RULED REAL HYPERSURFACES IN THE COMPLEX QUADRIC

MAKOTO KIMURA, HYUNJIN LEE, JUAN DE DIOS PEREZ

AND YOUNG JIN SUH*

ABSTRACT. First we introduce the notions of n-parallel and n-commuting shape operator
for real hypersurfaces in the complex quadric Q™ = SOy, +2/50,, 502 . Next we give a
complete classification of real hypersurfaces in the complex quadric @™ with such kind
of shape operators. By virtue of this classification we give a new characterization of ruled
real hypersurface foliated by complex totally geodesic hyperplanes Q™! in Q™ whose
unit normal vector field in @™ is 2A-principal.

1. INTRODUCTION

When we consider some Hermitian symmetric spaces of rank 2, we can usually give ex-
amples of Riemannian symmetric spaces SU,,12/S(U2U,,) and SUs ,,, /S(UsUy, ), which are
said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grass-
mannians respectively (see [15], [16], and [17] ). These are viewed as Hermitian symmetric
spaces and quaternionic Kéahler symmetric spaces equipped with the Kahler structure J
and the quaternionic Kahler structure J.

In the complex projective space CP™ ! some classifications of real hypersurfaces related
to n-parallel shape operator were investigated by Kimura [4], Kimura and Maeda [6] re-
spectively. The classification problems of real hypersurfaces of the complex 2-plane Grass-
mannian Go(C™"?) = SU,,,2/S(UsU,,) with certain geometric conditions were mainly
discussed in Pérez and Suh [10], and Suh [15], [16], [17], where the classification of contact
hypersurfaces, parallel Ricci tensor, harmonic curvature and structure Jacobi operator of a
real hypersurface in G5 (C™"?) were extensively studied. Moreover, in [17] we have asserted
that the Reeb flow on a real hypersurface in SUs ,,, /S (UsUy,,) is isometric if and only if M is
an open part of a tube around a totally geodesic SUs p,—1/S(UsUp—1) C SUz 1, /S(UsUp,)

As another kind of Hermitian symmetric space with rank 2 of compact type dif-
ferent from the above ones, we can consider the example of complex quadric Q™ =
SO,n42/50,,50,, which is a complex hypersurface in complex projective space CP™"!
(see Kobayashi and Nomizu [8] and Smyth [12], [13] and [14]). The complex quadric can
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also be regarded as a kind of real Grassmann manifold of compact type with rank 2.
Accordingly, the complex quadric admits two important geometric structures, a complex
conjugation structure A and a Kahler structure J, which anti-commute with each other,
that is, AJ = —JA. Then for m>2 the triple (Q™, J, g) is a Hermitian symmetric space
of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein
[7] and Reckziegel [11]).

Apart from the complex structure J there is another distinguished geometric structure
on Q™, namely a parallel rank two vector bundle 2 which contains an S*-bundle of real
structures, that is, complex conjugations A on the tangent spaces of Q™. This geometric
structure determines a maximal 2-invariant subbundle Q of the tangent bundle T'M of a
real hypersurface M in Q™.

Moreover, the derivative of the complex conjugation A on Q™ is given by
(VxA)Y = q¢(X)JAY
for any vector fields X and Y on M, where ¢ denotes a certain 1-form defined on M.

Recall that a nonzero tangent vector W € Tj,;Q™ is called singular if it is tangent to
more than one maximal flat in Q™. There are two types of singular tangent vectors for
the complex quadric Q™:

1. If there exists a conjugation A € 2 such that W € V(A) := Eig(A, 1), then W is
singular. Such a singular tangent vector is called 2A-principal.

2. If there exist a conjugation A € 2 and orthonormal vectors X,Y € V(A) such
that W/||W|| = (X +JY)/v/2, then W is singular. Such a singular tangent vector
is called 2A-isotropic.

When we consider a hypersurface M in the complex quadric ™, under the assumption
of some geometric properties the unit normal vector field N of M in Q™ can be considered
of two classes if either N is -isotropic or A-principal (see [18] and [19]). In the first case
where N is 2-isotropic, we have shown in Suh [18] that M is locally congruent to a tube
over a totally geodesic CP* in @Q%. In the second case, when the unit normal N is -
principal, we proved that a contact hypersurface M in Q™ is locally congruent to a tube
over a totally geodesic and totally real submanifold S™ in Q™ (see [19]).

The shape operator S of M in Q™ is said to be n-parallel if it satisfies
9(VxS)Y,Z) =0

forany X,Y, Z€C,, ze M, where C, denotes the orthogonal complement of the Reeb vector
field &, = JN, of M in T, M.

Moreover, if the shape operator S of M in Q™ satisfies g((S¢ — ¢S)X,Y) = 0 for any
X, YeC, we say that M is n-commuting.

When the Reeb vector field £ is a principal vector field of the shape operator of M
in @™, a real hypersurface M is said to be Hopf. Now let us introduce another kind of
real hypersurfaces which is said to be ruled real hypersurfaces in the complex quadric Q™
which are not Hopf as follows:

Let v: I—Q™ be an integral curve of the Reeb vector field £ such that +/(0) = &,.
The distribution C = {XeTM|X L} is said to be integrable if [X,Y]eC for any vector
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fields X, Y eC. When M is foliated by the integrable totally geodesic complex hyperplane
Q™' in Q™, then M = {xeQ™ (t)|tel}. In such a case we say that M is a ruled real
hypersurface in Q™. In such a case, the expression of the shape operator S of the ruled
real hypersurface M in Q™ becomes

S¢E=al+ pU
SU = B¢
SX =0

for any vector field X 1&, U, where U is a unit vector field in C, o and [ are functions on
M and (8 does not vanish. Then the above expression holds if and only if g(SX,Y) =0
for any vector fields X and Y in C. By the totally geodesic property of the complex
hyperplane @™ ! in Q™ in the construction of the ruled real hypersurface in Q™, it
naturally satisfies the above expression of the shape operator, and conversely if the shape
operator satisfies the above formula, we can construct the ruled real hypersurface in Q™.
So as a characterization of ruled real hypersurfaces in @™, we summarize this one as
follows:

Theorem A. Let M be a real hypersurface in Q™, m>3. Then M is locally congruent
to a ruled real hypersurface foliated by complex totally geodesic Q™ in Q™ if and only
if the shape operator S satisfies g(SX,Y) =0 for any X,Y €C.

