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A B S T R A C T

Smart cities and villages present a plethora of opportunities for fusing and managing multi-source data.
However, in the analysis of mobility patterns, the use of only one data source (i.e., road sensors) without
considering other contextual data sources, limits the understanding of the process. To address this gap, we
propose a pipeline that integrates multiple data sources, providing valuable information for pattern extraction,
mainly based on vehicle mobility behavior and provenance. Our research also highlights the critical role of
selecting the appropriate normalization algorithm to scale input features from heterogeneous data sources,
which has not received sufficient attention in the literature. We conducted our analysis using data from four
License Plate Recognition (LPR) cameras, spanning nine months, and incorporating several databases that
include provenance, gross income, and holiday information, resulting in a dataset of over 50,000 vehicles.
Using this data and our clustering pipeline, we identified various traffic patterns among residents and visitors
in a rural touristic area. Our findings assist data analysts in choosing algorithms for analyzing heterogeneous
datasets. Moreover, policymakers could use our results to adjust the resources, such as new parking zones.
. Introduction

Currently, there are 13.4 billion Internet of Things (IoT) devices.
tatista predicted that this figure will increase to 29.4 billion by 2030.1
hese devices form an interconnected network that produces extensive
ata in numerous social domains. Access to a large volume of data
ollected by various sensors makes it possible to supervise and manage
ifferent aspects of society, including evacuation systems, smart envi-
onments, and transportation [1–4]. This trend boosted cities to deploy
ensor networks and IoT platforms, for example, to monitor the flow
f vehicles on their roads. The data obtained by these sensors have led
o numerous studies in several areas, such as traffic behavior [5–8].
xtracting and combining information from multiple sources, not only
ensor data, but also information stored on the Internet, can lead to a
etter understanding of the problem to be solved. For instance, traffic
n cities is partially dependent on local holidays. Some approaches have
nhanced the analysis of traffic data (from vehicle counter sensors) with
ontext information to understand the traffic conditions on roads using
vents data, parking information, or weather conditions [9,10].

However, most solutions using License Plate Recognition (LPR)
ensors [11,12] did not use additional contextual datasets. Only few
orks combine LPR with location information [13,14], but none of

hem include other contextual information. They also did not explore
alculated variables that enhance the raw data, such as distance trav-
led or visit frequency. Furthermore, in traffic analysis works [15],
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E-mail address: danibolanos@ugr.es (D. Bolaños-Martinez).

1 https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

and in ML pipelines, in general, [16,17], the normalization stage was
understudied. They usually apply one normalization method without
studying the suitability of that method. Moreover, the smart city trend
had yet to reach villages, as the solutions found for large cities did
not always apply directly to small villages. For example, solutions
monitoring traffic behavior in large cities with numerous streets and
several traffic lines in some avenues do not extrapolate to villages with
mostly pedestrian streets and just one road with a single lane in each
direction. Additionally, even if we try to add some explanation to the
behavioral cluster in smart villages, the residency of vehicle owners
is not straightforward. Recent movements of people relocating from
cities to villages or spending extended periods in second residences
have made actual residency information unclear in rural areas.

The contribution of this article was twofold. First, we explored
the integration of LPR sensor data with contextual information from
multiple sources (such as holidays, provenance, or demographic in-
formation). One of these sources incorporated data on the origin of
each vehicle, which could enhance the results by adding the economic
status of the region of origin or the distance traveled to reach the
area. Second, we conducted an exploration of different normalization
algorithms. To achieve that, we utilized various visualization tools to
determine the optimal algorithms based on empirical tests.

In particular, this paper proposes a clustering pipeline based on
vehicle behavior in small villages, with information from license plate
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recognition (LPR) devices and contextual information, such as owners’
residence location. We applied the study directly to each individual
(vehicle) and defined their spatio-temporal behavior based on their
spatial frequencies of visitation. To that end, we fused several datasets
and calculated new valuable variables such as the time spent in the
area; total distance traveled there, etc. Our pipeline comprised eight
steps: data collection, cleaning, fusion, normalization, dimensionality
reduction, clustering, evaluation, and visualization. We applied the
proposed pipeline to a touristic rural region, with the problems men-
tioned above of a single small road and the lack of reliable residency
information. We paid special attention to optimizing the normalization
algorithms to our data. Furthermore, we analyzed the results with
residential information and identified the variables that had the most
influence on each cluster. With this information, we explained the
behavior patterns of each cluster.

Our results are useful for policymakers to improve tourism policy
and bring benefits to the area. For example, policymakers could tailor
parking fees in the area by identifying visitor clusters and their average
stay duration. They could also designate schoolyards or streets for
parking during peak tourist periods to reduce road congestion. This
work is also useful for developers and data scientists to formalize and
choose the clustering and normalization algorithms for their analyses.

The remainder of the paper is organized as follows. In Section 2
related work is summarized. Section 3 presents the theoretical bases
discussed throughout the paper, describing the main normalization and
clustering algorithms and metrics. Section 4 presents the unsupervised
learning pipeline, including a background of the use case, the sensor
setup, and the different sources of information used for the construction
of the dataset, and Sections 5 and 6 show the analysis and discussion
of the results. Finally, Section 7 concludes the paper.

2. Related work

The concept of information fusion has been applied to the specific
problem of tourism flows and smart cities. These approaches used data
analysis techniques to combine multiple sources of information, pro-
viding valuable insights for developing smart tourism applications in
cities and designing sustainable environments. Smart city applications
were built on top of data, and data fusion provided a wide variety
of techniques to improve the input data for an application [18]. Ex-
amples of these techniques included data association, state estimation,
unsupervised machine learning, or statistical inference. For example,
combining different tourist information was used to predict the tourist
flow with graph neural networks [19]. The data used in the solution
were composed of tourist infrastructure information, such as camping
and tourist housing from OpenStreetMap and the National Statistics In-
stitute (Spanish: Instituto Nacional de Estadistica, INE); reports released
by the Spanish Ministry of Transportation (SMT); and human mobility
data, including the number of movements between administrative areas
per hour extracted from geotagged Twitter data. Most of these appli-
cations were focused either on user recommendations or tourist flow,
but little attention was paid to studying the individual behavior of the
tourist inside an area (for a detailed survey, see [18,20]).

The increasing deployment of IoT platforms in smart cities has
boosted the proliferation of sensors, including those that monitor traf-
fic. These sensor data allow us to analyze vehicle behavior. The most
common works in this area were to analyze mobility patterns in order
to improve traffic congestion [5,7], and to aggregate vehicles to obtain
useful conclusions for urban management [6,21].

To infer mobility patterns from raw data, unsupervised ML has
been widely adopted. Clustering analysis was used to detect behavioral
patterns in the field of pedestrian-vehicle mobility, and in the field
of indoor-outdoor (IO) positioning systems [22]. Algorithms such as
GaussianMixture were used to perform segment analysis, where indi-
viduals were defined by their movement routines, and the data was
related to the frequency and period of stay in different areas. From the
2

movement information provided by smart cards, several papers applied
this algorithm to identify market segments based on temporal travel
patterns [23], defined tourist patterns based on frequency and areas
where transactions were made [24], or identified changes in functional
areas of cities over time [25].

