
PRoA: an Intelligent Multi-Criteria Personalized Route Assistant

Marina Torres∗, David A. Pelta, José L. Verdegay
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Abstract

Personalization of pedestrian routes becomes a necessity due to the wide variety of user profiles
that may differ on preferences or requirements to choose a route. Several software applications offer
routes usually based on single criterion like distance or time; however, these criteria do not often
fit the pedestrian needs.

Here, we will first focus on the Personalized Routes Problem and then we will approach the
specific case of designing accessible and green pedestrian routes.

The proposal is implemented as a freely available Android application (named as PRoA, by
intelligent multi-criteria Personalized Route Assistant), which automatically obtains geographical
data and information for the decision criteria from open datasets.

The proposal is evaluated using real cases at the city of Granada, Spain.
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1. Introduction

Walking is transportation, green and healthy. In the National Travel Survey: England 2014
(Tranter et al., 2015) one can read that the transportation modes accounting for most trips in 2014
were by car, either as a driver or a passenger (64%), whereas walking accounted for a 22%.

Indeed, walking is the most frequent transportation mode used for very short distance trips:
76% of all trips under one mile are walks. In terms of averages per person, there were 200 walking
trips registered in 2014 for a total of 180 miles and 18 minutes per walking trip.

The Institute for Transportation and Development Policy (ITDP)1, from New York, states that:

“For decades, traditional transport planning has focused on improving conditions for
private automobiles at the expense of safe sidewalks and bike facilities. Yet, the majority
of the world’s people rely on cycling, walking, and other forms of human-powered
transport [...]. Increasing the use of bicycles and the ease of walking is one of the
most affordable and practical ways to reduce CO2 emissions, while boosting access to
economic opportunity for the poor.”
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These environmental benefits, including moderate-intensity physical activity like walking or
cycling, had proved to provide substantial health benefits (Pate, 1995).

As the literature indicates, not only the environmental variables are related to physical activity
(Saelens et al., 2003) but also the adequate facilities for walking or the accessibility of places to
walk (Owen et al., 2004). Craig et al. (2002) states that “Walking to work was significantly related
to the environment score”, where score is based on 18 neighborhood characteristics (e.g., existence
of accessible walking routes, such as sidewalks and paths, and available facilities like parks). In
this way, a “good environment” or an “appropriate route characteristics” are significantly related
to the decision of walking for example to work or just for leisure. However, those concepts are
user-dependent and may vary according to his/her preferences.

Walking is crucial for senior citizens who may found many impediments on their routes such
as stairs or steep slopes. Consequently, this kind of people need to conscientiously choose their
route according to those constraining characteristics (Borst et al., 2009). Similarly, people with
some mobility reduction, pregnant women, or people that want to walk with small kids may be also
affected by the same constraints.

Given the proven relationship between the characteristics of a route and the user’s decision
to walk, the proper design of a route based on user’s preferences is essential to promote walking
activities. Some existing approaches are outlined next.

For example, (Balstrøm, 2002) proposed a method to find the faster walking routes in open
field and the criteria were defined according to the surface’s friction. Walking routes aimed for
elderly people were determined by Borst et al. (2009) with a previous evaluation of the links on
up to twenty-three physical characteristics (e.g., slopes, stair, shops or zebra crossings). Similarly,
Hochmair (2008) uses criteria such as waiting time, turns, or traffic lights to find a multi-modal
route that includes walking and public transportation. The method presented by Quercia et al.
(2014) and López-Ornelas et al. (2014) focused on the walkability concept or “pleasant” routes.

Although these approaches are sound they generally need feedback from users to determine the
street’s walkability. This is the case of Walkonomics (2011), which despite using some geographical
data from different open data sources, is just currently working on four cities (Toronto, San
Francisco, London and New York). Another case of dependence on feedback from a user is that
proposed by Vadeo (Naranjo and Bayo, 2008). The system is deployed in the city of Valencia,
Spain, where the users have indicated obstacles or impediments for handicapped people. Again,
the former project cannot be considered enough to achieve a trustful system because it also depends
on creating a new community, as well as on the cooperation of its members.

A different approach (that does not requires a new community of users) is Walkability Explorer
by Cecchini et al. (2014). The system uses data from OpenStreetMap to determine a so called
walkability score. Previously, Leslie et al. (2007) used data from GIS to objectively measure features
related to walkability.

