# RULED REAL HYPERSURFACES IN THE COMPLEX QUADRIC 

MAKOTO KIMURA, HYUNJIN LEE, JUAN DE DIOS PÉREZ

AND YOUNG JIN SUH*


#### Abstract

First we introduce the notions of $\eta$-parallel and $\eta$-commuting shape operator for real hypersurfaces in the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$. Next we give a complete classification of real hypersurfaces in the complex quadric $Q^{m}$ with such kind of shape operators. By virtue of this classification we give a new characterization of ruled real hypersurface foliated by complex totally geodesic hyperplanes $Q^{m-1}$ in $Q^{m}$ whose unit normal vector field in $Q^{m}$ is $\mathfrak{A}$-principal.


## 1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric spaces $S U_{m+2} / S\left(U_{2} U_{m}\right)$ and $S U_{2, m} / S\left(U_{2} U_{m}\right)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [15], [16], and [17] ). These are viewed as Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure $J$ and the quaternionic Kähler structure $\mathfrak{J}$.
In the complex projective space $\mathbb{C} P^{m+1}$ some classifications of real hypersurfaces related to $\eta$-parallel shape operator were investigated by Kimura [4], Kimura and Maeda [6] respectively. The classification problems of real hypersurfaces of the complex 2-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)=S U_{m+2} / S\left(U_{2} U_{m}\right)$ with certain geometric conditions were mainly discussed in Pérez and Suh [10], and Suh [15], [16], [17], where the classification of contact hypersurfaces, parallel Ricci tensor, harmonic curvature and structure Jacobi operator of a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ were extensively studied. Moreover, in [17] we have asserted that the Reeb flow on a real hypersurface in $S U_{2, m} / S\left(U_{2} U_{m}\right)$ is isometric if and only if $M$ is an open part of a tube around a totally geodesic $S U_{2, m-1} / S\left(U_{2} U_{m-1}\right) \subset S U_{2, m} / S\left(U_{2} U_{m}\right)$

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we can consider the example of complex quadric $Q^{m}=$ $S O_{m+2} / S O_{m} S O_{2}$, which is a complex hypersurface in complex projective space $\mathbb{C} P^{m+1}$ (see Kobayashi and Nomizu [8] and Smyth [12], [13] and [14]). The complex quadric can

[^0]also be regarded as a kind of real Grassmann manifold of compact type with rank 2. Accordingly, the complex quadric admits two important geometric structures, a complex conjugation structure $A$ and a Kähler structure $J$, which anti-commute with each other, that is, $A J=-J A$. Then for $m \geq 2$ the triple $\left(Q^{m}, J, g\right)$ is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [7] and Reckziegel [11]).

Apart from the complex structure $J$ there is another distinguished geometric structure on $Q^{m}$, namely a parallel rank two vector bundle $\mathfrak{A}$ which contains an $S^{1}$-bundle of real structures, that is, complex conjugations $A$ on the tangent spaces of $Q^{m}$. This geometric structure determines a maximal $\mathfrak{A}$-invariant subbundle $\mathcal{Q}$ of the tangent bundle $T M$ of a real hypersurface $M$ in $Q^{m}$.

Moreover, the derivative of the complex conjugation $A$ on $Q^{m}$ is given by

$$
\left(\bar{\nabla}_{X} A\right) Y=q(X) J A Y
$$

for any vector fields $X$ and $Y$ on $M$, where $q$ denotes a certain 1-form defined on $M$.
Recall that a nonzero tangent vector $W \in T_{[z]} Q^{m}$ is called singular if it is tangent to more than one maximal flat in $Q^{m}$. There are two types of singular tangent vectors for the complex quadric $Q^{m}$ :

1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A):=\operatorname{Eig}(A, 1)$, then $W$ is singular. Such a singular tangent vector is called $\mathfrak{A}$-principal.
2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W /\|W\|=(X+J Y) / \sqrt{2}$, then $W$ is singular. Such a singular tangent vector is called $\mathfrak{A}$-isotropic.

When we consider a hypersurface $M$ in the complex quadric $Q^{m}$, under the assumption of some geometric properties the unit normal vector field $N$ of $M$ in $Q^{m}$ can be considered of two classes if either $N$ is $\mathfrak{A}$-isotropic or $\mathfrak{A}$-principal (see [18] and [19]). In the first case where $N$ is $\mathfrak{A}$-isotropic, we have shown in Suh [18] that $M$ is locally congruent to a tube over a totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$. In the second case, when the unit normal $N$ is $\mathfrak{A}$ principal, we proved that a contact hypersurface $M$ in $Q^{m}$ is locally congruent to a tube over a totally geodesic and totally real submanifold $S^{m}$ in $Q^{m}$ (see [19]).

The shape operator $S$ of $M$ in $Q^{m}$ is said to be $\eta$-parallel if it satisfies

$$
g\left(\left(\nabla_{X} S\right) Y, Z\right)=0
$$

for any $X, Y, Z \in \mathcal{C}_{z}, z \in M$, where $\mathcal{C}_{z}$ denotes the orthogonal complement of the Reeb vector field $\xi_{z}=J N_{z}$ of $M$ in $T_{z} M$.

Moreover, if the shape operator $S$ of $M$ in $Q^{m}$ satisfies $g((S \phi-\phi S) X, Y)=0$ for any $X, Y \in \mathcal{C}$, we say that $M$ is $\eta$-commuting.

When the Reeb vector field $\xi$ is a principal vector field of the shape operator of $M$ in $Q^{m}$, a real hypersurface $M$ is said to be Hopf. Now let us introduce another kind of real hypersurfaces which is said to be ruled real hypersurfaces in the complex quadric $Q^{m}$ which are not Hopf as follows:

Let $\gamma: I \rightarrow Q^{m}$ be an integral curve of the Reeb vector field $\xi$ such that $\gamma^{\prime}(0)=\xi_{p}$. The distribution $\mathcal{C}=\{X \in T M \mid X \perp \xi\}$ is said to be integrable if $[X, Y] \in \mathcal{C}$ for any vector
fields $X, Y \in \mathcal{C}$. When $M$ is foliated by the integrable totally geodesic complex hyperplane $Q^{m-1}$ in $Q^{m}$, then $M=\left\{x \in Q^{m-1}(t) \mid t \in I\right\}$. In such a case we say that $M$ is a ruled real hypersurface in $Q^{m}$. In such a case, the expression of the shape operator $S$ of the ruled real hypersurface $M$ in $Q^{m}$ becomes

$$
\begin{aligned}
& S \xi=\alpha \xi+\beta U \\
& S U=\beta \xi \\
& S X=0
\end{aligned}
$$

for any vector field $X \perp \xi, U$, where $U$ is a unit vector field in $\mathcal{C}, \alpha$ and $\beta$ are functions on $M$ and $\beta$ does not vanish. Then the above expression holds if and only if $g(S X, Y)=0$ for any vector fields $X$ and $Y$ in $\mathcal{C}$. By the totally geodesic property of the complex hyperplane $Q^{m-1}$ in $Q^{m}$ in the construction of the ruled real hypersurface in $Q^{m}$, it naturally satisfies the above expression of the shape operator, and conversely if the shape operator satisfies the above formula, we can construct the ruled real hypersurface in $Q^{m}$. So as a characterization of ruled real hypersurfaces in $Q^{m}$, we summarize this one as follows:

Theorem A. Let $M$ be a real hypersurface in $Q^{m}, m \geq 3$. Then $M$ is locally congruent to a ruled real hypersurface foliated by complex totally geodesic $Q^{m-1}$ in $Q^{m}$ if and only if the shape operator $S$ satisfies $g(S X, Y)=0$ for any $X, Y \in \mathcal{C}$.

This Theorem A implies that the shape operator $S$ is $\eta$-parallel, that is, $g\left(\left(\nabla_{X} S\right) Y, Z\right)=$ 0 for any $X, Y, Z \in \mathcal{C}$. By linearization, $g\left(\left(\nabla_{X} S\right) X, X\right)=0$ for any $X \in \mathcal{C}$. Then this is equivalent to the constancy of $g\left(S \gamma^{\prime}, \gamma^{\prime}\right)=\bar{g}\left(\bar{\nabla}_{\gamma^{\prime}} \gamma^{\prime}, \bar{\nabla}_{\gamma^{\prime}} \gamma^{\prime}\right)$, where $\bar{g}$ and $\bar{\nabla}$ denote respectively the Riemannian metric and the Riemannian connection of the complex quadric $Q^{m}$. This means that every geodesic $\gamma: I \rightarrow M$ in $Q^{m}$ which is orthogonal to the Reeb vector field $\xi$, that is $\gamma^{\prime}(0) \perp \xi_{p}$, and $\gamma(0)=p$, has constant first curvature.

When the stucture tensor $\phi$ commutes with the shape operator $S$, that is, $S \phi=\phi S$, we say that $M$ has commuting shape operator. Motivated by this one, Berndt and Suh [2] have proved the following

Theorem B. Let $M$ be a complete real hypersurface in $Q^{m}$, $m \geq 3$, with commuting shape operator. Then $M$ is locally congruent to a tube over $\mathbb{C} P^{k}$ in $\bar{Q}^{2 k}, m=2 k$.

Motivated by Theorems A and B, and Theorems 5.3 and 5.4 in section 5, we can assert the following

Main Theorem. Let $M$ be a real hypersurface in the complex quadric $Q^{m}, m \geq 4$, with $\eta$-parallel and $\eta$-commuting shape operator. Then $M$ is locally congruent to a ruled hypersurface foliated by totally geodesic complex hypersurfaces $Q^{m-1}$ in $Q^{m}$ with $\mathfrak{A}$-principal unit normal vector field.

If $M$ is Hopf and $\eta$-commuting, the shape operator of $M$ commutes with the structure tensor $\phi$. Then by a result due to Berndt and Suh [3] $M$ is locally congruent to a tube over a totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$. In such a case the unit normal vector field $N$ is $\mathfrak{A}$-isotropic. In section 5 we prove that the unit normal vector field $N$ of a ruled real hypersurface is $\mathfrak{A}$-principal. But in this case $M$ is non-Hopf.

Remark 1.1. In Remark 4.4, we have mentioned that the unit normal vector field $N$ of a ruled real hypersurface in $Q^{m}$ is either $\mathfrak{A}$-principal or $\mathfrak{A}$-isotropic.