Some studies highlighted the importance of employing normaliza-
tion techniques, such as in the context of time series analysis [26,27].
In the field of pattern extraction, and specifically in other clustering
frameworks, some works use one normalization [15–17]. However, to
the best of our knowledge, no work has studied the influence of using
different normalization algorithms.

Few works related to clustering analysis in mobility use LPR cam-
eras as the main source of information [28]. For example, [28] analyzed
commuting patterns by constructing the spatio-temporal similarity ma-
trix using the Dynamic Time Warping (DTW) algorithm and subse-
quently analyzed the characteristics of commuting patterns with the
density-based spatial clustering of applications with noise (DBSCAN)
algorithm. Similarly, [12] analyzed the change in traffic patterns during
the pandemic using K-Means. However, none of these works combined
LPR data with vehicle provenance nor studied the touristic behavior of
the vehicle.

3. Fundamentals

In clustering pipelines, besides choosing the right algorithm and
evaluation metrics, sometimes other analyses are needed. For example,
to analyze attributes in different scales, such as nights ranging from 0
to 269 and gross income per capita from 12,638 to 79,327, we had to
normalize them first. Sometimes, it is worth reducing the dimensional-
ity to simplify the data matrix and facilitate their understanding by the
human mind [29]. The most used dimensionality reduction algorithm
is Principal Component Analysis (PCA), and it can be used with at least
five variables and five samples [30]. Data distributions come in various
shapes (scattered, curved, flat), and understanding this geometry can
help choose appropriate clustering algorithms.

3.1. Main clustering algorithms

Unsupervised machine learning automates the knowledge discovery
process without needing labeled or previously classified data [18]. Most
taxonomies group the algorithms into at least five categories [31],
although we have identified seven, as some of them did not fit in the
5 elements taxonomy:

Partitional Clustering: decomposes a dataset into distinct clusters
through an iterative process of distance calculations between individu-
als.

Hierarchical Clustering: constructs clusters in either an agglom-
rative or divisive manner by adding or removing individuals, respec-
ively.

Density-based Clustering: identifies dense regions of objects in the
ata space separated by low-density regions.

Distribution-based Clustering: creates clusters based on the prob-
bility that each individual belongs to the same distribution.

Grid-based Clustering: divides the space into a finite number of
ells.

Message-Passing Clustering: creates clusters by exchanging mes-
ages between different data points until convergence.

Spectral Clustering: uses the spectral radius of a similarity matrix
f the data in a multidimensional problem.

Table 1 shows the main algorithms in each category described in
his section, and examples of applications for each algorithm, in the
ield of mobility pattern analysis in the last three years (2020–2023).
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Table 1
Examples of works using clustering to infer mobility pattern in 2020–2023.

Clustering category Algorithms Application Related work

Partitional K-Means, MiniBatchKMeans, ISODATA Target classes, analyze patterns [12,15,32]
Hierarchical Agglomerative clustering, Divisive clustering, BIRCH Behavioral patterns, feature extraction [33–35]
Density-based DBSCAN, OPTICS, HDBSCAN, MeanShift Complexity reduction, anomaly detection [7,28,36,37]
Distribution-based Gaussian Mixture Density estimation, outlier detection [23–25]
Grid-based STING, WaveCluster, CLIQUE Spatial-based segmentation Not found
Message passing-based Affinity Propagation, IWC-KAP, ScaleAP Clustering indoor location patterns [38–40]
Spectral Spectral Clustering, ASC Graph partitioning, image segmentation [41–43]
3.2. Clustering performance

The three most popular internal evaluation metrics in the liter-
ature [44] are silhouette coefficient, Calinski–Harabasz score, and
Davies–Bouldin index. All of these metrics are based on distances
between data points and are commonly used to evaluate the effec-
tiveness of virtually any clustering algorithm, working especially well
in algorithms that work with distances, such as those included in the
hierarchical, partitional, or spectral categories.

These distance-based metrics may not be suitable for algorithms
that use the Expectation Maximization (EM) method, such as the Gaus-
sianMixture algorithm. This is because the EM method models the
data using probability distributions rather than distances between data
points. Therefore, we might get some imprecision when comparing the
performance of algorithms of this type if we use these metrics. Instead
of using distance-based metrics, distribution-based algorithms typically
use statistical criteria to determine the optimal number of clusters or
components that best fit the data [45]. One of these metrics is the
information criterion (IC), which measures how well a statistical model
fits the data distribution while penalizing overfitting [46].

𝐼𝐶(𝑘) = −2 ⋅ 𝐿(𝜃̂𝑘) + 𝑐𝑁 ⋅ 𝑘 (1)

here 𝜃̂𝑘 is the estimator of the parameter vector relating to the mixture
odel with order 𝑘, 𝐿 the log-likelihood function, 𝑁 the number of

bservations, and 𝑐𝑁 an increasing function of 𝑁 . The optimal number
f clusters is the one that minimizes the IC.

The following are two of the best-known variations of information
riteria used in the literature [47]:

• Akaike information criterion (AIC): AIC is a particular specifi-
cation of the general information criterion (IC), in which 𝑐𝑁 = 2.
This criterion is known to overestimate the order of the model.

𝐴𝐼𝐶(𝑘) = −2 ⋅ 𝐿(𝜃̂𝑘) + 2 ⋅ 𝑘 (2)

• Bayesian information criterion (BIC): Tries to overcome the
overestimate of AIC. The penalty term depends on the sample size
𝑁 , so as 𝑁 → ∞ the penalty is larger and does not overestimate
the order of the mixture as much as AIC does [48].

𝐵𝐼𝐶(𝑘) = −2 ⋅ 𝐿(𝜃̂𝑘) + log𝑁 ⋅ 𝑘 (3)

.3. Principal component analysis

The Principal Component Analysis (PCA) method condenses the
nformation provided by multiple variables (𝑋1,… , 𝑋𝑝) from a given
ample into a smaller number of variables, finding a number 𝑠 of
nderlying factors that explain approximately the same variance as the
riginal variables with 𝑠 < 𝑝. Each of the new variables (𝑍1,… , 𝑍𝑝)

are called principal components, which are linear combinations of the
original variables. We define each 𝑍𝑖 as:

𝑍𝑖 = 𝛷1𝑖𝑋1 +𝛷2𝑖𝑋2 +⋯ +𝛷𝑝𝑖𝑋𝑝 (4)

Each 𝛷 represents the weight or importance that each variable 𝑋𝑖
as in each 𝑍𝑖 and, explains the information collected by each of the
rincipal components [49]. It is advisable to apply prior normalization
o the data, since this method is highly sensitive to variables of different
cales. Furthermore, the PCA only works with numerical data, so it is
ecessary to perform a previous preprocessing on categorical variables
3

hat may exist in the input dataset [50].
3.4. Normalization

Normalization compresses or expands the values of each variable to
fit them in the same range of values, normally [0,1], or [−1, 1], making
them comparable in subsequent processes (PCA or ML algorithms).
The choice of the normalization algorithm usually depends on the
specific application and the dataset used, as different methods may
yield different results and interpretations. For example, in clustering
analysis, normalization can be particularly important for comparing
similarities between characteristics based on certain distance measures.
Among the most commonly used normalization methods are min–max
normalization and z-score standardization [51,52]. We have also tested
two other methods that are commonly used in the literature [53,54]
and occasionally produce better results than min–max or z-score.

