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Abstract. First we introduce the notions of η-parallel and η-commuting shape operator
for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2 . Next we give a
complete classification of real hypersurfaces in the complex quadric Qm with such kind
of shape operators. By virtue of this classification we give a new characterization of ruled
real hypersurface foliated by complex totally geodesic hyperplanes Qm−1 in Qm whose
unit normal vector field in Qm is A-principal.

1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usually give ex-
amples of Riemannian symmetric spaces SUm+2/S(U2Um) and SU2,m/S(U2Um), which are
said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grass-
mannians respectively (see [15], [16], and [17] ). These are viewed as Hermitian symmetric
spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J
and the quaternionic Kähler structure J.

In the complex projective space CPm+1 some classifications of real hypersurfaces related
to η-parallel shape operator were investigated by Kimura [4], Kimura and Maeda [6] re-
spectively. The classification problems of real hypersurfaces of the complex 2-plane Grass-
mannian G2(Cm+2) = SUm+2/S(U2Um) with certain geometric conditions were mainly
discussed in Pérez and Suh [10], and Suh [15], [16], [17], where the classification of contact
hypersurfaces, parallel Ricci tensor, harmonic curvature and structure Jacobi operator of a
real hypersurface inG2(Cm+2) were extensively studied. Moreover, in [17] we have asserted
that the Reeb flow on a real hypersurface in SU2,m/S(U2Um) is isometric if and only if M is
an open part of a tube around a totally geodesic SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um)
.

As another kind of Hermitian symmetric space with rank 2 of compact type dif-
ferent from the above ones, we can consider the example of complex quadric Qm =
SOm+2/SOmSO2, which is a complex hypersurface in complex projective space CPm+1

(see Kobayashi and Nomizu [8] and Smyth [12], [13] and [14]). The complex quadric can
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also be regarded as a kind of real Grassmann manifold of compact type with rank 2.
Accordingly, the complex quadric admits two important geometric structures, a complex
conjugation structure A and a Kähler structure J , which anti-commute with each other,
that is, AJ = −JA. Then for m≥2 the triple (Qm, J, g) is a Hermitian symmetric space
of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein
[7] and Reckziegel [11]).

Apart from the complex structure J there is another distinguished geometric structure
on Qm, namely a parallel rank two vector bundle A which contains an S1-bundle of real
structures, that is, complex conjugations A on the tangent spaces of Qm. This geometric
structure determines a maximal A-invariant subbundle Q of the tangent bundle TM of a
real hypersurface M in Qm.

Moreover, the derivative of the complex conjugation A on Qm is given by

(∇̄XA)Y = q(X)JAY

for any vector fields X and Y on M , where q denotes a certain 1-form defined on M .

Recall that a nonzero tangent vector W ∈ T[z]Q
m is called singular if it is tangent to

more than one maximal flat in Qm. There are two types of singular tangent vectors for
the complex quadric Qm:

1. If there exists a conjugation A ∈ A such that W ∈ V (A) := Eig(A, 1), then W is
singular. Such a singular tangent vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such
that W/||W || = (X+JY )/

√
2, then W is singular. Such a singular tangent vector

is called A-isotropic.

When we consider a hypersurface M in the complex quadric Qm, under the assumption
of some geometric properties the unit normal vector field N of M in Qm can be considered
of two classes if either N is A-isotropic or A-principal (see [18] and [19]). In the first case
where N is A-isotropic, we have shown in Suh [18] that M is locally congruent to a tube
over a totally geodesic CP k in Q2k. In the second case, when the unit normal N is A-
principal, we proved that a contact hypersurface M in Qm is locally congruent to a tube
over a totally geodesic and totally real submanifold Sm in Qm (see [19]).

The shape operator S of M in Qm is said to be η-parallel if it satisfies

g((∇XS)Y, Z) = 0

for any X, Y, Z∈Cz, z∈M , where Cz denotes the orthogonal complement of the Reeb vector
field ξz = JNz of M in TzM .

Moreover, if the shape operator S of M in Qm satisfies g((Sφ− φS)X, Y ) = 0 for any
X, Y ∈C, we say that M is η-commuting.

When the Reeb vector field ξ is a principal vector field of the shape operator of M
in Qm, a real hypersurface M is said to be Hopf. Now let us introduce another kind of
real hypersurfaces which is said to be ruled real hypersurfaces in the complex quadric Qm

which are not Hopf as follows:

Let γ: I→Qm be an integral curve of the Reeb vector field ξ such that γ′(0) = ξp.
The distribution C = {X∈TM |X⊥ξ} is said to be integrable if [X, Y ]∈C for any vector
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fields X, Y ∈C. When M is foliated by the integrable totally geodesic complex hyperplane
Qm−1 in Qm, then M = {x∈Qm−1(t)|t∈I}. In such a case we say that M is a ruled real
hypersurface in Qm. In such a case, the expression of the shape operator S of the ruled
real hypersurface M in Qm becomes

Sξ = αξ + βU

SU = βξ

SX = 0

for any vector field X⊥ξ, U , where U is a unit vector field in C, α and β are functions on
M and β does not vanish. Then the above expression holds if and only if g(SX, Y ) = 0
for any vector fields X and Y in C. By the totally geodesic property of the complex
hyperplane Qm−1 in Qm in the construction of the ruled real hypersurface in Qm, it
naturally satisfies the above expression of the shape operator, and conversely if the shape
operator satisfies the above formula, we can construct the ruled real hypersurface in Qm.
So as a characterization of ruled real hypersurfaces in Qm, we summarize this one as
follows:

Theorem A. Let M be a real hypersurface in Qm, m≥3. Then M is locally congruent
to a ruled real hypersurface foliated by complex totally geodesic Qm−1 in Qm if and only
if the shape operator S satisfies g(SX, Y ) = 0 for any X, Y ∈C.

This Theorem A implies that the shape operator S is η-parallel, that is, g((∇XS)Y, Z) =
0 for any X, Y, Z∈C. By linearization, g((∇XS)X,X) = 0 for any X∈C. Then this is
equivalent to the constancy of g(Sγ′, γ′) = ḡ(∇̄γ′γ

′, ∇̄γ′γ
′), where ḡ and ∇̄ denote respec-

tively the Riemannian metric and the Riemannian connection of the complex quadric Qm.
This means that every geodesic γ: I→M in Qm which is orthogonal to the Reeb vector
field ξ, that is γ′(0)⊥ξp, and γ(0) = p, has constant first curvature.