Remark 1.2. In section 6, we construct an example of minimal ruled real hypersurface which is foliated by totally geodesics $Q^{m-1}$ in the complex quadric $Q^{m}$ from curves in real projective space $\mathbb{R} P^{m+1}$.

## 2. The complex quadric

For more background to this section we refer to [7], [8], [11], [18], [19] and [20]. The complex quadric $Q^{m}$ is the complex hypersurface in $\mathbb{C} P^{m+1}$ which is defined by the equation $z_{0}^{2}+\cdots+z_{m+1}^{2}=0$, where $z_{0}, \ldots, z_{m+1}$ are homogeneous coordinates on $\mathbb{C} P^{m+1}$. We equip $Q^{m}$ with the Riemannian metric $g$ which is induced from the FubiniStudy metric $\bar{g}$ on $\mathbb{C} P^{m+1}$ with constant holomorphic sectional curvature 4. The FubiniStudy metric $\bar{g}$ is defined by $\bar{g}(X, Y)=\Phi(J X, Y)$ for any vector fields $X$ and $Y$ on $\mathbb{C} P^{m+1}$ and a globally closed (1,1)-form $\Phi$ given by $\Phi=-4 i \partial \bar{\partial} \log f_{j}$ on an open set $U_{j}=\left\{\left[z_{0}, \ldots, z_{j}, \ldots, z_{m+1}\right] \in \mathbb{C} P^{m+1} \mid z_{j} \neq 0\right\}$, where the function $f_{j}$ denotes $f_{j}=\sum_{k=0}^{m+1} t_{j}^{k} t_{j}^{k}$, and $t_{j}^{k}=\frac{z_{k}}{z_{j}}$ for $j, k=0, \cdots, m+1$. Then naturally the Kähler structure on $\mathbb{C} P^{m+1}$ induces canonically a Kähler structure $(J, g)$ on the complex quadric $Q^{m}$.

The complex projective space $\mathbb{C} P^{m+1}$ is a Hermitian symmetric space of the special unitary group $S U_{m+2}$, namely $\mathbb{C} P^{m+1}=S U_{m+2} / S\left(U_{m+1} U_{1}\right)$. We denote by $o=[0, \ldots, 0,1] \in$ $\mathbb{C} P^{m+1}$ the fixed point of the action of the stabilizer $S\left(U_{m+1} U_{1}\right)$. The special orthogonal group $S O_{m+2} \subset S U_{m+2}$ acts on $\mathbb{C} P^{m+1}$ with cohomogeneity one. The orbit containing $o$ is a totally geodesic real projective space $\mathbb{R} P^{m+1} \subset \mathbb{C} P^{m+1}$. The second singular orbit of this action is the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$. This homogeneous space model leads to the geometric interpretation of the complex quadric $Q^{m}$ as the Grassmann manifold $G_{2}^{+}\left(\mathbb{R}^{m+2}\right)$ of oriented 2-planes in $\mathbb{R}^{m+2}$. It also gives a model of $Q^{m}$ as a Hermitian symmetric space of rank 2. The complex quadric $Q^{1}$ is isometric to a sphere $S^{2}$ with constant curvature, and $Q^{2}$ is isometric to the Riemannian product of two 2-spheres with constant curvature. For this reason we will assume $m \geq 3$ from now on.

In another way, the complex projective space $\mathbb{C} P^{m+1}$ is defined by using the Hopf fibration

$$
\pi: S^{2 m+3} \rightarrow \mathbb{C} P^{m+1}, \quad z \rightarrow[z]
$$

which is said to be a Riemannian submersion. Then naturally we can consider the following diagram for the complex quadric $Q^{m}$ as follows:


The submanifold $\tilde{Q}$ of codimension 2 in $S^{2 m+3}$ is called the Stiefel manifold of orthonormal 2-frames in $\mathbb{R}^{m+2}$, which is given by

$$
\tilde{Q}=\left\{x+i y \in \mathbb{C}^{m+2} \left\lvert\, g(x, x)=g(y, y)=\frac{1}{2}\right. \text { and } g(x, y)=0\right\}
$$

where $g(x, y)=\sum_{i=1}^{m+2} x_{i} y_{i}$ for any $x=\left(x_{1}, \ldots, x_{m+2}\right)$ and $y=\left(y_{1}, \ldots, y_{m+2}\right) \in \mathbb{R}^{m+2}$. Then the tangent space is decomposed as $T_{z} S^{2 m+3}=H_{z} \oplus F_{z}$ and $T_{z} \tilde{Q}=H_{z}(Q) \oplus F_{z}(Q)$ at $z=x+i y \in \tilde{Q}$ respectively, where the horizontal subspaces $H_{z}$ and $H_{z}(Q)$ are given by $H_{z}=(\mathbb{C} z)^{\perp}$ and $H_{z}(Q)=(\mathbb{C} z \oplus \mathbb{C} \bar{z})^{\perp}$, and $F_{z}$ and $F_{z}(Q)$ are fibers which are isomorphic to each other. Here $H_{z}(Q)$ becomes a subspace of $H_{z}$ of real codimension 2 and orthogonal to the two unit normals $-\bar{z}$ and $-J \bar{z}$. Explicitly, at the point $z=x+i y \in \tilde{Q}$ it can be described as

$$
H_{z}=\left\{u+i v \in \mathbb{C}^{m+2} \mid \quad g(x, u)+g(y, v)=0, \quad g(x, v)=g(y, u)\right\}
$$

and

$$
H_{z}(Q)=\left\{u+i v \in H_{z} \mid \quad g(u, x)=g(u, y)=g(v, x)=g(v, y)=0\right\}
$$

where $\mathbb{C}^{m+2}=\mathbb{R}^{m+2} \oplus i \mathbb{R}^{m+2}$, and $g(u, x)=\sum_{i=1}^{m+2} u_{i} x_{i}$ for any $u=\left(u_{1}, \ldots, u_{m+2}\right), x=$ $\left(x_{1}, \ldots, x_{m+2}\right) \in \mathbb{R}^{m+2}$.

These spaces can be naturally projected by the differential map $\pi_{*}$ as $\pi_{*} H_{z}=T_{\pi(z)} \mathbb{C} P^{m+1}$ and $\pi_{*} H_{z}(Q)=T_{\pi(z)} Q$ respectively. This gives that at the point $\pi(z)=[z]$ the tangent subspace $T_{[z]} Q^{m}$ becomes a complex subspace of $T_{[z]} \mathbb{C} P^{m+1}$ with complex codimension 1 and has two unit normal vector fields $-\bar{z}$ and $-J \bar{z}$ (see Reckziegel [11]).

Then let us denote by $A_{\bar{z}}$ the shape operator of $Q^{m}$ in $\mathbb{C} P^{m+1}$ with respect to the unit normal $\bar{z}$. It is defined by $A_{\bar{z}} w=\bar{\nabla}_{w} \bar{z}=\bar{w}$ for a complex Euclidean connection $\bar{\nabla}$ induced from $\mathbb{C}^{m+2}$ and all $w \in T_{[z]} Q^{m}$. That is, the shape operator $A_{\bar{z}}$ is just a complex conjugation restricted to $T_{[z]} Q^{m}$. Moreover, it satisfies the following for any $w \in T_{[z]} Q^{m}$ and any $\lambda \in S^{1} \subset \mathbb{C}$

$$
\begin{aligned}
A_{\lambda \bar{z}}^{2} w & =A_{\lambda \bar{z}} A_{\lambda \bar{z}} w=A_{\lambda \bar{z}} \lambda \bar{w} \\
& =\lambda A_{\bar{z}} \lambda \bar{w}=\lambda \bar{\nabla}_{\lambda \bar{w}} \bar{z}=\lambda \bar{\lambda} \overline{\bar{w}} \\
& =|\lambda|^{2} w=w .
\end{aligned}
$$

Accordingly, $A_{\lambda \bar{z}}^{2}=I$ for any $\lambda \in S^{1}$. So the shape operator $A_{\bar{z}}$ becomes an anti-commuting involution such that $A_{\bar{z}}^{2}=I$ and $A J=-J A$ on the complex vector space $T_{[z]} Q^{m}$ and

$$
T_{[z]} Q^{m}=V\left(A_{\bar{z}}\right) \oplus J V\left(A_{\bar{z}}\right),
$$

where $V\left(A_{\bar{z}}\right)=\mathbb{R}^{m+2} \cap T_{[z]} Q^{m}$ is the (+1)-eigenspace and $J V\left(A_{\bar{z}}\right)=i \mathbb{R}^{m+2} \cap T_{[z]} Q^{m}$ is the (-1)-eigenspace of $A_{\bar{z}}$. That is, $A_{\bar{z}} X=X$ and $A_{\bar{z}} J X=-J X$, respectively, for any $X \in V\left(A_{\bar{z}}\right)$.

Geometrically this means that the shape operator $A_{\bar{z}}$ defines a real structure on the complex vector space $T_{[z]} Q^{m}$, or equivalently, is a complex conjugation on $T_{[z]} Q^{m}$. Since the real codimension of $Q^{m}$ in $\mathbb{C} P^{m+1}$ is 2 , this induces an $S^{1}$-subbundle $\mathfrak{A}$ of the endomorphism bundle $\operatorname{End}\left(T Q^{m}\right)$ consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric $Q^{m}$ can be viewed as the complexification of the $m$-dimensional sphere $S^{m}$. Through each point $[z] \in Q^{m}$ there exists a one-parameter family of real forms of $Q^{m}$ which are isometric to the sphere $S^{m}$. These real forms are congruent to each other under action of the center $S O_{2}$ of the isotropy subgroup of $S O_{m+2}$ at $[z]$. The isometric reflection of $Q^{m}$ in such a real form $S^{m}$ is an isometry, and the differential at $[z]$ of such a reflection is a conjugation on $T_{[z]} Q^{m}$. In this way the family $\mathfrak{A}$ of conjugations on $T_{[z]} Q^{m}$ corresponds to the family
of real forms $S^{m}$ of $Q^{m}$ containing $[z]$, and the subspaces $V(A) \subset T_{[z]} Q^{m}$ correspond to the tangent spaces $T_{[z]} S^{m}$ of the real forms $S^{m}$ of $Q^{m}$.