This Theorem A implies that the shape operator S is n-parallel, that is, g((VxS)Y, Z) =
0 for any X,Y,Z€C. By linearization, g((VxS)X,X) = 0 for any X€C. Then this is
equivalent to the constancy of g(Sv,v') = §(V,v', V'), where g and V denote respec-
tively the Riemannian metric and the Riemannian connection of the complex quadric Q™.
This means that every geodesic v: I—M in Q™ which is orthogonal to the Reeb vector
field &, that is 7/(0)_LE,, and v(0) = p, has constant first curvature.

When the stucture tensor ¢ commutes with the shape operator S, that is, S¢ = ¢S,
we say that M has commuting shape operator. Motivated by this one, Berndt and Suh
[2] have proved the following

Theorem B. Let M be a complete real hypersurface in Q™, m>3, with commuting
shape operator. Then M is locally congruent to a tube over CP* in Q*, m = 2k.

Motivated by Theorems A and B, and Theorems 5.3 and 5.4 in section 5, we can assert
the following

Main Theorem. Let M be a real hypersurface in the complex quadric Q™, m>4, with
n-parallel and n-commuting shape operator. Then M s locally congruent to a ruled hy-
persurface foliated by totally geodesic complex hypersurfaces Q™1 in Q™ with A-principal
unit normal vector field.

If M is Hopf and n-commuting, the shape operator of M commutes with the structure
tensor ¢. Then by a result due to Berndt and Suh [3] M is locally congruent to a tube
over a totally geodesic CP* in Q?*. In such a case the unit normal vector field N is
2A-isotropic. In section 5 we prove that the unit normal vector field N of a ruled real
hypersurface is -principal. But in this case M is non-Hopf.
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Remark 1.1. In Remark 4.4, we have mentioned that the unit normal vector field N
of a ruled real hypersurface in Q™ s either A-principal or A-isotropic.

Remark 1.2.  In section 6, we construct an example of minimal ruled real hypersurface
which is foliated by totally geodesics Q™' in the complex quadric Q™ from curves in real
projective space RP™1,

2. THE COMPLEX QUADRIC

For more background to this section we refer to [7], [8], [11], [18], [19] and [20].
The complex quadric Q™ is the complex hypersurface in CP™"! which is defined by
the equation 22 + -+ - + 22, 41 = 0, where z, ..., 2,41 are homogeneous coordinates on
CP™. We equip Q™ with the Riemannian metric g which is induced from the Fubini-
Study metric g on CP™"! with constant holomorphic sectional curvature 4. The Fubini-
Study metric g is defined by g(X,Y) = ®(JX,Y) for any vector fields X and Y on
CP™! and a globally closed (1,1)-form ® given by ® = —4iddlogf; on an open set
Ui ={[20,---,2j - 2mp1]ECP™|2;7#0}, where the function f; denotes f; = Zzglté?ff,
and t;? = z—’; for j,k = 0,---,m+1. Then naturally the Kahler structure on CP™*! induces

canonically a Kéhler structure (.J, g) on the complex quadric Q™.

The complex projective space CP™*! is a Hermitian symmetric space of the special uni-
tary group SU,, 19, namely CP™ = SU,, /S (U,,+1U;1). We denote by o = [0,...,0,1] €
CP™"! the fixed point of the action of the stabilizer S(U,,,1U;). The special orthogonal
group SO, 4o C SU,, 12 acts on CP™"! with cohomogeneity one. The orbit containing o
is a totally geodesic real projective space RP™™! c CP™"!. The second singular orbit
of this action is the complex quadric Q™ = S0O,,12/50,,505. This homogeneous space
model leads to the geometric interpretation of the complex quadric Q™ as the Grassmann
manifold G3 (R™*?) of oriented 2-planes in R™*2. Tt also gives a model of Q™ as a Her-
mitian symmetric space of rank 2. The complex quadric Q! is isometric to a sphere S?
with constant curvature, and Q? is isometric to the Riemannian product of two 2-spheres
with constant curvature. For this reason we will assume m > 3 from now on.

In another way, the complex projective space CP™*! is defined by using the Hopf
fibration
7 SEH L CP™ 22,

which is said to be a Riemannian submersion. Then naturally we can consider the follow-
ing diagram for the complex quadric Q™ as follows:

Q — W*I(Q) i s S2m+3c(cm+2
Q — Qm i \ CPerl

The submanifold Q of codimension 2 in $2™*3 is called the Stiefel manifold of orthonor-
mal 2-frames in R™2, which is given by

- . 1
Q = {z 4+ iyeC"|g(z,z) = g(y,y) = 5 and g(w,y) = 0},
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where g(z,y) = S 2z, for any @ = (21, ..., Tyyo) and y = (Y1, - - -, Ymso) ER™H2. Then
the tangent space is decomposed as T,5*"*3 = H,®F, and T.Q = H.(Q)®F.(Q) at
z =  + iyeQ respectively, where the horizontal subspaces H, and H.(Q) are given by
H, = (Cz)* and H,(Q) = (Cz2Cz)*, and F, and F,(Q) are fibers which are isomorphic
to each other. Here H,(Q) becomes a subspace of H, of real codimension 2 and orthogonal
to the two unit normals —z and —JZz. Explicitly, at the point z = z + iyeQ it can be
described as

H, = {u+iweC™?| g(x,u) +g(y,v) =0, g(z,v) =gy, u)}

and

H.(Q) = {u+iveH.| g(u,x)=g(u,y)=g(v.z)=g(v,y) =0},
where C™2 = R™2@iR™2 and g(u,z) = S Pur; for any u = (ug, ..., Umyis), © =
(.Tl, cee $m+2>ERm+2.

These spaces can be naturally projected by the differential map 7, as 7, H, = TW(z)CPmJr1
and m,H.(Q) = Tr(-)Q respectively. This gives that at the point 7(2) = [2] the tangent
subspace T,)Q™ becomes a complex subspace of Tj,)CP™! with complex codimension 1
and has two unit normal vector fields —z and —JZ (see Reckziegel [11]).

