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Abstract 

Estimation of COVID-19 dynamics and its evolution is a multidisciplinary effort, which requires the unification of 
heterogeneous disciplines (scientific, mathematics, epidemiological, biological/bio-chemical, virologists and health 
disciplines to mention the most relevant) to work together in a better understanding of this pandemic. Time series 
analysis is of great importance to determine both the similarity in the behavior of COVID-19 in certain 
countries/states and the establishment of models that can analyze and predict the transmission process of this 
infectious disease. In this contribution, an analysis of the different states of the United States will be carried out to 
measure the similarity of COVID-19 time series, using dynamic time warping distance (DTW) as a distance metric. 
A parametric methodology is proposed to jointly analyze infected and deceased persons. This metric allows to 
compare time series that have a different time length, making it very appropriate for studying the United States, 
since the virus did not spread simultaneously in all the states/provinces. After a measure of the similarity between 
the time series of the states of United States was determined, a hierarchical cluster was created, which makes it 
possible to analyze the behavioral relationships of the pandemic between different states and to discover interesting 
patterns and correlations in the underlying data of COVID-19 in the United States. With the proposed methodology, 
nine different clusters were obtained, showing a different behavior in the eastern zone and western zone of the 
United States. Finally, to make a prediction of the evolution of COVID-19 in the states, Logistic, Gompertz and SIR 
model was computed. With these mathematical model it is possible to have a more precise knowledge of the 
evolution and forecast of the pandemic. 
 
Keywords: COVID-19; Pandemic in the United States ; Time Series; DTW distance; Hierarchical Clustering; SIR 
model 

1. Introduction 

The COVID-19 epidemic started in Hubei Province, China, around December 2019. Since then, 
the disease has been spread to all continents and countries of the world, being categorized as pandemic 
by World Health Organization on March 11th. 

In recent months, contributions have been made that analyze the evolution of different countries, 
implementing mathematical models to predict their evolution. Traditional predictive models for infectious 
diseases mainly include models for predicting differential equations and models for predicting time series 
based on statistics and random processes 

For example, in [1] a methodology with the aim of estimating the actual number of people infected 
with COVID-19 in France is presented, since according to the authors, the number of screening tests 
carried out and the methodology do not directly calculate the actual number of cases and infection 
mortality rate (IFR). A mechanistic-statistical approach was developed that combines an epidemiological 
SIR model that describes this unobserved epidemiological dynamics, a probabilistic model that describes 
the data collection process and a method of statistical inference. 

The logistic growth model, the generalized logistic growth model, the generalized growth model 
and the generalized Richards model were used to model the number of infected cases in the 29 provinces 
of China (and several countries), performing a a detailed analysis on the heterogeneous situations by four 
phases of the outbreak in China [2].  
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In [3] the Kermack-McKendrick SEIR model (Susceptible, Exposed, Infectious and Recovered) 
is presented to analyze the effects of behavioral changes on the reduction in community transmission in 
Mexico. A variable contact rate over time is proposed and the consequences of disease spread in an 
affected population of non-essential activities is analyzed. 

The behavior of the virus in Japan has also been analyzed [4]. By February 29, 2020, in addition 
to the 619 confirmed cases (passengers and crew members) infected with COVID-19 in a cruise ship (near 
Tokyo), 215 locally transmitted cases had been also confirmed in Japan. To evaluate the effectiveness of 
reaction strategies based on avoiding large accumulations or crowded areas and to predict the spread of 
COVID-19 infections in Japan, in [4] a stochastic transmission model by expanding the epidemiological 
model based on SIR (Susceptible-Infected-Removed) had been presented. The simulation results showed 
that the number of Infected and Removed patients will increase rapidly if there is no reduction of the time 
spent in crowded zone. 

In [5] using the Maximum-Hasting (MH) parameter estimation method and the SEIR model, the 
spread of COVID-19 and its prediction in South Africa, Egypt, Nigeria, Senegal, Kenya, and Algeria 
under three intervention scenarios (suppression, mitigation, mildness) is presented. 

In addition to the most relevant epidemiological models used in the literature, models typically 
based on time series have also been used to analyze the behavior of the pandemic in different countries. 
The autoregressive integrated moving average (ARIMA) model is a mathematical model widely studied 
in the context of time series that is successfully applied in the field of health (estimate the incidence and 
prevalence of influenza mortality, malaria incidence, hepatitis, and other infectious diseases) as well as in 
different fields in the past due to its simple structure, fast applicability and ability to explain the data set. 

In [6] ten Brazilian states are analyzed using the autoregressive integrated moving average 
(ARIMA), the cubistic regression (CUBIST), the random forest (RF), ridge regression (RIDGE), the 
support vector regression (SVR) and the stacking-ensemble learning in the task of time series forecasting 
of the number of patient infected with COVID-19 with one, three, and six-days ahead. A forecasting 
model based on ARIMA has also been presented in [7] for Pakistan, presenting the high exponential 
growth in the number of confirmed cases, deaths and recoveries. In [8] ARIMA time series models were 
applied to forecast the total confirmed cases of COVID-19 for the next ten days using the model ARIMA 
(0,2,1), ARIMA (1,2,0) and ARIMA (0,2,1) for Italy, Spain, and France, respectively. 

Currently, the analysis of the evolution of COVID-19 in America is of great importance due to 
the impact of this epidemic on this continent. In this contribution we will focus on the United States. The 
first patient detected in the United States was a travel-associated case from Washington state on January 
19th, 2020. The preponderance of initial cased of infected patients with COVID-19 in the United States 
were correlated with travel to a ''high-risk'' country or close contacts of previously identified cases 
corresponding to the testing criteria adopted by the Centers for Disease Control and Prevention (CDC) 
(https://www.cdc.gov/). From March 1–31, 2020, the number of reported COVID-19 cases in the United 
States rapidly increased from 30 to 188,172, being the number of deaths from 1 to 5531, and detecting 
the virus all the states. At the end of April the number of infected reached 1069424 and the number of 
deceased stood at 62996. At the time of writing this contribution (14th june 2020) the number of infected 
is more than 2e+6 and more than 1e+5 deaths, being one of the countries of the world that is suffering 
with greater severity the disease of COVID-19. 