The Gauss equation for $Q^{m} \subset \mathbb{C} P^{m+1}$ implies that the Riemannian curvature tensor $\bar{R}$ of $Q^{m}$ can be described in terms of the complex structure $J$ and the complex conjugations $A \in \mathfrak{A}$ :

$$
\begin{aligned}
\bar{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X-g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y+g(J A Y, Z) J A X-g(J A X, Z) J A Y .
\end{aligned}
$$

Note that $J$ and each complex conjugation $A$ anti-commute, that is, $A J=-J A$ for each $A \in \mathfrak{A}$.

For every unit tangent vector $W \in T_{[z]} Q^{m}$ there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$
W=\cos (t) X+\sin (t) J Y
$$

for some $t \in[0, \pi / 4]$. The singular tangent vectors correspond to the values $t=0$ and $t=\pi / 4$. When $W=X$ for $X \in V(A), t=0$, there exist many kinds of maximal 2-flats $\mathbb{R} X+\mathbb{R} Z$ for $Z \in V(A)$ orthogonal to $X \in V(A)$. So the tangent vector $X$ is said to be singular. When $W=(X+J Y) / \sqrt{2}$ for $t=\frac{\pi}{4}$, it becomes also a singular tangent vector, which belongs to many kinds of maximal 2-flats given by $\mathbb{R}(X+J Y)+\mathbb{R} Z$ for any $Z \in V(A)$ orthogonal to $X \in V(A)$ or $\mathbb{R}(X+J Y)+\mathbb{R} J Z$ for any $J Z \in J V(A)$. If $0<t<\pi / 4$ then the unique maximal flat containing $W$ is $\mathbb{R} X \oplus \mathbb{R} J Y$.

## 3. Some general Equations

Let $M$ be a real hypersurface in $Q^{m}$ and denote by $(\phi, \xi, \eta, g)$ the induced almost contact metric structure. Note that $\xi=-J N$, where $N$ is a (local) unit normal vector field of $M$ and $\eta$ the corresponding 1-form defined by $\eta(X)=g(\xi, X)$ for any tangent vector field $X$ on $M$. The tangent bundle $T M$ of $M$ splits orthogonally into $T M=\mathcal{C} \oplus \mathbb{R} \xi$, where $\mathcal{C}=\operatorname{ker}(\eta)$ is the maximal complex subbundle of $T M$. The structure tensor field $\phi$ restricted to $\mathcal{C}$ coincides with the complex structure $J$ restricted to $\mathcal{C}$, and $\phi \xi=0$.

At each point $z \in M$ we define a maximal $\mathfrak{A}$-invariant subspace of $T_{z} M, z \in M$ as follows:

$$
\mathcal{Q}_{z}=\left\{X \in T_{z} M \mid A X \in T_{z} M \text { for all } A \in \mathfrak{A}_{z}\right\}
$$

Then we want to introduce an important lemma which will be used in the proof of our main Theorem in the introduction.

Lemma 3.1. ([18]) For each $z \in M$ we have
(i) If $N_{z}$ is $\mathfrak{A}$-principal, then $\mathcal{Q}_{z}=\mathcal{C}_{z}$.
(ii) If $N_{z}$ is not $\mathfrak{A}$-principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $N_{z}=\cos (t) X+\sin (t) J Y$ for some $t \in(0, \pi / 4]$. Then we have $\mathcal{Q}_{z}=\mathcal{C}_{z} \ominus \mathbb{C}(J X+Y)$.

We now assume that $M$ is a Hopf hypersurface. Then the Reeb vector field $\xi=-J N$ satisfies the following

$$
S \xi=\alpha \xi
$$

where $S$ denotes the shape operator of the real hypersurface $M$ for a smooth function $\alpha=g(S \xi, \xi)$ on $M$. When we consider the transformed $J X$ by the Kähler structure $J$ on $Q^{m}$ for any vector field $X$ on $M$ in $Q^{m}$, we may put

$$
J X=\phi X+\eta(X) N
$$

for a unit normal $N$ to $M$. Then we now consider the equation of Codazzi

$$
\begin{align*}
g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, Z\right)= & \eta(X) g(\phi Y, Z)-\eta(Y) g(\phi X, Z)-2 \eta(Z) g(\phi X, Y) \\
& +g(X, A N) g(A Y, Z)-g(Y, A N) g(A X, Z)  \tag{3.1}\\
& +g(X, A \xi) g(J A Y, Z)-g(Y, A \xi) g(J A X, Z)
\end{align*}
$$

Putting $Z=\xi$ in (3.1) we get

$$
\begin{aligned}
g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right)= & -2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right) \\
= & g\left(\left(\nabla_{X} S\right) \xi, Y\right)-g\left(\left(\nabla_{Y} S\right) \xi, X\right) \\
= & (X \alpha) \eta(Y)-(Y \alpha) \eta(X)+\alpha g((S \phi+\phi S) X, Y)-2 g(S \phi S X, Y) .
\end{aligned}
$$

Comparing the previous two equations and putting $X=\xi$ yields

$$
Y \alpha=(\xi \alpha) \eta(Y)-2 g(\xi, A N) g(Y, A \xi)+2 g(Y, A N) g(\xi, A \xi) .
$$

Reinserting this into the previous equation yields

$$
\begin{aligned}
& g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right) \\
= & -2 g(\xi, A N) g(X, A \xi) \eta(Y)+2 g(X, A N) g(\xi, A \xi) \eta(Y) \\
& +2 g(\xi, A N) g(Y, A \xi) \eta(X)-2 g(Y, A N) g(\xi, A \xi) \eta(X) \\
& +\alpha g((\phi S+S \phi) X, Y)-2 g(S \phi S X, Y) .
\end{aligned}
$$

Altogether this implies

$$
\begin{align*}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)-2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi)  \tag{3.2}\\
& +2 g(\xi, A N) g(X, A \xi) \eta(Y)-2 g(X, A N) g(\xi, A \xi) \eta(Y) \\
& -2 g(\xi, A N) g(Y, A \xi) \eta(X)+2 g(Y, A N) g(\xi, A \xi) \eta(X) .
\end{align*}
$$

At each point $z \in M$ we can choose $A \in \mathfrak{A}_{z}$ such that

$$
N=\cos (t) Z_{1}+\sin (t) J Z_{2}
$$

for some orthonormal vectors $Z_{1}, Z_{2} \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$ (see Proposition 3 in [11]). Note that $t$ is a function on $M$. First of all, since $\xi=-J N$, we have

$$
\begin{align*}
A N & =\cos (t) Z_{1}-\sin (t) J Z_{2}, \\
\xi & =\sin (t) Z_{2}-\cos (t) J Z_{1},  \tag{3.3}\\
A \xi & =\sin (t) Z_{2}+\cos (t) J Z_{1} .
\end{align*}
$$

This implies $g(\xi, A N)=0$ and hence

$$
\begin{align*}
0= & 2 g(S \phi S X, Y)-\alpha g((\phi S+S \phi) X, Y)-2 g(\phi X, Y) \\
& +g(X, A N) g(Y, A \xi)-g(Y, A N) g(X, A \xi) \\
& -g(X, A \xi) g(J Y, A \xi)+g(Y, A \xi) g(J X, A \xi)  \tag{3.4}\\
& -2 g(X, A N) g(\xi, A \xi) \eta(Y)+2 g(Y, A N) g(\xi, A \xi) \eta(X) .
\end{align*}
$$

## 4. $\eta$-Parallel shape operator and a Key Lemma

By the equation of Gauss, the curvature tensor $R(X, Y) Z$ for a real hypersurface $M$ in $Q^{m}$ induced from the curvature tensor $\bar{R}$ of $Q^{m}$ can be described in terms of the complex structure $J$ and the complex conjugation $A \in \mathfrak{A}$ as follows:

$$
\begin{aligned}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y+g(J A Y, Z) J A X-g(J A X, Z) J A Y \\
& +g(S Y, Z) S X-g(S X, Z) S Y
\end{aligned}
$$

for any $X, Y, Z \in T_{z} M, z \in M$.
Now let us put

$$
A X=B X+\rho(X) N,
$$

for any vector field $X \in T_{z} Q^{m}, z \in M, \rho(X)=g(A X, N)$, where $B X$ and $\rho(X) N$ respectively denote the tangential and normal component of the vector field $A X$. Then $A \xi=B \xi+\rho(\xi) N$ and $\rho(\xi)=g(A \xi, N)=0$. Then it follows that

$$
\begin{aligned}
A N & =A J \xi=-J A \xi=-J(B \xi+\rho(\xi) N) \\
& =-(\phi B \xi+\eta(B \xi) N) .
\end{aligned}
$$

Then we assert the following:
Lemma 4.1. Let $M$ be a real hypersurface in $Q^{m}, m \geq 3$, with $\eta$-parallel and $\eta$-commuting shape operator. Then for any $X, Y, Z \in \mathcal{C}$ we have

$$
\begin{aligned}
0= & g(X, A N) g(A Y, Z)+g(Y, A \xi) g(A X, \phi Z)-g(\phi Z, A \xi) g(A X, Y) \\
& -\eta(S \phi Z) g(Y, S X)+g(X, V) g(Y, S Z)+g(Y, V) g(X, S Z) .
\end{aligned}
$$

where $\mathcal{C}$ denotes the orthogonal complement of the Reeb vector field $\xi$ and $V$ is given by $\phi S \xi$.