Then let us denote by A: the shape operator of Q™ in CP™*! with respect to the
unit normal z. It is defined by As;w = V,,Z = w for a complex Euclidean connection V
induced from C™*2 and all w € T1,Q™. That is, the shape operator A; is just a complex
conjugation restricted to 71,;QQ™. Moreover, it satisfies the following for any w € T1,;Q™
and any A\eS'cC

A?\Zw :A)\EA)\EU) = A}@)\'[B
=|\*w = w.

Accordingly, A2, = I for any A€S’. So the shape operator A; becomes an anti-commuting

involution such that A2 = I and AJ = —JA on the complex vector space T)Q™ and
T,Q™ = V(Az) @ JV(Az),

where V(A;) = R N T,;Q™ is the (+1)-eigenspace and JV(A;) = iR™? N T,,Q™ is
the (—1)-eigenspace of A;. That is, A;:X = X and A;JX = —JX, respectively, for any
XeV(A;).

Geometrically this means that the shape operator A; defines a real structure on the
complex vector space 11,;QQ™, or equivalently, is a complex conjugation on 7j,;Q™. Since
the real codimension of Q™ in CP™"! is 2, this induces an S'-subbundle 2 of the endo-
morphism bundle End(7T'Q™) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q™ can
be viewed as the complexification of the m-dimensional sphere S™. Through each point
[z] € Q™ there exists a one-parameter family of real forms of @™ which are isometric to
the sphere S™. These real forms are congruent to each other under action of the center
SOy of the isotropy subgroup of SO,,.» at [z]. The isometric reflection of @™ in such a
real form S™ is an isometry, and the differential at [z] of such a reflection is a conjugation
on T1,;Q™. In this way the family 2 of conjugations on T],;Q™ corresponds to the family
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of real forms S™ of @™ containing [z], and the subspaces V(A) C T},;Q™ correspond to
the tangent spaces 17,;S™ of the real forms S™ of Q™.
The Gauss equation for Q™ C CP™"! implies that the Riemannian curvature tensor R

of @™ can be described in terms of the complex structure J and the complex conjugations
Aed

RIX,Y)Z = g(Y,2)X — g(X,2)Y + g(JY,2)JX — g(JX,2)JY —29(JX,Y)JZ
+g(AY, 2)AX — g(AX, 2)AY + g(JAY, Z)JAX — g(JAX, Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = —JA for each
Aei

For every unit tangent vector W € T},;Q™ there exist a conjugation A € 2l and or-
thonormal vectors X,Y € V(A) such that

W = cos(t) X +sin(t)JY

for some ¢ € [0,7/4]. The singular tangent vectors correspond to the values ¢ = 0 and
t =m/4. When W = X for XeV(A), t = 0, there exist many kinds of maximal 2-flats
RX + RZ for ZeV(A) orthogonal to Xe€V(A). So the tangent vector X is said to be
singular. When W = (X + JY)/v/2 for t = Z, it becomes also a singular tangent vector,
which belongs to many kinds of maximal 2-flats given by R(X+JY)4+RZ for any ZeV (A)
orthogonal to XeV(A) or R(X + JY) + RJZ for any JZ€JV(A). If 0 < ¢t < 7/4 then
the unique maximal flat containing W is RX ¢ RJY'.

3. SOME GENERAL EQUATIONS

Let M be a real hypersurface in @™ and denote by (¢, £, 7, g) the induced almost contact
metric structure. Note that { = —JN, where N is a (local) unit normal vector field of
M and n the corresponding 1-form defined by n(X) = ¢(§, X) for any tangent vector
field X on M. The tangent bundle T'M of M splits orthogonally into TM = C @ RE,
where C = ker(n) is the maximal complex subbundle of M. The structure tensor field ¢
restricted to C coincides with the complex structure J restricted to C, and ¢ = 0.

At each point z € M we define a maximal 2-invariant subspace of T,M, zeM as
follows:

Q. ={XeT.M|AX € T,M for all A €2}

Then we want to introduce an important lemma which will be used in the proof of our
main Theorem in the introduction.

Lemma 3.1. ([18]) For each z € M we have
(i) If N, is A-principal, then Q, = C,.
(ii) If N, is not A-principal, there ezist a conjugation A € A and orthonormal vectors
X,Y € V(A) such that N, = cos(t)X + sin(t)JY for some t € (0,7/4]. Then we
have Q, =C, o C(JX +Y).

We now assume that M is a Hopf hypersurface. Then the Reeb vector field £ = —JN
satisfies the following

5§ = ag,
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where S denotes the shape operator of the real hypersurface M for a smooth function
a = g(SE &) on M. When we consider the transformed JX by the Kéhler structure J on
Q™ for any vector field X on M in Q™, we may put

JX =oX +n(X)N
for a unit normal N to M. Then we now consider the equation of Codazzi
g(VxS)Y = (Vy8)X, Z) = n(X)g(¢Y, Z) —n(Y)g(6X, Z) — 21(Z)g(¢X,Y)
+9(X,AN)g(AY, Z) — g(Y, AN)g(AX, Z) (3.1)
+ g(X, A g(JAY, Z) — g(Y, A&)g(JAX, Z).
Putting Z = £ in (3.1) we get
g(Vx )Y — (Vy5)X,§) = —29(¢X,Y)
+9(X, AN)g(Y, Ag) — g(Y, AN )g(X, AS)
— 9(X, Agg(JY, A) + g(Y, AL)g(J X, AS).
On the other hand, we have
9g((VxS)Y — (VyS)X,¢§)
= g((Vx95)EY) = g((Vy5)E X)
= (Xa)n(Y) = (Ya)n(X) + ag((S¢ + ¢5)X,Y) = 29(SpSX,Y).
Comparing the previous two equations and putting X = ¢ yields
Ya=(§a)n(Y) —29(& AN)g(Y, AG) + 29(Y, AN)g (¢, AL).
Reinserting this into the previous equation yields
9(VxS9)Y — (VyS)X,§)
= —29(§ AN)g(X, AGn(Y) 4 29(X, AN)g(¢, ASn(Y)
+29(&, AN)g(Y, AGn(X) — 29(Y, AN)g(¢, AS)n(X)
+ag((¢S + S9)X,Y) —2g(SpSX,Y).
Altogether this implies
0=2¢g(SeSX,Y) — ag((¢S+ S¢)X,Y) — 2¢9(¢X,Y)
+ 9(X, AN)g(Y, AS) — g(Y, AN)g(X, A¢)
— 9(X, AQg(JY, AS) + g(V, AG)g(J X, AS) (3.2)
+29(&, AN)g(X, Agn(Y) — 29(X, AN)g(&, Ag)n(Y)
—29(§, AN)g(Y, Ag)n(X) + 29(Y, AN)g(&, A)n(X).
At each point z € M we can choose A € 2, such that
N = cos(t)Zy + sin(t)J Zy
for some orthonormal vectors Z;,Z, € V(A) and 0 < ¢t < T (see Proposition 3 in [11]).
Note that t is a function on M. First of all, since £ = —JN, we have
AN =cos(t)Z; — sin(t)J Z,
& =sin(t)Zy — cos(t)J Zy, (3.3)
A& =sin(t) Zy + cos(t)J Z;.
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This implies g(§, AN) = 0 and hence
0=2¢g(SpSX,Y) —ag((¢S+ S¢)X,Y) —29(¢X,Y)
+9(X, AN)g(Y, AS) — g(Y, AN)g(X, AS)
— 9(X, Ag)g(JY, AS) + g(Y, A&)g(J X, AE)
—29(X, AN)g(&, AG)n(Y) + 29(Y, AN)g(, A&)n(X).