In a recent paper [9] an attempt is made to estimate the actual number of infected people, even if 
they have not been counted. It was estimated that the true number of COVID-19 cases in the United States 
is likely in the tens of thousands, suggesting substantial undetected infections and spread within the 
country. 

In [10] a relevant contribution is presented analyzing the sequence of nine viral genomes from 
early reported COVID-19 patients in Connecticut. From the phylogenetic analysis, it can be concluded 
that the majority of these genomes with sequenced viruses are from Washington State. By coupling their 
genomic data with domestic and international travel patterns, authors showed that early SARS-CoV-2 
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transmission in Connecticut was likely driven by domestic travel. The authors hypothesized that, with the 
growing number of COVID-19 cases in the United States and the large volume of domestic travel, new 
United States outbreaks are now more likely to result from interstate rather than international spread. 

This contribution presents a methodology to analyze the evolution patterns of COVID-19 in the 
states of United States (including Puerto Rico and District of Columbia). A parametric similarity measure is 
presented, based on robust distance measure between time series, the dynamic time warping distance 
(DTW), with which the number of infected and dead in each of the states can be compared simultaneously, 
even though the start of the epidemic originated on different dates in each zone (therefore, the time series 
that need to be compared have different lengths). 

To the best of our knowledge, this contribution is the first study that tries to develop a hierarchical 
clustering time series algorithm in order to globally compare and classify the behavior of all the states of 
United State simultaneously in their evolution of infected and deceased patients suffering COVID-19. 
Carrying out this classification is very useful, since it will allow to establish similarities and patterns in 
the evolution of the pandemic among the states of the United States. Once the different states have been 
grouped into a cluster (nine cluster are obtained), a SIR model, for each of the most representative 
elements of each cluster is analyzed. The simulation results of the nine SIR models evaluated are 
presented, indicating the most relevant parameters of the mathematical model and its prediction on the 
evolution of the pandemic in that state. 

2. Material and Methods 

A time series is a sequence of numerical (temporal) data points in successive order, which is naturally 
high dimensional and large in data size. There are two main operations that could be performed when 
working with time-series with its sequential data: a) the analysis of a single time series; b) the analysis of 
multiple time series simultaneously. This contribution is concentrated in the analysis of multiple time 
series for all the states of US suffering COVID-19, with the purpose of finding similarities between 
multiple time series by performing a clustering time-series methodology. 

Clustering such complex objects is particularly advantageous because it may lead to the discovery 
of interesting patterns in time-series datasets, which contributes to a better understanding of the COVID-
19 spread in different regions of the United States. 

Clustering of time-series sequences has received noteworthy attention [11,12], not only as a 
formidable exploratory method and powerful tool for discovering patters, but also as a pre-processing 
step or subroutine for other tasks [13]. 

In this section, the database used is presented first (Section 2.1). Subsequently, a review of the 
most popular distance measures for time series is described (Section 2.2) and a new parametric distance 
is proposed. Then, existing approaches for clustering time-series data are briefly presented (Section 2.3) 
and the Logistic, Gompertz and SIR model, which will be used for modelling the time series of the most 
representative states in each of the cluster obtained, is described (Section 2.4). 

2.1. Data set  

The COVID-19 epidemic data set used in this contribution was collected from the Johns Hopkins 
University [14]. In this platform, the number of confirmed, deaths and recovered cases until June 21th 
2020 for different countries are presented. For the United States, two additional .csv files are provided, 
in with detail of administration and province/state is reported (including Puerto Rico and District of 
Columbia). In order to compare countries behaviour, the time-series data are divided by state population.  
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2.2. Similarity/Distance measure in Time Series 

In a simplified way, the similarity of two simple time series having the same number of points 
(denoted by m), and defined by X = {x1,x2,….xm} and Y = {y1,y2,….ym}, can be achieved by simply 
calculating the Minkowski (or Euclidean) distance (shortest path between two points) between points on 
both time series that happen at the same time. This distance is the measure of similarity, denoted as 
d(X,Y), and it is a function that takes both times series (X,Y) as input and calculates their distance “d”, 
defined as: 

𝑑𝑑(𝑋𝑋,𝑌𝑌) = ��|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑘𝑘
𝑚𝑚

𝑖𝑖=1

�

1
𝑘𝑘�

 (1) 

When k=2, the distance between two series is called Euclidean Distance. Using the Minkowski distance 
is a good metric to analyze the similarity of two time series, if these time series are synchronized (that is, 
all similar events in both time series occur at exactly the same time) and have the same length. 

The evolution of time series in the different states of the United States present a different start 
date, both for the number of confirmed and death cases, and therefore its length is also different. Suppose 
by analogy the time series of the sound of a mother's voice when she speaks slowly to her child. If the 
mother says the same phrase quickly, the child will most likely recognize that she is still his mother. 
However, if the Euclidean distance between both series were used as a metric, these two time series would 
have a very low similarity and would not be considered fundamentally equal. This would lead to the 
conclusion that the two voices did not come from the same person. To solve this problem, the dynamic 
time warping distance (DTW) method is frequently used in the bibliography [15]. 

DTW is a technique that can be considered as an extension of the Euclidean Distance between 
series [16], that calculates an optimal match between two given time series with certain restriction, 
performing non-linearly in the series (by stretching or shrinking along its time-axis). This distortion 
(denoted as warping) between two time series is used to find corresponding regions and determine the 
similarity between them.  