Proof. The notion of $\eta$-commuting shape operator gives

$$
g((S \phi-\phi S) X, Y)=0
$$

for any $X, Y \in \mathcal{C}$. By differentiating this, we have

$$
\begin{gather*}
g\left(\left(\nabla_{X} S\right) Y, \phi Z\right)+g\left(\left(\nabla_{X} S\right) Z, \phi Y\right)=\eta(S Y) g(X, S Z)+\eta(S Z) g(Y, S X) \\
+g(X, S \phi Y) g(Z, V)+g(X, S \phi Z) g(Y, V) . \tag{4.1}
\end{gather*}
$$

Then let us consider cyclic formulas with respect $X, Y$ and $Z$ as follows:

$$
\begin{gather*}
g\left(\left(\nabla_{Y} S\right) Z, \phi X\right)+g\left(\left(\nabla_{Y} S\right) X, \phi Z\right)=\eta(S Z) g(Y, S X)+\eta(S X) g(Z, S Y) \\
+g(Y, S \phi Z) g(X, V)+g(Y, S \phi X) g(Z, V) \tag{4.2}
\end{gather*}
$$

and

$$
\begin{gather*}
g\left(\left(\nabla_{Z} S\right) X, \phi Y\right)+g\left(\left(\nabla_{Z} S\right) Y, \phi X\right)=\eta(S X) g(Z, S Y)+\eta(S Y) g(X, S Z) \\
+g(Z, S \phi X) g(Y, V)+g(Z, S \phi Y) g(X, V) \tag{4.3}
\end{gather*}
$$

Then substract the third one (4.3) from summing up (4.1) and (4.2). From such an obtained equation, and using the equation of Codazzi, it follows that

$$
\begin{align*}
g\left(\left(\nabla_{X} S\right) Y, \phi Z\right) & +g\left(\left(\nabla_{Y} S\right) X, \phi Z\right)+g\left(\left(\nabla_{X} S\right) Z-\left(\nabla_{Z} S\right) X, \phi Y\right) \\
& +g\left(\left(\nabla_{Y} S\right) Z-\left(\nabla_{Z} S\right) Y, \phi X\right) \\
= & 2 \eta(S Z) g(Y, S X)+2 g(X, V) g(Y, S \phi Z)+2 g(Y, V) g(X, S \phi Z) \\
= & 2 g\left(\left(\nabla_{X} S\right) Y, \phi Z\right)-\{g(X, A N) g(A Y, \phi Z)-g(Y, A N) g(A X, \phi Z) \\
& +g(X, A \xi) g(J A Y, \phi Z)-g(Y, A \xi) g(J A X, \phi Z)\}  \tag{4.4}\\
& +\{g(X, A N) g(A Z, \phi Y)-g(Z, A N) g(A X, \phi Y) \\
& +g(X, A \xi) g(J A Z, \phi Y)-g(Z, A \xi) g(J A X, \phi Y)\} \\
& +\{g(Y, A N) g(A Z, \phi X)-g(Z, A N) g(A Y, \phi X) \\
& +g(X, A \xi) g(J A Z, \phi X)-g(Z, A \xi) g(J A Y, \phi X)\} .
\end{align*}
$$

From this, together with $\eta$-commuting property, and using $g(J A Y, \phi Z)=-g(A Y, J \phi Z)=$ $g(A Y, Z)$ for any $Y, Z \in \mathcal{C}$, we have

$$
\begin{gather*}
g\left(\left(\nabla_{X} S\right) Y, \phi Z\right)-g(X, A N) g(A Y, \phi Z)-g(Y, A \xi) g(A X, Z)-g(Z, A \xi) g(A X, Y)  \tag{4.5}\\
=\eta(S Z) g(Y, S X)+g(X, V) g(Y, S \phi Z)+g(Y, V) g(X, S \phi Z)
\end{gather*}
$$

for any $X, Y, Z \in \mathcal{C}$. Then by replacing $Z$ by $\phi Z$ in (4.5), we have

$$
\begin{gather*}
g\left(\left(\nabla_{X} S\right) Y, Z\right)=g(X, A N) g(A Y, Z)+g(Y, A \xi) g(A X, \phi Z)-g(\phi Z, A \xi) g(A X, Y) \\
-\eta(S \phi Z) g(Y, S X)+g(X, V) g(Y, S Z)+g(Y, V) g(X, S Z) \tag{4.6}
\end{gather*}
$$

This gives a complete proof of our Lemma.
Remark 4.2. Let $M$ be a tube over a totally complex geodesic $k$-dimensional complex projective space $\mathbb{C} P^{k}$ in $Q^{2 k}$. Then the unit normal vector field $N$ is $\mathfrak{A}$-isotropic and the shape operator $S$ commutes with the structure tensor $\phi$. So the Reeb vector field $\xi$ is principal and the vector field $V=\phi S \xi=0$. It can be easily seen that the vectors $A \xi$ and $A N$ belong to the distribution $\mathcal{C}$. Then by (4.6) we have $g\left(\left(\nabla_{X} S\right) Y, Z\right)=0$ for any $X, Y, Z \in \mathcal{C}$ orthogonal to the vectors $A \xi$ and $A N$. Moreover, (4.6) gives the following formulas

$$
\begin{gathered}
g\left(\left(\nabla_{A \xi} S\right) A \xi, A \xi\right)=-g(A \xi, A \xi) g\left(A^{2} \xi, \phi Z\right)+g(A \xi, A \xi) g(\xi, \phi Z)=0, \\
g\left(\left(\nabla_{A N} S\right) A N, A \xi\right)=g(A N, A N) g\left(A^{2} N, A \xi\right)-g(A N, A N) g\left(A^{2} N, A \xi\right)=0, \\
g\left(\left(\nabla_{A \xi} S\right) A N, A N\right)=-g(A \xi, A \xi) g\left(A^{2} N, \phi A N\right)+g(A N, A \xi) g\left(A^{2} \xi, \phi A N\right)=0,
\end{gathered}
$$

and

$$
g\left(\left(\nabla_{A \xi} S\right) A \xi, A N\right)=-g(A \xi, A \xi) g\left(A^{2} \xi, \phi A N\right)+g(A \xi, A \xi) g\left(A^{2} \xi, \phi A N\right)=0
$$

Then all the formulas mentioned above give that the shape operator $S$ is $\eta$-parallel.
Now let us assume that the unit normal vector field $N$ is $\mathfrak{A}$-isotropic. Then the normal vector field $N$ can be written

$$
N=\frac{1}{\sqrt{2}}\left(Z_{1}+J Z_{2}\right)
$$

for $Z_{1}, Z_{2} \in V(A)$, where $V(A)$ denotes the $(+1)$-eigenspace of the complex conjugation $A \in \mathfrak{A}$. Then it follows that

$$
A N=\frac{1}{\sqrt{2}}\left(Z_{1}-J Z_{2}\right), A J N=-\frac{1}{\sqrt{2}}\left(J Z_{1}+Z_{2}\right), \text { and } J N=\frac{1}{\sqrt{2}}\left(J Z_{1}-Z_{2}\right)
$$

From this, together with (3.3) and the anti-commuting property $A J=-J A$, it follows that

$$
g(\xi, A \xi)=g(J N, A J N)=0, g(\xi, A N)=0 \text { and } g(A N, N)=0 .
$$

In Lemma 4.1 let us take skew-symmetric in $X$ and $Y$, it follows that

$$
\begin{align*}
0= & \{g(X, A N) g(A Y, Z)-g(Y, A N) g(A X, Z)\} \\
& +\{g(Y, A \xi) g(A X, \phi Z)-g(X, A \xi) g(A Y, \phi Z)\} . \tag{4.7}
\end{align*}
$$

Since we have assumed that the unit normal $N$ is $\mathfrak{A}$-isotropic, we can put $X=A N$ in (4.7). Then it gives that $g(A Y, Z)=0$ for any $Y$ and $Z \in \mathcal{C}$. So Lemma 4.1 gives the following

$$
\begin{equation*}
g(X, V) g(Y, S Z)+g(Y, V) g(Z, S X)+g(Z, V) g(X, S Y)=0 . \tag{4.8}
\end{equation*}
$$

When the unit normal vector field $N$ is $\mathfrak{A}$-principal, that is, $A N=N$ and $A \xi=-\xi$, then Lemma 4.1 also gives the equation (4.6). Now let us put $S \xi=\alpha \xi+\beta U$ in (4.8). Then we assert the following

Lemma 4.3. Let $M$ be a complete real hypersurface in $Q^{m}, m \geq 3$, with $\eta$-parallel and $\eta$-commuting shape operator. If the unit normal vector field is singular, then

$$
\beta=0 \quad \text { or } \quad g(S Y, Z)=0
$$

for any vector fields $Y, Z \in \mathcal{C}$, where $\mathcal{C}$ denotes the orthogonal distribution of the Reeb vector field $\xi$.

Proof. Now let us put $Z=V=\phi S \xi$ in (4.8) and use $S \xi=\alpha \xi+\beta U$ for some $U \in \mathcal{C}$. Then it follows that

$$
\begin{align*}
0 & =g(S X, Y)\|V\|^{2}+g(S Y, V) g(X, V)+g(S V, X) g(Y, V) \\
& =g(S X, Y)\|V\|^{2}+\beta^{2} g(S Y, \phi U) g(X, \phi U)+\beta^{2} g(S \phi U, X) g(Y, \phi U) \tag{4.9}
\end{align*}
$$

for any $X, Y$ and $Z \in \mathcal{C}$. Then for any $X, Y \in \mathcal{C}$ which are orthogonal to $\phi U$ the formula (4.9) gives $g(S X, Y)=0$. Now we put $X=Y=\phi U$ in (4.9). Then it follows that

$$
\begin{align*}
0 & =g(S \phi U, \phi U)\|V\|^{2}+2 \beta^{2} g(S \phi U, \phi U) \\
& =3 \beta^{2} g(S \phi U, \phi U), \tag{4.10}
\end{align*}
$$

where we have used $\|V\|^{2}=g(\phi S \xi, \phi S \xi)=\beta^{2}$. Then (4.10) gives that the function $\beta=0$ or $g(S \phi U, \phi U)=0$. Now let us consider the case that $\beta \neq 0$ on the open subset $\mathcal{U}$ in $M$.

Then $g(S \phi U, \phi U)=0$ on $\mathcal{U}$. From this, together with putting $Y=\phi U$ in (4.9), we have for any $X \in \mathcal{C}$

$$
\begin{equation*}
0=g(S \phi U, X)\|V\|^{2}+\beta^{2} g(S \phi U, X)=2 \beta^{2} g(S \phi U, X) . \tag{4.11}
\end{equation*}
$$

So it follows that $g(S \phi U, X)=0$ on $\mathcal{U}$ for any $X \in \mathcal{C}$. From this, together with $g(S X, Y)=$ 0 for any $X, Y \in \mathcal{C}$ orthogonal to $\phi U$, we can assert the latter part of Lemma 4.3. From this, we give a complete proof of our Lemma 4.3.

