RULED REAL HYPERSURFACES IN THE COMPLEX QUADRIC

MAKOTO KIMURA, HYUNJIN LEE, JUAN DE DIOS PÉREZ

AND YOUNG JIN SUH*

ABSTRACT. First we introduce the notions of η -parallel and η -commuting shape operator for real hypersurfaces in the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. Next we give a complete classification of real hypersurfaces in the complex quadric Q^m with such kind of shape operators. By virtue of this classification we give a new characterization of ruled real hypersurface foliated by complex totally geodesic hyperplanes Q^{m-1} in Q^m whose unit normal vector field in Q^m is \mathfrak{A} -principal.

1. INTRODUCTION

When we consider some Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric spaces $SU_{m+2}/S(U_2U_m)$ and $SU_{2,m}/S(U_2U_m)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [15], [16], and [17]). These are viewed as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic Kähler structure \mathfrak{J} .

In the complex projective space $\mathbb{C}P^{m+1}$ some classifications of real hypersurfaces related to η -parallel shape operator were investigated by Kimura [4], Kimura and Maeda [6] respectively. The classification problems of real hypersurfaces of the complex 2-plane Grassmannian $G_2(\mathbb{C}^{m+2}) = SU_{m+2}/S(U_2U_m)$ with certain geometric conditions were mainly discussed in Pérez and Suh [10], and Suh [15], [16], [17], where the classification of *contact hypersurfaces*, *parallel Ricci tensor*, *harmonic curvature* and *structure Jacobi operator* of a real hypersurface in $G_2(\mathbb{C}^{m+2})$ were extensively studied. Moreover, in [17] we have asserted that the Reeb flow on a real hypersurface in $SU_{2,m}/S(U_2U_m)$ is isometric if and only if M is an open part of a tube around a totally geodesic $SU_{2,m-1}/S(U_2U_{m-1}) \subset SU_{2,m}/S(U_2U_m)$

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we can consider the example of complex quadric $Q^m = SO_{m+2}/SO_mSO_2$, which is a complex hypersurface in complex projective space $\mathbb{C}P^{m+1}$ (see Kobayashi and Nomizu [8] and Smyth [12], [13] and [14]). The complex quadric can

²⁰¹⁰ Mathematics Subject Classification: Primary 53C40. Secondary 53C55.

^{*:} Corresponding author

Key words: η -parallel shape operator, \mathfrak{A} -isotropic, \mathfrak{A} -principal, ruled real hypersurface, complex conjugation, complex quadric.

The first author was supported by JSPS KAKENHI Grant Number JP16K05119, the second by NRF-2016-R1A6A3A-11931947, the third by MCT-FEDER project MTM-2016-78807-C2-1-P, and the fourth by grant Proj. No. NRF-2018-R1D1A1B-05040381 from National Research Foundation of Korea

also be regarded as a kind of real Grassmann manifold of compact type with rank 2. Accordingly, the complex quadric admits two important geometric structures, a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, AJ = -JA. Then for $m \ge 2$ the triple (Q^m, J, g) is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [7] and Reckziegel [11]).

Apart from the complex structure J there is another distinguished geometric structure on Q^m , namely a parallel rank two vector bundle \mathfrak{A} which contains an S^1 -bundle of real structures, that is, complex conjugations A on the tangent spaces of Q^m . This geometric structure determines a maximal \mathfrak{A} -invariant subbundle \mathcal{Q} of the tangent bundle TM of a real hypersurface M in Q^m .

Moreover, the derivative of the complex conjugation A on Q^m is given by

$$(\bar{\nabla}_X A)Y = q(X)JAY$$

for any vector fields X and Y on M, where q denotes a certain 1-form defined on M.

Recall that a nonzero tangent vector $W \in T_{[z]}Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m . There are two types of singular tangent vectors for the complex quadric Q^m :

- 1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A) := Eig(A, 1)$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -principal.
- 2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W/||W|| = (X + JY)/\sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -isotropic.

When we consider a hypersurface M in the complex quadric Q^m , under the assumption of some geometric properties the unit normal vector field N of M in Q^m can be considered of two classes if either N is \mathfrak{A} -isotropic or \mathfrak{A} -principal (see [18] and [19]). In the first case where N is \mathfrak{A} -isotropic, we have shown in Suh [18] that M is locally congruent to a tube over a totally geodesic $\mathbb{C}P^k$ in Q^{2k} . In the second case, when the unit normal N is \mathfrak{A} principal, we proved that a contact hypersurface M in Q^m is locally congruent to a tube over a totally geodesic and totally real submanifold S^m in Q^m (see [19]).

The shape operator S of M in Q^m is said to be η -parallel if it satisfies

$$g((\nabla_X S)Y, Z) = 0$$

for any $X, Y, Z \in \mathcal{C}_z$, $z \in M$, where \mathcal{C}_z denotes the orthogonal complement of the Reeb vector field $\xi_z = JN_z$ of M in T_zM .

Moreover, if the shape operator S of M in Q^m satisfies $g((S\phi - \phi S)X, Y) = 0$ for any $X, Y \in \mathcal{C}$, we say that M is η -commuting.

When the Reeb vector field ξ is a principal vector field of the shape operator of M in Q^m , a real hypersurface M is said to be Hopf. Now let us introduce another kind of real hypersurfaces which is said to be *ruled* real hypersurfaces in the complex quadric Q^m which are not Hopf as follows:

Let $\gamma: I \to Q^m$ be an integral curve of the Reeb vector field ξ such that $\gamma'(0) = \xi_p$. The distribution $\mathcal{C} = \{X \in TM | X \perp \xi\}$ is said to be integrable if $[X, Y] \in \mathcal{C}$ for any vector fields $X, Y \in \mathcal{C}$. When M is foliated by the integrable totally geodesic complex hyperplane Q^{m-1} in Q^m , then $M = \{x \in Q^{m-1}(t) | t \in I\}$. In such a case we say that M is a *ruled* real hypersurface in Q^m . In such a case, the expression of the shape operator S of the ruled real hypersurface M in Q^m becomes

$$S\xi = \alpha\xi + \beta U$$
$$SU = \beta\xi$$
$$SX = 0$$

for any vector field $X \perp \xi, U$, where U is a unit vector field in \mathcal{C} , α and β are functions on M and β does not vanish. Then the above expression holds if and only if g(SX, Y) = 0 for any vector fields X and Y in \mathcal{C} . By the totally geodesic property of the complex hyperplane Q^{m-1} in Q^m in the construction of the ruled real hypersurface in Q^m , it naturally satisfies the above expression of the shape operator, and conversely if the shape operator satisfies the above formula, we can construct the ruled real hypersurface in Q^m . So as a characterization of ruled real hypersurfaces in Q^m , we summarize this one as follows:

Theorem A. Let M be a real hypersurface in Q^m , $m \ge 3$. Then M is locally congruent to a ruled real hypersurface foliated by complex totally geodesic Q^{m-1} in Q^m if and only if the shape operator S satisfies g(SX, Y) = 0 for any $X, Y \in C$.

This Theorem A implies that the shape operator S is η -parallel, that is, $g((\nabla_X S)Y, Z) = 0$ for any $X, Y, Z \in \mathcal{C}$. By linearization, $g((\nabla_X S)X, X) = 0$ for any $X \in \mathcal{C}$. Then this is equivalent to the constancy of $g(S\gamma', \gamma') = \bar{g}(\bar{\nabla}_{\gamma'}\gamma', \bar{\nabla}_{\gamma'}\gamma')$, where \bar{g} and $\bar{\nabla}$ denote respectively the Riemannian metric and the Riemannian connection of the complex quadric Q^m . This means that every geodesic $\gamma: I \to M$ in Q^m which is orthogonal to the Reeb vector field ξ , that is $\gamma'(0) \perp \xi_p$, and $\gamma(0) = p$, has constant first curvature.

When the stucture tensor ϕ commutes with the shape operator S, that is, $S\phi = \phi S$, we say that M has commuting shape operator. Motivated by this one, Berndt and Suh [2] have proved the following

Theorem B. Let M be a complete real hypersurface in Q^m , $m \ge 3$, with commuting shape operator. Then M is locally congruent to a tube over $\mathbb{C}P^k$ in Q^{2k} , m = 2k.

Motivated by Theorems A and B, and Theorems 5.3 and 5.4 in section 5, we can assert the following

Main Theorem. Let M be a real hypersurface in the complex quadric Q^m , $m \ge 4$, with η -parallel and η -commuting shape operator. Then M is locally congruent to a ruled hypersurface foliated by totally geodesic complex hypersurfaces Q^{m-1} in Q^m with \mathfrak{A} -principal unit normal vector field.