4. 7-PARALLEL SHAPE OPERATOR AND A KEY LEMMA

By the equation of Gauss, the curvature tensor R(X,Y)Z for a real hypersurface M in
@™ induced from the curvature tensor R of Q™ can be described in terms of the complex
structure J and the complex conjugation A € 2 as follows:

R(X,Y)Z = g(Y,2)X = g(X, 2)Y + g(¢Y, Z)pX — g(¢X, Z)¢Y —29(¢X,Y)oZ
+9(AY, Z2)AX — g(AX, 2)AY + g(JAY, Z)JAX — g(JAX, Z)JAY
+9(SY,2)SX — g(SX,Z)SY

for any X, Y, Z€T .M, ze M.
Now let us put
AX = BX + p(X)N,

for any vector field XeT,Q™, zeM, p(X) = g(AX,N), where BX and p(X)N re-
spectively denote the tangential and normal component of the vector field AX. Then

A& = BE+ p(§)N and p(§) = g(AE, N) = 0. Then it follows that
AN =AJE = —JAE = —J(BE + p(€)N)
= — (¢BE+n(BEN).

Then we assert the following:

Lemma4.1. Let M be a real hypersurface in Q™, m>3, with n-parallel and n-commuting
shape operator. Then for any X,Y, Z€C we have

0 =9(X, AN)g(AY, Z) + (Y, A&)g(AX, ¢ Z) — g(¢Z, AE)g(AX,Y)
—n(S92)g(Y,SX) + g(X,V)g(Y,52) + g(Y,V)g(X,5Z).
where C denotes the orthogonal complement of the Reeb vector field & and V is given by
PSE.
Proof.  The notion of n-commuting shape operator gives
9((S¢ — ¢S)X,Y) =0

for any X,Y eC. By differentiating this, we have

9(Vx8)Y.0Z) + g((VxS)Z,¢Y) = n(SY)g(X, 5Z) + n(SZ)g(Y, SX)

4.1
+9(X.S0Y)g(Z,V) + 9(X. S62)g(V. V). .

Then let us consider cyclic formulas with respect X, Y and Z as follows:
9(Vy9)Z.0X) + g((VyS) X, 0Z) = n(SZ)g(Y, 5X) +n(5X)g(Z, SY) (42)

+9(Y,802)g(X, V) + g(Y,S¢X)g(Z, V)
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and
9((V29)X,0Y) + g((V2S)Y,6X) = n(5X)g(Z, SY) + n(SY)g(X, SZ)
+9(Z,5¢X)g(Y, V) + g(Z,5¢Y)g(X, V)
Then substract the third one (4.3) from summing up (4.1) and (4.2). From such an
obtained equation, and using the equation of Codazzi, it follows that
9(VxS)Y,0Z) + g((VyS)X,0Z) + g((VxS)Z — (V25)X, ¢Y)
+9((VyS)Z = (V25)Y, ¢X)
=2n(S2)g(Y, SX) + 29(X, V)g(Y, S¢Z) + 29(Y,V)g(X, S¢Z)
=29((VxS)Y,0Z) — {9(X, AN)g(AY,¢Z) — (Y, AN)g(AX, ¢Z)
+ 9(X, A g(JAY, ¢Z) — g(V, A§)g(JAX, ¢Z)} (4.4)
+{9(X, AN)g(AZ, ¢Y') — g(Z, AN )g(AX, ¢Y)
+9(X, AQg(JAZ,¢Y) — g(Z, A&)g(JAX, Y )}
+{9(Y,AN)g(AZ, ¢X) — g(Z, AN)g(AY, 9 X)
+ 9(X, AQg(JAZ, X)) — g(Z, A§)g(JAY, ¢ X)}.

From this, together with n-commuting property, and using g(JAY, ¢Z) = —g(AY, JoZ) =
g(AY, Z) for any Y, Z€C, we have

(4.3)

9(VxS)Y,0Z) — g(X, AN)g(AY,¢Z) — g(Y, AQ)g(AX, Z) — g(Z, A)g(AX,Y) (45)
=n(S2)g(Y,SX) + g(X,V)g(Y,S¢Z) + g(Y,V)g(X, S¢Z) ‘
for any X, Y, Z€C. Then by replacing Z by ¢Z in (4.5), we have
9(VxS)Y, Z) = g(X,AN)g(AY, Z) + g(Y, A g(AX, ¢Z) — g(¢Z, AL)g(AX,Y) (4.6)
—n(S¢Z)g(Y, SX) + g(X,V)g(Y,SZ) + g(Y,V)g(X,5Z). ‘

This gives a complete proof of our Lemma. O

Remark 4.2. Let M be a tube over a totally complex geodesic k-dimensional complex
projective space CP* in Q*. Then the unit normal vector field N is A-isotropic and
the shape operator S commutes with the structure tensor ¢. So the Reeb vector field &
1s principal and the vector field V = ¢S& = 0. It can be easily seen that the vectors
A€ and AN belong to the distribution C. Then by (4.6) we have g((VxS)Y,Z) = 0 for
any X, Y, Z€C orthogonal to the vectors A and AN. Moreover, (4.6) gives the following
formulas

9((VaeS)AE, AL) = —g(AE, AQ)g(A%E, 0Z) + g(AE, AL)g(&, 9Z) =0,
g((VanS)AN, A€) = g(AN, AN)g(A*N, A€) — g(AN, AN)g(A*N, AE) = 0,
9((VaeS)AN, AN) = —g(AE, A&)g(A’ N, pAN) + g(AN, A€)g(A*¢, pAN) = 0,

and

9((VagS) AL, AN) = —g(AE, AG)g(A%E, 9AN) + g(AE, AE)g(AE, pAN) = 0.