Remark 4.4. Let $M$ be a ruled real hypersurface in $Q^{m}$ foliated by the totally geodesic complex hyperplane $Q^{m-1}$ in section 2. If the Reeb function $\alpha=g(S \xi, \xi)=0$ and $\beta=$ $g(S \xi, U)$ is constant, and the vector field $U$ is parallel along the integral curve of the Reeb vector field $\xi$, then the unit normal vector field $N=J \xi$ becomes singular.

In fact, let us use the equation of Codazzi for $S \xi=\alpha \xi+\beta U, S U=\beta \xi$. Then it follows that

$$
\begin{align*}
g(\bar{R}(X, Y) \xi, N)= & g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, \xi\right) \\
= & g\left(\left(\nabla_{X} S\right) \xi, Y\right)-g\left(\left(\left(\nabla_{Y} S\right) \xi, X\right)\right. \\
= & d \alpha(X) \eta(Y)-d \alpha(Y) \eta(X)+\alpha g((S \phi+\phi S) X, Y)  \tag{4.12}\\
& -2 g(S \phi S X, Y)+(X \beta) g(U, Y)-(Y \beta) g(U, X) \\
& +\beta\left\{g\left(\nabla_{X} U, Y\right)-g\left(\nabla_{Y} U, X\right)\right\} .
\end{align*}
$$

By putting $X=\xi$ into (4.12) and using the assumption for the ruled hypersurface in $Q^{m}$, we have

$$
\begin{align*}
g(\bar{R}(\xi, N) N, J Y)= & g(\bar{R}(J Y, J \xi) N, \xi)=g(\bar{R}(\xi, Y) \xi, N) \\
= & d \alpha(\xi) \eta(Y)-d \alpha(Y)+\alpha \beta g(\phi U, Y) \\
& +(\xi \beta) g(U, Y)+\beta g\left(\nabla_{\xi} U, Y\right)  \tag{4.13}\\
= & 0 .
\end{align*}
$$

This implies $\bar{R}_{N} \xi=c \xi$ for $c \in \mathbb{R}$, that is, the Reeb vector field $\xi$ is principal for the normal Jacobi operator $R_{N}$. Then by a result due to Berndt and Suh (see Proposition 3.1, [3]) we know that the unit normal vector field $N$ is $\mathfrak{A}$-principal or $\mathfrak{A}$-isotropic.

## 5. Proof of Main Theorem

In this section we prove our Main Theorem mentioned in the introduction. By the notions of $\eta$-parallel and $\eta$-commuting shape operator, we give a complete classification of real hypersurfaces in the complex quadric $Q^{m}$ satisfying these notions. One of the most crucial points of this classification is to give a geometric property that the unit normal vector field of a ruled real hypersurface in $Q^{m}$ foliated by complex totally geodesic $Q^{m-1}$ is $\mathfrak{A}$-principal. Though in Remark 4.4 we have mentioned the unit normal vector field $N$ is $\mathfrak{A}$-isotropic or $\mathfrak{A}$-principal, but in general $N$ is $\mathfrak{A}$-principal for ruled real hypersurfaces in the complex quadric $Q^{m}$.

In order to complete this fact, let us consider a real hypersurface $M$ in $Q^{m}, m \geq 4$, such that $g\left(\left(\nabla_{X} S\right), Y, Z\right)=0$ and $g((S \phi-\phi S) X, Y)=0$ for any $X, Y, Z \in \mathcal{C}$. We can use
the formula (3.3) in section 3. This, together with $g(\xi, A N)=0$ and Lemma 4.1 yields

$$
\begin{aligned}
0= & g(X, A N) g(A Y, Z)+g(Y, A \xi) g(A X, \phi Z)-g(\phi Z, A \xi) g(A X, Y) \\
& -\eta(S \phi Z) g(Y, S X)+g(X, \phi S \xi) g(Y, S Z)+g(\phi S \xi, Y) g(X, S Z)
\end{aligned}
$$

for any $X, Y, Z \in \mathcal{C}$.
If $M$ is Hopf, that is, the Reeb vector field $\xi$ is a principal vector field of the shape operator $S$ of a real hypersurface $M$ in $Q^{m}$, then it follows that $0=\phi S \xi=S \phi \xi$. From this, together with $\eta$-commuting shape operator, $g((S \phi-\phi S) X, Y)=0$ for any $X, Y \in \mathcal{C}$, it naturally gives that the structure tensor $\phi$ commutes with the shape operator $S$, that is, $S \phi=\phi S$. Then by Theorem B we assert the following

Proposition 5.1. Let $M$ be a Hopf real hypersurface in the complex quadric $Q^{m}, m \geq 4$, with $\eta$-parallel and $\eta$-commuting shape operator. Then $M$ is locally congruent to a tube of radius $r$ over a totally geodesic complex submanifold $\mathbb{C} P^{k}$ in $Q^{2 k}, m=2 k$.

In a paper due to Berndt and Suh [2] we proved that the unit normal vector field $N$ of $M$ in the complex quadric $Q^{m}$ is $\mathfrak{A}$-isotropic, that is $g(A N, N)=0$ for the real hypersurface appearing in Proposition 5.1. Related to this fact, we want to show another proposition as follows:

Proposition 5.2. There does not exist any real hypersurface in $Q^{m}, m \geq 3$, with $\eta$ parallel shape operator and with $\mathfrak{A}$-isotropic normal vector field $N$.

Proof. Let us assume that $M$ is a real hypersurface with $\eta$-parallel shape operator in $Q^{m}$, $m \geq 3$. That is, the shape operator $S$ of $M$ satisfies the following condition:

$$
\begin{equation*}
g\left(\left(\nabla_{X} S\right) Y, Z\right)=0 \tag{}
\end{equation*}
$$

for any tangent vector fields $X, Y, Z \in \mathcal{C}$, where $\mathcal{C}$ denotes the orthogonal complement of the Reeb vector field $\xi$ on $M$ in $Q^{m}$. By using the equation of Codazzi, it yields for any $X, Y, Z \in \mathcal{C}$

$$
g(g(A X, N) A Y-g(A Y, N) A X+g(A X, \xi) J A Y-g(A Y, \xi) J A X, Z)=0
$$

The vector field $g(A X, N) A Y-g(A Y, N) A X+g(A X, \xi) J A Y-g(A Y, \xi) J A X$ in the leftside of the above equation is denoted by $W_{X, Y}$ (simply, $W$ ). Then $W_{X, Y} \in T_{[z]} Q^{m}$ becomes

$$
\begin{aligned}
W_{X, Y} & =\sum_{i=1}^{2 m} g\left(W_{X, Y}, e_{i}\right) e_{i}=g(W, \xi) \xi+g(W, N) N \\
& =g(W, \xi) \xi
\end{aligned}
$$

because $g(W, N)=0$ and $Z \in \mathcal{C}$. Since $N$ is $\mathfrak{A}$-isotropic, $g(A N, N)=0$ and $g(A N, \xi)=0$, we see that $A N \in \mathcal{C} \subset T_{[z]} M,[z] \in M$.

Substituting $Y=A N$ in $W_{X, Y}$ and using $A^{2}=I$, we have

$$
\begin{aligned}
& g(A X, N) N-A X-g(A X, \xi) \xi \\
& \quad=W_{X, A N}=g(W, \xi) \xi=-2 g(A X, \xi) \xi
\end{aligned}
$$

Then it can be arranged as follows:

$$
A X=g(A X, N) N+g(A X, \xi) \xi
$$

for any $X \in \mathcal{C}$. From this, applying the real structure $A$ and using the property of $A^{2}=I$ again, it follows that

$$
X=g(A X, N) A N+g(A X, \xi) A \xi \in \mathcal{C}
$$

This means $\operatorname{dim}_{\mathbb{R}} \mathcal{C}=2$. But, in fact, any vector $X \in \mathcal{C}$ is expressed by

$$
X=\sum_{k=1}^{2 m-2} g\left(X, e_{k}\right) e_{k}
$$

with respect to the basis $\left\{A N, A \xi, e_{1}, e_{2}, \cdots, e_{2 m-4}\right\}$ of $\mathcal{C}$. So we get $\operatorname{dim}_{\mathbb{R}} \mathcal{C}=2 m-2$, which gives a contradiction. From this, we get a complete proof of our proposition.

Then combining Propositions 5.1 and 5.2 , we assert the following
Theorem 5.3. There do not exist a Hopf real hypersurface in the complex quadric $Q^{m}$, $m \geq 4$, with $\eta$-parallel and $\eta$-commuting shape operator.

Now let us suppose that $M$ is non-Hopf and write $S \xi=\alpha \xi+\beta U$, where $U$ is a unit vector field in $\mathcal{C}$ and $\beta \neq 0$. Then the above equation becomes

$$
\begin{align*}
0= & g(X, A N) g(A Y, Z)+g(Y, A \xi) g(A X, \phi Z)-g(\phi Z, A \xi) g(A X, Y) \\
& +\beta g(Z, \phi U) g(Y, S X)+\beta g(X, \phi U) g(Y, S Z)+\beta g(Y, \phi U) g(X, S Z) \tag{5.1}
\end{align*}
$$

for any $X, Y, Z \in \mathcal{C}$.
Let us take $X, Y, Z \in \mathcal{C}_{U}=\operatorname{Span}\{\xi, U, \phi U\}^{\perp}$. From (5.1) we get

$$
0=g(X, A N) g(A Y, Z)+g(Y, A \xi) g(A X, \phi Z)-g(Z, A U) g(A X, Y)
$$

Taking $X=Z$, we obtain

$$
\begin{equation*}
g(Y, A \xi) g(A X, \phi X)=0 \tag{5.2}
\end{equation*}
$$

for any $X, Y \in \mathcal{C}_{U}$.
Case 1) Suppose $g(A \xi, Y)=0$ for any $Y \in \mathcal{C}_{U}$.
Now we take $\phi Y$ instead of $Y$. Then it follows that

$$
\begin{equation*}
g(\phi Y, A \xi)=-g(Y, J A \xi)=g(Y, A J \xi)=g(Y, A N)=0 \tag{5.3}
\end{equation*}
$$

for any $Y \in \mathcal{C}_{U}$.
If we take $X, Y \in \mathcal{C}_{U}, Z=U$ in (5.1), we obtain

$$
\begin{equation*}
0=g(X, A N) g(A Y, U)-g(U, A N) g(A Z, Y) \tag{5.4}
\end{equation*}
$$

for any $Z, Y \in \mathcal{C}_{U}$. From (5.3), (5.4) becomes

$$
\begin{equation*}
0=g(U, A N) g(A X, Y) \tag{5.5}
\end{equation*}
$$

for any $X, Y \in \mathcal{C}_{U}$. Taking $X=\phi U, Y, Z \in \mathcal{C}_{U}$ in (5.1), we have

$$
\begin{equation*}
-g(U, A \xi) g(A Y, Z)+\beta g(Y, S Z)=0 \tag{5.6}
\end{equation*}
$$

for any $Y, Z \in \mathcal{C}_{U}$ and taking $X, Y \in \mathcal{C}_{U}, Z=\phi U$, we obtain bearing in mind (5.3)

$$
g(U, A \xi) g(A X, Y)+\beta g(Y, S Z)=0
$$

In particular,

$$
\begin{equation*}
g(U, A \xi) g(A Y, Z)+\beta g(Z, S Y)=0 \tag{5.7}
\end{equation*}
$$