Our aim here is threefold: firstly we present the Personalized Routes Problem; secondly we
model the case for Personalized Pedestrian Routes and thirdly, we present PRoA: an intelligent
personalized route assistant, an Android application available on Google Play (Torres, 2016). PRoA
relies on open data and does not need to create a new community to work properly. In other words,
PRoA is completely functional from the very beginning.

The paper is structured as follows. First, in Section 2 we provide a general approach to the
Personalized Route Problem. Then, in Section 3, we propose a specific case where the chosen
criteria are distance, upward slope, downward slope, stairs and green or pedestrian zones leading
to the Personalized Pedestrian Route Problem. The routing algorithm is based on A∗ and a basic
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strategy for generating alternative routes is proposed. Section 4 describes PRoA: an Android based
application implementing all the features described above. The application’s results and benefits
can be seen in Section 5, where we show practical examples in the city of Granada, Spain. Finally,
Section 6 is devoted to conclusions.

2. The Personalized Routes Problem

The Personalized Routes Problem (PRP) can be stated as follows: given origin (start) and
destination (goal) points, and a set of user preferences and constraints, find the best route from
start to goal according to the user’s requirements. To solve the problem, three subproblems should
be considered.

a) Map Construction
The first subproblem is the construction of the streets’ map, which requires gathering information

from maps repositories (either public or proprietary). At the end of the process, we will end up with
an undirected graph G = {N,E} where each edge e ∈ E is delimited by two elements starte and
ende from N , the set of nodes. The edges in E represent street segments from the map. Both edges
and nodes have a set of features F that could be numerical values, e.g., elevation, latitude, longitude
or length, or nominal characteristics like the edge’s street type, e.g., path, ban or pedestrian.

b) Map Evaluation
On the second subproblem, the graph is processed: using the set of features F , a single value (a

cost) is calculated for each edge. This step requires to make both an evaluation and an aggregation
process based on a set of elements {G, F , ΣOPT , ΣCON , g, W , z}. The set ΣOPT 6= ∅ contains the
criteria to optimize and it is coupled with the set of objectives or goals g. Each objective in g has an
associated weight from W . The weights W represent the importance of reaching its correspondent
objective of minimization or maximization in g. Every criterion in ΣOPT has an associated weight
in W . The weights are constrained as follows:

|ΣOPT |∑
i=0

wi = 1 wi ε [0, 1] (1)

Finally, the set ΣCON contains criteria for which certain maximum/minimum values are defined
by means of the constraints in z.

The scheme of the evaluation and aggregation processes is shown in Fig 1. There are two phases:
1) the evaluation phase, where we use the set of features F , the criteria ΣOPT and the objectives
g to obtain a set of evaluations EV ; and 2) the aggregation phase, where we use the evaluations
EV , the weights W , ΣCON and z to obtain the aggregated cost Ce for each edge e.

c) Routes Calculation
Finally, having a new graph where every edge e has a cost assigned, a routing algorithm should

be applied to obtain the optimal and (possibly) some alternatives routes.

3. The Personalized Pedestrian Routes Problem

When the elements of the PRP are defined, a specific problem is obtained. Here we will focus
in the personalized pedestrian routes problem, proposing the specific definitions we will use.
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Figure 1: Personalized Routes Problem: evaluation and aggregation stages.

a) Map Construction
We depart from a graph G and a set of features F that are obtained from public repositories.

Then we define two sets of criteria:

1. Optimization criteria: ΣOPT = {distance, upward slope, downward slope, green zones}, with
the following goals g = {minimize,minimize,minimize,maximize}.

2. Constrained criteria: ΣCON = {upward slope, downward slope, stairs} with the constraints
z = {limit, limit, avoid}. These constraints determine if a specific edge should be considered
or not in the calculations, either because it exceeds some limit (for example with the slopes)
or contains an undesirable feature (like stairs).

b) Map Evaluation
For every edge e ∈ E, our aim is to obtain a set of evaluations EV = {De, Se, Ge} for the criteria

in ΣOPT . We depart from the set of features F = {distancee, elevationstarte , elevationende
, typee},

that is, the length of the edge, the elevation of the start and end nodes of the edge and the edge’s
type. The typee value can represent a track (unpaved roads like forest tracks), a path (trails open
to all non-motorized vehicles, like hiking trails or bike trails), pedestrian streets (car-free zones),
stairs (indicates a street with steps) or none of the above.

The importance of reaching the corresponding goals g associated with the criteria is defined by
the weight vector W = {wd, wup, wdown, wg}. The calculation of EV requires some intermediate
values, namely slopee, dmax, greenCoste, which are described below.