If M is Hopf and η -commuting, the shape operator of M commutes with the structure tensor ϕ . Then by a result due to Berndt and Suh [3] M is locally congruent to a tube over a totally geodesic $\mathbb{C}P^k$ in Q^{2k} . In such a case the unit normal vector field N is \mathfrak{A} -isotropic. In section 5 we prove that the unit normal vector field N of a ruled real hypersurface is \mathfrak{A} -principal. But in this case M is non-Hopf.

Remark 1.1. In Remark 4.4, we have mentioned that the unit normal vector field N of a ruled real hypersurface in Q^m is either \mathfrak{A} -principal or \mathfrak{A} -isotropic.

Remark 1.2. In section 6, we construct an example of minimal ruled real hypersurface which is foliated by totally geodesics Q^{m-1} in the complex quadric Q^m from curves in real projective space $\mathbb{R}P^{m+1}$.

2. The complex quadric

For more background to this section we refer to [7], [8], [11], [18], [19] and [20]. The complex quadric Q^m is the complex hypersurface in $\mathbb{C}P^{m+1}$ which is defined by the equation $z_0^2 + \cdots + z_{m+1}^2 = 0$, where z_0, \ldots, z_{m+1} are homogeneous coordinates on $\mathbb{C}P^{m+1}$. We equip Q^m with the Riemannian metric g which is induced from the Fubini-Study metric \bar{g} on $\mathbb{C}P^{m+1}$ with constant holomorphic sectional curvature 4. The Fubini-Study metric \bar{g} is defined by $\bar{g}(X,Y) = \Phi(JX,Y)$ for any vector fields X and Y on $\mathbb{C}P^{m+1}$ and a globally closed (1,1)-form Φ given by $\Phi = -4i\partial\bar{\partial}\log f_j$ on an open set $U_j = \{[z_0,\ldots,z_j,\ldots,z_{m+1}]\in\mathbb{C}P^{m+1}|z_j\neq 0\}$, where the function f_j denotes $f_j = \sum_{k=0}^{m+1} t_j^k \bar{t}_j^k$, and $t_j^k = \frac{z_k}{z_j}$ for $j, k = 0, \cdots, m+1$. Then naturally the Kähler structure on $\mathbb{C}P^{m+1}$ induces canonically a Kähler structure (J,g) on the complex quadric Q^m .

The complex projective space $\mathbb{C}P^{m+1}$ is a Hermitian symmetric space of the special unitary group SU_{m+2} , namely $\mathbb{C}P^{m+1} = SU_{m+2}/S(U_{m+1}U_1)$. We denote by $o = [0, \ldots, 0, 1] \in \mathbb{C}P^{m+1}$ the fixed point of the action of the stabilizer $S(U_{m+1}U_1)$. The special orthogonal group $SO_{m+2} \subset SU_{m+2}$ acts on $\mathbb{C}P^{m+1}$ with cohomogeneity one. The orbit containing ois a totally geodesic real projective space $\mathbb{R}P^{m+1} \subset \mathbb{C}P^{m+1}$. The second singular orbit of this action is the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$. This homogeneous space model leads to the geometric interpretation of the complex quadric Q^m as the Grassmann manifold $G_2^+(\mathbb{R}^{m+2})$ of oriented 2-planes in \mathbb{R}^{m+2} . It also gives a model of Q^m as a Hermitian symmetric space of rank 2. The complex quadric Q^1 is isometric to a sphere S^2 with constant curvature, and Q^2 is isometric to the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume $m \geq 3$ from now on.

In another way, the complex projective space $\mathbb{C}P^{m+1}$ is defined by using the Hopf fibration

$$\pi: S^{2m+3} \to \mathbb{C}P^{m+1}, \quad z \to [z],$$

which is said to be a Riemannian submersion. Then naturally we can consider the following diagram for the complex quadric Q^m as follows:

$$\begin{split} \tilde{Q} &= \pi^{-1}(Q) \xrightarrow{\tilde{i}} S^{2m+3} \subset \mathbb{C}^{m+2} \\ \pi & \downarrow & \pi \\ Q &= Q^m \xrightarrow{i} \mathbb{C}P^{m+1} \end{split}$$

The submanifold \tilde{Q} of codimension 2 in S^{2m+3} is called the Stiefel manifold of orthonormal 2-frames in \mathbb{R}^{m+2} , which is given by

$$\tilde{Q} = \{x + iy \in \mathbb{C}^{m+2} | g(x, x) = g(y, y) = \frac{1}{2} \text{ and } g(x, y) = 0\},\$$

where $g(x,y) = \sum_{i=1}^{m+2} x_i y_i$ for any $x = (x_1, \ldots, x_{m+2})$ and $y = (y_1, \ldots, y_{m+2}) \in \mathbb{R}^{m+2}$. Then the tangent space is decomposed as $T_z S^{2m+3} = H_z \oplus F_z$ and $T_z \tilde{Q} = H_z(Q) \oplus F_z(Q)$ at $z = x + iy \in \tilde{Q}$ respectively, where the horizontal subspaces H_z and $H_z(Q)$ are given by $H_z = (\mathbb{C}z)^{\perp}$ and $H_z(Q) = (\mathbb{C}z \oplus \mathbb{C}\bar{z})^{\perp}$, and F_z and $F_z(Q)$ are fibers which are isomorphic to each other. Here $H_z(Q)$ becomes a subspace of H_z of real codimension 2 and orthogonal to the two unit normals $-\bar{z}$ and $-J\bar{z}$. Explicitly, at the point $z = x + iy \in \tilde{Q}$ it can be described as

$$H_z = \{ u + iv \in \mathbb{C}^{m+2} | \quad g(x, u) + g(y, v) = 0, \quad g(x, v) = g(y, u) \}$$

and

 $H_z(Q) = \{ u + iv \in H_z | \quad g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0 \},$ where $\mathbb{C}^{m+2} = \mathbb{R}^{m+2} \oplus i\mathbb{R}^{m+2}$, and $g(u, x) = \sum_{i=1}^{m+2} u_i x_i$ for any $u = (u_1, \dots, u_{m+2}), x = (x_1, \dots, x_{m+2}) \in \mathbb{R}^{m+2}.$

These spaces can be naturally projected by the differential map π_* as $\pi_*H_z = T_{\pi(z)}\mathbb{C}P^{m+1}$ and $\pi_*H_z(Q) = T_{\pi(z)}Q$ respectively. This gives that at the point $\pi(z) = [z]$ the tangent subspace $T_{[z]}Q^m$ becomes a complex subspace of $T_{[z]}\mathbb{C}P^{m+1}$ with complex codimension 1 and has two unit normal vector fields $-\bar{z}$ and $-J\bar{z}$ (see Reckziegel [11]).

Then let us denote by $A_{\bar{z}}$ the shape operator of Q^m in $\mathbb{C}P^{m+1}$ with respect to the unit normal \bar{z} . It is defined by $A_{\bar{z}}w = \bar{\nabla}_w \bar{z} = \bar{w}$ for a complex Euclidean connection $\bar{\nabla}$ induced from \mathbb{C}^{m+2} and all $w \in T_{[z]}Q^m$. That is, the shape operator $A_{\bar{z}}$ is just a complex conjugation restricted to $T_{[z]}Q^m$. Moreover, it satisfies the following for any $w \in T_{[z]}Q^m$ and any $\lambda \in S^1 \subset \mathbb{C}$

$$\begin{aligned} A_{\lambda\bar{z}}^2 w =& A_{\lambda\bar{z}} A_{\lambda\bar{z}} w = A_{\lambda\bar{z}} \lambda \bar{w} \\ =& \lambda A_{\bar{z}} \lambda \bar{w} = \lambda \bar{\nabla}_{\lambda\bar{w}} \bar{z} = \lambda \bar{\lambda} \bar{w} \\ =& |\lambda|^2 w = w. \end{aligned}$$

Accordingly, $A_{\lambda\bar{z}}^2 = I$ for any $\lambda \in S^1$. So the shape operator $A_{\bar{z}}$ becomes an anti-commuting involution such that $A_{\bar{z}}^2 = I$ and AJ = -JA on the complex vector space $T_{[z]}Q^m$ and

$$T_{[z]}Q^m = V(A_{\bar{z}}) \oplus JV(A_{\bar{z}}),$$

where $V(A_{\bar{z}}) = \mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the (+1)-eigenspace and $JV(A_{\bar{z}}) = i\mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the (-1)-eigenspace of $A_{\bar{z}}$. That is, $A_{\bar{z}}X = X$ and $A_{\bar{z}}JX = -JX$, respectively, for any $X \in V(A_{\bar{z}})$.