1. Min–max normalization: Uses the minimum and maximum in
the attribute domain to normalize the values to the interval, [0, 1]
keeping the distances for each data point 𝑋.

𝑋′ =
𝑋 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
(5)

2. Z-score standardization: scales the values so that the mean (𝜇)
of the data domain is 0 and the standard deviation (𝜎) is equal
to 1.

𝑋′ =
𝑋 − 𝜇

𝜎
(6)

3. Median Absolute Deviation (MAD) normalization: normalizes
the data such that the median of each attribute is 0 and the
median absolute deviation is equal to 1.

𝑋′ =
𝑋 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)

𝑀𝐴𝐷(𝑋)
(7)

Where 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) is the median of the values in attribute 𝑋, and
𝑀𝐴𝐷(𝑋) is the median absolute deviation of 𝑋.

4. 𝓁2 normalization: normalizes the data by dividing it by its
Euclidean norm. This ensures that all feature vectors have the
same length and is commonly used in machine learning and
information retrieval. The formula for 𝓁2 normalization is shown
below:

𝑋′ = 𝑋
‖𝑋‖2

(8)

Where ‖𝑋‖2 is the Euclidean norm of, 𝑋 given by
√

∑𝑛
𝑖=1 𝑋

2
𝑖 .

3.5. Dataset geometry

In data analysis, we refer to flat and non-flat geometry as the mea-
surement of distances between points by Euclidean or non-Euclidean
geometric methods, respectively. In flat geometry, the distance is mea-
sured following a straight line between two points, while in non-flat
geometry, the distance is measured following a curve. We can detect
whether our data follow flat or non-flat geometry by representing the
data in a scatter plot, where each point represents an individual in
the population. Visually we can only represent 3 dimensions, which
normally are the most representative variables of the cluster, or the
firsts principal components of a dimensional reduction algorithm. If
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Fig. 1. Overview of the clustering pipeline.
Table 2
Configuration of each stage of the pipeline with the values used in this study.

Stage Configuration parameters Experimental values

Data Collection Data collection from different sources Storage in own BD and external IoT platform

Data Cleaning Recovery and treatment of lost data 1. License plate matching
2. Recover movement of vehicles not detected by any camera in their total route

Data Fusion Fusion of information data and feature extraction Detailed process in Table 3

Preprocessing Normalization methods Min–max normalization, z-score standardization, MAD normalization, 𝓁2

normalization

Dimension reduction Dimension reduction techniques Principal Component Analysis (PCA)

Clustering Clustering algorithms K-Means, MiniBatchKMeans, Agglomerative clustering, BIRCH, DBSCAN,
HDBSCAN, MeanShift, Gaussian Mixture, Spectral Clustering

Evaluation Evaluation metrics Silhouette, Davies–Bouldin, Calinski–Harabasz, number of clusters, Bayesian
Information Criterion,Akaike Information Criterion

Visualization Visualization plots box plot, scatter-plot, elbow method, PCA variance plot
the resulting figure shows a roughly circular, rectangular, or elliptical
shape, the data are likely to follow a flat geometry. However, if the
figure has an irregular, twisted, or folded shape, the data are likely
to follow a non-flat geometry. From different studies [55], it has
been found that partitional or distribution category clustering algo-
rithms work best with data cases that follow a flat geometry, while
density-based and message-passing algorithms work best with non-flat
geometries.2

4. Clustering pipeline

We designed an information fusion pipeline to analyze vehicle
behavior that divides the analysis into different stages. In general,
the pipeline begins with extracting and collecting data from hetero-
geneous sources and finally produces a grouping result from a clus-
tering model based on the decisions made along the pipeline (see in
Fig. 1). Table 2, describes the different stages proposed in the pipeline
and the experimental values considered in each stage. The pipeline
consists of the following stages: data collection, data cleaning, data
fusion, preprocessing, dimension reduction, clustering, evaluation, and
visualization.

4.1. Background

Recent years have seen a growing trend of urban exodus, with many
people leaving the cities searching for a quieter life. This trend has been

2 https://scikit-learn.org/stable/modules/clustering.html
4

boosted by COVID-19 [56]. With the rise of telecommuting, this trend
is likely to continue in the future. These migratory flows include both
foreign immigrants and the arrival of resident citizens from other parts
of the country [57]. In our use case, we take data from 3 small villages
in the Alpujarra, an area close to a national park, and attracting tourists
from diverse backgrounds [58]. It is especially favored by local and
foreign retirees and ‘‘neo-rurals’’, individuals drawn by environmental
concerns or a quieter lifestyle, often becoming residents for extended
periods [59]. These groups, referred to as ‘‘false residents’’ [60] or non-
registered residents, maintain their vehicle registrations from previous
residences. Understanding the patterns of the vehicles in the zone
is the first step to generating suitable policies to preserve the area’s
sustainability.

4.2. Data collection

The main source of information for our work was the vehicle
tracking system, particularly the license plate recognition (LPR) cam-
eras. The data were collected by four Hikvision LPR IP devices with
Automatic number-plate recognition (ANPR) based on Deep Learning.
The devices have a 2MP resolution, 2.8–12 mm varifocal optics, and IR
LEDs with a range of 50 m.

To cover the entrances and exits of each village in the target area,
we strategically positioned the four cameras, as shown in Fig. 2. The
locations were (i) entrance to Pampaneira from the western part of
the Alpujarra, (ii) entrance to Pampaneira from the eastern part of the
Alpujarra, (iii) entrance to Bubión via a single road, and (iv) entrance to
Capileira via a single road. By taking advantage of the road structure,
we could monitor the mobility of all vehicles in the area using only

https://scikit-learn.org/stable/modules/clustering.html
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Fig. 2. Setup of the 4 LPR that obtain the data from the license plates of the vehicles.
four LPRs, minimizing the cost and complexity of the system. The
information collected by the cameras was stored on a cloud platform.
The rest of the data were collected from different datasets described in
Section 4.4.

4.3. Data cleaning

In the field of the IoT, the production of sensor data can often
be inaccurate and lead to the loss of some records. In our case, we
presented two cleaning steps for the main dataset (LPR cameras). The
first step, ‘‘license plate matching’’, aimed to reduce the error rate of
incomplete or wrongly detected license plates by the LPRs. About 2%
of the stored 1,050,760 records had missing values in the license plate
number. For example, if we had a record with a correct license plate
0000AAA, and another record with the value 0#00AAA, missing the
second digit, we could, by probability, infer that both records belong
to the same plate number and assign the correct value, 0000AAA, to
both records. In our case, we assigned the same plate number to all
those records whose license plate matches at least four characters out
of seven in the same position. The second step, ‘‘route recovery’’, aimed
to reduce the percentage of vehicles not detected by any LPR device.
These errors occurred when the camera did not detect a vehicle that
passes through the road. This error was difficult to detect, but in our
setup, if a vehicle moves on the road from camera 1 to 3, and camera 2
(in the middle of the unique road connecting cameras 1 and 3), did not
detect the car, we could infer that the car has passed through camera
2. In our process, if the vehicle was detected in less than 30 min in
two non-consecutive cameras, our system infers that the vehicle is still
in the area and calculates its time of stay based on the new registered
values.