The slopee of an edge e is calculated as

slopee =

{
∇elevatione/distancee if distancee ≥ 1

0 otherwise
(2)

where ∇elevatione = |elevationstarte − elevationende
| is the variation of the elevations between the

start and the end nodes of the edge e (both in meters). As it may happen that distancee < 1, in
such a case we fix the slopee = 0 to avoid problems in the calculations.
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The greenCoste score of an edge e is calculated according to the type of street typee.

greenCoste =

{
0.9 if typee ∈ {track, path, stairs, pedestrian}
0 if none of the above

(3)

The maximum distance dmax is obtained and later used to normalize the distances distancee.

dmax = max{distancee ∀e} (4)

Now, for each edge e the set EV = {De, Se, Ge} is calculated as:

De = distancee/dmax

Se = (slopee)
2 distancee

Ge = (1− greenCoste)De

(5)

As slopee ∈ [0, 1], Se does not need any normalization and will be referred as upward slope or
downward slope criteria depending on the direction the edge is visited.

The values in EV are combined in the aggregation phase using the weights W , leading to an
aggregated cost Ce for each edge e. The cost of an edge Ce = {Cup

e , Cdown
e }, 0 ≤ Cup

e , Cdown
e ≤ 1 is

calculated as:

Cup
e = wd De + wup Se + wg Ge for upward direction

Cdown
e = wd De + wdown Se + wg Ge for downward direction

As an edge can be traversed upward or downward, the weight applied to Se is different for both
cases. That’s why two values Cup

e and Cdown
e should be considered. According to the constraints

in z = {limit, limit, avoid} applied to the criteria ΣCON , the Ce = {Cup
e , Cdown

e } value will be:

1. if the edge has stairs, then Ce = {∞,∞}.
2. if the slope slopee is greater than the maximum slope allowed for the upward and/or downward

direction, then Cup
e = {∞} and/or Cdown

e = {∞}.

c) Routes Calculation
The routes calculation is based on the A∗ algorithm which is shown in Alg. 1. The algorithm

requires as input the origin (start) and destination (goal) nodes or locations and two functions
(shown underlined) cost(starte, ende) and h(node).

The former function determines the cost Ce of the edge connecting the nodes (starte, ende). This
could be either Cup

e or Cdown
e depending if the slope from starte to ende is upwards or downwards.

For the A∗ to be optimal, an admissible heuristic estimation is needed. The function h(node)
shown in Alg. 2, calculates such estimation from node to goal. The estimation depends on the
distance, downward slope and upward slope criteria, while currently, there is no estimation value
for the criterion green zone.

A single run of the A∗ algorithm finds the optimal solution r∗ according to the user preferences
and constraints. In order to obtain alternatives routes, we use an approach that consist on using
the same A∗ algorithm but previously banning a set of nodes.

In the second run of the algorithm, and given the optimal route r∗, we initialize the ClosedSet
with those nodes from r∗ belonging to the second third of the route. As a result, we will obtain a
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Algorithm 1 A* Algorithm Pseudocode.

function A*(start, goal)
OpenSet← {start}
ClosedSet← {}
gCost[] initialized with default value of infinity
gCost[start]← 0
hCost[start]← gCost[start]+ h(start, goal)
while OpenSet is not empty do
current← node in OpenSet with lower hCost value
if current = goal then

return path(current)
end if
for each neighbor of current do

if neighbor is not in ClosedSet then
newGCost← gCost[current]+ cost(current, neighbor)
if neighbor not in OpenSet then

OpenSet← OpenSet ∪ {neighbor}
end if
if newGCost < gCost[neighbor] then

gCost[neighbor]← newGCost
hCost[neighbor]← gCost[neighbor]+ h(neighbor)
cameFrom[neighbor] ← current

end if
end if

end for
OpenSet← OpenSet\{current}
ClosedSet← ClosedSet ∪ {current}

end while
return no path found

end function

new route r′. If we want another route r′′, the ClosedSet will be initialized with the nodes in the
second third part of the routes from r∗ and r′. In this way, A∗ does not expand or evaluate those
banned nodes.

This approach can be repeated as many times as alternatives routes are desired. However, it
should be clear that it is not always possible to obtain a different solution. For example, if we
banned two nodes connecting a street which is the only way to connect two separated areas, then
the problem becomes unfeasible. Banning of the nodes in the second third part of the route is
arbitrary but produces good results in practice.