Geometrically this means that the shape operator $A_{\bar{z}}$ defines a real structure on the complex vector space $T_{[z]}Q^m$, or equivalently, is a complex conjugation on $T_{[z]}Q^m$. Since the real codimension of Q^m in $\mathbb{C}P^{m+1}$ is 2, this induces an S^1 -subbundle \mathfrak{A} of the endomorphism bundle $\operatorname{End}(TQ^m)$ consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q^m can be viewed as the complexification of the *m*-dimensional sphere S^m . Through each point $[z] \in Q^m$ there exists a one-parameter family of real forms of Q^m which are isometric to the sphere S^m . These real forms are congruent to each other under action of the center SO_2 of the isotropy subgroup of SO_{m+2} at [z]. The isometric reflection of Q^m in such a real form S^m is an isometry, and the differential at [z] of such a reflection is a conjugation on $T_{[z]}Q^m$. In this way the family \mathfrak{A} of conjugations on $T_{[z]}Q^m$ corresponds to the family of real forms S^m of Q^m containing [z], and the subspaces $V(A) \subset T_{[z]}Q^m$ correspond to the tangent spaces $T_{[z]}S^m$ of the real forms S^m of Q^m .

The Gauss equation for $Q^m \subset \mathbb{C}P^{m+1}$ implies that the Riemannian curvature tensor \overline{R} of Q^m can be described in terms of the complex structure J and the complex conjugations $A \in \mathfrak{A}$:

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY - 2g(JX,Y)JZ +g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY.$$

Note that J and each complex conjugation A anti-commute, that is, AJ = -JA for each $A \in \mathfrak{A}$.

For every unit tangent vector $W \in T_{[z]}Q^m$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$W = \cos(t)X + \sin(t)JY$$

for some $t \in [0, \pi/4]$. The singular tangent vectors correspond to the values t = 0 and $t = \pi/4$. When W = X for $X \in V(A)$, t = 0, there exist many kinds of maximal 2-flats $\mathbb{R}X + \mathbb{R}Z$ for $Z \in V(A)$ orthogonal to $X \in V(A)$. So the tangent vector X is said to be singular. When $W = (X + JY)/\sqrt{2}$ for $t = \frac{\pi}{4}$, it becomes also a singular tangent vector, which belongs to many kinds of maximal 2-flats given by $\mathbb{R}(X + JY) + \mathbb{R}Z$ for any $Z \in V(A)$ orthogonal to $X \in V(A)$ or $\mathbb{R}(X + JY) + \mathbb{R}JZ$ for any $JZ \in JV(A)$. If $0 < t < \pi/4$ then the unique maximal flat containing W is $\mathbb{R}X \oplus \mathbb{R}JY$.

3. Some general equations

Let M be a real hypersurface in Q^m and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that $\xi = -JN$, where N is a (local) unit normal vector field of M and η the corresponding 1-form defined by $\eta(X) = g(\xi, X)$ for any tangent vector field X on M. The tangent bundle TM of M splits orthogonally into $TM = \mathcal{C} \oplus \mathbb{R}\xi$, where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C} , and $\phi\xi = 0$.

At each point $z \in M$ we define a maximal \mathfrak{A} -invariant subspace of T_zM , $z\in M$ as follows:

$$\mathcal{Q}_z = \{ X \in T_z M \mid AX \in T_z M \text{ for all } A \in \mathfrak{A}_z \}.$$

Then we want to introduce an important lemma which will be used in the proof of our main Theorem in the introduction.

Lemma 3.1. ([18]) For each $z \in M$ we have

- (i) If N_z is \mathfrak{A} -principal, then $\mathcal{Q}_z = \mathcal{C}_z$.
- (ii) If N_z is not \mathfrak{A} -principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $N_z = \cos(t)X + \sin(t)JY$ for some $t \in (0, \pi/4]$. Then we have $\mathcal{Q}_z = \mathcal{C}_z \ominus \mathbb{C}(JX + Y)$.

We now assume that M is a Hopf hypersurface. Then the Reeb vector field $\xi = -JN$ satisfies the following

$$S\xi = \alpha\xi,$$

where S denotes the shape operator of the real hypersurface M for a smooth function $\alpha = g(S\xi, \xi)$ on M. When we consider the transformed JX by the Kähler structure J on Q^m for any vector field X on M in Q^m , we may put

$$JX = \phi X + \eta(X)N$$

for a unit normal N to M. Then we now consider the equation of Codazzi

$$g((\nabla_X S)Y - (\nabla_Y S)X, Z) = \eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y) + g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z) + g(X, A\xi)g(JAY, Z) - g(Y, A\xi)g(JAX, Z).$$
(3.1)

Putting $Z = \xi$ in (3.1) we get

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi) = -2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) - g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi).$$

On the other hand, we have

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$

= $g((\nabla_X S)\xi, Y) - g((\nabla_Y S)\xi, X)$
= $(X\alpha)\eta(Y) - (Y\alpha)\eta(X) + \alpha g((S\phi + \phi S)X, Y) - 2g(S\phi SX, Y).$

Comparing the previous two equations and putting $X = \xi$ yields

$$Y\alpha = (\xi\alpha)\eta(Y) - 2g(\xi, AN)g(Y, A\xi) + 2g(Y, AN)g(\xi, A\xi)$$

Reinserting this into the previous equation yields

$$g((\nabla_X S)Y - (\nabla_Y S)X, \xi)$$

= $-2g(\xi, AN)g(X, A\xi)\eta(Y) + 2g(X, AN)g(\xi, A\xi)\eta(Y)$
+ $2g(\xi, AN)g(Y, A\xi)\eta(X) - 2g(Y, AN)g(\xi, A\xi)\eta(X)$
+ $\alpha g((\phi S + S\phi)X, Y) - 2g(S\phi SX, Y).$

Altogether this implies

$$0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) - g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi) + 2g(\xi, AN)g(X, A\xi)\eta(Y) - 2g(X, AN)g(\xi, A\xi)\eta(Y) - 2g(\xi, AN)g(Y, A\xi)\eta(X) + 2g(Y, AN)g(\xi, A\xi)\eta(X).$$
(3.2)

At each point $z \in M$ we can choose $A \in \mathfrak{A}_z$ such that

$$N = \cos(t)Z_1 + \sin(t)JZ_2$$

for some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$ (see Proposition 3 in [11]). Note that t is a function on M. First of all, since $\xi = -JN$, we have

$$AN = \cos(t)Z_1 - \sin(t)JZ_2,$$

$$\xi = \sin(t)Z_2 - \cos(t)JZ_1,$$

$$A\xi = \sin(t)Z_2 + \cos(t)JZ_1.$$

(3.3)

This implies $g(\xi, AN) = 0$ and hence

$$0 = 2g(S\phi SX, Y) - \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y) + g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi) - g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi) - 2g(X, AN)g(\xi, A\xi)\eta(Y) + 2g(Y, AN)g(\xi, A\xi)\eta(X).$$
(3.4)

4. η -parallel shape operator and a Key Lemma

By the equation of Gauss, the curvature tensor R(X, Y)Z for a real hypersurface M in Q^m induced from the curvature tensor \overline{R} of Q^m can be described in terms of the complex structure J and the complex conjugation $A \in \mathfrak{A}$ as follows:

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z +g(AY,Z)AX - g(AX,Z)AY + g(JAY,Z)JAX - g(JAX,Z)JAY +g(SY,Z)SX - g(SX,Z)SY$$

for any $X, Y, Z \in T_z M$, $z \in M$.

Now let us put

$$AX = BX + \rho(X)N,$$

for any vector field $X \in T_z Q^m$, $z \in M$, $\rho(X) = g(AX, N)$, where BX and $\rho(X)N$ respectively denote the tangential and normal component of the vector field AX. Then $A\xi = B\xi + \rho(\xi)N$ and $\rho(\xi) = g(A\xi, N) = 0$. Then it follows that

$$AN = AJ\xi = -JA\xi = -J(B\xi + \rho(\xi)N)$$
$$= -(\phi B\xi + \eta(B\xi)N).$$

Then we assert the following:

Lemma 4.1. Let M be a real hypersurface in Q^m , $m \ge 3$, with η -parallel and η -commuting shape operator. Then for any $X, Y, Z \in \mathcal{C}$ we have

$$0 = g(X, AN)g(AY, Z) + g(Y, A\xi)g(AX, \phi Z) - g(\phi Z, A\xi)g(AX, Y) - \eta(S\phi Z)g(Y, SX) + g(X, V)g(Y, SZ) + g(Y, V)g(X, SZ).$$

where C denotes the orthogonal complement of the Reeb vector field ξ and V is given by $\phi S\xi$.