The DTW of two series X and Y, defined as X = {x1,x2,….xn} and Y = {y1,y2,….ym} is computed 
in the following way. An n-by-m matrix D is computed with the (i.j)th element, defining the local distance 
of two elements by: 

d(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) = �𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑗𝑗�
2
 (2) 

The point-to-point alignment between series X and Y can be represented by a time warping path 
W, defined as: 

W = �
𝑤𝑤𝑥𝑥(𝑘𝑘)
𝑤𝑤𝑦𝑦(𝑘𝑘)� , 𝑘𝑘 = 1,2, … 𝑝𝑝 (3) 

where p is the length of the warping path W, and wx (k) and wy(k) represent the indexes in time series X 

and Y respectively. The warping path �
𝑤𝑤𝑥𝑥(𝑘𝑘)
𝑤𝑤𝑦𝑦(𝑘𝑘)� indicate that the wx (k) th element in time series X is 

mapping to the wy(k) th element in time series Y. There are some constraints and rules for the construction 
of the warping path: 

• Every index from the first time series must be matched with one or more indices from the other 
time series (and vice versa) 

• The first (the same for the last index) index from the first time series must be matched (not only 
this match) with the first (last) index from the other time series. That is, the warping path should 
start at W(1) = (1, 1) and end up at W(p) = (n,m). 

• The mapping of the indices from the first time series to indices from the other time serie must be 
monotonically increasing, and vice versa. The adjacent elements of path W, W(k) and W(k + 1) 
must be subject to wx(k + 1) − wx(k) ≥ 0 and wy(k + 1) − wy(k) ≥ 0 . 
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• The warping path should be also have the property of continuity, mathematically expressed as 
adjacent elements of path W, W(k) and W(k + 1) must be subject to wx(k + 1) − wx(k) ≤1 and 
wy(k + 1) − wy(k) ≤1 . 
The optimal match is denoted by the match that satisfies all the restrictions and the rules and that 

has the minimal cost, where the cost is computed as the sum of absolute differences, for each matched 
pair of indices, between their values. The DTW (minimal distance and optimal warping path) could be 
found using a dynamic programming algorithm: 

RD�xi, yj� = d�xi, yj� + min�
RD�xi−1, yj−1�

RD�xi−1, yj�
RD�xi, yj−1�

𝐷𝐷𝐷𝐷𝐷𝐷(𝑋𝑋,𝑌𝑌) = min {𝑅𝑅𝑅𝑅(x𝑛𝑛, y𝑚𝑚)}

 (4) 

where RD�xi, yj� is the minimal cumulative distance from (0, 0) to (i, j ) in matrix D. In the methodology 
proposed in this paper, for each of the states analysed, both the time series of the number of infected and 
the time series of deaths will be simultaneously taken into account. 

If each of these time series needs to be weighted differently, the following parametric metric, 
𝐷𝐷𝐷𝐷𝐷𝐷∝(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵) is defined: 

𝐷𝐷𝐷𝐷𝐷𝐷∝(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵) = ∝ 𝐷𝐷𝐷𝐷𝐷𝐷(𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴, TS𝐷𝐷𝐵𝐵) + (1−∝)𝐷𝐷𝐷𝐷𝐷𝐷(𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴,𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵) (5) 
that measures the similarity in the evolution of the COVID time series for two states of the United States 
(SA y SB ), TSCA and TSCB represent the time series of the number of infected, TSDA and TSDB represent 
the time series of the number of deaths for the states SA and SB respectively. The parameter α (with 0≤α 
≤1) indicates the relative relevance given to the similarity measure, taking into account the time series of 
infected or deaths.  

2.3 Clustering method for time series 

Clustering is a data mining technique in which similar data are divided into related or homogeneous 
groups, in an unsupervised way, that is, without knowing a priori advanced knowledge of the data. For 
the problem presented in this contribution, working with time series of states of the United States suffering 
COVID-19, given a set of individual time series data, the objective is to group similar time series into the 
same cluster. 

The problem of grouping time series data is formally defined as, given a dataset of N time series 
data Q={X1, X2… XN}, find in an unsupervised way, a partition of Q into K cluster, denoted as C={C1, C2, 
… Ck}, taking into account that homogeneous or similar series are grouped together based on a certain 
similarity/distance measure. In this paper, the parametric metric 𝐷𝐷𝐷𝐷𝐷𝐷∝(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵) is used and there is not 
intersection between clusters, therefore: 

𝑄𝑄 = � 𝐶𝐶𝑖𝑖
𝐾𝐾

𝑖𝑖=1
; with 𝐶𝐶𝑖𝑖 ∩ 𝐶𝐶𝑗𝑗 = ∅ (i ≠ j) (6) 

The methods used in the area of time series clustering [11, 17] are usually based in conventional 
clustering algorithm by substituting standard distance measurements with a more suitable distance to 
compare time series (raw methods) or converting series into normal data and using directly classical 
algorithms (Feature-based methods and models).  

Among the most popular clustering algorithms, the hierarchical clustering and the k-means 
algorithm are widely used in time series clustering. In this contribution the hierarchical clustering is used, 
mainly due to its great visualization power and its simple and intuitive interpretation.  

Hierarchical clustering creates a nested hierarchy of similar time series, according to a pair-wise 
distance matrix of the time series analyzed. The similarity measure 𝐷𝐷𝐷𝐷𝐷𝐷∝(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵) used is therefore 
essential in this time-series clustering process.  
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One of the most relevant characteristics of hierarchical clustering is its generality, since the user 
does not need to provide any parameters such as the number of clusters. As a disadvantage, hierarchical 
clustering has a high computational complexity when the number of elements to classify increases (the 
performance of hierarchical clustering is directly proportional to the squared size of the input data set). 
The methodology used to build the hierarchical clustering is the following: 

1.- Calculate the distance between all the states of the United States using 𝐷𝐷𝐷𝐷𝐷𝐷∝(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵), for a 
certain value of the parameter α. This distance matrix, symmetrical and with the null diagonal, 
will be essential to analyze the similarity between the behavior of the different states. 
2.- Search through the distance matrix in order to select the two most similar elements (in our 
case the time series of two states). 
3.- Join (linkage) these two states to produce a new group that now have at least two objects 
(states). 
4.- Update the distance matrix by calculating the distances between the new cluster and all other 
clusters. 
5.- Repeat step 2 until all cases belong to a group. 
 