The generation of alternative routes is far from trivial as stated in Bader et al. (2011). It should
be noted that after exploring other options for generating routes, we kept this very basic approach
because of two main reasons: firstly, it does not require many more additional computational
resources (time, memory) which is an important issue because we are dealing with a mobile
phone-based application; and secondly it does not require the user to define additional information
that he/she may not know (like selecting a “zone to avoid” when he/she is trying to obtain a route
in an unknown city).
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Algorithm 2 Cost estimation to go from a node to the goal node.

function h(node, goal)
if node = goal then

return 0
end if
dist← euclideanDistance(node, goal)
hDistance← dist/dmax

slope← (elevationgoal − elevationnode)/dist
if dist < 1 then

hSlope← 0
else

hSlope← slope2 dist . hSlope < 0 if downward slope
end if
h← hDistancewd + max{hSlope, 0}wup −min{hSlope, 0}wdown

return h
end function

4. PRoA: The Application

PRoA is an Android application that implements the map construction, map evaluation and
routes construction stages described in the previous section.

It is based on Android 5.0 APIs and is compatible with older versions (the minimum compatible
version is 4.0.3). Some features are requested from third party services: OpenStreetMap Server Side
Scripting, mapQuest Open Elevation Service, Google APIs (Maps Android, Directions, Elevation,
Places) and AndroidPlot. PRoA also uses SQLite as a database manager, allowing the user to run
the application offline once the maps have been downloaded.

4.1. PRoA system

PRoA has three different components: the Data Manager, the Criteria Evaluator and the Route
Builder, each one associated with every stage of the personalized route problem.

A PRoA session leads to the workflow shown in Fig. 2. First, the user specifies the route plan
(origin and destination locations). Then, he/she should indicate the importance of achieving each
criterion’s objective and the constraints to define W , ΣCON and z. Then, the Data Manager, using
the origin and destination locations, constructs the street graph G needed and the set of features
F . This component obtains the data from the local database or, if it is not complete or unavailable,
it requests the absent information using Web services. Then, the needed information is locally
stored (in the device). Once the street graph G is completed, the Criteria Evaluator calculates the
aggregated costs Ce ∀e ∈ E. After that, the Route Builder finds the optimal route (from origin to
destination) and up to two alternatives, with the method discussed in Section 3.

4.2. The Data

The Data Manager component obtains data from OSM (OpenStreetMap, 2004), a project that
creates and distributes open and free geographical data. The OSM dataset has been compared to
similar datasets and results have proved its good data quality (Haklay, 2010). Also, Zielstra and
Hochmair (2012) concluded that routes planned with OSM data “resulted in shorter shortest paths
for pedestrians than commercial data sets” in a study of the pedestrian routes based on OSM data
on German and U.S. cities.
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Figure 2: Workflow diagram for a PRoA session.

The data requested to OSM is:

• Nodes: the node is a point defined by its latitude, longitude and identification number.

• Streets: streets in OSM are an ordered list of nodes. Note that a node from a street could
be an intersection of streets or a middle point of the street that connects two segments with
different orientation.

• Street type: if it is pedestrian, road, path, track, steps, etc.

The elevation data is not provided by OSM, instead it is requested to other services based
on OSM datasets that also include the elevation map or Google Maps Elevation API. Based on
the previously described information, the Data Manager component calculates other important
attributes:

• Edges: an edge in the graph is a segment of a street in OSM, that is, a connection between
two nodes. A node in OSM is not always a street intersection so an edge of the graph can be
connected to one edge (same street continues) or more edges (intersection).

• Distance: the length (in meters) of an edge is calculated as the distance between its connecting
nodes.

• Elevation variation: the elevation variation (in meters) of each edge is calculated as the
difference on the elevation data of its two nodes.

The system is designed with a local database (DB) allowing an offline usage. The DB is updated
each time the user first request a route on a specified area of the map. For this purpose, the map’s
data is split into tiles. A node from the graph belongs to one and only one tile making easier to
index the database. This method ensures data consistency because the tile is always fully requested
and stored on the database so no data is missing if the tile is already stored.

The tiles requested to OSM are all the tiles that contain information inside the Bounding Box
(an OSM concept described as the area defined by two longitudes and two latitudes) formed by the
origin and destination points and all tiles adjacent to this Bounding Box. This approach limits the
data available to build the route at Route Builder component, and because of this limitation the
tiles needs to be of a considerable size. Figure 3 shows an example of the the Bounding Box concept
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Figure 3: Four tiles are needed to cover the bounding box area defined by the two markers. The 12 adjacent tiles
are also requested to construct the shown street graph.