Proof. The notion of η -commuting shape operator gives

$$g((S\phi - \phi S)X, Y) = 0$$

for any $X, Y \in \mathcal{C}$. By differentiating this, we have

$$g((\nabla_X S)Y,\phi Z) + g((\nabla_X S)Z,\phi Y) = \eta(SY)g(X,SZ) + \eta(SZ)g(Y,SX) + g(X,S\phi Y)g(Z,V) + g(X,S\phi Z)g(Y,V).$$

$$(4.1)$$

Then let us consider cyclic formulas with respect X, Y and Z as follows:

$$g((\nabla_Y S)Z,\phi X) + g((\nabla_Y S)X,\phi Z) = \eta(SZ)g(Y,SX) + \eta(SX)g(Z,SY) + g(Y,S\phi Z)g(X,V) + g(Y,S\phi X)g(Z,V)$$

$$(4.2)$$

and

$$g((\nabla_Z S)X,\phi Y) + g((\nabla_Z S)Y,\phi X) = \eta(SX)g(Z,SY) + \eta(SY)g(X,SZ) + g(Z,S\phi X)g(Y,V) + g(Z,S\phi Y)g(X,V)$$

$$(4.3)$$

Then substract the third one (4.3) from summing up (4.1) and (4.2). From such an obtained equation, and using the equation of Codazzi, it follows that

$$g((\nabla_{X}S)Y,\phi Z) + g((\nabla_{Y}S)X,\phi Z) + g((\nabla_{X}S)Z - (\nabla_{Z}S)X,\phi Y) + g((\nabla_{Y}S)Z - (\nabla_{Z}S)Y,\phi X) = 2\eta(SZ)g(Y,SX) + 2g(X,V)g(Y,S\phi Z) + 2g(Y,V)g(X,S\phi Z) = 2g((\nabla_{X}S)Y,\phi Z) - \{g(X,AN)g(AY,\phi Z) - g(Y,AN)g(AX,\phi Z) + g(X,A\xi)g(JAY,\phi Z) - g(Y,A\xi)g(JAX,\phi Z)\} + \{g(X,AN)g(AZ,\phi Y) - g(Z,AN)g(AX,\phi Y) + g(X,A\xi)g(JAZ,\phi Y) - g(Z,A\xi)g(JAX,\phi Y) \} + \{g(Y,AN)g(AZ,\phi X) - g(Z,AK)g(JAY,\phi X) + g(X,A\xi)g(JAZ,\phi X) - g(Z,A\xi)g(JAY,\phi X) \}.$$
(4.4)

From this, together with η -commuting property, and using $g(JAY, \phi Z) = -g(AY, J\phi Z) = g(AY, Z)$ for any $Y, Z \in \mathcal{C}$, we have

$$g((\nabla_X S)Y, \phi Z) - g(X, AN)g(AY, \phi Z) - g(Y, A\xi)g(AX, Z) - g(Z, A\xi)g(AX, Y)$$

= $\eta(SZ)g(Y, SX) + g(X, V)g(Y, S\phi Z) + g(Y, V)g(X, S\phi Z)$
(4.5)

for any $X, Y, Z \in \mathcal{C}$. Then by replacing Z by ϕZ in (4.5), we have

$$g((\nabla_X S)Y, Z) = g(X, AN)g(AY, Z) + g(Y, A\xi)g(AX, \phi Z) - g(\phi Z, A\xi)g(AX, Y) - \eta(S\phi Z)g(Y, SX) + g(X, V)g(Y, SZ) + g(Y, V)g(X, SZ).$$
(4.6)

This gives a complete proof of our Lemma.

Remark 4.2. Let M be a tube over a totally complex geodesic k-dimensional complex projective space $\mathbb{C}P^k$ in Q^{2k} . Then the unit normal vector field N is \mathfrak{A} -isotropic and the shape operator S commutes with the structure tensor ϕ . So the Reeb vector field ξ is principal and the vector field $V = \phi S\xi = 0$. It can be easily seen that the vectors $A\xi$ and AN belong to the distribution C. Then by (4.6) we have $g((\nabla_X S)Y, Z) = 0$ for any $X, Y, Z \in C$ orthogonal to the vectors $A\xi$ and AN. Moreover, (4.6) gives the following formulas

$$g((\nabla_{A\xi}S)A\xi, A\xi) = -g(A\xi, A\xi)g(A^2\xi, \phi Z) + g(A\xi, A\xi)g(\xi, \phi Z) = 0,$$

$$g((\nabla_{AN}S)AN, A\xi) = g(AN, AN)g(A^2N, A\xi) - g(AN, AN)g(A^2N, A\xi) = 0,$$

$$g((\nabla_{A\xi}S)AN,AN) = -g(A\xi,A\xi)g(A^2N,\phi AN) + g(AN,A\xi)g(A^2\xi,\phi AN) = 0,$$

and

$$g((\nabla_{A\xi}S)A\xi,AN) = -g(A\xi,A\xi)g(A^2\xi,\phi AN) + g(A\xi,A\xi)g(A^2\xi,\phi AN) = 0.$$

Then all the formulas mentioned above give that the shape operator S is η -parallel.

Now let us assume that the unit normal vector field N is \mathfrak{A} -isotropic. Then the normal vector field N can be written

$$N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)$$

for $Z_1, Z_2 \in V(A)$, where V(A) denotes the (+1)-eigenspace of the complex conjugation $A \in \mathfrak{A}$. Then it follows that

$$AN = \frac{1}{\sqrt{2}}(Z_1 - JZ_2), AJN = -\frac{1}{\sqrt{2}}(JZ_1 + Z_2), \text{ and } JN = \frac{1}{\sqrt{2}}(JZ_1 - Z_2).$$

From this, together with (3.3) and the anti-commuting property AJ = -JA, it follows that

$$g(\xi, A\xi) = g(JN, AJN) = 0, \ g(\xi, AN) = 0 \text{ and } g(AN, N) = 0.$$

In Lemma 4.1 let us take skew-symmetric in X and Y, it follows that

$$0 = \{g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z)\} + \{g(Y, A\xi)g(AX, \phi Z) - g(X, A\xi)g(AY, \phi Z)\}.$$
(4.7)

Since we have assumed that the unit normal N is \mathfrak{A} -isotropic, we can put X = AN in (4.7). Then it gives that g(AY, Z) = 0 for any Y and $Z \in \mathcal{C}$. So Lemma 4.1 gives the following

$$g(X,V)g(Y,SZ) + g(Y,V)g(Z,SX) + g(Z,V)g(X,SY) = 0.$$
(4.8)

When the unit normal vector field N is \mathfrak{A} -principal, that is, AN = N and $A\xi = -\xi$, then Lemma 4.1 also gives the equation (4.6). Now let us put $S\xi = \alpha\xi + \beta U$ in (4.8). Then we assert the following

Lemma 4.3. Let M be a complete real hypersurface in Q^m , $m \ge 3$, with η -parallel and η -commuting shape operator. If the unit normal vector field is singular, then

$$\beta = 0$$
 or $g(SY, Z) = 0$

for any vector fields $Y, Z \in \mathcal{C}$, where \mathcal{C} denotes the orthogonal distribution of the Reeb vector field ξ .

Proof. Now let us put $Z = V = \phi S\xi$ in (4.8) and use $S\xi = \alpha\xi + \beta U$ for some $U \in \mathcal{C}$. Then it follows that

$$0 = g(SX, Y) ||V||^{2} + g(SY, V)g(X, V) + g(SV, X)g(Y, V)$$

= $g(SX, Y) ||V||^{2} + \beta^{2}g(SY, \phi U)g(X, \phi U) + \beta^{2}g(S\phi U, X)g(Y, \phi U)$ (4.9)

for any X, Y and $Z \in \mathcal{C}$. Then for any $X, Y \in \mathcal{C}$ which are orthogonal to ϕU the formula (4.9) gives g(SX, Y) = 0. Now we put $X = Y = \phi U$ in (4.9). Then it follows that

$$0 = g(S\phi U, \phi U) ||V||^2 + 2\beta^2 g(S\phi U, \phi U) = 3\beta^2 g(S\phi U, \phi U),$$
(4.10)

where we have used $||V||^2 = g(\phi S\xi, \phi S\xi) = \beta^2$. Then (4.10) gives that the function $\beta = 0$ or $g(S\phi U, \phi U) = 0$. Now let us consider the case that $\beta \neq 0$ on the open subset \mathcal{U} in M.

Then $g(S\phi U, \phi U) = 0$ on \mathcal{U} . From this, together with putting $Y = \phi U$ in (4.9), we have for any $X \in \mathcal{C}$

$$0 = g(S\phi U, X) \|V\|^2 + \beta^2 g(S\phi U, X) = 2\beta^2 g(S\phi U, X).$$
(4.11)

So it follows that $g(S\phi U, X) = 0$ on \mathcal{U} for any $X \in \mathcal{C}$. From this, together with g(SX, Y) = 0 for any $X, Y \in \mathcal{C}$ orthogonal to ϕU , we can assert the latter part of Lemma 4.3. From this, we give a complete proof of our Lemma 4.3.