From (5.6) and (5.7) we get

$$
\begin{equation*}
g(U, A \xi) g(A Y, Z)=0 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
g(S Y, Z)=0 \tag{5.9}
\end{equation*}
$$

for any $Y, Z \in \mathcal{C}_{U}$.
We know $g(A Z, \phi U)=g(\phi Z, A U)$ for any $Z \in \mathcal{C}$. Taking $X=U, Y=\phi U, Z \in \mathcal{C}_{U}$ in (5.1), we have

$$
-2 g(U, A N) g(J A U, Z)+\beta g(U, S Z)=0
$$

and taking $X=\phi U, Y=U, Z \in \mathcal{C}_{U}$ in (5.1) it follows

$$
-2 g(U, A \xi) g(A U, Z)+\beta g(U, S Z)=0
$$

for any $Z \in \mathcal{C}_{U}$. Therefore

$$
\begin{equation*}
g(U, A N) g(J A U, Z)=g(U, A \xi) g(A U, Z) \tag{5.10}
\end{equation*}
$$

for any $Z \in \mathcal{C}_{U}$. Take $X=U, Y=\mathcal{C}_{U}, Z=\phi U$ in (5.1). Then

$$
\begin{equation*}
0=-g(U, A N) g(Y, J A U)+g(U, A \xi) g(A U, Y)+\beta g(Y, S U) \tag{5.11}
\end{equation*}
$$

for any $Y \in \mathcal{C}_{U}$. From (5.10) and (5.11) we get

$$
\begin{equation*}
g(Y, S U)=0 \tag{5.12}
\end{equation*}
$$

for any $Y \in \mathcal{C}_{U}$. Therefore we get

$$
\begin{gather*}
g(U, A N) g(J A U, Z)=0  \tag{5.13}\\
g(U, A \xi) g(A U, Z)=0 \tag{5.14}
\end{gather*}
$$

for any $Z \in \mathcal{C}_{U}$. Taking $X=Z=\phi U, Y \in \mathcal{C}_{U}$ in (5.1) we have

$$
\begin{aligned}
0 & =g(\phi U, A N) g(A Y, \phi U)+g(U, A \xi) g(A \phi U, Y)+2 \beta g(S Y, \phi U) \\
& =2 \beta g(S Y, \phi U) .
\end{aligned}
$$

As we suppose $\beta \neq 0$, we get

$$
\begin{equation*}
g(S Y, \phi U)=0 \tag{5.15}
\end{equation*}
$$

for any $Y \in \mathcal{C}_{U}$. From (5.9), (5.12) and (5.15) we have

$$
\begin{equation*}
S X=0 \tag{5.16}
\end{equation*}
$$

for any $X=\mathcal{C}_{U}$. If we put $X=Y=Z=U$ in (5.1), we get

$$
\begin{equation*}
g(U, A \xi) g(A U, \phi U)=0 \tag{5.17}
\end{equation*}
$$

And taking $X=Y=Z=\phi U$ in (5.1) we obtain

$$
\begin{equation*}
g(U, A N) g(A \phi U, U)=3 \beta g(\phi U, S \phi U) \tag{5.18}
\end{equation*}
$$

If we put $X=U, Y=\phi U, Z=U$ in (5.1), we have

$$
\begin{equation*}
g(U, A N) g(A \phi U, U)+\beta g(U, S U)=0 \tag{5.19}
\end{equation*}
$$

From (5.18) and (5.20) it follows

$$
\begin{equation*}
g(U, S U)=-3 g(\phi U, S \phi U) \tag{5.20}
\end{equation*}
$$

Now let us put $X=Y=\phi U, Z=U$ in (5.1). Then it follows

$$
0=-g(U, A \xi) g(A \phi U, U)+2 \beta g(\phi U, S U)
$$

and (5.19) yields

$$
\begin{equation*}
g(\phi U, S U)=0 \tag{5.21}
\end{equation*}
$$

that is, $S \phi U=\gamma \phi U \quad S U=-3 \gamma U+\beta \xi$. By Codazzi equation, bearing in mind that for any $X \in \mathcal{C}_{U}$

$$
g(A X, \xi)=g(A X, N)=0 \text { and } S X=S \phi X=0 .
$$

we get

$$
\begin{equation*}
g\left(\left(\nabla_{X} S\right) \phi X-\left(\nabla_{\phi X} S\right) X, Z\right)=-2 \eta(Z) \tag{5.22}
\end{equation*}
$$

for any $Z$ tangent to $M$. Taking $Z=\xi$ it follows

$$
\begin{equation*}
\beta g([\phi X, X], U)=-2 \tag{5.23}
\end{equation*}
$$

and taking $Z=U$ we get

$$
\begin{equation*}
-3 \gamma g([\phi X, X], U)=0 \tag{5.24}
\end{equation*}
$$

From (5.23) and (5.24) $\gamma=0$ and we have $S \xi=\alpha \xi+\beta U, \quad S U=\beta \xi, \quad S X=0$, $X \in \operatorname{Span}\{\xi, U\}^{\perp}$.

Suppose, moreover, that $g(A X, Y)=0$ for any $X, Y \in \mathcal{C}_{U}$. If $g(A X, U)=0$ for any $X \in \mathcal{C}_{U}$, then

$$
0=g(A \phi X, U)=g(A J X, U)=-g(X, J A U)=g(X, A J U)=g(X, A \phi U)
$$

In this case $A X=0$ for any $X \in \mathcal{C}_{U}$ and this yields $X=0$, therefore $m \leq 2$ and we have a contradiction. Therefore there exists $X \in \mathcal{C}_{U}$ such that $g(A X, U) \neq 0$. Then for any $X \in \mathcal{C}_{U}$ we have

$$
A X=g(A X, U) U+g(A X, \phi U) \phi U
$$

So by applying complex conjugation $A$ again, it follows $X=g(A X, U) A U+g(A X, \phi U) A \phi U$, which means $\mathcal{C}_{U}=\operatorname{Span}\{A U, A \phi U\}$ and $m \leq 3$, also a contradiction. Therefore there exist $X, Y \in \mathcal{C}_{U}$ such that $g(A X, Y) \neq 0$. As $g(X, A N)=g(J X, A \xi)=0$ for any $X \in \mathcal{C}_{U}$, from (5.4) we have $g(U, A N)=0$ and from (5.6) $g(U, A \xi)=0$. Then these formulas give

$$
\begin{gathered}
g(U, A N)=g(U, A J \xi)=-g(U, J A \xi)=g(\phi U, A \xi)=0 \\
g(U, A \xi)=-g(U, A J N)=g(U, J A N)=-g(\phi U, A N)=0
\end{gathered}
$$

So we have obtained that $A N=g(A N, N) N$ and $N=g(A N, N) A N=g(A N, N)^{2} N$. This gives that $g(A N, N)^{2}=1$, which means $\cos ^{2}(2 t)=1$. As $0 \leq t \leq \frac{\pi}{4}$, the unique possibility is $2 t=0$, that is, $t=0$ and $N$ is $\mathfrak{A}$-principal.

Case 2) Suppose $g(A X, \phi X)=0$ for any $X \in \mathcal{C}_{U}$.
This yields $g(A X, Y)=0$ for any $X, Y \in \mathcal{C}_{U}$. Take $X, Y=\phi X \in \mathcal{C}_{U}, Z=U$ in (5.1). We have $0=2 g(X, A N) g(X, A \phi U)$. Therefore we assert

$$
\begin{equation*}
g(X, A N) g(X, A \phi U)=0 \tag{5.25}
\end{equation*}
$$

for any $X \in \mathcal{C}_{U}$. And taking $X, Y=\phi X \in \mathcal{C}_{U}, Z=\phi U$ in (5.1) we obtain

$$
\begin{equation*}
2 g(X, A N) g(A X, U)=\beta g(S X, \phi X) \tag{5.26}
\end{equation*}
$$

for any $X \in \mathcal{C}_{U}$. Taking $X \in \mathcal{C}_{U}, Y=U, Z=U$ in (5.1) we get

$$
\begin{equation*}
g(X, A N) g(A U, U)-g(U, A \xi) g(X, J A N)-g(U, A N) g(A X, U)=0 \tag{5.27}
\end{equation*}
$$

for any $X \in \mathcal{C}_{U}$, and taking $X \in \mathcal{C}_{U}, Y=\phi U, Z=\phi U$ in (5.1) we obtain

$$
\begin{align*}
0= & -g(X, A N) g(A U, U)-g(U, A N) g(A X, U) \\
& -g(U, A \xi) g(X, J A U)+2 \beta g(S \phi U, X) . \tag{5.28}
\end{align*}
$$

From (5.7) and (5.8) we have

$$
\begin{equation*}
g(X, A N) g(A U, U)=2 \beta g(S \phi U, X) \tag{5.29}
\end{equation*}
$$

for any $X \in \mathcal{C}_{U}$.
Let us suppose that $g(X, A N)=0$ for any $X \in \mathcal{C}_{U}$. Then

$$
0=g(\phi X, A N)=-g(X, J A N)=g(X, A J N)=-g(X, A \xi) .
$$

Therefore $g(X, A \xi)=0$ for any $X \in \mathcal{C}_{U}$. As we suppose $g(A X, Y)=0$ for any $X, Y \in \mathcal{C}_{U}$, we know

$$
A X=g(A X, U) U+g(A X, \phi U) \phi U
$$

for any $X \in \mathcal{C}_{U}$, that is, $X=g(A X, U) A U+g(A X, \phi U) A \phi U$ for any $X \in \mathcal{C}_{U}$. Accordingly, it follows that $\mathcal{C}_{U}=\operatorname{Span}\{A U, A \phi U\}$ and $\operatorname{dim} \mathcal{C}_{U} \leq 2$. Therefore $\operatorname{dim} M \leq 5$ or $m \leq 3$, which is impossible.