The most widely used linkage criteria, such as single, average and complete linkage variants [18], 

were analyzed. Hierarchical clustering can be converted into a partitional clustering, with k cluster, by 
cutting the first k links. 

2.3. Time series modeling  

In this subsection, three models currently used in the bibliography for adjusting the evolution of 
COVID-19 from data will be briefly described.  

 
2.3.1 Logistic model 

Mathematical models are formidable tools for understanding and predicting infectious diseases 
behaviour, being used in numerous viral diseases. A simple and easy-to-understand mathematical model 
is logistic regression analysis, used in modelling COVID-19 [19,20], expressed mathematically as: 

𝑄𝑄𝐿𝐿(t) =
𝑎𝑎

1 + 𝑎𝑎
𝑏𝑏 − 1 𝑒𝑒

−𝑐𝑐(𝑡𝑡−𝑡𝑡0)
 (7) 

 
where QL(t) is the cumulative cases of the logistic model at time t (can be the confirmed or dead patients), 
the parameters a, b and c are fitting coefficients of the model (numerical values of these three parameters 
depend on available data). Logistic models tend to under-estimate the total size of the infected/death 
population at the early stage, so they should provide lower bounds.  
 

2.3.2 Gompertz model 
This model has been frequently used to describe the growth of animals and plants, as well as the number 
or volume of bacteria, virus and cancer cells [21]. In [22] this model was used to forecast the impact lethal 
duration of exposure on the mortality rates of COVID in seven countries (Germany, China, France, United 
Kingdom, Iran, Italy and Spain). It is based on sigmoid models fitted, that starts with an exponential 
growth and gradually decreases its specific growth rate, being a special case of the four parameter 
Richards model, and thus belongs to the Richards family of three-parameter sigmoidal growth models, 
using the following equation: 

𝑄𝑄𝐺𝐺(t) = k𝑒𝑒−log (𝑘𝑘𝑛𝑛)(−𝑞𝑞(𝑡𝑡−𝑡𝑡0) (8) 
where QG(t) is the cumulative cases of the Gompertz model at time t (can be the confirmed or deaths 
patients), n, k and q are fitting coefficients of the model, being q the parameter that modulates how the 
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spreading rate is slowing down.  These these three parameters depend on available data and must be 
adjusted using the available data from the COVID-19 time series, for each of the states of United States 
selected in the clustering process. 

 
2.3.3 SIR Model 

Modelling the spread of infectious diseases usually performed by the categorization of the individuals in 
the population as belonging to one of several distinct compartments, which represent their health status 
with respect to the infection. In this paper the SIR model will be used, having three compartments: S(t) is 
the number of susceptible cases at time t, I(t) the number of infected cases and the function R(t) is the 
number of recovered persons in time t [23].  

In order to understand and forecast the evolution of COVID-19 in the different states of the 
United States, the epidemic can then be analysed as the rates of transfer between these compartments [1], 
mathematically defined by the following non-linear systems of ordinary differential equations: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −
𝛽𝛽
𝑁𝑁
𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=
𝛽𝛽
𝑁𝑁
𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝑡𝑡)

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾(𝑡𝑡)

 (9) 

The parameter 𝛽𝛽 and 𝛾𝛾 are the contact rate and average removal frequency respectively. 
In order to solve the non-linear systems of ordinary differential equations presented in equation 

(9), initial conditions should be defined, being:  
𝑆𝑆(𝑡𝑡0) = (𝑁𝑁 − 𝐼𝐼𝑡𝑡0) ≥ 0; 𝐼𝐼(𝑡𝑡0) = 𝐼𝐼𝑡𝑡0 ≥ 0;𝑅𝑅(𝑡𝑡0) = 𝑅𝑅0 ≥ 0;  (10) 

It follows from equation (9) that:  

𝑆𝑆(𝑡𝑡) = 𝑆𝑆0𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛽𝛽
𝑁𝑁𝑁𝑁

(𝑅𝑅(𝑡𝑡) − 𝑅𝑅0)� (11) 

At the limit time 𝑡𝑡 → ∞, assuming that the number of infected people is practically null, the 
number of susceptible people 𝑆𝑆(𝑡𝑡∞) and recovered persons can be obtained as: 

𝑆𝑆(𝑡𝑡∞) = 𝑆𝑆0𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛽𝛽
𝑁𝑁𝑁𝑁

(𝑅𝑅(𝑡𝑡∞) − 𝑅𝑅0)�

𝑅𝑅(𝑡𝑡∞) = 𝑁𝑁 − 𝑆𝑆0𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛽𝛽
𝑁𝑁𝑁𝑁

(𝑅𝑅(𝑡𝑡∞) − 𝑅𝑅0)�
 (12) 

To model the behaviour of the epidemic using the equations presented in (7), the estimation of 
the parameters 𝛽𝛽 and 𝛾𝛾 and the values of the initial conditions should be obtained from available data. 
 

3. Results and discussion 

To evaluate the performance of the proposed method, several experiments are conducted in this section 
for three values of the parameter α in the distance metric 𝑫𝑫𝑫𝑫𝑫𝑫∝(𝑺𝑺𝑨𝑨,𝑺𝑺𝑩𝑩). The time series of the states of 
the United States has been taken from John Hopkins database. For the computation of the distance metric,  
a threshold Imin has been defined, defining the minimum number of infected people to start the time series, 
being for this study Imin=5  (the number of confirmed was greater than 5). Therefore, the length of the 
time series is different for each state, being on average 114 days (Figure 1). The  index of each of the 
states is presented in Table 1.  

The values of the parameter α analyzed will be {0,0.5,1}. This section of results begins with the value 
of α = 0.5, that is, the information of the confirmed patients time series having the same relevance as the 
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time series of deaths for the final computation of the distance 𝐷𝐷𝐷𝐷𝐷𝐷∝(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵). The distance matrix between 
the different states is presented in Figure 2 (for a better visual representation, the distance matrix has been 
multiplied by a constant and the states are ordered according to the cluster to which each one belongs). 

 
Figure 1 Length of the different time series, corresponding to the states analyzed. 