When the stucture tensor φ commutes with the shape operator S, that is, Sφ = φS,
we say that M has commuting shape operator. Motivated by this one, Berndt and Suh
[2] have proved the following

Theorem B. Let M be a complete real hypersurface in Qm, m≥3, with commuting
shape operator. Then M is locally congruent to a tube over CP k in Q2k, m = 2k.

Motivated by Theorems A and B, and Theorems 5.3 and 5.4 in section 5, we can assert
the following

Main Theorem. Let M be a real hypersurface in the complex quadric Qm, m≥4, with
η-parallel and η-commuting shape operator. Then M is locally congruent to a ruled hy-
persurface foliated by totally geodesic complex hypersurfaces Qm−1 in Qm with A-principal
unit normal vector field.

If M is Hopf and η-commuting, the shape operator of M commutes with the structure
tensor φ. Then by a result due to Berndt and Suh [3] M is locally congruent to a tube
over a totally geodesic CP k in Q2k. In such a case the unit normal vector field N is
A-isotropic. In section 5 we prove that the unit normal vector field N of a ruled real
hypersurface is A-principal. But in this case M is non-Hopf.



4 M. KIMURA, H. LEE, J. D. PÉREZ & Y. J. SUH

Remark 1.1. In Remark 4.4, we have mentioned that the unit normal vector field N
of a ruled real hypersurface in Qm is either A-principal or A-isotropic.

Remark 1.2. In section 6, we construct an example of minimal ruled real hypersurface
which is foliated by totally geodesics Qm−1 in the complex quadric Qm from curves in real
projective space RPm+1.

2. The complex quadric

For more background to this section we refer to [7], [8], [11], [18], [19] and [20].
The complex quadric Qm is the complex hypersurface in CPm+1 which is defined by
the equation z2

0 + · · · + z2
m+1 = 0, where z0, . . . , zm+1 are homogeneous coordinates on

CPm+1. We equip Qm with the Riemannian metric g which is induced from the Fubini-
Study metric ḡ on CPm+1 with constant holomorphic sectional curvature 4. The Fubini-
Study metric ḡ is defined by ḡ(X, Y ) = Φ(JX, Y ) for any vector fields X and Y on
CPm+1 and a globally closed (1, 1)-form Φ given by Φ = −4i∂∂̄logfj on an open set

Uj = {[z0, . . . , zj, . . . , zm+1]∈CPm+1|zj 6=0}, where the function fj denotes fj =
∑m+1

k=0 t
k
j t̄
k
j ,

and tkj = zk
zj

for j, k = 0, · · ·,m+1. Then naturally the Kähler structure on CPm+1 induces

canonically a Kähler structure (J, g) on the complex quadric Qm.

The complex projective space CPm+1 is a Hermitian symmetric space of the special uni-
tary group SUm+2, namely CPm+1 = SUm+2/S(Um+1U1). We denote by o = [0, . . . , 0, 1] ∈
CPm+1 the fixed point of the action of the stabilizer S(Um+1U1). The special orthogonal
group SOm+2 ⊂ SUm+2 acts on CPm+1 with cohomogeneity one. The orbit containing o
is a totally geodesic real projective space RPm+1 ⊂ CPm+1. The second singular orbit
of this action is the complex quadric Qm = SOm+2/SOmSO2. This homogeneous space
model leads to the geometric interpretation of the complex quadric Qm as the Grassmann
manifold G+

2 (Rm+2) of oriented 2-planes in Rm+2. It also gives a model of Qm as a Her-
mitian symmetric space of rank 2. The complex quadric Q1 is isometric to a sphere S2

with constant curvature, and Q2 is isometric to the Riemannian product of two 2-spheres
with constant curvature. For this reason we will assume m ≥ 3 from now on.

In another way, the complex projective space CPm+1 is defined by using the Hopf
fibration

π : S2m+3→CPm+1, z→[z],

which is said to be a Riemannian submersion. Then naturally we can consider the follow-
ing diagram for the complex quadric Qm as follows:

Q̃ = π−1(Q)
ĩ−−−→ S2m+3⊂Cm+2

π

y π

y
Q = Qm i−−−→ CPm+1

The submanifold Q̃ of codimension 2 in S2m+3 is called the Stiefel manifold of orthonor-
mal 2-frames in Rm+2, which is given by

Q̃ = {x+ iy∈Cm+2|g(x, x) = g(y, y) =
1

2
and g(x, y) = 0},
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where g(x, y) =
∑m+2

i=1 xiyi for any x = (x1, . . ., xm+2) and y = (y1, . . ., ym+2)∈Rm+2. Then

the tangent space is decomposed as TzS
2m+3 = Hz⊕Fz and TzQ̃ = Hz(Q)⊕Fz(Q) at

z = x + iy∈Q̃ respectively, where the horizontal subspaces Hz and Hz(Q) are given by
Hz = (Cz)⊥ and Hz(Q) = (Cz⊕Cz̄)⊥, and Fz and Fz(Q) are fibers which are isomorphic
to each other. Here Hz(Q) becomes a subspace of Hz of real codimension 2 and orthogonal
to the two unit normals −z̄ and −Jz̄. Explicitly, at the point z = x + iy∈Q̃ it can be
described as

Hz = {u+ iv∈Cm+2| g(x, u) + g(y, v) = 0, g(x, v) = g(y, u)}
and

Hz(Q) = {u+ iv∈Hz| g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0},
where Cm+2 = Rm+2⊕iRm+2, and g(u, x) =

∑m+2
i=1 uixi for any u = (u1, . . ., um+2), x =

(x1, . . ., xm+2)∈Rm+2.

These spaces can be naturally projected by the differential map π∗ as π∗Hz = Tπ(z)CPm+1

and π∗Hz(Q) = Tπ(z)Q respectively. This gives that at the point π(z) = [z] the tangent
subspace T[z]Q

m becomes a complex subspace of T[z]CPm+1 with complex codimension 1
and has two unit normal vector fields −z̄ and −Jz̄ (see Reckziegel [11]).

Then let us denote by Az̄ the shape operator of Qm in CPm+1 with respect to the
unit normal z̄. It is defined by Az̄w = ∇̄wz̄ = w̄ for a complex Euclidean connection ∇̄
induced from Cm+2 and all w ∈ T[z]Q

m. That is, the shape operator Az̄ is just a complex
conjugation restricted to T[z]Q

m. Moreover, it satisfies the following for any w ∈ T[z]Q
m

and any λ∈S1⊂C
A2
λz̄w =Aλz̄Aλz̄w = Aλz̄λw̄

=λAz̄λw̄ = λ∇̄λw̄z̄ = λλ̄ ¯̄w

=|λ|2w = w.