4.4. Data fusion

Combining data from provenance, mobility in the area, and the hol-
iday calendar offered the opportunity to gain an understanding of the
region, its inhabitants, and visitors. This section explains each source
of information and the feature extraction and construction process of
each dataset to allow the merging. We will detail the structure and vari-
ables obtained for each data source, creating a joint database. Table 3
schematically shows the information fusion process we followed.
5

License plate recognition data
The LPRs return information on four variables: the vehicle license

plate (license_plate), the time stamp (time_stamp), and a variable (di-
rection) indicated as ‘‘IN‘‘ when a vehicle enters the village or ‘‘OUT’’
when it exits. Each camera is uniquely identified by its (camera_id).
The dataset contains information for nine months (February to October
2022). In total, we have 1,050,760 records, of which 25.69% corre-
spond to the camera PAMPANEIRA 1 (i), 29.25% to PAMPANEIRA
2 (ii), 19.16% to BUBION (iii) and 25.9% to CAPILEIRA (iv) (see in
Fig. 2). We grouped the records based on the new vehicle identifier
(num_plate_ID), taking into account the mobility behavior of each
vehicle. For each vehicle, we built a record per each time the vehicle
visits the area, containing the date of entry (entry_time_stamp) and
exit (exit_time_stamp) to the area and a list of all the cameras (route)
by which it has been registered during its stay, this allows us to
calculate the total distance traveled in kilometers (total_distance). This
calculation is based on the road distance between each installed device,
which we recorded in a small dataset. By summing up the distances
between the cameras that a vehicle has passed by, we could determine
the distance covered within the area. From the above records, we could
also calculate the duration of stay (avg_visit) expressed in days and the
number of nights spent there. In case of missing data, i.e., we could not
calculate the time of entry or exit of a vehicle in the area, we removed
the individual from the dataset.

After that, we performed a grouping at the license plate level so
that each row corresponded to a different individual. In this way, we
fused the information of all the vehicle visits in the area. Finally, we
obtained a dataset with the total number of visits (total_entries), the
average time (avg_visit) in days, the complete vehicle routing (route),
the total accumulated distance traveled (total_distance), the standard
deviation of the average time of each visit (std_visit) in days, the total
time spent (total_time) in the area, and the total number of nights spent
there (nights). From the new record structure, we could calculate the
visits of each vehicle in different weeks (visits_dif_weeks) and months
(visits_dif_months) to study the fidelity of the individual in the area.
Finally, we obtained a dataset with 50,901 vehicle records and ten

attributes.
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Table 3
Detailed schematic of the data fusion stage in the pipeline.

Phase Tasks Values

Calendar Data

Importing Data Read the dataset with information on public
holidays at national level in Spain

270 days, 3 attributes (date, day_type, holiday_period)

Set holiday periods Establish the important holiday periods in
Spain: Summer Holiday, Christmas and Holy
Week

Summer Holiday (from 1 aug. to 31 aug.)
Christmas (from 12 dec. to 6 jan.)
Holy Week (from 10 apr. to 17 apr.)

Encode variables Convert categorical holiday periods into
binary variables

270 days, 5 attributes (date, day_type, Summer, Christmas, Holy_Week)

License Plate Recognition Data

Importing Data Read the cleaned dataset produced from the
detection of vehicle license plates

1,050,760 rows, 4 attributes (license_plate, time_stamp, direction,
camera_id)

Calculate associate variables Calculate variables combining the 4
cameras + LPR location

(license_plate, entry_time_stamp, exit_time_stamp, route, total_distance)

Group information Group the information for each record by
vehicle

50,901 rows, 10 attributes (license_plate, total_entries, avg_visit, std_visit,
total_time, nights, route, total_distance, visits_dif_weeks, visits_dif_months)

Vehicle information Data

Importing Data Reads the dataset with vehicle information
and its origin

45,132 license plates, 4 attributes (license_plate, postcode, co2_emissions,
num_seats)

Demographic and Economic data

Importing Data Reads demographic information about the
region of origin of the vehicle

11,752 regions, 4 attributes (postcode, population, gross_income,
disposable_income)

Merging Data Merge the two sources INE

Validate Data Validate information common to the two
sources

INE

Geographic data

Importing Data Reads information regarding the region of
origin of the vehicle

11,752 regions, 7 attributes (postcode, autonomous_community, province,
county, district, town, km_to_dest)

Merging Data Mix and validate information from the two
sources used

geopy and pgeocode

Standardize values Treatment of equivalences between names
of regions in different co-official languages

Elimination of accents, spaces and translation to Spanish of all values
related to region names

Validate Data Validate postcodes and geolocation geopy, pgeocode and INE

Fusion Dataset

Merging Data Unification of header names and data
formats, Mix postcode and license plate
fields, Delete rows with some null fields

49,224 vehicles, 22 attributes (license_plate, total_entries, avg_visit,
std_visit, total_time, nights, route, total_distance, visits_dif_weeks,
visits_dif_months, co2_emissions, num_seats, postcode,
autonomous_community, province, county, district, town, km_to_dest,
population, gross_income, disposable_income)

Generate new variables Calculate variables related to the type of
dates in the calendar during the period of
stay of each vehicle

49,224 vehicles, 27 attributes (license_plate, total_entries, avg_visit,
std_visit, total_time, nights, route, total_distance, visits_dif_weeks,
visits_dif_months, co2_emissions, num_seats, postcode,
autonomous_community, province, county, district, town, km_to_dest,
population, gross_income, disposable_income, total_holiday, total_workday,
entry_in_holiday, total_high_season, total_low_season)

Exporting Data Obtaining the resultant dataset CLUSTERING_VEHICLES BD
Vehicle information data
The Spanish Directorate-General for Traffic (DGT) provided us with

data relating to vehicle information3 including details such as the vehi-
le’s CO2 emissions (co2_emissions), the number of seats (num_seats),
nd the postcode of the vehicle’s address (postcode). Each vehicle was
ssociated with a fiscal address used to pay road tax. This generally
atched the driver’s place of origin, although as described in Sec-

ion 4.1, this was not entirely true. This dataset helped us understand
he distribution of vehicle types and ownership in the different regions.

e had a dataset with 45,132 vehicles registered in Spain and four
ttributes. Unfortunately, we did not have this information for vehicles
egistered outside of Spain. The percentage of foreigners in the data
ample was less than 9.5%. Therefore, we determined these individuals
xclusively by their mobility behavior in the area. All information

3 https://sede.dgt.gob.es/es/vehiculos/informe-de-vehiculo/
6

5

related to vehicle information, demographic, economic, and calendar
holidays was restricted to Spanish-registered vehicles.