The smaller the 𝐷𝐷𝐷𝐷𝐷𝐷∝(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵) distance, the darker its representation. States that have a large distance 
(therefore have a low similarity in the behavior of their time series), are represented by yellow color 
 (colorbar on the right side of the figure). To carry out the hierarchical cluster tree, average linkage is 
used. The average distance between all pair of states in any two clusters is defined as: 

𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟, 𝑠𝑠) =
1

𝑛𝑛𝑟𝑟 𝑛𝑛𝑠𝑠
��𝐷𝐷𝐷𝐷𝐷𝐷∝�𝑆𝑆𝑟𝑟𝑟𝑟 , 𝑆𝑆𝑠𝑠𝑠𝑠�

𝑛𝑛𝑠𝑠

𝑗𝑗=1

𝑛𝑛𝑟𝑟

𝑖𝑖=1

 (13) 

Where r and s represent clusters, and nr and ns is the number of states in cluster r and s respectively, being 
Sri the ith state in cluster r and Ssj the jth state in cluster s. The hierarchical cluster tree obtained is 
presented in Figure 3. 

To analyse the accuracy of the obtained hierarchical cluster, the Cophenetic Correlation 
Coefficient (CP) is used [24].  

The cophenetic correlation coefficient has been widely used in clustering problem, both as a 
measure of fitting degree of a classification to a set of data and as a criterion for evaluating the efficiency 
of various clustering techniques. For the problem presented in this contribution CP=0.90 using α=0.5 .  
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Figure 2 Distance or similarity symmetric matrix to characterize the behavior of the time series for the states of the United 
States (parameter α=0.5). The greater the similarity, the smaller the distance between the series (being the diagonal of this 
matrix of zero value). 

 
The Calinski-Harabasz criterion (also denoted as the variance ratio criterion) is used to determine 

the optimal number, defined as: 

CHRK =
(N − K)∑ ni‖mi − m‖2K

i=1
(K − 1)∑ ∑ ‖x − mi‖2x∈ci

K
i=1

 (14) 

where the numerator quantifies the overall between-cluster variance, multiplied by (N-K), where N is the 
number of observations and K is the number of cluster. The denominator quantifies the overall within-
cluster variance. The variable mi is the centroid of cluster i, being m the overall mean of the sample data, 
x is a data point, ci is the ith cluster and ‖mi − m‖2is the Euclidean distance between two vectors. The 
larger the CHRK, the better the data partition (the clustering performed), therefore, the optimal number of 
clusters is obtained maximizing the Calinski-Harabasz criterion with respect to K.  In the problem 
presented in this paper, the optimal number of clusters was 9 (using the parameter α=0.5) with the 
distribution shown in Table 1. 
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Figure 3 Hierarchical cluster tree obtained using as distance metric the 𝐷𝐷𝐷𝐷𝐷𝐷∝(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵) and α=0.5 

 
Table 1. Distribution of the states obtained by means of hierarchical clustering with 9 clusters  (α=0.5 and in bold, the state for 
which the SIR model is calculated) 
Cluster 
Number 

(CN) 
DCluster States (α=0.5) 

1 0.020 
(1) Arkansas, (2) California, (3) Florida, (4) Kansas, (5) Kentucky, (6) Maine, (7) Missouri, 
(8) Nevada, (9) North Carolina, (10) North Dakota, (11) Oklahoma, (12) South Carolina, (13) 
Tennessee, (14) Texas, (15) Utah, (16) Vermont, (17) Washington, (18) Wisconsin 

2 0.033 
(19) Alabama, (20) Arizona, (21) Colorado, (22) Georgia, (23) Indiana, (24) Iowa, (25) 
Minnesota, (26) Mississippi, (27) Nebraska, (28) New Hampshire, (29) New Mexico, (30) 
Ohio, (31) South Dakota, (32) Virginia 

3 0.017 (33) Michigan, (34) Pennsylvania 
4 0.022 (35) Delaware, (36) Illinois, (37) Louisiana, (38) Maryland 

5 0.022 (39) Alaska, (40) Hawaii, (41) Idaho, (42) Montana, (43) Oregon, (44) Puerto Rico, (45) West 
Virginia, (46) Wyoming 

6 0 (47) District of Columbia 
7 0 (48) New Jersey 
8 0.035 (49) Connecticut, (50) Massachusetts, (51) New York 
9 0 (52) Rhode Island 

 where DCluster is the distance between the elements that make up a cluster (its value is zero in the 
case that there is only one element in a cluster).  

It is important to highlight the existence of various clusters with only one state (corresponding 
with District of Columbia, New Jersey and Rhode Island). Cluster 7 (New Jersey, listed as 48 in Table 1) 
links directly to cluster 8 ((49) Connecticut, (50) Massachusetts, (51) New York), which denote  similar 
behaviour between these states. For cluster 6, (47)District of Columbia, the linkage is done for both cluster 
3 ((33) Michigan, (35) Pennsylvania) and cluster 4 ((35) Delaware,(36) Illinois,(37) Louisiana,(38) Maryland). 
There are two large clusters (cluster 1 and cluster 2) that contain 18 and 14 states respectively, performing 
a direct linkage (meaning that these states have analogous performance). Its linkage is done through 
cluster 5, which contains eight states. 