Remark 4.4. Let M be a ruled real hypersurface in Q^m foliated by the totally geodesic complex hyperplane Q^{m-1} in section 2. If the Reeb function $\alpha = g(S\xi, \xi) = 0$ and $\beta = g(S\xi, U)$ is constant, and the vector field U is parallel along the integral curve of the Reeb vector field ξ , then the unit normal vector field $N = J\xi$ becomes singular.

In fact, let us use the equation of Codazzi for $S\xi = \alpha\xi + \beta U$, $SU = \beta\xi$. Then it follows that

$$g(R(X,Y)\xi,N) = g((\nabla_X S)Y - (\nabla_Y S)X,\xi)$$

$$= g((\nabla_X S)\xi,Y) - g(((\nabla_Y S)\xi,X))$$

$$= d\alpha(X)\eta(Y) - d\alpha(Y)\eta(X) + \alpha g((S\phi + \phi S)X,Y)$$

$$- 2g(S\phi SX,Y) + (X\beta)g(U,Y) - (Y\beta)g(U,X)$$

$$+ \beta \{g(\nabla_X U,Y) - g(\nabla_Y U,X)\}.$$
(4.12)

By putting $X = \xi$ into (4.12) and using the assumption for the ruled hypersurface in Q^m , we have

$$g(R(\xi, N)N, JY) = g(R(JY, J\xi)N, \xi) = g(R(\xi, Y)\xi, N)$$

= $d\alpha(\xi)\eta(Y) - d\alpha(Y) + \alpha\beta g(\phi U, Y)$
+ $(\xi\beta)g(U, Y) + \beta g(\nabla_{\xi}U, Y)$
= 0. (4.13)

This implies $\bar{R}_N \xi = c\xi$ for $c \in \mathbb{R}$, that is, the Reeb vector field ξ is principal for the normal Jacobi operator \bar{R}_N . Then by a result due to Berndt and Suh (see Proposition 3.1, [3]) we know that the unit normal vector field N is \mathfrak{A} -principal or \mathfrak{A} -isotropic.

5. Proof of Main Theorem

In this section we prove our Main Theorem mentioned in the introduction. By the notions of η -parallel and η -commuting shape operator, we give a complete classification of real hypersurfaces in the complex quadric Q^m satisfying these notions. One of the most crucial points of this classification is to give a geometric property that the unit normal vector field of a ruled real hypersurface in Q^m foliated by complex totally geodesic Q^{m-1} is \mathfrak{A} -principal. Though in Remark 4.4 we have mentioned the unit normal vector field N is \mathfrak{A} -isotropic or \mathfrak{A} -principal, but in general N is \mathfrak{A} -principal for ruled real hypersurfaces in the complex quadric Q^m .

In order to complete this fact, let us consider a real hypersurface M in $Q^m, m \ge 4$, such that $g((\nabla_X S), Y, Z) = 0$ and $g((S\phi - \phi S)X, Y) = 0$ for any $X, Y, Z \in \mathcal{C}$. We can use

the formula (3.3) in section 3. This, together with $g(\xi, AN) = 0$ and Lemma 4.1 yields

$$0 = g(X, AN)g(AY, Z) + g(Y, A\xi)g(AX, \phi Z) - g(\phi Z, A\xi)g(AX, Y) - \eta(S\phi Z)g(Y, SX) + g(X, \phi S\xi)g(Y, SZ) + g(\phi S\xi, Y)g(X, SZ)$$

for any $X, Y, Z \in \mathcal{C}$.

If M is Hopf, that is, the Reeb vector field ξ is a principal vector field of the shape operator S of a real hypersurface M in Q^m , then it follows that $0 = \phi S\xi = S\phi\xi$. From this, together with η -commuting shape operator, $g((S\phi - \phi S)X, Y) = 0$ for any $X, Y \in C$, it naturally gives that the structure tensor ϕ commutes with the shape operator S, that is, $S\phi = \phi S$. Then by Theorem B we assert the following

Proposition 5.1. Let M be a Hopf real hypersurface in the complex quadric Q^m , $m \ge 4$, with η -parallel and η -commuting shape operator. Then M is locally congruent to a tube of radius r over a totally geodesic complex submanifold $\mathbb{C}P^k$ in Q^{2k} , m = 2k.

In a paper due to Berndt and Suh [2] we proved that the unit normal vector field N of M in the complex quadric Q^m is \mathfrak{A} -isotropic, that is g(AN, N) = 0 for the real hypersurface appearing in Proposition 5.1. Related to this fact, we want to show another proposition as follows:

Proposition 5.2. There does not exist any real hypersurface in Q^m , $m \ge 3$, with η -parallel shape operator and with \mathfrak{A} -isotropic normal vector field N.

Proof. Let us assume that M is a real hypersurface with η -parallel shape operator in Q^m , $m \geq 3$. That is, the shape operator S of M satisfies the following condition:

$$g((\nabla_X S)Y, Z) = 0 \tag{(*)}$$

for any tangent vector fields $X, Y, Z \in \mathcal{C}$, where \mathcal{C} denotes the orthogonal complement of the Reeb vector field ξ on M in Q^m . By using the equation of Codazzi, it yields for any $X, Y, Z \in \mathcal{C}$

$$g(g(AX, N)AY - g(AY, N)AX + g(AX, \xi)JAY - g(AY, \xi)JAX, Z) = 0.$$

The vector field $g(AX, N)AY - g(AY, N)AX + g(AX, \xi)JAY - g(AY, \xi)JAX$ in the leftside of the above equation is denoted by $W_{X,Y}$ (simply, W). Then $W_{X,Y} \in T_{[z]}Q^m$ becomes

$$W_{X,Y} = \sum_{i=1}^{2m} g(W_{X,Y}, e_i)e_i = g(W, \xi)\xi + g(W, N)N$$

= $g(W, \xi)\xi$,

because g(W, N) = 0 and $Z \in \mathcal{C}$. Since N is \mathfrak{A} -isotropic, g(AN, N) = 0 and $g(AN, \xi) = 0$, we see that $AN \in \mathcal{C} \subset T_{[z]}M$, $[z] \in M$.

Substituting Y = AN in $W_{X,Y}$ and using $A^2 = I$, we have

$$g(AX, N)N - AX - g(AX, \xi)\xi$$

= $W_{X,AN} = g(W, \xi)\xi = -2g(AX, \xi)\xi.$

Then it can be arranged as follows:

$$AX = g(AX, N)N + g(AX, \xi)\xi$$

for any $X \in \mathcal{C}$. From this , applying the real structure A and using the property of $A^2 = I$ again, it follows that

$$X = g(AX, N)AN + g(AX, \xi)A\xi \in \mathcal{C}.$$

This means $\dim_{\mathbb{R}} \mathcal{C} = 2$. But, in fact, any vector $X \in \mathcal{C}$ is expressed by

$$X = \sum_{k=1}^{2m-2} g(X, e_k)e_k$$

with respect to the basis $\{AN, A\xi, e_1, e_2, \cdots, e_{2m-4}\}$ of \mathcal{C} . So we get $\dim_{\mathbb{R}} \mathcal{C} = 2m - 2$, which gives a contradiction. From this, we get a complete proof of our proposition. \Box

Then combining Propositions 5.1 and 5.2, we assert the following

Theorem 5.3. There do not exist a Hopf real hypersurface in the complex quadric Q^m , $m \ge 4$, with η -parallel and η -commuting shape operator.

Now let us suppose that M is non-Hopf and write $S\xi = \alpha\xi + \beta U$, where U is a unit vector field in C and $\beta \neq 0$. Then the above equation becomes

$$0 = g(X, AN)g(AY, Z) + g(Y, A\xi)g(AX, \phi Z) - g(\phi Z, A\xi)g(AX, Y) + \beta g(Z, \phi U)g(Y, SX) + \beta g(X, \phi U)g(Y, SZ) + \beta g(Y, \phi U)g(X, SZ)$$
(5.1)

for any $X, Y, Z \in \mathcal{C}$.

Let us take $X, Y, Z \in \mathcal{C}_U = \text{Span}\{\xi, U, \phi U\}^{\perp}$. From (5.1) we get $0 = g(X, AN)g(AY, Z) + g(Y, A\xi)g(AX, \phi Z) - g(Z, AU)g(AX, Y).$

Taking X = Z, we obtain

$$g(Y, A\xi)g(AX, \phi X) = 0 \tag{5.2}$$

for any $X, Y \in \mathcal{C}_U$.

Case 1) Suppose $g(A\xi, Y) = 0$ for any $Y \in \mathcal{C}_U$.

Now we take ϕY instead of Y. Then it follows that

$$g(\phi Y, A\xi) = -g(Y, JA\xi) = g(Y, AJ\xi) = g(Y, AN) = 0$$
(5.3)

for any $Y \in \mathcal{C}_U$.