Profile wd wup wdown wg

Avoid slopes 0.1 0.45 0.45 0.0
Reduce distance 1.0 0.0 0.0 0.0
Pass through green zones 0.3 0.0 0.0 0.7

Table 1: Predefined weights profiles.

between the origin and destination points, the required tiles and the graph used for a specified plan
route. After some empirical testing, we defined size of the tiles is 0.01 degrees variation on latitude
and 0.01 degrees variation on longitude.

4.3. PRoA Screenshots

The interface has been consciously designed trying to fit all information on a smart-phone screen
as well as on a tablet screen and making it easy to interact with the application. The functionality is
divided into three tabs that correspond to the plan input data, the importance criteria specification
and the routes visualization.

Screen captures are shown in Fig. 4. In the first tab (a), the user indicates the origin and
destination points placing markers on a map or writing the address on a search field that offers
“auto-complete” functionality and suggestions.

Then, the user can select one of the three predefined profiles available (see Fig. 4 (b)) or define
a personalized one. The predefined profiles are “avoid slopes”, “reduce distance” and “pass through
green zones”. The weights values for these profiles are summarized in Table 1.

Alternatively, the user may define a personalized profile setting the criteria importance as shown
in Fig. 4 (c). The user can further personalize his/her interests using the additional settings shown
in Fig. 4 (d), where slope limitations and enabling/disabling stairs in the routes can be defined.

Figure 4 (e) shows the alternatives provided by PRoA for the criteria importance distribution
shown in Fig. 4 (c). The optimal route and alternative ones are depicted on the map and identified
by colors. The user can select or unselect each route in order to show or hide its path and elevation
data on the provided line chart like the one shown in Fig. 4 (f). When an alternative is selected,
the user can request the directions to see the list of instructions on how to follow the route. The
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(a) Route Definition (b) Predefined Profiles

(c) User Profiles (d) Additional Settings

(e) Results (f) Elevation profile

Figure 4: Main screens of the application.

routes can be saved and loaded later. This feature allows an easy comparison between the routes
obtained by different criteria importance distribution.

5. Analysis and Results in Granada, Spain

The assessment of PRoA is performed through a set of real world examples developed in
Granada, Spain. Three analysis are presented. In the first one we compare the routes provided by
PRoA with those provided by “de-facto” routing application Google Maps. Then, in the second
part, we show a number of examples with slopes limitation, green zones and stairs avoidance. In
this case, comparisons against other tools are not possible as such features (as long as we know) are
not considered by any other application. Finally, in the third part, we show a brief performance
analysis.

5.1. Route Lengths Comparison

Table 2 shows the origins and destinations of six routes, together with their distances according
to PRoA and Google Maps. All the routes are located in Granada (Spain). PRoA was ran with
the “reduce distance” profile for a fair comparison.
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Origin Destination Distance

latitude longitude latitude longitude PRoA GoogleMaps Reduction(%)

37.178013 -3.595665 37.183169 -3.599816 777 816 4.8
37.178346 -3.596976 37.178904 -3.596161 142 230 38.3
37.179344 -3.597739 37.178037 3.593710 517 550 6.0
37.175637 -3.594760 37.178022 -3.593719 444 500 11.2
37.177094 -3.595219 37.179450 -3.594187 348 450 22.7
37.182653 -3.598963 37.183898 -3.597441 281 350 19.7

Table 2: Illustrative examples of shorter distances routes found by PRoA against Google Maps.

(a) (b)

Figure 5: Examples of different routes obtained by PRoA (left) and Google (right). On (a), case number 2 from
Table 2 with a reduction of 38.3%. On (b), case number 4 from Table 2 with a reduction of 11.2%.

As it can be observed, PRoA routes are shorter than those provided by Google Maps. The
reduction in length goes from almost 5% to an impressive 38% in the shortest route (142 meters vs.
230 meters). This is a crucial point from a pedestrian point of view. The routes for two of those
examples are shown in Fig. 5.

The reason underlying these differences is the OpenStreetMap data completeness for pedestrian
routes. This fact was already known (Haklay, 2010), but we confirm it in the case of Granada where
a lot of small streets, alleyways and passages are properly mapped in OpenStreetMap, but not in
the Google proprietary maps.

5.2. Beyond Distance Minimization

In this part, we emphasize the role of “personalization” showing how different routes can be
obtained for different user profiles.