The similarities and distances between the different states and clusters obtained can be analysed 
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using the results presented in the hierarchical clustering (Figure 3) and distance matrix (Figure 2). 
Once the hierarchical clustering of the different states of the United States has been established 

and performed, it is relevant to model the time series (both infected and dead patients), using the models 
proposed in Section 2.3 (Logistic, Gompertz and SIR models). Tables 2 and 3 present the parameters of 
the Logistic and Gompertz models for all the states of the United States, for the time series of confirmed 
patients and deceased patients of COVID-19, respectively. The variable Adjrsquare is degree-of-freedom 
adjusted coefficient of determination and the RMSE represents the Root Mean Squared Error (standard 
error, the difference between the actual data and the data obtained by the model) 
 
 
Table 2. The prediction epidemic model results of COVID-19 for confirmed cases in all the states of United States, using  Logistic 
and Gompertz model (the similarity metric  α=0.5)  

Data: Confirmed cases Logistic model Gompertz model 
Cluster State a b c Adjrsquare RMSE k n q Adjrsquare RMSE 

1 

(1) Arkansas  3,8E+05 475 0,035 0,995 335 1,5E+08 356,1 0,003 0,995 335 
(2) California  2,7E+05 861 0,043 0,994 4562 6,5E+05 33,12 0,014 0,997 3101 

(3) Florida  2,1E+05 4696 0,032 0,962 5692 4,4E+05 2604 0,010 0,969 5168 
(4) Kansas  1,2E+04 98 0,077 0,993 369 1,3E+04 0,2023 0,043 0,996 280 

(5) Kentucky  1,5E+04 255 0,055 0,992 426 1,9E+04 28,77 0,026 0,997 241 
(6) Maine  3505 140 0,047 0,993 79 4777 69,93 0,021 0,996 61 

(7) Missouri  1,6E+04 646 0,053 0,981 742 1,9E+04 180 0,028 0,991 504 
(8) Nevada  1,7E+04 590 0,039 0,975 661 2,6E+04 267,5 0,017 0,983 536 

(9) North Carolina  1,1E+05 816 0,043 0,997 911 6,6E+05 369,3 0,010 0,999 646 
(10) North Dakota  3462 46 0,068 0,998 59 4133 1,891 0,034 0,999 44 

(11) Oklahoma  1,4E+04 470 0,038 0,970 553 2,3E+04 228 0,015 0,979 468 
(12) South Carolina  4,2E+07 907 0,031 0,982 978 4,9E+08 699,2 0,003 0,981 1005 

(13) Tennessee  4,4E+04 919 0,045 0,990 1102 7,2E+04 299,6 0,018 0,996 745 
(14) Texas  2,6E+05 3377 0,037 0,985 4299 1,0E+06 1767 0,010 0,989 3683 
(15) Utah  2,3E+04 516 0,039 0,988 495 5,0E+04 263,6 0,013 0,993 383 

(16) Vermont  1013 24 0,118 0,965 72 1043 0,9673 0,073 0,977 58 
(17) Washington  2,8E+04 207 0,048 0,983 1286 3,4E+04 0,4778 0,025 0,992 906 
(18) Wisconsin  2,9E+04 522 0,054 0,998 347 4,4E+04 132,9 0,022 0,999 308 

2 

(19) Alabama  5,6E+04 996 0,041 0,993 779 1,9E+05 585,7 0,011 0,996 605 
(20) Arizona  2,9E+07 121 0,041 0,992 1313 4,5E+08 29,18 0,004 0,988 1547 

(21) Colorado  3,0E+04 633 0,066 0,996 741 3,4E+04 42,47 0,037 1,000 249 
(22) Georgia  6,6E+04 1683 0,050 0,982 2679 8,3E+04 342,5 0,024 0,991 1882 
(23) Indiana  4,3E+04 752 0,064 0,995 1106 5,0E+04 43,27 0,034 0,999 413 
(24) Iowa  2,6E+04 202 0,072 0,995 693 3,1E+04 0,5527 0,038 0,999 361 

(25) Minnesota  3,4E+04 67 0,082 0,999 367 4,0E+04 2,13E-05 0,043 0,999 440 
(26) Mississippi  2,6E+04 630 0,051 0,993 609 3,7E+04 197,1 0,022 0,998 364 
(27) Nebraska  1,7E+04 52 0,083 0,996 410 2,0E+04 2,67E-05 0,047 0,999 199 

(28) New Hampshire  5804 70 0,064 0,998 102 6788 1,814 0,033 1,000 46 
(29) New Mexico  1,0E+04 172 0,064 0,995 238 1,2E+04 12,61 0,033 0,999 94 

(30) Ohio  4,6E+04 1056 0,061 0,992 1368 5,4E+04 129,1 0,032 0,998 693 
(31) South Dakota  6370 113 0,067 0,991 218 7261 5,695 0,037 0,997 127 

(32) Virginia  6,4E+04 579 0,065 0,999 816 8,1E+04 14,89 0,031 0,999 545 

3 (33) Michigan  6,1E+04 2378 0,078 0,986 2615 6,4E+04 300 0,050 0,996 1411 
(34) Pennsylvania  8,4E+04 1475 0,076 0,992 2811 9,0E+04 27,66 0,045 0,999 1178 

4 

(35) Delaware  1,0E+04 140 0,078 0,997 211 1,1E+04 1,44 0,045 0,999 95 
(36) Illinois  1,4E+05 54 0,075 0,999 1402 1,7E+05 6,58E-09 0,034 0,998 2456 

(37) Louisiana  4,7E+04 3258 0,057 0,955 3403 5,1E+04 1178 0,036 0,972 2685 
(38) Maryland  6,7E+04 682 0,068 0,998 1129 7,9E+04 9,668 0,035 1,000 513 
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5 

(39) Alaska  1433 101 0,026 0,913 61 1810 77,31 0,012 0,922 58 
(40) Hawaii  665,4 8 0,144 0,967 46 678,6 0,01096 0,091 0,973 42 
(41) Idaho  4488 404 0,039 0,934 307 5097 245,7 0,023 0,949 270 

(42) Montana  550 46 0,094 0,870 69 579,6 26,46 0,056 0,894 62 
(43) Oregon  9863 288 0,036 0,972 358 1,6E+04 132,1 0,015 0,980 301 

(44) Puerto Rico  1,1E+04 237 0,042 0,993 173 3,5E+04 150,1 0,012 0,995 154 
(45) West Virginia  2752 171 0,050 0,980 114 3255 87,19 0,027 0,989 85 

(46) Wyoming  1252 60 0,051 0,980 55 1497 23,92 0,027 0,989 41 

6 (47) District of 
Columbia  1,0E+04 275 0,072 0,997 184 1,1E+04 33,72 0,040 1,000 84 