Accordingly, A2
λz̄ = I for any λ∈S1. So the shape operator Az̄ becomes an anti-commuting

involution such that A2
z̄ = I and AJ = −JA on the complex vector space T[z]Q

m and

T[z]Q
m = V (Az̄)⊕ JV (Az̄),

where V (Az̄) = Rm+2 ∩ T[z]Q
m is the (+1)-eigenspace and JV (Az̄) = iRm+2 ∩ T[z]Q

m is
the (−1)-eigenspace of Az̄. That is, Az̄X = X and Az̄JX = −JX, respectively, for any
X∈V (Az̄).

Geometrically this means that the shape operator Az̄ defines a real structure on the
complex vector space T[z]Q

m, or equivalently, is a complex conjugation on T[z]Q
m. Since

the real codimension of Qm in CPm+1 is 2, this induces an S1-subbundle A of the endo-
morphism bundle End(TQm) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Qm can
be viewed as the complexification of the m-dimensional sphere Sm. Through each point
[z] ∈ Qm there exists a one-parameter family of real forms of Qm which are isometric to
the sphere Sm. These real forms are congruent to each other under action of the center
SO2 of the isotropy subgroup of SOm+2 at [z]. The isometric reflection of Qm in such a
real form Sm is an isometry, and the differential at [z] of such a reflection is a conjugation
on T[z]Q

m. In this way the family A of conjugations on T[z]Q
m corresponds to the family
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of real forms Sm of Qm containing [z], and the subspaces V (A) ⊂ T[z]Q
m correspond to

the tangent spaces T[z]S
m of the real forms Sm of Qm.

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature tensor R̄
of Qm can be described in terms of the complex structure J and the complex conjugations
A ∈ A:

R̄(X, Y )Z = g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+g(AY,Z)AX − g(AX,Z)AY + g(JAY, Z)JAX − g(JAX,Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = −JA for each
A ∈ A.

For every unit tangent vector W ∈ T[z]Q
m there exist a conjugation A ∈ A and or-

thonormal vectors X, Y ∈ V (A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0 and
t = π/4. When W = X for X∈V (A), t = 0, there exist many kinds of maximal 2-flats
RX + RZ for Z∈V (A) orthogonal to X∈V (A). So the tangent vector X is said to be
singular. When W = (X + JY )/

√
2 for t = π

4
, it becomes also a singular tangent vector,

which belongs to many kinds of maximal 2-flats given by R(X+JY )+RZ for any Z∈V (A)
orthogonal to X∈V (A) or R(X + JY ) + RJZ for any JZ∈JV (A). If 0 < t < π/4 then
the unique maximal flat containing W is RX ⊕ RJY .

3. Some general equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced almost contact
metric structure. Note that ξ = −JN , where N is a (local) unit normal vector field of
M and η the corresponding 1-form defined by η(X) = g(ξ,X) for any tangent vector
field X on M . The tangent bundle TM of M splits orthogonally into TM = C ⊕ Rξ,
where C = ker(η) is the maximal complex subbundle of TM . The structure tensor field φ
restricted to C coincides with the complex structure J restricted to C, and φξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of TzM , z∈M as
follows:

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.
Then we want to introduce an important lemma which will be used in the proof of our

main Theorem in the introduction.

Lemma 3.1. ([18]) For each z ∈M we have

(i) If Nz is A-principal, then Qz = Cz.
(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vectors

X, Y ∈ V (A) such that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we
have Qz = Cz 	 C(JX + Y ).

We now assume that M is a Hopf hypersurface. Then the Reeb vector field ξ = −JN
satisfies the following

Sξ = αξ,
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where S denotes the shape operator of the real hypersurface M for a smooth function
α = g(Sξ, ξ) on M . When we consider the transformed JX by the Kähler structure J on
Qm for any vector field X on M in Qm, we may put

JX = φX + η(X)N

for a unit normal N to M . Then we now consider the equation of Codazzi

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(φY, Z)− η(Y )g(φX,Z)− 2η(Z)g(φX, Y )

+ g(X,AN)g(AY,Z)− g(Y,AN)g(AX,Z)

+ g(X,Aξ)g(JAY, Z)− g(Y,Aξ)g(JAX,Z).

(3.1)

Putting Z = ξ in (3.1) we get

g((∇XS)Y − (∇Y S)X, ξ) = −2g(φX, Y )

+ g(X,AN)g(Y,Aξ)− g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ).

On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ)

= g((∇XS)ξ, Y )− g((∇Y S)ξ,X)

= (Xα)η(Y )− (Y α)η(X) + αg((Sφ+ φS)X, Y )− 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Y α = (ξα)η(Y )− 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ).

Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ)

= −2g(ξ, AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ, Aξ)η(Y )

+2g(ξ, AN)g(Y,Aξ)η(X)− 2g(Y,AN)g(ξ, Aξ)η(X)

+αg((φS + Sφ)X, Y )− 2g(SφSX, Y ).

Altogether this implies

0 =2g(SφSX, Y )− αg((φS + Sφ)X, Y )− 2g(φX, Y )

+ g(X,AN)g(Y,Aξ)− g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

+ 2g(ξ, AN)g(X,Aξ)η(Y )− 2g(X,AN)g(ξ, Aξ)η(Y )

− 2g(ξ, AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ, Aξ)η(X).

(3.2)

At each point z ∈M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4

(see Proposition 3 in [11]).
Note that t is a function on M . First of all, since ξ = −JN , we have

AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1.

(3.3)
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This implies g(ξ, AN) = 0 and hence

0 =2g(SφSX, Y )− αg((φS + Sφ)X, Y )− 2g(φX, Y )

+ g(X,AN)g(Y,Aξ)− g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

− 2g(X,AN)g(ξ, Aξ)η(Y ) + 2g(Y,AN)g(ξ, Aξ)η(X).

(3.4)

4. η-parallel shape operator and a Key Lemma

By the equation of Gauss, the curvature tensor R(X, Y )Z for a real hypersurface M in
Qm induced from the curvature tensor R̄ of Qm can be described in terms of the complex
structure J and the complex conjugation A ∈ A as follows:

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y + g(φY, Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ

+g(AY,Z)AX − g(AX,Z)AY + g(JAY, Z)JAX − g(JAX,Z)JAY

+g(SY, Z)SX − g(SX,Z)SY

for any X, Y, Z∈TzM , z∈M .
Now let us put

AX = BX + ρ(X)N,

for any vector field X∈TzQm, z∈M , ρ(X) = g(AX,N), where BX and ρ(X)N re-
spectively denote the tangential and normal component of the vector field AX. Then
Aξ = Bξ + ρ(ξ)N and ρ(ξ) = g(Aξ,N) = 0. Then it follows that

AN =AJξ = −JAξ = −J(Bξ + ρ(ξ)N)

=− (φBξ + η(Bξ)N).

