi, Z)
$$

= -g(\phi X, Z) + g(X, AN)g(A\xi, Z) - g(X, A\xi)g(AN, Z). (5.1)

Since $A\xi$, $AN \in T_xM$, $x \in M$, it implies

$$
2(\alpha \phi SX - S\phi X) = -\phi X + g(X, AN)A\xi - g(X, A\xi)AN.
$$
\n(5.2)

On the other hand, from the formula (5.6) of Suh [19] for a Hopf real hypersurface *M* with $\mathfrak A$ -isotropic unit normal N

$$
2S\phi SX = \alpha(S\phi + \phi S)X + 2\phi X - 2g(X, AN)A\xi + 2g(X, A\xi)AN.
$$
 (5.3)

Then by virtue of (5.2) and (5.3) , we have

$$
-2S\phi SX = \alpha S\phi X - 3\alpha \phi SX.
$$
\n(5.4)

We know that the tangent space T_zM , $z \in M$ is decomposed as follows:

$$
T_zM = [\xi] \oplus [A\xi, AN] \oplus \mathcal{Q},
$$

where $C \ominus Q = Q^{\perp} = \text{Span}[A \xi, A N].$

Lemma 5.1. *Let M be a Hopf real hypersurface in the complex quadric* Q^m *, m>*3*, with* A*-isotropic unit normal vector field. Then*

$$
SAN = 0, \quad and \quad SA\xi = 0.
$$

Proof. Let us denote by $C \ominus Q = Q^{\perp} = \text{Span}[A\xi, AN]$. Since *N* is isotropic, $q(AN, N) =$ 0 and $q(A\xi, \xi) = 0$. By differentiating $q(AN, N) = 0$ and using $(\bar{\nabla}_X A)Y = q(X)JAY$ and the equation of Weingarten, we know that

$$
0 = g(\bar{\nabla}_X(AN), N) + g(AN, \bar{\nabla}_X N)
$$

= $g(q(X)JAN - ASX, N) - g(AN, SX)$
= $- 2g(ASX, N).$

Then $SAN = 0$. Moreover, by differentiating $q(A\xi, N) = 0$ and using $q(AN, N) = 0$, we have the following formula

$$
0 = g(\bar{\nabla}_X(A\xi), N) + g(A\xi, \bar{\nabla}_X N)
$$

= $g(q(X)JA\xi + A(\phi SX + g(SX, \xi)N), N) - g(SA\xi, X)$
= $-2g(SA\xi, X)$

for any $X \in T_zM$, $z \in M$, where in the third equality we have used $\phi AN = JAN$ *−AJN* = *Aξ*. Then it follows that

$$
SA\xi = 0.
$$

It completes the proof of our assertion.

By Lemma 5.1 we know that the distribution \mathcal{Q}^{\perp} for a Hopf real hypersurface *M* in \mathcal{Q}^m is invariant by the shape operator *S*, so the distribution \mathcal{Q} is also *S*-invariant. From this fact we may consider a principal curvature vector $X \in \mathcal{Q}$ such that $SX = \lambda X$, because the distribution *Q* can be diagonalized. Then (5.4) gives

$$
S\phi X = \frac{3\alpha\lambda}{2\lambda + \alpha}\phi X.
$$
\n(5.5)

Here we note that $2\lambda + \alpha \neq 0$. In fact, if $2\lambda + \alpha = 0$, then $\alpha = \lambda = 0$, and from (5.3), it gives us a contradiction. For $X \in \mathcal{Q}$, we know that $g(X, AN) = g(X, A\xi) = 0$. So (5.3) gives the following

$$
2S\phi SX = \alpha(S\phi + \phi S)X + 2\phi X.
$$
\n^(5.6)

Then we consider two cases for $X \in \mathcal{Q}$ or $X \in \mathcal{Q}^{\perp}$.