Demographic and economic data
We accessed data regarding population size (population), average

gross income (gross_income), and average disposable income (dispos-
able_income) per person for each region linked to a postcode (post-
code). This information came from the National Statistics Institute
(Spanish: Instituto Nacional de Estadística, INE).4 The data were avail-
able for regions with more than 1000 inhabitants and were updated
until 2020. The information collected in this database allowed us to
understand each region’s economic and demographic characteristics,
which was valuable for analyzing patterns in the data related to the

4 https://www.ine.es/dynt3/inebase/es/index.htm?padre=7132&capsel=
693

https://sede.dgt.gob.es/es/vehiculos/informe-de-vehiculo/
https://www.ine.es/dynt3/inebase/es/index.htm?padre=7132&capsel=5693
https://www.ine.es/dynt3/inebase/es/index.htm?padre=7132&capsel=5693
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drivers’ economic capacity and willingness to travel. We obtained a
database with 11,752 postcode records from Spain and four attributes.

National calendar data
We obtained the holiday data using a holiday library, which also

allowed the creation of custom calendars for local holidays, long week-
ends, and bank holidays. The library was designed to quickly and
efficiently generate holiday sets specific to each country and subdi-
vision (such as state or province).5 It aimed to determine whether a
articular date was a public holiday and to set national and regional
olidays for multiple countries. As we mentioned before, due to the
mall percentage of foreign individuals in the sample and the complex-
ty of dealing with a different set of holidays for different vehicles, we
estricted the analysis of the holidays to Spain. However, we included
aturdays and Sundays in the holidays, so we also considered the idea
f a weekly holiday for any origin. For each day, represented by a
ate (date), we specified with a binary variable whether it is a holiday
r working day (day_type). In addition, holiday periods were defined
o establish high and low tourist seasons based on the three most
mportant national holidays in Spain: Summer, Christmas, and Holy

eek,6 which represented a binary variable, indicating whether the
ate belonged to that holiday period (Summer, Christmas, Holy Week).
e obtained a database with 270 days and five attributes.

eographic data
We obtained the geographic origin of the vehicles using the post-

ode and two libraries: pgeocode and geopy. pgeocode7 allowed fast
nd efficient queries of GPS coordinates, region name, and munici-
ality name from postcodes. geopy8 is a Python client that provided
ccess to several popular geocoding web services. We used data from
oth sources to validate and complement each other’s vehicle lo-
ation information at different levels, such as municipality, county,
r suburb. Furthermore, we also used data from the INE9 to ver-
fy the province and autonomous community code of the vehicle,
hich was directly related to the postcode. Hence, we created a
atabase that contained, for each postcode, information about (au-
onomous_community), (province), (county), (district), (town), and
he distance in kilometers between the origin of the vehicle and the
estination region (km_to_dest). We obtained a database with 11,752
ostal code records and nine attributes.

erge of all the processed datasets
Finally, we fused all constructed databases, crossing the informa-

ion from the license plate and postcode variables. After merging the
ables, we eliminated records with any of the aforementioned attributes
ull. The information from the national calendar allowed us to add
o the vehicle database information related to the stay and its total
umber of holidays (total_holiday), workdays (total_workday), high
eason (total_high_season), low season (total_high_season) and a binary
ariable indicating whether the vehicle enters the area on a holiday or a
orkday (entry_in_holiday). The resulting dataset contains information
n the behavior in the area for 49,224 vehicles and 27 attributes.

.5. Preprocessing

Our dataset contains 27 attributes with different scales and units.
ence, some variables may be more influential than others in our

5 https://python-holidays.readthedocs.io/en/latest/
6 https://es.statista.com/temas/3585/vacaciones-en-espana/

topicOverview
7 https://pgeocode.readthedocs.io/en/latest/
8 https://geopy.readthedocs.io/en/latest/
9

7

https://www.ine.es/daco/daco42/codmun/cod_ccaa_provincia.htm
analysis. To solve this problem, we will apply normalization to the
data. Normalization must be applied to numerical data, so we must
first convert the categorical variables (in our use case: route, postcode,
autonomous_community, province, county, district, town) to numerical
values. In particular, the numeric variable, total_distance, kept the
information of the kilometers traveled in the variable route. The rest of
the categorical variables related to the provenance: town, postal code,
etc., and we converted them into the variable km_to_dest. We removed
the variables co2_emissions and num_seats, because they had a high
percentage of missing values (about 25%), which could introduce noise.
During this phase, we also excluded vehicles with a total stay time
(total_time) of less than 1 h. This subset comprised 16.98% (8360 vehi-
cles) of the entire dataset. Given their role as transient passers-by in the
area and their brief stays, which did not contribute to any discernible
benefits for the locality, we omitted them from our analysis. We finally
obtained a dataset with 40,864 vehicles and 17 numerical attributes:
total_entries, avg_visit, std_visit, total_time, nights, total_distance, vis-
its_dif_weeks, visits_dif_months, km_to_dest, population, gross_income,
disposable_income, total_holiday, total_workday, entry_in_holiday, to-
tal_high_season, total_low_season.

4.6. Dimensionality reduction

We reduced the dataset’s dimensionality to improve efficiency in
clustering. This involved simplifying the feature matrix by removing
low-variance features that would not contribute much to our goal of
clustering different vehicle behaviors. We used PCA to reduce dimen-
sionality. We found that removing variables with very high correlation
substantially improved the results and the performance of the clustering
models for our data. Furthermore, correlated variables increased the
data’s variance, making the visual interpretation of the PCA results
difficult, as the first principal components might not have accurately
reflected the underlying structure of the data.

4.7. Clustering and evaluation

Our study explored all the algorithms mentioned in Section 3.1 to
determine the optimal approach for pattern recognition and evaluated
whether they could find a realistic solution.

4.8. Visualization

Data visualization was essential in our work, as it helped to de-
termine and make decisions about parameter settings, algorithms, and
normalization methods. It also made our machine learning results more
understandable. For instance, we used the elbow method to find the
best number of clusters for various algorithms. This method plots the
number of clusters and a given evaluation metric. The number of
clusters at the curve’s bend (‘‘elbow’’) balances the model’s complexity
and accuracy. We used scatter plots to visualize the first two principal
components for each normalization method, helping us grasp the data’s
structure and cluster distribution. Box plots were another tool we used
to show how features were distributed within clusters. This allowed us
to spot common patterns in each cluster.

4.9. Data privacy and security

The LPR cameras sent the license plates to a secured server on
our provider’s premises. We only used the anonymized dataset (see ),
which we openly published.10 The other datasets were public, except
the DGT dataset. The DGT shared with us sensitive data with license
plates and its associate owner’s postal code only for research purposes.
This information was stored encrypted and was accessible only to

10 https://zenodo.org/record/8356386

https://python-holidays.readthedocs.io/en/latest/
https://es.statista.com/temas/3585/vacaciones-en-espana/#topicOverview
https://es.statista.com/temas/3585/vacaciones-en-espana/#topicOverview
https://pgeocode.readthedocs.io/en/latest/
https://geopy.readthedocs.io/en/latest/
https://www.ine.es/daco/daco42/codmun/cod_ccaa_provincia.htm
https://zenodo.org/record/8356386
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Fig. 3. Variance with 3 principal components.
authorized researchers. Furthermore, we used clustering, which means
that we did not evaluate the individual behavior of each person but
considered them part of a group. Hence, the privacy of the activities of
the individuals is not compromised.