If $g(A X, \phi U)=0$ for any $X \in \mathcal{C}_{U}$ we have $g(\phi X, A \phi U)=-g(\phi X, J A U)=-g(X, A U)=$ 0 , and in this case $A X=g(A X, \xi) \xi+g(A X, N) N$ which yields

$$
X=g(A X, \xi) A \xi+g(A X, N) A N
$$

for any $X \in \mathcal{C}_{U}$. We arrive at the same contradiction.
Therefore we must suppose that there exists $X \in \mathcal{C}_{U}$ such that $g(X, A N) \neq 0$ and from (5.25) $g(X, A \phi U)=0$. Taking $X, Y \in \mathcal{C}_{U}, Z=U$ in (5.1) we obtain

$$
\begin{equation*}
g(X, A N) g(A Y, U)+g(Y, A \xi) g(A X, \phi U)=0 \tag{5.30}
\end{equation*}
$$

for any $X, Y \in \mathcal{C}_{U}$. Taking, in particular, our previous $X \in \mathcal{C}_{U}$ in (5.30) we obtain $g(A Y, U)=$ 0 for any $Y \in \mathcal{C}_{U}$. As above, this also yields $g(A Y, \phi U)=0$ for any $Y \in \mathcal{C}_{U}$. Then for any $Y \in \mathcal{C}_{U}$ we have

$$
A Y=g(A Y, \xi) \xi+g(A Y, N) N
$$

and, as above, this gives a contradiction. Accordingly, the Case 2) can not appear. So only the Case 1) remains valid. From this, together with Theorem A, we have proved.

Theorem 5.4. Let $M$ be a non-Hopf real hypersurface in the complex quadric $Q^{m}$, $m \geq 4$, with $\eta$-parallel and $\eta$-commuting shape operator. Then the unit normal vector field $N$ of $M$ is $\mathfrak{A}$-principal and $M$ is locally congruent to a ruled real hypersurface foliated by complex totally geodesic $Q^{m-1}$ in $Q^{m}$.

Summing up above two Theorems 5.3 and 5.4 we give a complete proof of our Main Theorem in the introduction.

## 6. Examples of ruled real hypersurfaces in complex quadric

In this section, let us construct ruled real hypersurfaces $M^{2 m-1}$ in complex quadric $Q^{m}$, i.e., real hypersurfaces which are foliated by totally geodesic complex hyperquadric $Q^{m-1}$, from curves in real projective space $\mathbb{R} \mathbb{P}^{m+1}$.

First we recall Stiefel manifold (cf. [5]). Let

$$
V_{2}\left(\mathbb{R}^{m+2}\right)=\left\{\left(v_{1}, v_{2}\right) \mid v_{1}, v_{2} \in \mathbb{R}^{m+2},\left\|v_{1}\right\|=\left\|v_{2}\right\|=1,\left\langle v_{1}, v_{2}\right\rangle=0\right\}
$$

be the Stiefel manifold of orthonormal 2-frames in $\mathbb{R}^{m+2}$. Then the tangent space $T_{\left(v_{1}, v_{2}\right)} V_{2}\left(\mathbb{R}^{m+2}\right)$ is given as

$$
\mathbb{R}\left(-v_{2}, v_{1}\right) \oplus\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{m+2} \times \mathbb{R}^{m+2} \mid x_{1}, x_{2} \perp \operatorname{span}\left\{v_{1}, v_{2}\right\}\right\} .
$$

Let $\widetilde{\mathbb{G}}_{2}\left(\mathbb{R}^{m+2}\right)$ be the Grassmannian manifolds of oriented 2-planes in $\mathbb{R}^{m+2}$ and let $\pi^{\mathbb{G}}$ : $V_{2}\left(\mathbb{R}^{m+2}\right) \rightarrow \widetilde{\mathbb{G}}_{2}\left(\mathbb{R}^{m+2}\right)$ be the projection defined by $\pi^{\mathbb{G}}\left(v_{1}, v_{2}\right)=\operatorname{span}\left(v_{1}, v_{2}\right)$. Then with respect to the metric on $V_{2}\left(\mathbb{R}^{m+2}\right)$ induced from Euclidean space $\mathbb{R}^{m+2} \times \mathbb{R}^{m+2}=\mathbb{C}^{m+2}$ as a submanifold, we can define a Riemannian metric on $\widetilde{\mathbb{G}}_{2}\left(\mathbb{R}^{m+2}\right)$ such that $\pi^{G}$ is a Riemannian submersion. We consider an embedding:

$$
\tilde{i}: V_{2}\left(\mathbb{R}^{m+2}\right) \rightarrow S^{2 m+3} \subset \mathbb{C}^{m+2}, \quad \tilde{i}\left(v_{1}, v_{2}\right)=\left(v_{1}+i v_{2}\right) / \sqrt{2}
$$

The tangent space $T_{\tilde{i}\left(v_{1}, v_{2}\right)} \tilde{i}\left(V_{2}\left(\mathbb{R}^{m+1}\right)\right)$ is given as

$$
\mathbb{R}\left(-v_{2}+i v_{1}\right) \oplus\left\{x_{1}+i x_{2} \in \mathbb{C}^{m+2} \mid x_{1}, x_{2} \perp \operatorname{span}\left\{v_{1}, v_{2}\right\}\right\}
$$

Then we have a commutative diagram

where $\pi$ is the Hopf fibration and $i$ is the embedding induced from $\tilde{i}$. Then $i\left(\mathbb{G}_{2}\left(\mathbb{R}^{m+2}\right)\right)$ is identified with the complex quadric $Q^{n}$.

Let $I$ be an interval and let $\gamma: I \rightarrow \mathbb{R} \mathbb{P}^{m+1}$ be a real 1-dimensional regular curve in real projective space. We denote $\Gamma: I \rightarrow S O(n)$ a horizontal lift of $\gamma$ with respect to the natural projection $S O(m+2) \rightarrow \mathbb{R P}^{m+1}=S O(m+2) / S(O(m+1) \times O(1))$. For an expression of the matrix $\Gamma(t)=\left(e_{1}(t), \cdots, e_{m+1}(t), e_{m+2}(t)\right)$ by column vectors, we may assume

$$
\begin{equation*}
e_{j}^{\prime}(t)=\lambda_{j}(t) e_{m+2}(t) \quad(j=1, \cdots, m+1), \quad e_{m+2}^{\prime}(t)=-\sum_{j=1}^{m+1} \lambda_{j}(t) e_{j}(t) \tag{6.2}
\end{equation*}
$$

Let $\widetilde{\Phi}: I \times V_{2}\left(\mathbb{R}^{m+1}\right) \rightarrow S^{2 m+3} \subset \mathbb{C}^{m+2}$ be a map defined by

$$
\begin{equation*}
\widetilde{\Phi}\left(t,\left(v_{1}, v_{2}\right)\right)=\Gamma(t)\binom{\left(v_{1}+i v_{2}\right) / \sqrt{2}}{0} . \tag{6.3}
\end{equation*}
$$

Then we have the induced map $\Phi: I \times G_{2}\left(\mathbb{R}^{m+1}\right) \rightarrow \mathbb{C P}^{m+1}$ defined by

$$
\begin{equation*}
\Phi\left(t, \pi^{G}\left(\left(v_{1}, v_{2}\right)\right)\right)=\pi\left(\widetilde{\Phi}\left(t,\left(v_{1}, v_{2}\right)\right)\right) \tag{6.4}
\end{equation*}
$$

such that the following diagram is commutative:

and the image $\Phi\left(I \times G_{2}\left(\mathbb{R}^{m+1}\right)\right)$ lies in the complex quadric $Q^{m}$ in $\mathbb{C P}^{m+1}$ and for each $\left.t \in I, \Phi\left(\{t\} \times G_{2}\left(\mathbb{R}^{m+1}\right)\right)\right)$ is a totally geodesic complex hypersurface $Q^{m-1}$ in $Q^{m}$.

We compute the differential of $\widetilde{\Phi}$. Using (6.2) we have

$$
\begin{align*}
d \widetilde{\Phi}((\partial / \partial t), 0) & =\Gamma^{\prime}(t)\binom{\left(v_{1}+i v_{2}\right) / \sqrt{2}}{0} \\
& =\Gamma(t)\left(\begin{array}{cc}
O & -\lambda(t) \\
t \lambda(t) & 0
\end{array}\right)\binom{\left(v_{1}+i v_{2}\right) / \sqrt{2}}{0} \\
& =\Gamma(t)\binom{0}{\left(\left\langle\lambda(t), v_{1}\right\rangle+i\left\langle\lambda(t), v_{2}\right\rangle\right) / \sqrt{2}}, \tag{6.6}
\end{align*}
$$

where we put $\lambda(t)={ }^{t}\left(\lambda_{1}(t), \cdots, \lambda_{m+1}(t)\right)$. Also we obtain

$$
\begin{equation*}
V:=d \widetilde{\Phi}\left(0,\left(-v_{2}, v_{1}\right)\right)=\frac{\Gamma(t)}{\sqrt{2}}\binom{-v_{2}+i v_{1}}{0} \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
d \widetilde{\Phi}\left(0,\left(x_{1}, x_{2}\right)\right)=\frac{\Gamma(t)}{\sqrt{2}}\binom{x_{1}+i x_{2}}{0} \tag{6.8}
\end{equation*}
$$

where $x_{1}, x_{2} \perp v_{1}, v_{2}$. Here $V$ is a vertical vector with respect to the fibration $i d \times \pi^{\mathbb{G}}$ : $I \times V_{2}\left(\mathbb{R}^{m+1}\right) \rightarrow I \times G_{2}\left(\mathbb{C}^{m+1}\right)$. The metric on $I \times V_{2}\left(\mathbb{R}^{m+1}\right)$ induced by $\widetilde{\Phi}$ is written as:

$$
\begin{gathered}
\|d \widetilde{\Phi}((\partial / \partial t), 0)\|^{2}=\frac{\left\langle\lambda(t), v_{1}\right\rangle^{2}+\left\langle\lambda(t), v_{2}\right\rangle^{2}}{2} \\
\|V\|^{2}=1, \quad\left\|d \widetilde{\Phi}\left(0,\left(x_{1}, x_{2}\right)\right)\right\|^{2}=\frac{\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}}{2} \\
\langle d \widetilde{\Phi}((\partial / \partial t), 0), V\rangle=\left\langle d \widetilde{\Phi}((\partial / \partial t), 0), d \widetilde{\Phi}\left(0,\left(x_{1}, x_{2}\right)\right)\right\rangle=\left\langle V, d \widetilde{\Phi}\left(0,\left(x_{1}, x_{2}\right)\right)\right\rangle=0 .
\end{gathered}
$$