As a first, for $X \in \mathcal{Q}$ such that $SX = \lambda X$ the formula (5.6) gives

$$
2\lambda S\phi X = \alpha S\phi X + (\alpha \lambda + 2)\phi X. \tag{5.7}
$$

If $\alpha = 2\lambda$, we should have $2(\lambda^2 + 1)\phi X = 0$, which is impossible. Then we have for *SϕX* = *µϕX*

$$
S\phi X = \frac{\alpha\lambda + 2}{2\lambda - \alpha}\phi X.
$$
\n(5.8)

Then (5.5) and (5.8) give

$$
\frac{\alpha\lambda + 2}{2\lambda - \alpha}\phi X = \frac{3\alpha\lambda}{2\lambda + \alpha}\phi X.
$$

From this, any principal curvatures λ and μ of the distribition $\mathcal Q$ satisfy the following quadratic equation

$$
2\alpha\lambda^2 - 2(\alpha^2 + 1)\lambda - \alpha = 0.
$$
\n(5.9)

The solutions become the following constant principal curvatures given by

$$
\lambda, \mu = \frac{(\alpha^2 + 1) \pm \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha},
$$
\n(5.10)

because the Reeb function α is constant for \mathfrak{A} -isotropic unit normal N. Here we note that the Reeb function α can not vanish. If the function α identically vanishes, then (5.9) gives $\lambda = 0$. From this, together with (5.7), we have $\phi X = 0$, which implies a contradiction.

From this, together with Lemma 5.1, the expression of the shape operator becomes the following

$$
S = \begin{bmatrix} \alpha & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \lambda & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & \mu & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \mu \end{bmatrix}
$$

where the principal curvatures λ and μ are given by (5.10) with multiplicities $m-2$ respectively.

Summing up the above discussions, we give the following

Theorem 5.2. Let *M* be a real hypersurface in the complex quadric Q^m with \mathfrak{A} -isotropic *unit normal vector field. Then M has* 4 *distinct constant principal curvatures given by*

$$
\alpha \neq 0
$$
, $\beta = \gamma = 0$, $\lambda = \frac{(\alpha^2 + 1) + \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha}$, and

$$
\mu = \frac{(\alpha^2 + 1) - \sqrt{(\alpha^2 + 1)^2 + 2\alpha^2}}{2\alpha}
$$

with corresponding principal curvature spaces respectively

 $T_{\alpha} = [\xi], T_{\beta} = [AN], T_{\gamma} = [A\xi], \phi(T_{\lambda}) = T_{\mu}$, and dim $T_{\lambda} = \dim T_{\mu} = m - 2$.

6. PROOF OF MAIN THEOREM WITH 24-PRINCIPAL

In this section let us consider a real hypersurface M in Q^m with Killing shape operator for the case that the unit normal N is $\mathfrak A$ -principal. In this case the Killing shape operator (4.3) gives that

$$
2g(\{\alpha\phi SX - S\phi SX\}, Z) = -g(\phi X, Z) + g(\phi AX, Z),
$$

where we have used $g(\xi, A\xi) = -1$ and $JAX = \phi AX + \eta(AX)N$. Then it follows that

$$
2(\alpha \phi SX - S\phi SX) = -\phi X + \phi AX.
$$
\n(6.1)

Since the unit normal vector field *N* is \mathfrak{A} -principal, $A\xi = -\xi$. Then differentiating this and using Gauss equation give

$$
\nabla_X(A\xi) = \overline{\nabla}_X(A\xi) - g(SX, A\xi)N = -q(X)N + \alpha \eta(X)N,
$$
\n(6.2)

where *q* denotes a certain 1-form defined on *M* as in the introduction. From this, together with $\nabla_X(A\xi) = -\nabla_X\xi = -\phi SX$, we have

$$
\phi X = \phi A X.
$$

This gives that

$$
AX = X - 2\eta(X)\xi.
$$

Then we have

$$
Tr A = g(AN, N) + \sum_{i=1}^{2m-1} g(Ae_i, e_i)
$$

=
$$
\sum_{i=1}^{2m-1} g(e_i - 2\eta(e_i)\xi, e_i)
$$

=
$$
2(m-1).
$$
 (6.3)

But $Tr A = 0$, because $T_z Q^m = V(A) \oplus JV(A)$, where $V(A) = \{X \in T_z Q^m | AX = X\}$ and $JV(A) = \{X \in T_z Q^m | AX = -X\}$. This gives us a contradiction. So we assert another theorem as follows:

Theorem 6.1. *There do not exist any real hypersurface in the complex quadric* Q^m *with Killing shape operator if the unit normal vector field is* A*-principal.*

Summing up all of discussions including sections 4 and 5, by Theorems 4.1, 5.2 and 6.1, we give a complete proof of our Main Theorem 2 in the introduction.