10 M. KIMURA, H. LEE, J. D. PEREZ & Y. J. SUH

Then all the formulas mentioned above give that the shape operator S is n-parallel.

Now let us assume that the unit normal vector field N is 2-isotropic. Then the normal
vector field NV can be written

1
N=—(Z1+ JZ
\/5(1 2)

for Zy, Z,€V(A), where V(A) denotes the (41)-eigenspace of the complex conjugation
A€, Then it follows that

1 1 1
—(Zy— JZy),AJN = ——(JZy + Z),and JN = —
\/ﬁ( 1 2) \/5( 1 2) an \/5

From this, together with (3.3) and the anti-commuting property AJ = —JA, it follows
that

AN = (JZ1 — Zs).

g(&, A¢) = g(JN,AJN) =0, g(¢,AN) =0 and g(AN,N) = 0.
In Lemma 4.1 let us take skew-symmetric in X and Y, it follows that
0 ={g(X, AN)g(AY, Z) — g(Y, AN)g(AX, Z)}
+{9(Y, AQ)g(AX, ¢Z) — g(X, AL)g(AY, ¢Z)}.

Since we have assumed that the unit normal N is 2f-isotropic, we can put X = AN in
(4.7). Then it gives that g(AY,Z) = 0 for any Y and ZeC. So Lemma 4.1 gives the
following

(4.7)

g X, V)g(Y,SZ) + g(Y,V)g9(Z,SX) + g(Z,V)g(X,SY) = 0. (4.8)

When the unit normal vector field N is 2-principal, that is, AN = N and A = —¢,
then Lemma 4.1 also gives the equation (4.6). Now let us put S¢ = a& + SU in (4.8).
Then we assert the following

Lemma 4.3.  Let M be a complete real hypersurface in Q™, m>3, with n-parallel and
n-commuting shape operator. If the unit normal vector field is singular, then

=0 or ¢g(SY,Z)=0
for any vector fields 'Y, Z€C, where C denotes the orthogonal distribution of the Reeb vector
field €.

Proof. Now let us put Z =V = ¢S¢ in (4.8) and use S§ = a& + U for some UEC.
Then it follows that

0 =g(SX,Y)||V|]*>+ g(SY,V)g(X,V) + g(SV, X)g(Y,V) (19)
=g(SX,Y)||V|* + B2g(SY, ¢U)g(X, oU) + B2g(SeU, X )g(Y, ¢U) '

for any X,Y and Z€C. Then for any X, Y eC which are orthogonal to ¢U the formula
(4.9) gives g(SX,Y) =0. Now we put X =Y = ¢U in (4.9). Then it follows that

0 =g(SoU, oU) |V 1> + 2829(SoU, ¢U)
=36%9(SoU, ¢U),

where we have used ||V ||* = g(¢SE&, $SE) = B2 Then (4.10) gives that the function 5 =0
or g(SoU,¢U) = 0. Now let us consider the case that f#0 on the open subset U in M.

(4.10)
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Then g(S¢oU,¢U) = 0 on Y. From this, together with putting Y = ¢U in (4.9), we have
for any XeC

0= g(SeU, X)|[V|]* + 8%g(S¢U, X) = 28°g(S¢U, X). (4.11)
So it follows that g(S¢U, X) = 0 on U for any X €C. From this, together with ¢g(SX,Y) =

0 for any X, Y eC orthogonal to ¢U, we can assert the latter part of Lemma 4.3. From
this, we give a complete proof of our Lemma 4.3. U

Remark 4.4. Let M be a ruled real hypersurface in Q™ foliated by the totally geodesic
complex hyperplane Q™1 in section 2. If the Reeb function o = g(S&,€) = 0 and =
g(S&,U) is constant,and the vector field U is parallel along the integral curve of the Reeb
vector field &, then the unit normal vector field N = J& becomes singular.
In fact, let us use the equation of Codazzi for S = o+ pU, SU = BE. Then it follows
that
9(R(X,Y)§,N) =g((VxS)Y = (VyS)X,§)
=9((VxS)E,Y) —g(((VYS) X)
=do(X)n(Y) — ( (X ) + Ozg((5¢ + ¢S)X Y) (4.12)

By putting X = &£ into (4.12) and using the assumption for the ruled hypersurface in Q™,
we have

g(R(§, N)N, JY) =g(R(JY, JE)N,&) = g(R(£,Y)E, N)
=da()n(Y) — da(Y) + afg(oU,Y)
+(£P)g(U,Y) + Bg(VeU,Y)

=0.

(4.13)

This implies RNQ’?: c€ for ceR, that is, the Reeb vector field £ is principal for the normal
Jacobi operator Ry. Then by a result due to Berndt and Suh (see Proposition 3.1, [3])
we know that the unit normal vector field N is A-principal or A-isotropic.

5. PROOF OF MAIN THEOREM

In this section we prove our Main Theorem mentioned in the introduction. By the
notions of n-parallel and n-commuting shape operator, we give a complete classification
of real hypersurfaces in the complex quadric Q™ satisfying these notions. One of the most
crucial points of this classification is to give a geometric property that the unit normal
vector field of a ruled real hypersurface in Q™ foliated by complex totally geodesic Q™1
is A-principal. Though in Remark 4.4 we have mentioned the unit normal vector field N
is Rl-isotropic or A-principal, but in general N is 2A-principal for ruled real hypersurfaces
in the complex quadric Q™.