7 (48) New Jersey  1,6E+05 1926 0,095 0,994 4966 1,7E+05 1,875 0,061 0,999 1689 

8 
(49) Connecticut  4,4E+04 811 0,084 0,994 1313 4,6E+04 11,39 0,052 0,999 468 

(50) Massachusetts  1,0E+05 50 0,088 0,998 1879 1,2E+05 1E-08 0,041 0,996 2898 
(51) New York  3,7E+05 4777 0,100 0,994 11690 3,8E+05 5,836 0,065 0,999 4212 

9 (52) Rhode Island  1,4E+04 58 0,088 0,993 480 1,5E+04 1E-05 0,054 0,997 308 
 
Table 3. The prediction epidemic model results of COVID-19 for death cases in all the states of United States, using  Logistic 
and Gompertz model (the similarity metric α=0.5) 

Data: Confirmed cases Logistic model Gompertz model 
Cluste

r State a b c Adjrsquare RMSE k n q Adjrsquare RMSE 

1 

(1) Arkansas  333,7 8,26 0,043 0,979 10,31 596,8 3,702 0,016 0,985 8,53 
(2) California  5833 7,48 0,061 0,995 137,9 7081 1E-07 0,031 0,999 63,76 

(3) Florida  3236 39,27 0,064 0,992 102,2 3764 0,740 0,034 0,998 52,04 
(4) Kansas  244,5 3,47 0,082 0,989 9,856 260 0,019 0,050 0,996 5,70 

(5) Kentucky  531,9 8,38 0,067 0,990 19,01 595,6 0,214 0,038 0,997 10,57 
(6) Maine  103,1 2,63 0,070 0,984 4,758 112 0,174 0,042 0,993 3,23 

(7) Missouri  925,6 10,06 0,080 0,994 27,36 1003 0,038 0,047 0,998 14,76 
(8) Nevada  481,5 7,32 0,071 0,993 14,59 528,7 0,135 0,041 0,999 6,40 

(9) North Carolina  1347 11,19 0,063 0,993 36,67 1662 0,126 0,031 0,998 19,83 
(10) North Dakota  88,54 0,79 0,066 0,994 2,225 117,5 0,036 0,030 0,991 2,63 

(11) Oklahoma  357,4 5,55 0,083 0,992 12,26 378 0,047 0,051 0,998 5,68 
(12) South Carolina  684,9 9,95 0,062 0,992 20,85 825,8 0,496 0,032 0,997 12,72 

(13) Tennessee  601,3 15,78 0,048 0,982 23,1 795 4,147 0,022 0,990 17,01 
(14) Texas  2284 30,13 0,062 0,993 63,3 2739 1,153 0,032 0,998 31,31 
(15) Utah  149,5 1,90 0,060 0,994 3,733 192,6 0,123 0,028 0,998 2,24 

(16) Vermont  54,57 0,12 0,159 0,991 2,136 56 2E-09 0,093 0,989 2,35 
(17) Washington  1216 2,59 0,068 0,994 37,77 1321 6E-09 0,039 0,999 18,90 
(18) Wisconsin  783,5 22,35 0,057 0,988 28,32 921,1 4,154 0,030 0,995 17,71 

2 

(19) Alabama  886,9 16,27 0,063 0,994 22,81 1083 1,732 0,031 0,998 11,94 
(20) Arizona  1572 1,39 0,059 0,995 33,22 2226 5E-07 0,025 0,998 21,40 
(21) Colorado  1661 17,56 0,075 0,996 41,15 1816 0,067 0,043 0,999 22,06 
(22) Georgia  2700 46,68 0,059 0,989 94,72 3183 2,893 0,031 0,997 54,56 
(23) Indiana  2339 22,94 0,075 0,995 59,65 2581 0,075 0,043 1,000 20,27 
(24) Iowa  731,4 3,00 0,078 0,999 6,828 865,2 0,0007 0,040 0,999 10,04 

(25) Minnesota  1469 6,88 0,073 0,997 27,64 1754 0,003 0,037 1,000 11,26 
(26) Mississippi  1055 14,02 0,064 0,997 18,13 1327 0,94 0,031 0,999 9,70 
(27) Nebraska  345,8 2,20 0,055 0,983 10,7 694,2 0,25 0,019 0,985 10,26 

(28) New Hampshire  368,7 0,18 0,090 0,992 11,47 498,9 5E-09 0,038 0,992 11,47 
(29) New Mexico  485,8 3,39 0,074 0,997 9,983 569,4 0,008 0,039 1,000 3,67 

(30) Ohio  2790 30,37 0,071 0,997 55,6 3209 0,39 0,038 1,000 19,92 
(31) South Dakota  86,66 0,56 0,072 0,993 2,449 104,7 0,001 0,037 0,994 2,18 

(32) Virginia  1631 7,50 0,084 0,994 48,27 1781 7E-05 0,049 0,998 27,42 
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3 (33) Michigan  5847 80,40 0,097 0,994 174,1 6076 0,219 0,061 0,999 57,16 
(34) Pennsylvania  6381 27,86 0,087 0,997 143,5 6894 0,0001 0,051 0,999 69,05 

4 

(35) Delaware  460,4 4,04 0,076 0,993 14,4 522,5 0,015 0,041 0,997 9,84 
(36) Illinois  6828 2,87 0,072 0,998 119,4 8880 3E-09 0,031 0,998 96,11 

(37) Louisiana  2880 69,90 0,083 0,991 102,2 3030 2,864 0,052 0,998 44,98 
(38) Maryland  3078 16,57 0,078 0,996 68,37 3438 0,0023 0,044 1,000 18,21 

5 

(39) Alaska  11,28 0,39 0,083 0,942 1,021 11,85 0,051 0,051 0,949 0,97 
(40) Hawaii  17,12 0,04 0,150 0,990 0,718 17,51 2E-09 0,088 0,989 0,76 
(41) Idaho  84,15 1,90 0,098 0,986 3,909 87,24 0,040 0,063 0,994 2,51 