Then we assert the following:

Lemma 4.1. Let M be a real hypersurface in Qm, m≥3, with η-parallel and η-commuting
shape operator. Then for any X, Y, Z∈C we have

0 =g(X,AN)g(AY,Z) + g(Y,Aξ)g(AX, φZ)− g(φZ,Aξ)g(AX, Y )

− η(SφZ)g(Y, SX) + g(X, V )g(Y, SZ) + g(Y, V )g(X,SZ).

where C denotes the orthogonal complement of the Reeb vector field ξ and V is given by
φSξ.

Proof. The notion of η-commuting shape operator gives

g((Sφ− φS)X, Y ) = 0

for any X, Y ∈C. By differentiating this, we have

g((∇XS)Y,φZ) + g((∇XS)Z, φY ) = η(SY )g(X,SZ) + η(SZ)g(Y, SX)

+ g(X,SφY )g(Z, V ) + g(X,SφZ)g(Y, V ).
(4.1)

Then let us consider cyclic formulas with respect X, Y and Z as follows:

g((∇Y S)Z,φX) + g((∇Y S)X,φZ) = η(SZ)g(Y, SX) + η(SX)g(Z, SY )

+ g(Y, SφZ)g(X, V ) + g(Y, SφX)g(Z, V )
(4.2)
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and

g((∇ZS)X,φY ) + g((∇ZS)Y, φX) = η(SX)g(Z, SY ) + η(SY )g(X,SZ)

+ g(Z, SφX)g(Y, V ) + g(Z, SφY )g(X, V )
(4.3)

Then substract the third one (4.3) from summing up (4.1) and (4.2). From such an
obtained equation, and using the equation of Codazzi, it follows that

g((∇XS)Y, φZ) + g((∇Y S)X,φZ) + g((∇XS)Z − (∇ZS)X,φY )

+ g((∇Y S)Z − (∇ZS)Y, φX)

=2η(SZ)g(Y, SX) + 2g(X, V )g(Y, SφZ) + 2g(Y, V )g(X,SφZ)

=2g((∇XS)Y, φZ)− {g(X,AN)g(AY, φZ)− g(Y,AN)g(AX, φZ)

+ g(X,Aξ)g(JAY, φZ)− g(Y,Aξ)g(JAX, φZ)}
+ {g(X,AN)g(AZ, φY )− g(Z,AN)g(AX, φY )

+ g(X,Aξ)g(JAZ, φY )− g(Z,Aξ)g(JAX, φY )}
+ {g(Y,AN)g(AZ, φX)− g(Z,AN)g(AY, φX)

+ g(X,Aξ)g(JAZ, φX)− g(Z,Aξ)g(JAY, φX)}.

(4.4)

From this, together with η-commuting property, and using g(JAY, φZ) = −g(AY, JφZ) =
g(AY,Z) for any Y, Z∈C, we have

g((∇XS)Y, φZ)− g(X,AN)g(AY, φZ)− g(Y,Aξ)g(AX,Z)− g(Z,Aξ)g(AX, Y )

=η(SZ)g(Y, SX) + g(X, V )g(Y, SφZ) + g(Y, V )g(X,SφZ)
(4.5)

for any X, Y, Z∈C. Then by replacing Z by φZ in (4.5), we have

g((∇XS)Y, Z) = g(X,AN)g(AY,Z) + g(Y,Aξ)g(AX, φZ)− g(φZ,Aξ)g(AX, Y )

− η(SφZ)g(Y, SX) + g(X, V )g(Y, SZ) + g(Y, V )g(X,SZ).
(4.6)

This gives a complete proof of our Lemma. �

Remark 4.2. Let M be a tube over a totally complex geodesic k-dimensional complex
projective space CP k in Q2k. Then the unit normal vector field N is A-isotropic and
the shape operator S commutes with the structure tensor φ. So the Reeb vector field ξ
is principal and the vector field V = φSξ = 0. It can be easily seen that the vectors
Aξ and AN belong to the distribution C. Then by (4.6) we have g((∇XS)Y, Z) = 0 for
any X, Y, Z∈C orthogonal to the vectors Aξ and AN . Moreover, (4.6) gives the following
formulas

g((∇AξS)Aξ,Aξ) = −g(Aξ,Aξ)g(A2ξ, φZ) + g(Aξ,Aξ)g(ξ, φZ) = 0,

g((∇ANS)AN,Aξ) = g(AN,AN)g(A2N,Aξ)− g(AN,AN)g(A2N,Aξ) = 0,

g((∇AξS)AN,AN) = −g(Aξ,Aξ)g(A2N, φAN) + g(AN,Aξ)g(A2ξ, φAN) = 0,

and

g((∇AξS)Aξ,AN) = −g(Aξ,Aξ)g(A2ξ, φAN) + g(Aξ,Aξ)g(A2ξ, φAN) = 0.
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Then all the formulas mentioned above give that the shape operator S is η-parallel.

Now let us assume that the unit normal vector field N is A-isotropic. Then the normal
vector field N can be written

N =
1√
2

(Z1 + JZ2)

for Z1, Z2∈V (A), where V (A) denotes the (+1)-eigenspace of the complex conjugation
A∈A. Then it follows that

AN =
1√
2

(Z1 − JZ2), AJN = − 1√
2

(JZ1 + Z2), and JN =
1√
2

(JZ1 − Z2).

From this, together with (3.3) and the anti-commuting property AJ = −JA, it follows
that

g(ξ, Aξ) = g(JN,AJN) = 0, g(ξ, AN) = 0 and g(AN,N) = 0.

In Lemma 4.1 let us take skew-symmetric in X and Y , it follows that

0 ={g(X,AN)g(AY,Z)− g(Y,AN)g(AX,Z)}
+ {g(Y,Aξ)g(AX, φZ)− g(X,Aξ)g(AY, φZ)}.

(4.7)

Since we have assumed that the unit normal N is A-isotropic, we can put X = AN in
(4.7). Then it gives that g(AY,Z) = 0 for any Y and Z∈C. So Lemma 4.1 gives the
following

g(X, V )g(Y, SZ) + g(Y, V )g(Z, SX) + g(Z, V )g(X,SY ) = 0. (4.8)

When the unit normal vector field N is A-principal, that is, AN = N and Aξ = −ξ,
then Lemma 4.1 also gives the equation (4.6). Now let us put Sξ = αξ + βU in (4.8).
Then we assert the following

Lemma 4.3. Let M be a complete real hypersurface in Qm, m≥3, with η-parallel and
η-commuting shape operator. If the unit normal vector field is singular, then

β = 0 or g(SY, Z) = 0

for any vector fields Y, Z∈C, where C denotes the orthogonal distribution of the Reeb vector
field ξ.