Hence

$$
\begin{equation*}
\widetilde{\Phi} \text { is regular at }\left(t,\left(v_{1}, v_{2}\right)\right) \Leftrightarrow\left\langle\lambda(t), v_{1}\right\rangle^{2}+\left\langle\lambda(t), v_{2}\right\rangle^{2} \neq 0, \tag{6.9}
\end{equation*}
$$

Proposition 6.1. Let $\gamma: I \rightarrow \mathbb{R} \mathbb{P}^{m+1}$ be a real 1-dimensional regular curve in real projective space and let $\Gamma: I \rightarrow S O(n)$ be a horizontal lift of $\gamma$ with respect to the natural projection $S O(m+2) \rightarrow \mathbb{R}^{m+1}=S O(m+2) / S(O(m+1) \times O(1))$. Then the map
$\Phi: I \times \mathbb{G}_{2}\left(\mathbb{R}^{m+1}\right) \rightarrow \mathbb{C P}^{m+1}$ defined by (6.4) is regular at $\left(t,\left(v_{1}, v_{2}\right)\right)$ if and only if (6.9) holds.

A unit normal vector of $\widetilde{\Phi}$ at $\left(t,\left(v_{1}, v_{2}\right)\right)$ is given by

$$
\begin{equation*}
\widetilde{N}=\frac{\Gamma(t)}{\sqrt{\left\langle\lambda(t), v_{1}\right\rangle^{2}+\left\langle\lambda(t), v_{2}\right\rangle^{2}}}\binom{0}{-\left\langle\lambda(t), v_{2}\right\rangle+i\left\langle\lambda(t), v_{1}\right\rangle} . \tag{6.10}
\end{equation*}
$$

Now we compute the condition for which $\widetilde{\Phi}$ (and $\Phi$ ) is minimal. By (6.8) and (6.10), we see that

$$
\left\langle A^{\widetilde{\Phi}}\left(0,\left(x_{1}, x_{2}\right)\right),\left(0,\left(y_{1}, y_{2}\right)\right)\right\rangle=0, \quad\left(x_{1}, x_{2}, y_{1}, y_{2} \perp v_{1}, v_{2}\right)
$$

where $A^{\widetilde{\Phi}}$ is the shape operator of $\widetilde{\Phi}$. Hence $\widetilde{\Phi}$ (and $\Phi$ ) is a minimal immersion at the regular points of $\widetilde{\Phi}$ if and only if $\left\langle A^{\widetilde{\Phi}}(\partial / \partial t, 0),(\partial / \partial t, 0)\right\rangle=0$. Using (6.2) and (6.6), we obtain

$$
\begin{align*}
D_{d \widetilde{\Phi}((\partial / \partial t), 0)} d \widetilde{\Phi}((\partial / \partial t), 0) & =\frac{\Gamma^{\prime}(t)}{\sqrt{2}}\binom{0}{\left(\left\langle\lambda(t), v_{1}\right\rangle+i\left\langle\lambda(t), v_{2}\right\rangle\right)} \\
& +\frac{\Gamma(t)}{\sqrt{2}}\binom{0}{\left(\left\langle\lambda^{\prime}(t), v_{1}\right\rangle+i\left\langle\lambda^{\prime}(t), v_{2}\right\rangle\right)} \\
& =\frac{\Gamma(t)}{\sqrt{2}}\left(\begin{array}{cc}
O & -\lambda(t) \\
t \lambda(t) & 0
\end{array}\right)\left(\begin{array}{c}
\left.\left(\left\langle\lambda(t), v_{1}\right\rangle\right)+i\left\langle\lambda(t), v_{2}\right\rangle\right)
\end{array}\right) \\
& +\frac{\Gamma(t)}{\sqrt{2}}\left(\begin{array}{c}
\left(\left\langle\lambda^{\prime}(t), v_{1}\right\rangle+i\left\langle\lambda^{\prime}(t), v_{2}\right\rangle\right)
\end{array}\right) \\
& =\frac{\Gamma(t)}{\sqrt{2}}\binom{-\left(\left\langle\lambda(t), v_{1}\right\rangle+i\left\langle\lambda(t), v_{2}\right\rangle\right) \lambda(t)}{\left(\left\langle\lambda^{\prime}(t), v_{1}\right\rangle+i\left\langle\lambda^{\prime}(t), v_{2}\right\rangle\right)} \tag{6.11}
\end{align*}
$$

Hence $\widetilde{\Phi}$ (and $\Phi$ ) is minimal if and only if

$$
\begin{equation*}
-\left\langle\lambda^{\prime}(t), v_{1}\right\rangle\left\langle\lambda(t), v_{2}\right\rangle+\left\langle\lambda^{\prime}(t), v_{2}\right\rangle\left\langle\lambda(t), v_{1}\right\rangle=0 \tag{6.12}
\end{equation*}
$$

for any $\left(v_{1}, v_{2}\right) \in V_{2}\left(\mathbb{R}^{m+2}\right)$.
We may assume that $\|\lambda(t)\|^{2}=1$, by changing parameter $t$ if necessarily, so we have $\lambda(t) \perp \lambda^{\prime}(t)$. On the other hand, (6.12) implies that $\lambda(t) \wedge \lambda^{\prime}(t)=0$. Consequently we obtain that $\lambda(t)$ is constant, and $\Gamma(t)$ is a 1-parameter group of $S O(m+2)$. Hence by the help of [1], minimal ruled hypersurface $\Phi\left(I \times G_{2}\left(\mathbb{R}^{m+1}\right)\right)$ in $Q^{m}$ is invariant under a 1-parameter subgroup $\Gamma(t)$ of $S O(m+2)$.
Theorem 6.2. Minimal ruled real hypersurface $M^{2 m-1}$ in complex quadric $Q^{m}$ is invariant under a 1-parameter subgroup of $S O(m+2)$.

## References

[1] J. M. Barbosa, M. Dajczer and L. P. Jorge, Minimal ruled submanifolds in spaces of constant curvature, Indiana Univ. Math. J., 33 (1984), 531-547.
[2] J. Berndt and Y. J. Suh, Isometric Reeb flow on real hypersurfaces in complex quadric, International J. of Math., 24 (2013), 1350050(18 pages).
[3] J. Berndt and Y. J. Suh, Contact hypersurfaces in Kähler manifolds, Proc. of Amer. Math. Soc., 143 (2015), 2637-2649.
[4] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface in $P_{n}(C)$, Math. Ann. 276 (1987), 487-497.
[5] M. Kimura, Minimal immersions of some circle bundles over holomorphic curves in complex quadric to sphere, Osaka J. Math., 37 (2000), no. 4, 883-903.
[6] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
[7] S. Klein, Totally geodesic submanifolds in the complex quadric, Diff. Geom. and Its Appl. 26 (2008), 79-96.
[8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, A Wiley-Interscience Publ., Wiley Classics Library Ed., 1996.
[9] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
[10] J.D. Pérez and Y.J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. of Korean Math. Soc. 44 (2007), 211-235.
[11] H. Reckziegel, On the geometry of the complex quadric, in: Geometry and Topology of Submanifolds VIII (Brussels/Nordfjordeid 1995), World Sci. Publ., River Edge, NJ, 1995, pp. 302-315.
[12] B. Smyth, Differential geometry of complex hypersurfaces, Ann. Math. 85 (1967), 246-266.
[13] B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan 19 (1968), 643-647.
[14] B. Smyth, On the rank and curvature of non-singuar complex hypersurfaces in complex projective space, J. Math. Soc. Japan 21 (1967), 266-269.
[15] Y.J. Suh, Real hypersurfaces of type $B$ in complex two-plane Grassmannians, Monatsh. Math. 147 (2006), 337-355.
[16] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Royal Soc. Edinb. A. 142 (2012), 1309-1324.
[17] Y.J. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Advances in Applied Math. 50 (2013), 645-659.
[18] Y.J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, International J. Math. 25 (2014), 1450059(17 pages).
[19] Y.J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Advances in Math. 281 (2015), 886-905.
[20] Y.J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. 106 (2016), 393-410.

Makoto Kimura<br>Ibaraki University,<br>Department of Mathematics,<br>Mito, Ibaraki, 310-8512, JAPAN<br>E-mail address: makoto.kimura.geometry@vc.ibaraki.ac.jp

## Hyunjin Lee

Kyungpook National University,
Research Institute of,
Real and Complex Manifolds,
Daegu 41566, Republic of Korea
E-mail address: lhjibis@hanmail.net

## Juan de Dios Pérez

University of Granada,
Department of Geometry and Topology,
Granada 18071, Spain
E-mail address: jdperez@ugr.es

Young Jin Suh
Kyungpook National University, College of Natural Sciences,
Department of Mathematics,
and Research Institute of Real \& Complex Manifolds, Daegu 41566, Republic of Korea

E-mail address: yjsuh@knu.ac.kr


[^0]:    2010 Mathematics Subject Classification: Primary 53C40. Secondary 53C55.
    *: Corresponding author
    Key words: $\eta$-parallel shape operator, $\mathfrak{A}$-isotropic, $\mathfrak{A}$-principal, ruled real hypersurface, complex conjugation, complex quadric.
    The first author was supported by JSPS KAKENHI Grant Number JP16K05119, the second by NRF-2016-R1A6A3A-11931947, the third by MCT-FEDER project MTM-2016-78807-C2-1-P, and the fourth by grant Proj. No. NRF-2018-R1D1A1B-05040381 from National Research Foundation of Korea