(42) Montana  18,08 0,54 0,103 0,959 1,37 18,8 0,065 0,062 0,965 1,28 
(43) Oregon  180,5 2,92 0,069 0,988 7,432 197,5 0,058 0,040 0,995 4,68 

(44) Puerto Rico  144,5 4,60 0,084 0,990 5,246 151,7 0,40 0,053 0,997 2,71 
(45) West Virginia  86,5 0,74 0,099 0,982 4,604 90,88 6E-05 0,062 0,989 3,63 

(46) Wyoming  1,004 0,00 0,548 0,968 0,082 1,04 2E-09 0,102 0,885 0,16 

6 (47) District of 
Columbia  525,3 5,73 0,088 0,997 11 564,4 0,0158 0,052 1,000 3,96 

7 (48) New Jersey  1E+04 86,32 0,090 0,993 422,3 1E+04 0,0051 0,055 0,998 229,70 

8 
(49) Connecticut  4175 30,56 0,095 0,996 112,4 4375 0,001 0,059 1,000 35,89 

(50) Massachusetts  7666 1,34 0,092 0,997 178,8 9654 3E-09 0,036 0,993 264,50 
(51) New York  3E+04 179 0,111 0,993 1048 3E+04 0,0002 0,073 0,999 475,90 

9 (52) Rhode Island  0,667 1E-5 0,394 0,047 1,107 0,644 2E-14 0,178 0,039 1,11 
 

Finally, the SIR model is calculated for the different representative states of each of the clusters 
obtained using the parameter α=0.5 (taking into account simultaneously both the number of infected and 
dead patients), being the parameters presented in Table 4. For the SIR model, the following variables are 
defined: CN is the cluster number, ND is the final number of days take into account for analysing the 
specific time series, 𝛽𝛽  and 𝛾𝛾  are average contact and removal frequency used in equation (9). The 
parameter R is the reproduction number, i.e. number of people infected by a person with COVID-19, 
defined as: 

𝑅𝑅 =
𝛽𝛽
𝛾𝛾
�1 −

𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼

𝑁𝑁
� ;  𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼 = � 𝐼𝐼(𝑡𝑡)

𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒

𝑡𝑡=𝑡𝑡0

 (15) 

Being 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼  the total number of people infected at the end of the pandemic (tend) and N is the 
same constant presented in equation (9) (amount of susceptible population before the outbreak of COVID-
19 in a specific state). R0 is the basic reproduction number, defined as the expected number of secondary 
cases produced by a single infection in a completely susceptible population and defined by: 

𝑅𝑅0 =
𝛽𝛽
𝛾𝛾

 (16) 

 The variable TEE is the time estimation of the SIR model in which the number of infected 
patients is very small, and therefore, it could be affirmed that the pandemic in that state would have ended. 
NDE denotes the number of days that the infection would have lasted in a given state. The prediction of 
the SIR model for the different state representative of the cluster obtained, analysing the evolution of total 
confirmed cases and novel cases per day, is presented in Figure 4. 
 
Table 4. SIR parameters and predictions for representative state in each cluster. 

CN State ND 𝜷𝜷 𝜸𝜸 I0 R0 R TEE NDE 
1 California 148 1.615 1.576 36 1.025  0.995 26-nov-2020 342 
2 Nebraska 110  0.173  0.083 25 2.075  0.487  08-Oct-2020 245 
3 Pennsylvania 111  0.126  0.055 1653 2.297  0.399  17-Nov-2020 297 
4 Illinois 148  0.146  0.065 33 2.228  0.447  12-Nov-2020 324 
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5 Oregon 117  0.172  0.15 110 1.144 1.036  05-Apr-2021 445 

6 District of 
Columbia 101  0.17  0.106 192 1.605  0.619  07-Oct-2020 238 

7 New Jersey 112  0.184  0.078 1011 2.354  0.322  10-Oct-2020 247 
8 New York 116  0.187  0.075 2305 2.504  0.28  17-Oct-2020 257 
9 Rhode Island 117  0.174  0.076 23 2.284  0.372  16-Sep-2020 230 

4. Conclusions 

A powerful tool for the analysis of time series is the grouping through clustering. Clustering time series 
is usually an unsupervised process, with the aim of finding behavioral similarities between the different 
time series that are analyzed. This article has proposed a parametric metric, based on the dynamic time 
warping distance, in order to measure the distance or similarity between time series corresponding to 
different states in the United States, taking simultaneously into account the behavior of the number of 
COVID-19 confirmed cases and deceased persons due to COVID-19 . The proposed parametric metric, 
named 𝐷𝐷𝐷𝐷𝐷𝐷∝(𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵), is robust to the different lengths of data sequences (different beginning of the 
epidemic in the different states of the United States). 
 Using the Calinski-Harabasz criterion, the optimal number of clusters in which the different 
states of United States can be grouped was obtained, taken as value of α = 0.5 (same relevance for the 
time series of confirmed and death patients). A total of 9 heterogeneous clusters were found, in the sense 
that there are clusters within a large number of states (there are two large clusters, which encompass 18 
and 14 states) and other clusters with only one state (indicating that their behavior has been unique, as 
they do not have excessive similarities with the rest of states). 
 Logistic, Gompertz and SIR mathematical models have been analyzed for the prediction and 
modeling of the evolution of the epidemic in the different states. For each of the clusters obtained, a 
representative state is selected and the SIR model was computed. This mathematical model, widely used 
in the bibliography, allows prediction of the evolution in a given state of the evolution of number of 
susceptible, infected and recovered patients, being this evolution and the estimate of the final size of the 
COVID-19 epidemic very relevant for the health authorities. 
 With the proposed hierarchical clustering procedure, it is possible to identify and summarize 
interesting patterns and correlations in the underlying data of the time series of the states of United States 
suffering COVID-19 and therefore determine similar behaviors that different states may have. 
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Figure 4 Prediction of the SIR model for the different states of the cluster obtained, analysing the evolution of total 
confirmed cases and novel infected cases per day.  
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