Example 1: Different User Profiles

The first example is shown in Fig. 6. Three different user defined profiles appear on top, each
corresponding with the following sets of weights (preferences) W : for Option 1 {wd = 1}, Option
2 {wup = 1} and Option 3 {wd = 0.5, wup = 0.5}. Fig. 6 (a) shows the three routes obtained
according to the profiles and Fig. 6 (b) allows the user to analyze the elevation profiles. It can be
observed how the route corresponding to option 2 allows to reach the destination using a larger but
“softer” (in terms of elevation) path.
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Option 1 Option 2 Option 3

(a) (b)

Figure 6: On top, three different user defined profiles are shown. The corresponding routes are plotted below,
together with their elevation profiles.

Example 2: Different Constraints

In this second example, shown in Figure 7, we illustrate the differences on the routes obtained
when setting slope limitations and not allowing stairs. The routes go from (37.184332,−3.602442)
to (37.181191,−3.592776). First, routes on Case 1 are obtained under the “reduce distance” profile
with no other constraints. Cases 2 and 3 are both obtained with the “pass through green zones”
profiles. Case 2 has a constraint on maximum slope of 30% allowing stairs while routes from Case
3 has the same slope constraint but does not allow stairs. Finally, Case 4 uses the “avoid slopes”
profile with a constraint on maximum slope of 25%, also not allowing stairs.

All of these examples clearly demonstrate that PRoA properly deal with and solve the personalized
route problem oriented to pedestrians. A wide variety of routes are obtained as the use of different
user profiles and requirements are defined.

5.3. Performance Analysis

We made a brief performance analysis to provide information regarding the running time of
the application. We define eight routes in Granada, that lead to different underlying graphs
ranging from 4000 to 42000 nodes. We run PRoA with the “reduce distance” profile, measuring
the computational time of every computational stage.

We consider two situations for the analysis: when the map information (the database) is not
available in the mobile phone and when it is. Figure 8 (a) shows the former situation while (b), the
latter.

It is clear that the information request from Web Services is the most time consuming part,
which is also completely out of our management. The times displayed should be considered just
as an illustrative examples because a high variability should be expected due to different response
time from OpenStreeMap servers throughout the day.
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Case 1

Case 2 Case 3 Case 4

Figure 7: Use of limitations. Case 1: “reduce distance” profile and no limitations. Case 2: “pass through green
zones” profile with a limitation of 30% on maximum slopes and stairs allowed; Case 3: “pass through green zones”
profile with a limitation of 30% on maximum slopes and stairs not allowed; and Case 4 “avoid slopes” profile with a
limitation of 25% on maximum slopes and stairs not allowed. The corresponding elevation profiles are also shown.

When the map is already available in the device, the time needed to manage the stored
information is clearly reduced. In the biggest case (a graph with 41563 nodes), the map processing
stage took less than a minute.

Regarding the computational times of the graph evaluation and the routing stages, we can
observe a linear behaviour of the algorithms with a very small slope, indicating good scalability
and speed.

6. Conclusions and future work

Personalization of pedestrian routes becomes a necessity due to the wide variety of user profiles
that may differ on preferences or requirements to choose a route. Several software applications offer
routes usually based on single criterion like distance or time; however, these criteria do not often
fit the pedestrian needs.

In this context we modelled and solved the Personalized Routes Problem, focusing in the case
of pedestrian routes design. We presented PRoA: an intelligent personalized route assistant for
walking routes, implemented as an Android application. The personalization process is simple and
easy to use when considering the predefined profiles or the user defined profile.

From the analysis developed in the city of Granada, Spain, several conclusions can be drawn.
In first place, PRoA routes can be shorter than those provided by Google Maps. This is due to
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(a) (b)

Figure 8: Running times versus map size (number of nodes on the graph) (a) requiring the download of the database
and (b) when the database is already available.

the higher quality of OpenStreetMaps from which PRoA extracts the map information. In second
place, PRoA is able to offer routes considering characteristics that other routing applications don’t
even consider. We provide a set of examples showing how the use of slopes limitation, green zones
and stairs avoidance effectively led to different routes, which is of utmost importance for users with
different preferences. Finally, and in terms of performance, we confirmed that the running time
increased in a linear way (with a very small constant) as the number of nodes in the underlying
graph increased.

As future research we plan to consider different evaluation/aggregation schemes and explore
personalization in other terms, like safer routes or cycling routes which requires different sets of
criteria.
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