REFERENCES

- [1] D.E. Blair, *Almost contact manifolds with Killing structure tensors*, Pacific J. of Math. **39** (1971), 285-292.
- [2] I. Jeong, H.J. Kim and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator*, Publ. Math. Debrecen **76** (2010), 203-218.
- [3] I. Jeong, C.J.G. Machado, J.D. Pérez and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with* D*⊥-parallel structure Jacobi operator*, International J. Math. **22** (2011), 655-673.
- [4] I. Jeong, C.J.G. Machado, J.D. Pérez and Y.J. Suh, *D*-parallelism of normal and structure Jacobi *operators for hypersurfaces in complex two-plane Grassmannians*, Ann Mat Pura Appl. **193**, (2014), 591-608.
- [5] S. Klein, *Totally geodesic submanifolds in the complex quadric*, Diff. Geom. and Its Appl. **26** (2008), 79–96.
- [6] S. Klein, *Totally geodesic submanifolds of the complex quadric and the quaternionic 2- Grassmannians*, Trans. of Amer. Math. Soc. **361** (2009), 4927-4967.
- [7] S. Klein, *Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram*, Geom. Dedicata **138** (2009), 25-50.
- [8] S. Klein, *Totally geodesic submanifolds of the exceptional Riemannian symmetric spaces of rank 2*, Osaka J. Math. **47** (2010), 1077-1157.
- [9] M. Kimura, *Real hypersurfaces and complex submanifolds in complex projective space*, Trans. Amer. Math. Soc. **296** (1986), 137–149.
- [10] S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry*, Vol. II, A Wiley-Interscience Publ., Wiley Classics Library Ed., 1996.
- [11] J.D. Pérez and Y.J. Suh, *Real hypersurfaces of quaternionic projective space satisfying* $\nabla_{U_i} R = 0$, Diff. Geom. and Its Appl. **7** (1997), 211–217.
- [12] J.D. P´erez and Y.J. Suh, *Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective space*, Acta Math. Hungar. **91** (2001), 343–356.
- [13] H. Reckziegel, *On the geometry of the complex quadric*, Geometry and Topology of Submanifolds VIII (Brussels/Nordfjordeid 1995), World Sci. Publ., River Edge, NJ, 1995, pp. 302–315.
- [14] B. Smyth, *Differential geometry of complex hypersurfaces*, Ann. Math. **85** (1967), 246-266.
- [15] Y.J. Suh, *Real hypersurfaces of type B in complex two-plane Grassmannians*, Monatsh. Math. **147** (2006), 337-355.
- [16] Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor*, Proc. Royal Soc. Edinb. A. **142** (2012), 1309-1324.
- [17] Y.J. Suh, *Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians*, Advances in Applied Math. **50** (2013), 645–659.
- [18] Y.J. Suh, *Real hypersurfaces in the complex quadric with Reeb parallel shape operator*, International J. Math. **25** (2014), 1450059, 17pp.
- [19] Y.J. Suh, *Real hypersurfaces in the complex quadric with parallel Ricci tensor*, Advances in Math. **281** (2015), 886-905.
- [20] Y.J. Suh, *Real hypersurfaces in the complex quadric with harmonic curvature*, J. Math. Pures Appl. **106** (2016), 393-410..
- [21] Y.J. Suh and D.H. Hwang, *Real hypersurfaces in the complex quadric with commuting Ricci tensor*, Sci. China Math., **59** (2016), 21852198.
- [22] Y.J. Suh and C. Woo, *Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor*, Math. Nachr. **55** (2014), 1524-1529.
- [23] S. Tachibana, *On Killing tensors in a Riemannian space*, Tohoku Math. J. **20** (1968), 257-264.

University of Granada, Department of Geometry and Topology, Granada 18071, Spain *E-mail address*: jdperez@ugr.es

PAI CHAI UNIVERSITY, Division of Future Capability Education, Daejeon 35345, Republic of Korea *E-mail address*: isjeong@pcu.ac.kr

Kyungpook National University, College of Natural Sciences, Department of Mathematics, and Research Institute of Real & Complex Manifolds, Daegu 41566, Republic of Korea *E-mail address*: biryu111@naver.com *E-mail address*: yjsuh@knu.ac.kr