5. Results

To model traffic behavior and distinguish between residents and vis-
itors. We labeled vehicles as 1 for those registered in the area (resident)
and 0 for others. We identified several variables with non-significant
correlations (correlation < 0.2): avg_visit, std_visit, and population, and
removed them. We showed the results relating to these analyses in
Appendix (Fig. A.1 and Table A.1).

5.1. Preprocessing and dimension reduction results: Normalization selection

We performed preprocessing and dimension reduction stages to-
gether because they are interdependent. We found that removing highly
correlated variables before applying PCA improved the variance ex-
plained and the scatter plots of PCA components. Specifically, we
removed variables with a correlation coefficient > 0.9: total_entries,
nights, visit_dif_weeks, visit_dif_months, km_to_POQ, gross_income, en-
try_in_holiday, total_distance and total_high_season Appendix (Fig. A.2).

After applying the four most common normalizations to the data
(see in Section 3), we applied PCA analysis. Fig. 3 showed the variance
carried by each PCA component for each normalization. We could
appreciate that two components explained most of the variance in all
normalizations. Hence, we performed an exploratory visual analysis by
plotting the first two principal components to study their underlying
geometry. In Fig. 4, we overlaid on the plots, in red, the points repre-
senting the vehicles of the registered residents, in blue, non-registered
residents.
8

The normalization method that obtained the highest cumulative
variance was 𝓁2, indicating that it retained the most information in
only two components (see in Fig. 3(d)). In addition, the variance of
each dimension was high compared to the other techniques analyzed,
suggesting that the data were well distributed in both dimensions. The
graph in Fig. 4(d) shows a clear separation between the two groups,
and the registered residents (in red) were well confined. The min–max
normalization method obtained the second-best cumulative variance
and the highest variance for each dimension, preserving a reasonable
amount of information in only two components (see in Fig. 3(a)). The
graph also shows a clear separation between the two groups, and the
actual residents were defined along a vertical line on the left cluster
in Fig. 4(a). In contrast, the MAD normalization method had a lower
cumulative variance and variance for each dimension (see in Fig. 3(c))
than the 𝓁2 and min–max normalization methods. The 2-dimensional
scatter plot showed no apparent clusters (see in Fig. 4(c)), and the
actual residents were highly dispersed, which made it unusable for
our analysis. We had similar results in a scatter plot of three prin-
cipal components. Finally, the mean normalization, z-score, method
presented the lowest cumulative variance, indicating that it lost more
information during dimensionality reduction than other techniques (see
in Fig. 3(b)). The graph shows that the actual residents were grouped
together, but for the 2-components, there were no apparent significant
clusters (see in Fig. 4(c)). The trend of the cumulative variance ex-
plained was rising, suggesting that the current normalization method
could be enhanced by including more components. By adding more di-
mensions, it may be possible to identify a dimension where the group of
registered residents conformed to a clearer distribution. PCA typically
worked better with z-score standardization than with min–max normal-
ization. However, normalization techniques that better handled outliers
(such as z-score) may not always have been effective for all datasets
because they tried to distribute the individuals uniformly, softening
the outliers. For example, we observed that the min–max normalization
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Fig. 4. Scatter-plot of the first two principal components for the different normalizations.
method performed better than the z-score standardization, possibly due
to the presence of small clusters that z-score detected as outliers. In
particular, the dataset have a low proportion of registered residents
(less than 2% of the total sample), which could be considered outliers
(see in Table A.1). In these cases, the min–max normalization method,
which was more sensitive to small clusters, may have given better
results. With all this information, we decided to apply the two best
normalizations for our data (𝓁2 and min–max) and compare the results
obtained in the clustering.

5.2. Exploration of clustering algorithm categories

From the scatter plots in Fig. 4, we observed that the data points
were spread relatively flat. This suggested that the data points were
concentrated in a lower-dimensional space within the original feature
space. In other words, the data appeared to exist in a more compressed
space rather than being spread out across multiple dimensions. Hence,
partition and distribution-based clustering models were the most suit-
able for this geometry (see Section 3.5). We tested various algorithms
from other categories to verify this. However, we did not report the
results because none of the tested techniques identified a cluster for
the correctly registered residents. For example, density and spectral-
based algorithms performed poorly, probably because of the non-flat
geometry but also because they worked best for detecting outliers.
Hierarchical algorithms performed poorly, probably because of the non-
flat geometry, but they also had difficulties with highly concentrated
datasets, creating distinct groups only when the separation was obvi-
ous. Consequently, we focused on the partitional and distribution-based
algorithms, which worked well with flat geometry data. In particular,
we tried Gaussian Mixture, K-Means, and MiniBatchKMeans.

Gaussian Mixture models were more flexible and could handle
different cluster shapes and sizes, while K-Means assumed a spherical
shape of the clusters and a uniform size. In addition, Gaussian Mixture
9

models could estimate the probability that a data point belonged to a
cluster, which could be useful in specific applications where we needed
to make decisions based on uncertain data or when we wanted to assign
a data point to multiple clusters with different probabilities. In the tests
carried out, we discovered that K-Means and MiniBatchKMeans were
not able to find any cluster that contained the majority of individuals
of registered residents (see in Fig. 4(a) and (d)). This was because the
distribution of these individuals followed an elliptical geometry, which
was not amenable to partition-based algorithms directly. Based on
these results, we used the Gaussian Mixture clustering algorithm given
the geometry of our data and the distribution followed by registered
residents.

5.3. Evaluation results

After choosing the algorithm, we had to configure its settings
and hyperparameters. For the GaussianMixture algorithm, a ‘mixture’
meant a blend of multiple Gaussian distributions, with each compo-
nent representing one of these distributions [61]. We could adjust
the number of mixture components, determining how many Gaussian
distributions to use for modeling the data. Another configurable aspect
was the covariance type, which influenced how variables in the data
were correlated, impacting the model’s accuracy and efficiency. The
common types of covariance were:

• Full: all components have their own covariance matrix. This
means that each component can have a complex correlation
structure between the different variables.

• Tied: all components share the same overall covariance matrix.
This can be useful if different variables are highly correlated.

• Diagonal: each component has its own diagonal in the covariance
matrix. This means that the correlation structure between the
different variables is limited to correlations between pairs of
variables.
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Fig. 5. Information criteria for the GaussianMixture on min–max normalization.
• Spherical: each mixture component has its own unique variance.
This means that the correlation structure between the different
variables is limited to the variance of each variable individually.

To select the best hyperparameters, we calculated the performance
of the resulting model with the metrics presented in Section 3.2, which
were appropriate for clustering algorithms based on distributions (BIC
and AIC). In the next subsections, we performed the evaluation for the
different types of covariance of the GaussianMixture algorithm on the
two normalizations chosen in the previous subsection: min–max and 𝓁2

normalization.