If we take $X, Y \in \mathcal{C}_U, Z = U$ in (5.1), we obtain

$$0 = g(X, AN)g(AY, U) - g(U, AN)g(AZ, Y)$$
(5.4)

for any $Z, Y \in \mathcal{C}_U$. From (5.3), (5.4) becomes

$$0 = g(U, AN)g(AX, Y) \tag{5.5}$$

for any $X, Y \in \mathcal{C}_U$. Taking $X = \phi U, Y, Z \in \mathcal{C}_U$ in (5.1), we have

$$-g(U, A\xi)g(AY, Z) + \beta g(Y, SZ) = 0$$
(5.6)

for any $Y, Z \in \mathcal{C}_U$ and taking $X, Y \in \mathcal{C}_U, Z = \phi U$, we obtain bearing in mind (5.3)

$$g(U, A\xi)g(AX, Y) + \beta g(Y, SZ) = 0.$$

In particular,

$$g(U, A\xi)g(AY, Z) + \beta g(Z, SY) = 0$$
(5.7)

From (5.6) and (5.7) we get

$$g(U, A\xi)g(AY, Z) = 0 \tag{5.8}$$

and

$$g(SY,Z) = 0 \tag{5.9}$$

for any $Y, Z \in \mathcal{C}_U$.

We know $g(AZ, \phi U) = g(\phi Z, AU)$ for any $Z \in \mathcal{C}$. Taking $X = U, Y = \phi U, Z \in \mathcal{C}_U$ in (5.1), we have

 $-2g(U,AN)g(JAU,Z)+\beta g(U,SZ)=0$ and taking $X=\phi U,\,Y=U,\,Z\in \mathcal{C}_U$ in (5.1) it follows

$$-2g(U, A\xi)g(AU, Z) + \beta g(U, SZ) = 0$$

for any $Z \in \mathcal{C}_U$. Therefore

$$g(U, AN)g(JAU, Z) = g(U, A\xi)g(AU, Z)$$
for any $Z \in \mathcal{C}_U$. Take $X = U, Y = \mathcal{C}_U, Z = \phi U$ in (5.1). Then
$$(5.10)$$

$$0 = -g(U, AN)g(Y, JAU) + g(U, A\xi)g(AU, Y) + \beta g(Y, SU)$$
(5.11)

for any $Y \in \mathcal{C}_U$. From (5.10) and (5.11) we get

$$g(Y, SU) = 0 \tag{5.12}$$

for any $Y \in \mathcal{C}_U$. Therefore we get

$$g(U,AN)g(JAU,Z) = 0 (5.13)$$

$$g(U, A\xi)g(AU, Z) = 0 \tag{5.14}$$

for any $Z \in \mathcal{C}_U$. Taking $X = Z = \phi U, Y \in \mathcal{C}_U$ in (5.1) we have

$$0 = g(\phi U, AN)g(AY, \phi U) + g(U, A\xi)g(A\phi U, Y) + 2\beta g(SY, \phi U)$$

= $2\beta g(SY, \phi U).$

As we suppose $\beta \neq 0$, we get

$$g(SY,\phi U) = 0 \tag{5.15}$$

for any $Y \in \mathcal{C}_U$. From (5.9), (5.12) and (5.15) we have

$$SX = 0 \tag{5.16}$$

for any $X = \mathcal{C}_U$. If we put X = Y = Z = U in (5.1), we get

$$g(U, A\xi)g(AU, \phi U) = 0.$$
 (5.17)

And taking $X = Y = Z = \phi U$ in (5.1) we obtain

14

$$g(U, AN)g(A\phi U, U) = 3\beta g(\phi U, S\phi U)$$
(5.18)

If we put $X = U, Y = \phi U, Z = U$ in (5.1), we have

$$g(U,AN)g(A\phi U,U) + \beta g(U,SU) = 0$$
(5.19)

From (5.18) and (5.20) it follows

$$g(U,SU) = -3g(\phi U, S\phi U) \tag{5.20}$$

Now let us put $X = Y = \phi U, Z = U$ in (5.1). Then it follows

$$0 = -g(U, A\xi)g(A\phi U, U) + 2\beta g(\phi U, SU)$$

and (5.19) yields

$$g(\phi U, SU) = 0 \tag{5.21}$$

that is, $S\phi U = \gamma \phi U$ $SU = -3\gamma U + \beta \xi$. By Codazzi equation, bearing in mind that for any $X \in C_U$

$$g(AX,\xi) = g(AX,N) = 0$$
 and $SX = S\phi X = 0$

we get

$$g((\nabla_X S)\phi X - (\nabla_{\phi X} S)X, Z) = -2\eta(Z)$$
(5.22)

for any Z tangent to M. Taking $Z = \xi$ it follows

$$\beta g([\phi X, X], U) = -2 \tag{5.23}$$

and taking Z = U we get

$$-3\gamma g([\phi X, X], U) = 0$$
 (5.24)

From (5.23) and (5.24) $\gamma = 0$ and we have $S\xi = \alpha\xi + \beta U$, $SU = \beta\xi$, SX = 0, $X \in \text{Span}\{\xi, U\}^{\perp}$.

Suppose, moreover, that g(AX, Y) = 0 for any $X, Y \in \mathcal{C}_U$. If g(AX, U) = 0 for any $X \in \mathcal{C}_U$, then

$$0 = g(A\phi X, U) = g(AJX, U) = -g(X, JAU) = g(X, AJU) = g(X, A\phi U).$$

In this case AX = 0 for any $X \in \mathcal{C}_U$ and this yields X = 0, therefore $m \leq 2$ and we have a contradiction. Therefore there exists $X \in \mathcal{C}_U$ such that $g(AX, U) \neq 0$. Then for any $X \in \mathcal{C}_U$ we have

$$AX = g(AX, U)U + g(AX, \phi U)\phi U.$$

So by applying complex conjugation A again, it follows $X = g(AX, U)AU + g(AX, \phi U)A\phi U$, which means $C_U = \text{Span}\{AU, A\phi U\}$ and $m \leq 3$, also a contradiction. Therefore there exist $X, Y \in C_U$ such that $g(AX, Y) \neq 0$. As $g(X, AN) = g(JX, A\xi) = 0$ for any $X \in C_U$, from (5.4) we have g(U, AN) = 0 and from (5.6) $g(U, A\xi) = 0$. Then these formulas give

$$g(U, AN) = g(U, AJ\xi) = -g(U, JA\xi) = g(\phi U, A\xi) = 0,$$

$$g(U, A\xi) = -g(U, AJN) = g(U, JAN) = -g(\phi U, AN) = 0.$$

So we have obtained that AN = g(AN, N)N and $N = g(AN, N)AN = g(AN, N)^2N$. This gives that $g(AN, N)^2 = 1$, which means $\cos^2(2t) = 1$. As $0 \le t \le \frac{\pi}{4}$, the unique possibility is 2t = 0, that is, t = 0 and N is \mathfrak{A} -principal.

Case 2) Suppose $g(AX, \phi X) = 0$ for any $X \in \mathcal{C}_U$.

This yields g(AX, Y) = 0 for any $X, Y \in \mathcal{C}_U$. Take $X, Y = \phi X \in \mathcal{C}_U, Z = U$ in (5.1). We have $0 = 2g(X, AN)g(X, A\phi U)$. Therefore we assert

$$g(X, AN)g(X, A\phi U) = 0 \tag{5.25}$$

for any $X \in \mathcal{C}_U$. And taking $X, Y = \phi X \in \mathcal{C}_U, Z = \phi U$ in (5.1) we obtain

$$2g(X,AN)g(AX,U) = \beta g(SX,\phi X)$$
(5.26)

for any $X \in \mathcal{C}_U$. Taking $X \in \mathcal{C}_U$, Y = U, Z = U in (5.1) we get

$$g(X, AN)g(AU, U) - g(U, A\xi)g(X, JAN) - g(U, AN)g(AX, U) = 0$$
(5.27)

for any $X \in \mathcal{C}_U$, and taking $X \in \mathcal{C}_U$, $Y = \phi U$, $Z = \phi U$ in (5.1) we obtain

$$0 = -g(X, AN)g(AU, U) - g(U, AN)g(AX, U) -g(U, A\xi)g(X, JAU) + 2\beta g(S\phi U, X).$$
(5.28)

From (5.7) and (5.8) we have

$$g(X, AN)g(AU, U) = 2\beta g(S\phi U, X)$$
(5.29)

for any $X \in \mathcal{C}_U$.