In order to complete this fact, let us consider a real hypersurface M in Q™ ,m > 4, such
that g((Vx95),Y,Z) = 0 and g((S¢ — ¢S)X,Y) =0 for any X, Y, Z € C. We can use
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the formula (3.3) in section 3. This, together with ¢g(¢, AN) = 0 and Lemma 4.1 yields
0= g(X,AN)g(AY, Z) + g(Y, A§)g(AX, 0Z) — g(¢Z, Ag)g(AX,Y)
—n(S¢Z)g(Y,5X) + g(X, 5€)g(Y, SZ) + g(¢5¢,Y)g(X, 52)
for any X,Y,Z € C.
If M is Hopf, that is, the Reeb vector field ¢ is a principal vector field of the shape
operator S of a real hypersurface M in @™, then it follows that 0 = ¢S¢ = S¢&. From
this, together with n-commuting shape operator, g((S¢—¢S)X,Y) =0 for any X,Y € C,

it naturally gives that the structure tensor ¢ commutes with the shape operator S, that
is, S¢ = ¢S. Then by Theorem B we assert the following

Proposition 5.1. Let M be a Hopf real hypersurface in the complex quadric Q™, m > 4,
with n-parallel and n-commuting shape operator. Then M s locally congruent to a tube
of radius v over a totally geodesic complex submanifold CP* in Q%*, m = 2k.

In a paper due to Berndt and Suh [2] we proved that the unit normal vector field N of M
in the complex quadric Q™ is -isotropic, that is (AN, N) = 0 for the real hypersurface
appearing in Proposition 5.1. Related to this fact, we want to show another proposition
as follows:

Proposition 5.2. There does not exist any real hypersurface in Q™, m > 3, with n-
parallel shape operator and with A-isotropic normal vector field N .

Proof. Let us assume that M is a real hypersurface with n-parallel shape operator in Q™
m > 3. That is, the shape operator S of M satisfies the following condition:

9((VxS)Y,Z) =0 (*)
for any tangent vector fields X,Y, Z € C, where C denotes the orthogonal complement of
the Reeb vector field £ on M in Q™. By using the equation of Codazzi, it yields for any
X, Y, ZeC
9(g(AX, N)AY — g(AY, N)AX + g(AX,&)JAY — g(AY,&)JAX, Z) = 0,
The vector field g(AX, N)AY — g(AY, N)AX + g(AX,§)JAY — g(AY,&)JAX in the left-
side of the above equation is denoted by W y (simply, W). Then Wy y € T1,;Q™ becomes

2m

Wxy = ZQ(WX,Y> ei)e; = g(W, )€ + g(W,N)N

=1
= g(W7 g)f)

because g(W, N) = 0 and Z € C. Since N is ™-isotropic, (AN, N) = 0 and g(AN,§) =0,
we see that AN € C C TiyM, [2] € M.

Substituting Y = AN in Wy y and using A? = I, we have
g(AX,N)N — AX — g(AX, )¢
= Wx an = g(W,§)§ = —29(AX, §)E.
Then it can be arranged as follows:

AX = g(AX,N)N + g(AX, €)¢
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for any X € C. From this , applying the real structure A and using the property of A% = I
again, it follows that
X =g(AX,N)AN + g(AX,§)AE € C.
This means dimgrC = 2. But, in fact, any vector X € C is expressed by
2m—2

X =) g(X ep)ex
k=1

with respect to the basis {AN, A, eq,eq, -+ ,eam_4} of C. So we get dimgC = 2m — 2,
which gives a contradiction. From this, we get a complete proof of our proposition. [

Then combining Propositions 5.1 and 5.2, we assert the following

Theorem 5.3. There do not exist a Hopf real hypersurface in the compler quadric Q™,
m > 4, with n-parallel and n-commuting shape operator.

Now let us suppose that M is non-Hopf and write S§¢ = a& 4+ SU , where U is a unit
vector field in C and 8 # 0. Then the above equation becomes

0=g(X,AN)g(AY, Z) 4 g(Y, A&)g(AX, ¢Z) — g(¢Z, AE)g(AX,Y)

5.1
+ B9(Z,0U)g(Y, SX) + Bg(X. 6U)g(Y, SZ) + Bg(Y,0U)g(X,52)
for any X,Y, Z € C.
Let us take X,Y, Z € Cy = Span{&, U, U }*. From (5.1) we get
0=g(X,AN)g(AY, Z) + g(Y, A g(AX, 0Z) — g(Z, AU)g(AX.Y).
Taking X = Z, we obtain
9(Y, Ag)g(AX,9X) =0 (5.2)
for any X, Y € Cy .
Case 1)  Suppose g(AE,Y) =0 for any Y € Cy.
Now we take ¢Y instead of Y. Then it follows that
9(9Y, AG) = —g(Y, JAS) = g(Y, AJE) = g(Y,AN) =0 (5.3)
for any Y € Cy.
If we take XY € Cy, Z = U in (5.1), we obtain
for any Z,Y € Cy. From (5.3), (5.4) becomes
0 = g(U, AN)g(AX, Y) (5.5)
for any XY € Cy. Taking X = ¢U, Y, Z € Cy in (5.1), we have
—9(U, A&)g(AY, Z) + Bg(Y,5Z) = 0 (5.6)

for any Y, Z € Cy and taking X,Y € Cy, Z = ¢U, we obtain bearing in mind (5.3)
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g(U, A)g(AX,Y) + Bg(Y, SZ) = 0.
In particular,

g(U, A§)g(AY, Z) + 9(Z,5Y) = 0
From (5.6) and (5.7) we get

g(U, A)g(AY, Z) = 0
and
g(SY,Z)=0
for any Y, Z € Cyp.

(5.7)

(5.8)

(5.9)

We know g(AZ,¢U) = g(¢pZ, AU) for any Z € C. Taking X =U,Y = oU, Z € Cy in

(5.1), we have

and taking X = ¢U, Y =U, Z € Cy in (5.1) it follows

for any Z € Cy. Therefore

g(U, AN)g(JAU, Z) = g(U, A§)g(AU, Z)
for any Z € Cy. Take X = U, Y =Cy, Z = ¢U in (5.1). Then

0=—g(U, AN)g(Y, JAU) + g(U, A§)g(AU,Y) + pg(Y, SU)
for any Y € Cy. From (5.10) and (5.11) we get

g(Y, SU) = 0
for any Y € Cy. Therefore we get

9(U, AN)g(J AU, Z) = 0
9(U, A§)g(AU, Z) = 0
for any Z € Cy. Taking X = Z = ¢U, Y € Cy in (5.1) we have

0= g(@U, AN)g(AY, oU) + g(U, A&)g(AgU,Y') + 289(SY, ¢U)