Proof. Now let us put Z = V = φSξ in (4.8) and use Sξ = αξ + βU for some U∈C.
Then it follows that

0 =g(SX, Y )‖V ‖2 + g(SY, V )g(X, V ) + g(SV,X)g(Y, V )

=g(SX, Y )‖V ‖2 + β2g(SY, φU)g(X,φU) + β2g(SφU,X)g(Y, φU)
(4.9)

for any X, Y and Z∈C. Then for any X, Y ∈C which are orthogonal to φU the formula
(4.9) gives g(SX, Y ) = 0. Now we put X = Y = φU in (4.9). Then it follows that

0 =g(SφU, φU)‖V ‖2 + 2β2g(SφU, φU)

=3β2g(SφU, φU),
(4.10)

where we have used ‖V ‖2 = g(φSξ, φSξ) = β2. Then (4.10) gives that the function β = 0
or g(SφU, φU) = 0. Now let us consider the case that β 6=0 on the open subset U in M .
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Then g(SφU, φU) = 0 on U . From this, together with putting Y = φU in (4.9), we have
for any X∈C

0 = g(SφU,X)‖V ‖2 + β2g(SφU,X) = 2β2g(SφU,X). (4.11)

So it follows that g(SφU,X) = 0 on U for any X∈C. From this, together with g(SX, Y ) =
0 for any X, Y ∈C orthogonal to φU , we can assert the latter part of Lemma 4.3. From
this, we give a complete proof of our Lemma 4.3. �

Remark 4.4. Let M be a ruled real hypersurface in Qm foliated by the totally geodesic
complex hyperplane Qm−1 in section 2. If the Reeb function α = g(Sξ, ξ) = 0 and β =
g(Sξ, U) is constant,and the vector field U is parallel along the integral curve of the Reeb
vector field ξ, then the unit normal vector field N = Jξ becomes singular.

In fact, let us use the equation of Codazzi for Sξ = αξ+βU , SU = βξ. Then it follows
that

g(R̄(X, Y )ξ,N) =g((∇XS)Y − (∇Y S)X, ξ)

=g((∇XS)ξ, Y )− g(((∇Y S)ξ,X)

=dα(X)η(Y )− dα(Y )η(X) + αg((Sφ+ φS)X, Y )

− 2g(SφSX, Y ) + (Xβ)g(U, Y )− (Y β)g(U,X)

+ β{g(∇XU, Y )− g(∇YU,X)}.

(4.12)

By putting X = ξ into (4.12) and using the assumption for the ruled hypersurface in Qm,
we have

g(R̄(ξ,N)N, JY ) =g(R̄(JY, Jξ)N, ξ) = g(R̄(ξ, Y )ξ,N)

=dα(ξ)η(Y )− dα(Y ) + αβg(φU, Y )

+ (ξβ)g(U, Y ) + βg(∇ξU, Y )

=0.

(4.13)

This implies R̄Nξ = cξ for c∈R, that is, the Reeb vector field ξ is principal for the normal
Jacobi operator R̄N . Then by a result due to Berndt and Suh (see Proposition 3.1, [3])
we know that the unit normal vector field N is A-principal or A-isotropic.

5. Proof of Main Theorem

In this section we prove our Main Theorem mentioned in the introduction. By the
notions of η-parallel and η-commuting shape operator, we give a complete classification
of real hypersurfaces in the complex quadric Qm satisfying these notions. One of the most
crucial points of this classification is to give a geometric property that the unit normal
vector field of a ruled real hypersurface in Qm foliated by complex totally geodesic Qm−1

is A-principal. Though in Remark 4.4 we have mentioned the unit normal vector field N
is A-isotropic or A-principal, but in general N is A-principal for ruled real hypersurfaces
in the complex quadric Qm.

In order to complete this fact, let us consider a real hypersurface M in Qm,m ≥ 4, such
that g((∇XS), Y, Z) = 0 and g((Sφ − φS)X, Y ) = 0 for any X, Y , Z ∈ C. We can use



12 M. KIMURA, H. LEE, J. D. PÉREZ & Y. J. SUH

the formula (3.3) in section 3. This, together with g(ξ, AN) = 0 and Lemma 4.1 yields

0 = g(X,AN)g(AY,Z) + g(Y,Aξ)g(AX, φZ)− g(φZ,Aξ)g(AX, Y )

− η(SφZ)g(Y, SX) + g(X,φSξ)g(Y, SZ) + g(φSξ, Y )g(X,SZ)

for any X,Y ,Z ∈ C.
If M is Hopf, that is, the Reeb vector field ξ is a principal vector field of the shape

operator S of a real hypersurface M in Qm, then it follows that 0 = φSξ = Sφξ. From
this, together with η-commuting shape operator, g((Sφ−φS)X, Y ) = 0 for any X, Y ∈ C,
it naturally gives that the structure tensor φ commutes with the shape operator S, that
is, Sφ = φS. Then by Theorem B we assert the following

Proposition 5.1. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 4,
with η-parallel and η-commuting shape operator. Then M is locally congruent to a tube
of radius r over a totally geodesic complex submanifold CP k in Q2k, m = 2k.

In a paper due to Berndt and Suh [2] we proved that the unit normal vector field N of M
in the complex quadric Qm is A-isotropic, that is g(AN,N) = 0 for the real hypersurface
appearing in Proposition 5.1. Related to this fact, we want to show another proposition
as follows:

Proposition 5.2. There does not exist any real hypersurface in Qm, m ≥ 3, with η-
parallel shape operator and with A-isotropic normal vector field N .

Proof. Let us assume that M is a real hypersurface with η-parallel shape operator in Qm,
m ≥ 3. That is, the shape operator S of M satisfies the following condition:

g((∇XS)Y, Z) = 0 (*)

for any tangent vector fields X, Y, Z ∈ C, where C denotes the orthogonal complement of
the Reeb vector field ξ on M in Qm. By using the equation of Codazzi, it yields for any
X, Y , Z ∈ C

g(g(AX,N)AY − g(AY,N)AX + g(AX, ξ)JAY − g(AY, ξ)JAX,Z) = 0.