5.3.1. Evaluation results: Min–max normalization
Fig. 5 represents the values of the BIC and AIC metrics with re-

spect to the number of components and type of covariance used as
parameters of the GaussianMixture algorithm. We noted that the ‘full’
covariance type was the one that minimized both metrics in all cases,
so it was the one chosen for the subsequent analysis. This value meant
that each component had its own overall covariance matrix, which
meant it could capture any correlation between variables. We noted
no significant differences between the values obtained for AIC and BIC
scores. Therefore, we calculated the elbow method on the BIC score
to select the optimal number of mixture components. In Fig. 6, we
could detect two ‘‘elbow’’ points. One occurred at seven components
(−87,585 BIC), marking a 4591 unit difference from the preceding
six components (−82,994 BIC) and a 1632 unit difference from the
following eight components (−89,217 BIC). The other point was at
four components (−76,798 BIC), with a 4407 unit difference from the
preceding three components (−72,391 BIC) and a 3098 unit difference
from the subsequent five components (−79,896 BIC). The change from
seven components to their previous value was more substantial than the
change from three to four, and the difference with the following eight
components was less pronounced, indicating a more abrupt change in
slope.

5.3.2. Evaluation results: 𝓁2 normalization
Fig. 7 represents the values of the BIC and AIC metrics with re-

spect to the number of components and type of covariance, used as
parameters of the GaussianMixture algorithm for 𝓁2 normalization. We
observed that the ‘tied’ covariance type was slightly superior for three
components, but the ‘full’ covariance type was again the best for more
than three components. Similarly to the min–max normalization, there
was no significant difference between the AIC and BIC score values.
Therefore, we calculated the elbow method on the BIC score and the
‘full’ covariance type. Fig. 8 shows a clear change in four components,
showing an increase of 36,977 units in the BIC score (the highest
in the graph), going from three components (−232,851 BIC) to four
components (−269,828 BIC).
10
Fig. 6. Elbow method for BIC using min–max normalization.

5.4. Visualization results

Once we selected the clustering algorithm and the hyperparameters,
we discussed the visualization of the generated clusters over the two
chosen normalizations: min–max normalization and 𝓁2.

5.4.1. Visualization: Min–max normalization
Fig. 9(a) shows a 2D scatter plot, where each axis represented 1st

and 2nd principal components. Fig. 9(b) highlights registered residents
in red. Fig. 9(c) displays a 3D scatter plot with 3 principal components
in each axis. Table 4 shows vehicle percentages and registered resident
counts in 7 clusters. Cluster 3 correctly grouped over 96% of individu-
als, and cluster 5 contained nearly 45% of the total sample. Cluster 3,
with the most registered residents, represented around 14% of the total
population.

Fig. 10 presents the box plots for the 7 clusters for the nights
(Fig. 10(a)) and km_to_dest (Fig. 10(b)) variables, which showed sig-
nificant differences in explaining the groups. Figs. 11 and 12 presents
the box plots of the most relevant variables for the 7 clusters obtained.
Table 5 complements Figs. 11 and 12, indicating the exact number of
the mean of each variable in each cluster. To facilitate visualization, we
separated some of the box plots according to the value of the variable
nights, which seemed to discriminate well between 2 groups of clusters:
(0, 1, 2, 5) with lower values and (3, 4, 6) with higher values (see in
Fig. 10(a)). Clusters 3,4,6 had a number of nights close to the behavior
of a resident in the area and represented 27.44% of the data (see
Table 4). Clusters 0,1,2,5 had visitor behavior because they spent fewer
nights in the area and represented 72.56% of the total sample.
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Fig. 7. Information criteria for the GaussianMixture on 𝓁2 normalization.
Table 4
Clusters based on registered resident labels using min–max normalization.

Data points No cluster

0 1 2 3 4 5 6
Percentage of sample 14.13% 5.74% 8.06% 13.47% 10.30% 44.63% 3.67%
Real Residents 8 0 0 641 3 9 0
Rest of individuals 5766 2347 3293 4862 4205 18,230 1500
Fig. 8. Elbow method for BIC using 𝓁2 normalization.

For clusters 3, 4, and 6, a key factor was the distance in kilometers
from the vehicle’s registered address to the area (see Fig. 11(c)). Despite
significant differences in origin, these three clusters exhibited similar
patterns in terms of nights spent, indicating that they resided or stayed
in the area. Cluster 3, with an average distance of 19.39 km (see
Table 5), primarily consisted of vehicles registered in the study area
(registered residents) and nearby villages. Cluster 6, with an average
distance of 1747.30 km for the variable km_to_dest, comprised non-
registered residents from abroad, as defined in Section 4.1. Cluster
4, with an average distance of 318.36 km, represented individuals
from other regions of Spain who were also non-registered residents, as
discussed in the same section. Additionally, the gross income variable
was significantly higher in cluster 4 compared to clusters 3 and 6
(almost 34% higher) (see Fig. 12(c)). This suggests that a majority of
individuals in cluster 4 (non-registered residents from other Spanish
regions) came from regions with above-average incomes. Residents
living farther away (clusters 4 and 6) had lower average values for
total_distance, total_high_season, and total_entries (see Table 5). This
is because they tended to visit less often, cover shorter distances in
the area, and have fewer visits during the high season compared to
11
residents in closer proximity (cluster 3) (see Fig. 11(e) and Fig. 12(a,
e)).

Clusters 0, 1, 2, and 5 represented different visitor behaviors (see
in Table 5). Cluster 0, with an average distance of 128.55 km, corre-
sponded to visitors from the province, typically staying 1.57 nights.
They made an average of 1.54 visits, mostly during weekends and
holidays, and around 65% of these visits occurred in high season (see
in Fig. 12(b, f)). Cluster 1, averaging 1742.97 km, consisted of foreign
visitors who stayed for only 0.26 nights. They tended to visit during
low seasons, primarily using the main road to reach the first village in
the area and not visiting the other villages. Cluster 2, with an average
distance of 474.21 km, attracted visitors from outside the province,
spending around 1.55 nights. This cluster had the highest average gross
income (see in Fig. 12(d)) and visits the area during high season,
likely by tourists from northern Spain. Cluster 5, averaging 253.70 km,
represented visitors from other nearby provinces. They rarely stayed
overnight (0 nights on average) and predominantly visited during the
day, making up 44.63% of the sample (see Table 4). Only 27% of their
visits occurred during high season (see Fig. 12(f)), suggesting day trips
from neighboring provinces.

5.4.2. Visualization: 𝓁2 normalization
Fig. 13 shows the data distribution using 𝓁2 normalization.

Fig. 13(a) depicts a 2D scatter plot of principal components (1st and
2nd axes). In Fig. 13(b), registered residents are marked in red, and
Fig. 13(c) presents a 3D scatter plot. Table 6 shows cluster details: Clus-
ter 0 accurately includes over 89% of registered residents, representing
10.30% of the total population. Cluster 3 contains 75.95% of the total
sample.

Fig. 14 shows the box plots of the relevant variables for the 4
clusters, and Table 7 displays the mean of each of these variables in
each cluster. We distinguished two clusters that contained a high value
of the variable ‘‘nights’’ (cluster 0 and 2), while the rest of the clusters
(clusters 1 and 3) had a low value. Although there were outliers (see in
Fig. 14(a)) that increased the mean number of nights for these clusters
(clusters 1 and 3), 50% of the individuals had a number of nights lower
than 2 for cluster 3 and lower than 15 nights for cluster 1.

Cluster 0, which included over 89% of area residents, had an
average stay of 144.93 nights, covering an average distance of 25.54
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Fig. 9. Scatter-plot of the first three components (PCA) using min–max normalization.
Fig. 10. Box plots for min–max normalization (I).
Table 5
Mean of variables for each cluster performed using min–max normalization.