= 26g(SY, oU).
As we suppose [ # 0, we get
g(SY,pU) =0
for any Y € Cy. From (5.9), (5.12) and (5.15) we have
SX =0

forany X =Cy. If weput X =Y =27 =0U in (5.1), we get
9(U, AE)g(AU, 6U) = 0.
And taking X =Y = Z = ¢U in (5.1) we obtain

(5.10)

(5.11)

(5.15)

(5.16)

(5.17)
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9(U, AN)g(AgU,U) = 3Bg(oU, SoU) (5.18)
If weput X =U,Y =¢U,Z =U in (5.1), we have

9(U, AN)g(A¢U,U) + Bg(U, SU) = 0 (5.19)
From (5.18) and (5.20) it follows

9(U, SU) = —3g(6U, S6U) (5.20)
Now let us put X =Y = ¢U, Z = U in (5.1). Then it follows

0= —g(U, Ag)g(AeU, U) + 289(oU, SU)
and (5.19) yields
9(eU,SU) =0 (5.21)

that is, SoU = voU SU = —3~vU + B¢ . By Codazzi equation, bearing in mind that
for any X € Cy

g(AX, ) =g(AX,N) =0 and SX = S¢X =0.
we get
9(Vx9)oX — (VexSX, Z) = —2n(2) (5.22)
for any Z tangent to M. Taking Z = £ it follows

and taking Z = U we get

From (5.23) and (5.24) ~ = 0 and we have S§ = o 4+ U, SU = p¢, SX =0,
X € Span{¢, U}t.

Suppose, moreover, that g(AX,Y) = 0 for any X,YeCy. If g(AX,U) = 0 for any
XeCy, then

0=g(AdX,U) = g(AJX,U) = —g(X, JAU) = g(X, AJU) = g(X, ApU).

In this case AX = 0 for any X €Cy and this yields X = 0, therefore m<2 and we have a
contradiction. Therefore there exists X €Cy such that g(AX, U)#0. Then for any XeCy
we have

AX = g(AX,U)U + g(AX, oU)oU.
So by applying complex conjugation A again, it follows X = g(AX,U)AU+g(AX, ¢U) AU,
which means Cyy = Span{ AU, A¢U } and m<3, also a contradiction. Therefore there exist
X,YeCy such that g(AX,Y)#0. As g(X,AN) = ¢g(JX, A¢) = 0 for any XeCyp, from
(5.4) we have g(U, AN) = 0 and from (5.6) g(U, A¢) = 0. Then these formulas give

g(U,AN) = g(U, AJE) = —g(U, JAS) = g(oU, A§) = 0,
g(U, A€) = —g(U, AJN) = g(U, JAN) = —g(6U, AN) = 0.
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So we have obtained that AN = g(AN,N)N and N = g(AN,N)AN = g(AN,N)?N.
This gives that g(AN,N)* = 1, which means cos?(2t) = 1. As 0<t<Z, the unique
possibility is 2¢ = 0, that is, ¢ = 0 and N is 2A-principal.

Case 2) Suppose g(AX, ¢pX) =0 for any XeCy.

This yields g(AX,Y) =0 for any X,YeCy. Take X,Y = ¢ XeCy, Z =U in (5.1). We
have 0 = 2¢g(X, AN)g(X, ApU). Therefore we assert

g(X, AN)g(X, ApU) =0 (5.25)
for any X€Cy. And taking XY = ¢X€eCy, Z = ¢U in (5.1) we obtain
2g9(X, AN)g(AX,U) = Bg(SX, ¢X) (5.26)
for any XeCy. Taking XeCy, Y =U, Z =U in (5.1) we get
g(X, AN)g(AU,U) — g(U, A)g(X, JAN) — g(U, AN )g(AX,U) =0 (5.27)

for any X €Cy, and taking Xe€Cpy, Y = ¢oU, Z = ¢U in (5.1) we obtain

— g(U, AE)g(X, JAU) + 289(S6U, X). (5.28)
From (5.7) and (5.8) we have
9(X, AN)g(AU,U) = 2B4(5¢U, X) (5.29)

for any XeCyp.

Let us suppose that g(X, AN) = 0 for any X€Cpy. Then
Therefore g(X, A{) = 0 for any X€Cy. As we suppose g(AX,Y) = 0 for any X, Y €eCy,
we know

AX = g(AX, U)U + g(AX, 6U)$U.

for any X €Cy, that is, X = g(AX,U)AU + g(AX, pU)A¢U for any X €Cy. Accordingly,
it follows that Cy = Span{ AU, A¢pU} and dimCy<2. Therefore dimM <5 or m<3, which
is impossible.

If g(AX, ¢U) = 0 for any X €Cy we have g(¢ X, ApU) = —g(op X, JAU) = —g(X, AU) =
0, and in this case AX = g(AX, )¢ + g(AX, N)N which yields

X = g(AX, ) AE + g(AX, N)AN

for any Xe€Cy. We arrive at the same contradiction.

Therefore we must suppose that there exists X€Cy such that g(X, AN)#0 and from
(5.25) g(X, ApU) = 0. Taking X,YeCy, Z = U in (5.1) we obtain

9(X, AN)g(AY, U) + g(V, A€)g(AX, 6U) = 0 (5.30)

for any X, Y €Cy. Taking, in particular, our previous X €Cy in (5.30) we obtain g(AY,U) =
0 for any Y€Cy. As above, this also yields g(AY, ¢U) = 0 for any Y €Cy. Then for any

Y eCy we have
AY = g(AY,€)¢ + g(AY, N)N

and, as above, this gives a contradiction. Accordingly, the Case 2) can not appear. So
only the Case 1) remains valid. From this, together with Theorem A, we have proved.
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Theorem 5.4. Let M be a non-Hopf real hypersurface in the complex quadric Q™,
m>4, with n-parallel and n-commuting shape operator. Then the unit normal vector field
N of M s -principal and M 1is locally congruent to a ruled real hypersurface foliated by
complex totally geodesic Q™1 in Q™.

Summing up above two Theorems 5.3 and 5.4 we give a complete proof of our Main
Theorem in the introduction.