The vector field g(AX,N)AY − g(AY,N)AX + g(AX, ξ)JAY − g(AY, ξ)JAX in the left-
side of the above equation is denoted by WX,Y (simply, W ). Then WX,Y ∈ T[z]Q

m becomes

WX,Y =
2m∑
i=1

g(WX,Y , ei)ei = g(W, ξ)ξ + g(W,N)N

= g(W, ξ)ξ,

because g(W,N) = 0 and Z ∈ C. Since N is A-isotropic, g(AN,N) = 0 and g(AN, ξ) = 0,
we see that AN ∈ C ⊂ T[z]M , [z] ∈M .

Substituting Y = AN in WX,Y and using A2 = I, we have

g(AX,N)N − AX − g(AX, ξ)ξ

= WX,AN = g(W, ξ)ξ = −2g(AX, ξ)ξ.

Then it can be arranged as follows:

AX = g(AX,N)N + g(AX, ξ)ξ



RULED REAL HYPERSURFACES 13

for any X ∈ C. From this , applying the real structure A and using the property of A2 = I
again, it follows that

X = g(AX,N)AN + g(AX, ξ)Aξ ∈ C.
This means dimRC = 2. But, in fact, any vector X ∈ C is expressed by

X =
2m−2∑
k=1

g(X, ek)ek

with respect to the basis {AN,Aξ, e1, e2, · · · , e2m−4} of C. So we get dimRC = 2m − 2,
which gives a contradiction. From this, we get a complete proof of our proposition. �

Then combining Propositions 5.1 and 5.2, we assert the following

Theorem 5.3. There do not exist a Hopf real hypersurface in the complex quadric Qm,
m ≥ 4, with η-parallel and η-commuting shape operator.

Now let us suppose that M is non-Hopf and write Sξ = αξ + βU , where U is a unit
vector field in C and β 6= 0. Then the above equation becomes

0 = g(X,AN)g(AY,Z) + g(Y,Aξ)g(AX, φZ)− g(φZ,Aξ)g(AX, Y )

+ βg(Z, φU)g(Y, SX) + βg(X,φU)g(Y, SZ) + βg(Y, φU)g(X,SZ)
(5.1)

for any X, Y, Z ∈ C.

Let us take X, Y, Z ∈ CU = Span{ξ, U, φU}⊥. From (5.1) we get

0 = g(X,AN)g(AY,Z) + g(Y,Aξ)g(AX, φZ)− g(Z,AU)g(AX, Y ).

Taking X = Z, we obtain

g(Y,Aξ)g(AX, φX) = 0 (5.2)

for any X, Y ∈ CU .

Case 1) Suppose g(Aξ, Y ) = 0 for any Y ∈ CU .

Now we take φY instead of Y . Then it follows that

g(φY,Aξ) = −g(Y, JAξ) = g(Y,AJξ) = g(Y,AN) = 0 (5.3)

for any Y ∈ CU .

If we take X, Y ∈ CU , Z = U in (5.1), we obtain

0 = g(X,AN)g(AY,U)− g(U,AN)g(AZ, Y ) (5.4)

for any Z, Y ∈ CU . From (5.3), (5.4) becomes

0 = g(U,AN)g(AX, Y ) (5.5)

for any X, Y ∈ CU . Taking X = φU , Y, Z ∈ CU in (5.1), we have

−g(U,Aξ)g(AY,Z) + βg(Y, SZ) = 0 (5.6)

for any Y, Z ∈ CU and taking X, Y ∈ CU , Z = φU , we obtain bearing in mind (5.3)
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g(U,Aξ)g(AX, Y ) + βg(Y, SZ) = 0.

In particular,

g(U,Aξ)g(AY,Z) + βg(Z, SY ) = 0 (5.7)

From (5.6) and (5.7) we get

g(U,Aξ)g(AY,Z) = 0 (5.8)

and
g(SY, Z) = 0 (5.9)

for any Y, Z ∈ CU .

We know g(AZ, φU) = g(φZ,AU) for any Z ∈ C. Taking X = U , Y = φU , Z ∈ CU in
(5.1), we have

−2g(U,AN)g(JAU,Z) + βg(U, SZ) = 0

and taking X = φU , Y = U , Z ∈ CU in (5.1) it follows

−2g(U,Aξ)g(AU,Z) + βg(U, SZ) = 0

for any Z ∈ CU . Therefore

g(U,AN)g(JAU,Z) = g(U,Aξ)g(AU,Z) (5.10)

for any Z ∈ CU . Take X = U , Y = CU , Z = φU in (5.1). Then

0 = −g(U,AN)g(Y, JAU) + g(U,Aξ)g(AU, Y ) + βg(Y, SU) (5.11)

for any Y ∈ CU . From (5.10) and (5.11) we get

g(Y, SU) = 0 (5.12)

for any Y ∈ CU . Therefore we get

g(U,AN)g(JAU,Z) = 0 (5.13)

g(U,Aξ)g(AU,Z) = 0 (5.14)

for any Z ∈ CU . Taking X = Z = φU , Y ∈ CU in (5.1) we have

0 = g(φU,AN)g(AY, φU) + g(U,Aξ)g(AφU, Y ) + 2βg(SY, φU)

= 2βg(SY, φU).

As we suppose β 6= 0, we get
g(SY, φU) = 0 (5.15)

for any Y ∈ CU . From (5.9), (5.12) and (5.15) we have

SX = 0 (5.16)

for any X = CU . If we put X = Y = Z = U in (5.1), we get

g(U,Aξ)g(AU, φU) = 0. (5.17)

And taking X = Y = Z = φU in (5.1) we obtain
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g(U,AN)g(AφU,U) = 3βg(φU, SφU) (5.18)

If we put X = U, Y = φU,Z = U in (5.1), we have

g(U,AN)g(AφU,U) + βg(U, SU) = 0 (5.19)

From (5.18) and (5.20) it follows

g(U, SU) = −3g(φU, SφU) (5.20)

Now let us put X = Y = φU,Z = U in (5.1). Then it follows

0 = −g(U,Aξ)g(AφU,U) + 2βg(φU, SU)

and (5.19) yields

g(φU, SU) = 0 (5.21)

that is, SφU = γφU SU = −3γU + βξ . By Codazzi equation, bearing in mind that
for any X ∈ CU

g(AX, ξ) = g(AX,N) = 0 and SX = SφX = 0.

we get

g((∇XS)φX − (∇φXS)X,Z) = −2η(Z) (5.22)

for any Z tangent to M . Taking Z = ξ it follows

βg([φX,X], U) = −2 (5.23)

and taking Z = U we get

−3γg([φX,X], U) = 0 (5.24)

From (5.23) and (5.24) γ = 0 and we have Sξ = αξ + βU , SU = βξ, SX = 0,
X ∈ Span{ξ, U}⊥.