Let us suppose that g(X, AN) = 0 for any $X \in \mathcal{C}_U$. Then

 $0 = g(\phi X, AN) = -g(X, JAN) = g(X, AJN) = -g(X, A\xi).$

Therefore $g(X, A\xi) = 0$ for any $X \in \mathcal{C}_U$. As we suppose g(AX, Y) = 0 for any $X, Y \in \mathcal{C}_U$, we know

 $AX = g(AX, U)U + g(AX, \phi U)\phi U,$

for any $X \in \mathcal{C}_U$, that is, $X = g(AX, U)AU + g(AX, \phi U)A\phi U$ for any $X \in \mathcal{C}_U$. Accordingly, it follows that $\mathcal{C}_U = \text{Span}\{AU, A\phi U\}$ and $\dim \mathcal{C}_U \leq 2$. Therefore $\dim M \leq 5$ or $m \leq 3$, which is impossible.

If $g(AX, \phi U) = 0$ for any $X \in \mathcal{C}_U$ we have $g(\phi X, A\phi U) = -g(\phi X, JAU) = -g(X, AU) = 0$, and in this case $AX = g(AX, \xi)\xi + g(AX, N)N$ which yields

$$X = g(AX,\xi)A\xi + g(AX,N)AN$$

for any $X \in \mathcal{C}_U$. We arrive at the same contradiction.

Therefore we must suppose that there exists $X \in \mathcal{C}_U$ such that $g(X, AN) \neq 0$ and from (5.25) $g(X, A\phi U) = 0$. Taking $X, Y \in \mathcal{C}_U, Z = U$ in (5.1) we obtain

$$g(X,AN)g(AY,U) + g(Y,A\xi)g(AX,\phi U) = 0$$
(5.30)

for any $X, Y \in \mathcal{C}_U$. Taking, in particular, our previous $X \in \mathcal{C}_U$ in (5.30) we obtain g(AY, U) = 0 for any $Y \in \mathcal{C}_U$. As above, this also yields $g(AY, \phi U) = 0$ for any $Y \in \mathcal{C}_U$. Then for any $Y \in \mathcal{C}_U$ we have

$$AY = g(AY,\xi)\xi + g(AY,N)N$$

and, as above, this gives a contradiction. Accordingly, the Case 2) can not appear. So only the Case 1) remains valid. From this, together with Theorem A, we have proved.

Theorem 5.4. Let M be a non-Hopf real hypersurface in the complex quadric Q^m , $m \ge 4$, with η -parallel and η -commuting shape operator. Then the unit normal vector field N of M is \mathfrak{A} -principal and M is locally congruent to a ruled real hypersurface foliated by complex totally geodesic Q^{m-1} in Q^m .

Summing up above two Theorems 5.3 and 5.4 we give a complete proof of our Main Theorem in the introduction.

6. Examples of ruled real hypersurfaces in complex quadric

In this section, let us construct ruled real hypersurfaces M^{2m-1} in complex quadric Q^m , i.e., real hypersurfaces which are foliated by totally geodesic complex hyperquadric Q^{m-1} , from curves in real projective space \mathbb{RP}^{m+1} .

First we recall *Stiefel manifold* (cf. [5]). Let

$$V_2(\mathbb{R}^{m+2}) = \{ (v_1, v_2) | v_1, v_2 \in \mathbb{R}^{m+2}, \|v_1\| = \|v_2\| = 1, \langle v_1, v_2 \rangle = 0 \}$$

be the Stiefel manifold of orthonormal 2-frames in \mathbb{R}^{m+2} . Then the tangent space $T_{(v_1,v_2)}V_2(\mathbb{R}^{m+2})$ is given as

$$\mathbb{R}(-v_2, v_1) \oplus \{ (x_1, x_2) \in \mathbb{R}^{m+2} \times \mathbb{R}^{m+2} | x_1, x_2 \perp \operatorname{span}\{v_1, v_2\} \}.$$

Let $\widetilde{\mathbb{G}}_2(\mathbb{R}^{m+2})$ be the *Grassmannian manifolds* of oriented 2-planes in \mathbb{R}^{m+2} and let $\pi^{\mathbb{G}}$: $V_2(\mathbb{R}^{m+2}) \to \widetilde{\mathbb{G}}_2(\mathbb{R}^{m+2})$ be the projection defined by $\pi^{\mathbb{G}}(v_1, v_2) = \operatorname{span}(v_1, v_2)$. Then with respect to the metric on $V_2(\mathbb{R}^{m+2})$ induced from Euclidean space $\mathbb{R}^{m+2} \times \mathbb{R}^{m+2} = \mathbb{C}^{m+2}$ as a submanifold, we can define a Riemannian metric on $\widetilde{\mathbb{G}}_2(\mathbb{R}^{m+2})$ such that π^G is a Riemannian submersion. We consider an embedding:

$$\tilde{i}: V_2(\mathbb{R}^{m+2}) \to S^{2m+3} \subset \mathbb{C}^{m+2}, \quad \tilde{i}(v_1, v_2) = (v_1 + iv_2)/\sqrt{2}.$$

The tangent space $T_{\tilde{i}(v_1,v_2)}\tilde{i}(V_2(\mathbb{R}^{m+1}))$ is given as

$$\mathbb{R}(-v_2 + iv_1) \oplus \{x_1 + ix_2 \in \mathbb{C}^{m+2} | x_1, x_2 \perp \operatorname{span}\{v_1, v_2\}\}.$$

Then we have a commutative diagram

where π is the Hopf fibration and *i* is the embedding induced from \tilde{i} . Then $i(\mathbb{G}_2(\mathbb{R}^{m+2}))$ is identified with the complex quadric Q^n .

Let I be an interval and let $\gamma : I \to \mathbb{RP}^{m+1}$ be a real 1-dimensional regular curve in real projective space. We denote $\Gamma : I \to SO(n)$ a horizontal lift of γ with respect to the natural projection $SO(m+2) \to \mathbb{RP}^{m+1} = SO(m+2)/S(O(m+1) \times O(1))$. For an expression of the matrix $\Gamma(t) = (e_1(t), \cdots, e_{m+1}(t), e_{m+2}(t))$ by column vectors, we may assume

$$e'_{j}(t) = \lambda_{j}(t)e_{m+2}(t) \quad (j = 1, \cdots, m+1), \quad e'_{m+2}(t) = -\sum_{j=1}^{m+1} \lambda_{j}(t)e_{j}(t).$$
 (6.2)

Let $\widetilde{\Phi}: I \times V_2(\mathbb{R}^{m+1}) \to S^{2m+3} \subset \mathbb{C}^{m+2}$ be a map defined by

$$\widetilde{\Phi}(t, (v_1, v_2)) = \Gamma(t) \begin{pmatrix} (v_1 + iv_2)/\sqrt{2} \\ 0 \end{pmatrix}.$$
(6.3)

Then we have the induced map $\Phi: I \times G_2(\mathbb{R}^{m+1}) \to \mathbb{CP}^{m+1}$ defined by

$$\Phi(t, \pi^G((v_1, v_2))) = \pi(\tilde{\Phi}(t, (v_1, v_2)))$$
(6.4)

such that the following diagram is commutative:

and the image $\Phi(I \times G_2(\mathbb{R}^{m+1}))$ lies in the complex quadric Q^m in \mathbb{CP}^{m+1} and for each $t \in I$, $\Phi(\{t\} \times G_2(\mathbb{R}^{m+1})))$ is a totally geodesic complex hypersurface Q^{m-1} in Q^m .

We compute the differential of $\widetilde{\Phi}$. Using (6.2) we have

$$d\widetilde{\Phi}((\partial/\partial t), 0) = \Gamma'(t) \begin{pmatrix} (v_1 + iv_2)/\sqrt{2} \\ 0 \end{pmatrix}$$

= $\Gamma(t) \begin{pmatrix} O & -\lambda(t) \\ t\lambda(t) & 0 \end{pmatrix} \begin{pmatrix} (v_1 + iv_2)/\sqrt{2} \\ 0 \end{pmatrix}$
= $\Gamma(t) \begin{pmatrix} 0 \\ (\langle\lambda(t), v_1\rangle + i\langle\lambda(t), v_2\rangle)/\sqrt{2} \end{pmatrix},$ (6.6)

where we put $\lambda(t) = {}^{t}(\lambda_{1}(t), \cdots, \lambda_{m+1}(t))$. Also we obtain

$$V := d\widetilde{\Phi}(0, (-v_2, v_1)) = \frac{\Gamma(t)}{\sqrt{2}} \begin{pmatrix} -v_2 + iv_1 \\ 0 \end{pmatrix},$$
(6.7)

and

$$d\widetilde{\Phi}(0,(x_1,x_2)) = \frac{\Gamma(t)}{\sqrt{2}} \begin{pmatrix} x_1 + ix_2\\ 0 \end{pmatrix}, \qquad (6.8)$$

where $x_1, x_2 \perp v_1, v_2$. Here V is a vertical vector with respect to the fibration $id \times \pi^{\mathbb{G}}$: $I \times V_2(\mathbb{R}^{m+1}) \to I \times G_2(\mathbb{C}^{m+1})$. The metric on $I \times V_2(\mathbb{R}^{m+1})$ induced by $\widetilde{\Phi}$ is written as:

$$\begin{split} \|d\widetilde{\Phi}((\partial/\partial t),0)\|^2 &= \frac{\langle\lambda(t),v_1\rangle^2 + \langle\lambda(t),v_2\rangle^2}{2},\\ \|V\|^2 &= 1, \quad \|d\widetilde{\Phi}(0,(x_1,x_2))\|^2 = \frac{\|x_1\|^2 + \|x_2\|^2}{2},\\ \langle d\widetilde{\Phi}((\partial/\partial t),0),V\rangle &= \langle d\widetilde{\Phi}((\partial/\partial t),0), d\widetilde{\Phi}(0,(x_1,x_2))\rangle = \langle V,d\widetilde{\Phi}(0,(x_1,x_2))\rangle = 0. \end{split}$$