6. EXAMPLES OF RULED REAL HYPERSURFACES IN COMPLEX QUADRIC

In this section, let us construct ruled real hypersurfaces M*™~1 in complex quadric Q™,
i.e., real hypersurfaces which are foliated by totally geodesic complex hyperquadric Q™ 1,
from curves in real projective space RP™ ",

First we recall Stiefel manifold (cf. [5]). Let

Va(R™?) = {(v1, v2)] v1,v2 € R, lug|| = [Joaf| = 1, (1, 02) = 0}
be the Stiefel manifold of orthonormal 2-frames in R™2. Then the tangent space T{,, 4,)Va(R™?)
is given as
R(—vy,v1) @ { (w1, 79) € R™? x R™"2| 21, 29 | span{vy,vs}}.

Let @Q(Rm“) be the Grassmannian manifolds of oriented 2-planes in R™*2 and let 7€ :
Vo(R™*2) — Go(R™*2) be the projection defined by 7€ (vy,vy) = span(vy,vy). Then with
respect to the metric on Va(R™2) induced from Euclidean space R™2? x R™+2 = C™+2

as a submanifold, we can define a Riemannian metric on Go(R™*?) such that 7% is a
Riemannian submersion. We consider an embedding:

:l: : ‘/Q(RerQ) — 52m+3 - Cm+2, :L:(Ul,’ljg) = (U1 + 21)2)/\/§
The tangent space Tg(vlmﬂ(Vg(Rm“)) is given as

R(—vy + iv1) @ {x1 +izy € C™?| 2y, 25 L spanf{vy, vo}}.
Then we have a commutative diagram

%(Rm—ﬂ) - s 82m+3

n@l lw , (6.1)

GZ (RerQ) A CPerl

where 7 is the Hopf fibration and i is the embedding induced from 7. Then i(Gy(R™+2))
is identified with the complex quadric Q™.

Let I be an interval and let v : I — RP™ be a real 1-dimensional regular curve in
real projective space. We denote I' : I — SO(n) a horizontal lift of v with respect to
the natural projection SO(m + 2) — RP™*!' = SO(m +2)/S(O(m + 1) x O(1)). For an

expression of the matrix I'(t) = (e1(t), -, €ms1(t), emi2(t)) by column vectors, we may
assume
m+1
(1) = N(Demia(t) (=1 m+1), en(t) == N (D). (6.2)

j=1
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Let @ : 1 x Va(R™1) — §2m+3  C™+2 he a map defined by

B, (0, 0) = (0 (T2, (©3)
Then we have the induced map ® : I x Go(R™+!) — CP™** defined by
(t, 7 ((v1,v2))) = w(D(E, (v, v2)) (6.4)

such that the following diagram is commutative:
T % Vg(Rm+1) —_— 52m+3
b

Z-dm@l l” , (6.5)

I x Gy(R™1) — cpmt!

and the image ®(I x G5(R™1)) lies in the complex quadric @™ in CP™"! and for each
t eI, d({t} x Go(R™1))) is a totally geodesic complex hypersurface Q™! in Q™.
We compute the differential of ®. Using (6.2) we have

dB((9/0t),0) = T'(1) <(”1 +ivy)/ ﬁ)

0
_ O =A1)\ ((v1 +1iv2)/V2
=T'(¢) (t)\(t) 0 ) <( + 0 % >
0
=10 (2001 + 00 e vE) 64)
where we put A\(¢) =\ (t), -, Ana1(t)). Also we obtain
V= d®(0, (—vg, v1)) = % (‘”20+ “’1) : (6.7)
and
d&a@banz%%(mzmﬁ, (6.8)

where 21,25 L v1,vo. Here V is a vertical vector with respect to the fibration id x 7© :

I x Va(R™1) = [ x Go(C™*1Y). The metric on I x Va(R™) induced by ® is written as:
2 = (A1), v1)? + (A(t), v2)°
5 :
2 = 1 |I* + IIxQIIQ’
2
(dD((9/0t),0),V) = (dB((9/01),0),dD(0, (x1,22))) = (V.d®(0, (21, 2))) = 0.

Hence

ld®((2/01),0)

IVIP =1, [ld®(0, (21, z2))

® is regular at (¢, (v1, 1)) < (A(t), v1)? + (A(£), v2)? # 0, (6.9)

Proposition 6.1. Let v : I — RP™™ be a real 1-dimensional reqular curve in real
projective space and let T : [ — SO(n) be a horizontal lift of v with respect to the natural
projection SO(m + 2) — RP™! = SO(m + 2)/S(O(m + 1) x O(1)). Then the map
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® : I x Go(R™Y) — CP™ defined by (6.4) is regular at (t, (vi,v2)) if and only if (6.9)
holds.

A unit normal vector of ® at (£, (v1,vs)) is given by

Ao I'(¢)

0
V), v1)? 4+ (A(t), v2)? (—<A(t),02> +i(\(t), v1>) : (6.10)

Now we compute the condition for which ® (and ®) is minimal. By (6.8) and (6.10),
we see that

(A&)(O, (71,22)), (0, (y1,92))) =0, (21,22, 91,y2 L v1,v2)

where A% is the shape operator of CAIE Hence ® (and @) is a minimal immersion at the
regular points of @ if and only if (A®(9/0t,0),(0/0t,0)) = 0. Using (6.2) and (6.6), we
obtain

D i ((oj00,0,42((0/0t),0) = F,(t)( (), v )fz‘()\(t),w}))
<T ( <X(t>,v2>))
Lf (a?t ) ((<A(t),v1> +0 i<A(t),vz>>)
L\/'( t,v1> N (1), v >>)
LR e

Hence & (and ®) is minimal if and only if
—(N(t), v1)(A(t), v2) + (N(t), v2) (A(t),v1) =0 (6.12)

for any (v1,ve) € Vo(R™2).

We may assume that ||A(¢)]|* = 1, by changing parameter ¢ if necessarily, so we have
A(t) L N(t). On the other hand, (6.12) implies that A(¢) A X'(t) = 0. Consequently we
obtain that A(¢) is constant, and I'(¢) is a 1-parameter group of SO(m + 2). Hence by
the help of [1], minimal ruled hypersurface ®(I x G3(R™"!)) in Q™ is invariant under a
I-parameter subgroup I'(t) of SO(m + 2).

Theorem 6.2. Minimal ruled real hypersurface M?™=1 in complex quadric Q™ is invari-
ant under a 1-parameter subgroup of SO(m + 2).
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