Suppose, moreover, that g(AX, Y ) = 0 for any X, Y ∈CU . If g(AX,U) = 0 for any
X∈CU , then

0 = g(AφX,U) = g(AJX,U) = −g(X, JAU) = g(X,AJU) = g(X,AφU).

In this case AX = 0 for any X∈CU and this yields X = 0, therefore m≤2 and we have a
contradiction. Therefore there exists X∈CU such that g(AX,U)6=0. Then for any X∈CU
we have

AX = g(AX,U)U + g(AX, φU)φU.

So by applying complex conjugationA again, it followsX = g(AX,U)AU+g(AX, φU)AφU ,
which means CU = Span{AU,AφU} and m≤3, also a contradiction. Therefore there exist
X, Y ∈CU such that g(AX, Y ) 6=0. As g(X,AN) = g(JX,Aξ) = 0 for any X∈CU , from
(5.4) we have g(U,AN) = 0 and from (5.6) g(U,Aξ) = 0. Then these formulas give

g(U,AN) = g(U,AJξ) = −g(U, JAξ) = g(φU,Aξ) = 0,

g(U,Aξ) = −g(U,AJN) = g(U, JAN) = −g(φU,AN) = 0.
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So we have obtained that AN = g(AN,N)N and N = g(AN,N)AN = g(AN,N)2N .
This gives that g(AN,N)2 = 1, which means cos2(2t) = 1. As 0≤t≤π

4
, the unique

possibility is 2t = 0, that is, t = 0 and N is A-principal.

Case 2) Suppose g(AX, φX) = 0 for any X∈CU .

This yields g(AX, Y ) = 0 for any X, Y ∈CU . Take X, Y = φX∈CU , Z = U in (5.1). We
have 0 = 2g(X,AN)g(X,AφU). Therefore we assert

g(X,AN)g(X,AφU) = 0 (5.25)

for any X∈CU . And taking X, Y = φX∈CU , Z = φU in (5.1) we obtain

2g(X,AN)g(AX,U) = βg(SX, φX) (5.26)

for any X∈CU . Taking X∈CU , Y = U , Z = U in (5.1) we get

g(X,AN)g(AU,U)− g(U,Aξ)g(X, JAN)− g(U,AN)g(AX,U) = 0 (5.27)

for any X∈CU , and taking X∈CU , Y = φU , Z = φU in (5.1) we obtain

0 =− g(X,AN)g(AU,U)− g(U,AN)g(AX,U)

− g(U,Aξ)g(X, JAU) + 2βg(SφU,X).
(5.28)

From (5.7) and (5.8) we have

g(X,AN)g(AU,U) = 2βg(SφU,X) (5.29)

for any X∈CU .

Let us suppose that g(X,AN) = 0 for any X∈CU . Then

0 = g(φX,AN) = −g(X, JAN) = g(X,AJN) = −g(X,Aξ).

Therefore g(X,Aξ) = 0 for any X∈CU . As we suppose g(AX, Y ) = 0 for any X, Y ∈CU ,
we know

AX = g(AX,U)U + g(AX, φU)φU,

for any X∈CU , that is, X = g(AX,U)AU + g(AX, φU)AφU for any X∈CU . Accordingly,
it follows that CU = Span{AU,AφU} and dimCU≤2. Therefore dimM≤5 or m≤3, which
is impossible.

If g(AX, φU) = 0 for any X∈CU we have g(φX,AφU) = −g(φX, JAU) = −g(X,AU) =
0, and in this case AX = g(AX, ξ)ξ + g(AX,N)N which yields

X = g(AX, ξ)Aξ + g(AX,N)AN

for any X∈CU . We arrive at the same contradiction.

Therefore we must suppose that there exists X∈CU such that g(X,AN)6=0 and from
(5.25) g(X,AφU) = 0. Taking X, Y ∈CU , Z = U in (5.1) we obtain

g(X,AN)g(AY,U) + g(Y,Aξ)g(AX, φU) = 0 (5.30)

for anyX, Y ∈CU . Taking, in particular, our previousX∈CU in (5.30) we obtain g(AY,U) =
0 for any Y ∈CU . As above, this also yields g(AY, φU) = 0 for any Y ∈CU . Then for any
Y ∈CU we have

AY = g(AY, ξ)ξ + g(AY,N)N

and, as above, this gives a contradiction. Accordingly, the Case 2) can not appear. So
only the Case 1) remains valid. From this, together with Theorem A, we have proved.
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Theorem 5.4. Let M be a non-Hopf real hypersurface in the complex quadric Qm,
m≥4, with η-parallel and η-commuting shape operator. Then the unit normal vector field
N of M is A-principal and M is locally congruent to a ruled real hypersurface foliated by
complex totally geodesic Qm−1 in Qm.

Summing up above two Theorems 5.3 and 5.4 we give a complete proof of our Main
Theorem in the introduction.

6. Examples of ruled real hypersurfaces in complex quadric

In this section, let us construct ruled real hypersurfaces M2m−1 in complex quadric Qm,
i.e., real hypersurfaces which are foliated by totally geodesic complex hyperquadric Qm−1,
from curves in real projective space RPm+1.

First we recall Stiefel manifold (cf. [5]). Let

V2(Rm+2) = {(v1, v2)| v1, v2 ∈ Rm+2, ‖v1‖ = ‖v2‖ = 1, 〈v1, v2〉 = 0}
be the Stiefel manifold of orthonormal 2-frames in Rm+2. Then the tangent space T(v1,v2)V2(Rm+2)
is given as

R(−v2, v1)⊕ {(x1, x2) ∈ Rm+2 × Rm+2| x1, x2 ⊥ span{v1, v2}}.

Let G̃2(Rm+2) be the Grassmannian manifolds of oriented 2-planes in Rm+2 and let πG :

V2(Rm+2)→ G̃2(Rm+2) be the projection defined by πG(v1, v2) = span(v1, v2). Then with
respect to the metric on V2(Rm+2) induced from Euclidean space Rm+2 × Rm+2 = Cm+2

as a submanifold, we can define a Riemannian metric on G̃2(Rm+2) such that πG is a
Riemannian submersion. We consider an embedding:

ĩ : V2(Rm+2)→ S2m+3 ⊂ Cm+2, ĩ(v1, v2) = (v1 + iv2)/
√

2.