Hence

$$\widetilde{\Phi}$$
 is regular at $(t, (v_1, v_2)) \Leftrightarrow \langle \lambda(t), v_1 \rangle^2 + \langle \lambda(t), v_2 \rangle^2 \neq 0,$ (6.9)

Proposition 6.1. Let $\gamma : I \to \mathbb{RP}^{m+1}$ be a real 1-dimensional regular curve in real projective space and let $\Gamma : I \to SO(n)$ be a horizontal lift of γ with respect to the natural projection $SO(m+2) \to \mathbb{RP}^{m+1} = SO(m+2)/S(O(m+1) \times O(1))$. Then the map

18

 $\Phi: I \times \mathbb{G}_2(\mathbb{R}^{m+1}) \to \mathbb{CP}^{m+1}$ defined by (6.4) is regular at $(t, (v_1, v_2))$ if and only if (6.9) holds.

A unit normal vector of $\widetilde{\Phi}$ at $(t, (v_1, v_2))$ is given by

$$\widetilde{N} = \frac{\Gamma(t)}{\sqrt{\langle \lambda(t), v_1 \rangle^2 + \langle \lambda(t), v_2 \rangle^2}} \begin{pmatrix} 0\\ -\langle \lambda(t), v_2 \rangle + i \langle \lambda(t), v_1 \rangle \end{pmatrix}.$$
(6.10)

Now we compute the condition for which $\tilde{\Phi}$ (and Φ) is *minimal*. By (6.8) and (6.10), we see that

$$\langle A^{\Phi}(0, (x_1, x_2)), (0, (y_1, y_2)) \rangle = 0, \quad (x_1, x_2, y_1, y_2 \perp v_1, v_2)$$

where $A^{\tilde{\Phi}}$ is the shape operator of $\tilde{\Phi}$. Hence $\tilde{\Phi}$ (and Φ) is a minimal immersion at the regular points of $\tilde{\Phi}$ if and only if $\langle A^{\tilde{\Phi}}(\partial/\partial t, 0), (\partial/\partial t, 0) \rangle = 0$. Using (6.2) and (6.6), we obtain

$$D_{d\tilde{\Phi}((\partial/\partial t),0)}d\tilde{\Phi}((\partial/\partial t),0) = \frac{\Gamma'(t)}{\sqrt{2}} \begin{pmatrix} 0 \\ (\langle\lambda(t),v_1\rangle + i\langle\lambda(t),v_2\rangle) \end{pmatrix} \\ + \frac{\Gamma(t)}{\sqrt{2}} \begin{pmatrix} 0 \\ (\langle\lambda'(t),v_1\rangle + i\langle\lambda'(t),v_2\rangle) \end{pmatrix} \\ = \frac{\Gamma(t)}{\sqrt{2}} \begin{pmatrix} 0 & -\lambda(t) \\ t\lambda(t) & 0 \end{pmatrix} \begin{pmatrix} 0 \\ (\langle\lambda(t),v_1\rangle + i\langle\lambda(t),v_2\rangle) \end{pmatrix} \\ + \frac{\Gamma(t)}{\sqrt{2}} \begin{pmatrix} 0 \\ (\langle\lambda'(t),v_1\rangle + i\langle\lambda'(t),v_2\rangle) \end{pmatrix} \\ = \frac{\Gamma(t)}{\sqrt{2}} \begin{pmatrix} -(\langle\lambda(t),v_1\rangle + i\langle\lambda(t),v_2\rangle)\lambda(t) \\ (\langle\lambda'(t),v_1\rangle + i\langle\lambda'(t),v_2\rangle) \end{pmatrix}.$$
(6.11)

Hence $\widetilde{\Phi}$ (and Φ) is minimal if and only if

$$-\langle \lambda'(t), v_1 \rangle \langle \lambda(t), v_2 \rangle + \langle \lambda'(t), v_2 \rangle \langle \lambda(t), v_1 \rangle = 0$$
(6.12)

for any $(v_1, v_2) \in V_2(\mathbb{R}^{m+2})$.

We may assume that $\|\lambda(t)\|^2 = 1$, by changing parameter t if necessarily, so we have $\lambda(t) \perp \lambda'(t)$. On the other hand, (6.12) implies that $\lambda(t) \wedge \lambda'(t) = 0$. Consequently we obtain that $\lambda(t)$ is constant, and $\Gamma(t)$ is a 1-parameter group of SO(m+2). Hence by the help of [1], minimal ruled hypersurface $\Phi(I \times G_2(\mathbb{R}^{m+1}))$ in Q^m is invariant under a 1-parameter subgroup $\Gamma(t)$ of SO(m+2).

Theorem 6.2. Minimal ruled real hypersurface M^{2m-1} in complex quadric Q^m is invariant under a 1-parameter subgroup of SO(m+2).

References

- J. M. Barbosa, M. Dajczer and L. P. Jorge, Minimal ruled submanifolds in spaces of constant curvature, Indiana Univ. Math. J., 33 (1984), 531-547.
- J. Berndt and Y. J. Suh, Isometric Reeb flow on real hypersurfaces in complex quadric, International J. of Math., 24 (2013), 1350050(18 pages).
- [3] J. Berndt and Y. J. Suh, Contact hypersurfaces in Kähler manifolds, Proc. of Amer. Math. Soc., 143 (2015), 2637-2649.

- [4] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in $P_n(C)$, Math. Ann. **276** (1987), 487–497.
- [5] M. Kimura, Minimal immersions of some circle bundles over holomorphic curves in complex quadric to sphere, Osaka J. Math., 37 (2000), no. 4, 883-903.
- [6] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
- [7] S. Klein, Totally geodesic submanifolds in the complex quadric, Diff. Geom. and Its Appl. 26 (2008), 79–96.
- [8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, A Wiley-Interscience Publ., Wiley Classics Library Ed., 1996.
- [9] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355–364.
- [10] J.D. Pérez and Y.J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. of Korean Math. Soc. 44 (2007), 211–235.
- [11] H. Reckziegel, On the geometry of the complex quadric, in: Geometry and Topology of Submanifolds VIII (Brussels/Nordfjordeid 1995), World Sci. Publ., River Edge, NJ, 1995, pp. 302–315.
- [12] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246-266.
- [13] B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan 19 (1968), 643-647.
- [14] B. Smyth, On the rank and curvature of non-singuar complex hypersurfaces in complex projective space, J. Math. Soc. Japan 21 (1967), 266-269.
- [15] Y.J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math. 147 (2006), 337-355.
- [16] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Royal Soc. Edinb. A. 142 (2012), 1309-1324.
- [17] Y.J. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Advances in Applied Math. 50 (2013), 645–659.
- [18] Y.J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, International J. Math. 25 (2014), 1450059(17 pages).
- [19] Y.J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Advances in Math. 281 (2015), 886-905.
- [20] Y.J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. 106 (2016), 393-410.

MAKOTO KIMURA IBARAKI UNIVERSITY, DEPARTMENT OF MATHEMATICS, MITO, IBARAKI, 310-8512, JAPAN *E-mail address*: makoto.kimura.geometry@vc.ibaraki.ac.jp

HYUNJIN LEE KYUNGPOOK NATIONAL UNIVERSITY, RESEARCH INSTITUTE OF, REAL AND COMPLEX MANIFOLDS, DAEGU 41566, REPUBLIC OF KOREA *E-mail address*: lhjibis@hanmail.net

JUAN DE DIOS PÉREZ UNIVERSITY OF GRANADA, DEPARTMENT OF GEOMETRY AND TOPOLOGY, GRANADA 18071, SPAIN *E-mail address*: jdperez@ugr.es

RULED REAL HYPERSURFACES

Young Jin Suh Kyungpook National University, College of Natural Sciences, Department of Mathematics, and Research Institute of Real & Complex Manifolds, Daegu 41566, Republic of Korea *E-mail address*: yjsuh@knu.ac.kr