The tangent space Tĩ(v1,v2)ĩ(V2(Rm+1)) is given as

R(−v2 + iv1)⊕ {x1 + ix2 ∈ Cm+2| x1, x2 ⊥ span{v1, v2}}.
Then we have a commutative diagram

V2(Rm+2) −−−→
ĩ

S2m+3

πG

y yπ ,

G2(Rm+2) −−−→
i

CPm+1

(6.1)

where π is the Hopf fibration and i is the embedding induced from ĩ. Then i(G2(Rm+2))
is identified with the complex quadric Qn.

Let I be an interval and let γ : I → RPm+1 be a real 1-dimensional regular curve in
real projective space. We denote Γ : I → SO(n) a horizontal lift of γ with respect to
the natural projection SO(m + 2)→ RPm+1 = SO(m + 2)/S(O(m + 1)× O(1)). For an
expression of the matrix Γ(t) = (e1(t), · · · , em+1(t), em+2(t)) by column vectors, we may
assume

e′j(t) = λj(t)em+2(t) (j = 1, · · · ,m+ 1), e′m+2(t) = −
m+1∑
j=1

λj(t)ej(t). (6.2)
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Let Φ̃ : I × V2(Rm+1)→ S2m+3 ⊂ Cm+2 be a map defined by

Φ̃(t, (v1, v2)) = Γ(t)

(
(v1 + iv2)/

√
2

0

)
. (6.3)

Then we have the induced map Φ : I ×G2(Rm+1)→ CPm+1 defined by

Φ(t, πG((v1, v2))) = π(Φ̃(t, (v1, v2))) (6.4)

such that the following diagram is commutative:

I × V2(Rm+1) −−−→
Φ̃

S2m+3

id×πG

y yπ ,

I ×G2(Rm+1) −−−→
Φ

CPm+1

(6.5)

and the image Φ(I × G2(Rm+1)) lies in the complex quadric Qm in CPm+1 and for each
t ∈ I, Φ({t} ×G2(Rm+1))) is a totally geodesic complex hypersurface Qm−1 in Qm.

We compute the differential of Φ̃. Using (6.2) we have

dΦ̃((∂/∂t), 0) = Γ′(t)

(
(v1 + iv2)/

√
2

0

)
= Γ(t)

(
O −λ(t)

tλ(t) 0

)(
(v1 + iv2)/

√
2

0

)
= Γ(t)

(
0

(〈λ(t), v1〉+ i〈λ(t), v2〉)/
√

2

)
, (6.6)

where we put λ(t) =t(λ1(t), · · · , λm+1(t)). Also we obtain

V := dΦ̃(0, (−v2, v1)) =
Γ(t)√

2

(
−v2 + iv1

0

)
, (6.7)

and

dΦ̃(0, (x1, x2)) =
Γ(t)√

2

(
x1 + ix2

0

)
, (6.8)

where x1, x2 ⊥ v1, v2. Here V is a vertical vector with respect to the fibration id × πG :

I × V2(Rm+1)→ I ×G2(Cm+1). The metric on I × V2(Rm+1) induced by Φ̃ is written as:

‖dΦ̃((∂/∂t), 0)‖2 =
〈λ(t), v1〉2 + 〈λ(t), v2〉2

2
,

‖V ‖2 = 1, ‖dΦ̃(0, (x1, x2))‖2 =
‖x1‖2 + ‖x2‖2

2
,

〈dΦ̃((∂/∂t), 0), V 〉 = 〈dΦ̃((∂/∂t), 0), dΦ̃(0, (x1, x2))〉 = 〈V, dΦ̃(0, (x1, x2))〉 = 0.

Hence

Φ̃ is regular at (t, (v1, v2))⇔ 〈λ(t), v1〉2 + 〈λ(t), v2〉2 6= 0, (6.9)

Proposition 6.1. Let γ : I → RPm+1 be a real 1-dimensional regular curve in real
projective space and let Γ : I → SO(n) be a horizontal lift of γ with respect to the natural
projection SO(m + 2) → RPm+1 = SO(m + 2)/S(O(m + 1) × O(1)). Then the map
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Φ : I ×G2(Rm+1)→ CPm+1 defined by (6.4) is regular at (t, (v1, v2)) if and only if (6.9)
holds.

A unit normal vector of Φ̃ at (t, (v1, v2)) is given by

Ñ =
Γ(t)√

〈λ(t), v1〉2 + 〈λ(t), v2〉2

(
0

−〈λ(t), v2〉+ i〈λ(t), v1〉

)
. (6.10)

Now we compute the condition for which Φ̃ (and Φ) is minimal. By (6.8) and (6.10),
we see that

〈AΦ̃(0, (x1, x2)), (0, (y1, y2))〉 = 0, (x1, x2, y1, y2 ⊥ v1, v2)

where AΦ̃ is the shape operator of Φ̃. Hence Φ̃ (and Φ) is a minimal immersion at the

regular points of Φ̃ if and only if 〈AΦ̃(∂/∂t, 0), (∂/∂t, 0)〉 = 0. Using (6.2) and (6.6), we
obtain

DdΦ̃((∂/∂t),0)dΦ̃((∂/∂t), 0) =
Γ′(t)√

2

(
0

(〈λ(t), v1〉+ i〈λ(t), v2〉)

)
+

Γ(t)√
2

(
0

(〈λ′(t), v1〉+ i〈λ′(t), v2〉)

)
=

Γ(t)√
2

(
O −λ(t)

tλ(t) 0

)(
0

(〈λ(t), v1〉+ i〈λ(t), v2〉)

)
+

Γ(t)√
2

(
0

(〈λ′(t), v1〉+ i〈λ′(t), v2〉)

)
=

Γ(t)√
2

(
−(〈λ(t), v1〉+ i〈λ(t), v2〉)λ(t)

(〈λ′(t), v1〉+ i〈λ′(t), v2〉)

)
. (6.11)

Hence Φ̃ (and Φ) is minimal if and only if

−〈λ′(t), v1〉〈λ(t), v2〉+ 〈λ′(t), v2〉〈λ(t), v1〉 = 0 (6.12)

for any (v1, v2) ∈ V2(Rm+2).
We may assume that ‖λ(t)‖2 = 1, by changing parameter t if necessarily, so we have

λ(t) ⊥ λ′(t). On the other hand, (6.12) implies that λ(t) ∧ λ′(t) = 0. Consequently we
obtain that λ(t) is constant, and Γ(t) is a 1-parameter group of SO(m + 2). Hence by
the help of [1], minimal ruled hypersurface Φ(I × G2(Rm+1)) in Qm is invariant under a
1-parameter subgroup Γ(t) of SO(m+ 2).

Theorem 6.2. Minimal ruled real hypersurface M2m−1 in complex quadric Qm is invari-
ant under a 1-parameter subgroup of SO(m+ 2).
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