Variables No cluster

0 1 2 3 4 5 6

nights 1.57 0.26 1.55 108.62 84.66 0.00 68.73
km_to_dest 128.55 1742.97 474.21 19.39 318.36 253.70 1747.30
total_entries 1.54 1.12 1.58 10.34 4.36 1.12 2.71
total_distance 11.64 4.90 10.67 70.24 30.77 4.86 14.42
gross_income 23,085.36 19,482.10 35,547.66 20,972.17 26,902.26 25,151.75 19,179.54
total_high_season 1.01 0.31 1.14 18.85 15.10 0.31 11.24
12
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Fig. 11. Box plots for min–max normalization (II).
Table 6
Clusters based on actual resident labels using 𝓁2 normalization.

Data points No cluster

0 1 2 3

Percentage of sample 10.30% 8.50% 5.25% 75.95%
Real Residents 589 0 0 62
Rest of individuals 3620 3473 2146 30,974
km. Most non-registered residents in this cluster were from the province
(see Fig. 14(b)). Cluster 2 represented non-registered residents from
outside Granada, making up only 5.25% of the total sample. They
stayed an average of 84.62 nights and came from an average distance
of 598.01 km. For both groups, total_distance, total_high_season, and
total_entries (see Table 7) were inversely proportional to km_to_dest,
indicating that visitors from further away tended to visit during the
low season, move less within the area, and visit fewer times a year (see
13
Fig. 14(c, d, f)). Cluster 1 comprised foreign visitors and some non-
registered foreign residents, covering an average distance of 1750.68
km. They stayed an average of 22.81 nights, with only 17% of stays
in the high season. Cluster 3, the largest group (75.95% of the sam-
ple), had an average stay of 4.82 nights (although most did not stay
overnight). They covered an average distance of 240.01 km and rarely
visited in the high season (28% of the total stay) (see Fig. 14(f)). It also
had the highest income, with an average of 26,158.32.
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Fig. 12. Box plots for min–max normalization (III).
Table 7
Mean of variables for each cluster performed using 𝓁2 normalization.

Variables No cluster

0 1 2 3

nights 144.93 22.81 84.62 4.82
km_to_dest 25.54 1750.68 598.01 240.01
total_entries 13.18 1.52 3.53 1.49
total_distance 95.43 6.89 26.43 8.01
gross_income 20,268.41 19,018.55 22,886.88 26,158.32
total_high_season 24.83 3.87 14.47 1.36
6. Discussion

Table 8 shows the equivalence by clusters and percentage of the
total set for the two normalizations analyzed. Additionally, it briefly
describes the general profile of individuals in each cluster. For the
group of registered residents, we could see that both normalization
methods grouped them into a single cluster (cluster 3 in min–max and
14
0 in 𝓁2). However, there was a 3.17% difference in the size of these
clusters, with the 𝓁2 cluster size being smaller. The min–max normaliza-
tion distinguished between foreign visitors and foreign non-registered
residents (clusters 1 and 6, respectively), while the 𝓁2 normalization
grouped all foreign individuals into a single cluster (cluster 1). The
clusters of national non-registered residents were also similar in both
normalization methods (cluster 4 in min–max and 2 in 𝓁2). Still, there
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Fig. 13. Scatter-plot of the first three components (PCA) using 𝓁2 normalization.
Table 8
Equivalence of the clusters made for each normalization.

Normalization

Min–max

No cluster 3 1 6 4 0 2 5

% sample 11.17% 6.11% 3.05% 8.55% 15.04% 8.58% 47.50%

Description Registered
residents

International
visitors

Non-registered
international
residents

Non-registered
national
residents

Visitors from
Granada who
stay for 1–2
nights

National visitors Visitors from
Granada who
do not stay
night

Additional
characteristics

Long stays and
travel
frequently in
the area

No overnight
and visits
mostly in low
season

Long stays and
above-average
distance of
provenance

Long stays and
above-average
income and
visits

Overnights
mostly in high
season and
weekends

Overnights
mostly in high
season and
above-average
income

No overnight
and visits
mostly in low
season

𝓁2

No cluster 0 1 2 3

% sample 8.55% 8.76% 4.36% 78.33%

Description Registered
residents

International visitors Non-registered
national
residents

National visitors

Additional
characteristics

Long stays and
travel
frequently in
the area

Medium-short stays and visits
mostly in low season

Long stays and
above-average
income and
visits

Short stays and visits mostly in low season
was a 5.05% difference in the size of these clusters, with the size of
the 𝓁2 cluster also being smaller. Finally, the 𝓁2 normalization grouped
all national visitors into a single cluster (cluster 3), while the min–
max normalization divided these into three distinct clusters (clusters
0, 2, and 5). It should be noted that in the 𝓁2 normalization, cluster
3 is larger than the sum of clusters 0, 2, and 5, because it contained
individuals with resident behaviors that were not included in the other
clusters. This explained the significant differences in the sample sizes
15
of clusters 0 and 2 compared to their equivalents in the min–max
normalization.

Fig. 15 shows a hierarchical graph comparing the equivalences
presented in Table 8 between the two normalizations. We could quickly
discern the descriptions that corresponded to each normalization for
each cluster type. The min–max normalization seemed more efficient
since it allowed a more detailed segmentation of individuals than 𝓁2,
and 𝓁2 showed more outliers in the box plots for all the variables. While
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Fig. 14. Box plots for 𝓁2 normalization.
min–max seemed to distinguish the residents from the visitors, with
the variable representing the number of nights spent in the area, 𝓁2

seemed to have a clear segmentation based on the distance to their
home. Hence, for our purposes, min–max offered better segmentations.
In addition, min–max detected atypical behaviors of individuals not
officially registered as residents of the area, but that behaved as res-
idents. In contrast, the 𝓁2 normalization could be useful for excluding
foreigners from the analysis and focusing only on comparing registered
and non-registered residents at the national level, grouping visitors
in a single cluster. Our work, as many in machine learning in real
environments, has some limitations related to uncontrolled variables. In
particular, we acknowledge that there could be some rented cars with a
national plate number that does not match the occupants’ provenance;
unfortunately, we could not access any rented car database. Likewise,
we could not find any good local event calendars, which could affect
the traffic.

In summary, our methodology comprises eight steps (see Fig. 1).
Initially, we gathered data from various sources, cleaned it, and merged
16
it based on vehicle licenses. In this merge step, we also calculated
additional variables from the existing ones (e.g., route and total dis-
tance in the area). Next, we followed a systematic sequence involving
preprocessing, reducing dimensions, and clustering. Ultimately, we
evaluate outcomes through visualization techniques. This approach en-
riches LPR data with contextual information, uncovering novel patterns
within the data. Additionally, it facilitates the comparison of algorithm
performance, such as comparing different normalization algorithms in
the performance of vehicle-behavior clustering. In smart villages, it is
important to select suitable LPR locations to cover the towns entries
and exits, and it is also important to consider that the official residence
could only be partially reliable.

7. Conclusions

The paper presented an effective pipeline for clustering analysis,
using data from different sensors and sources to detect registered and
non-registered residents and visitors and their behavior in a given
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Fig. 15. Hierarchical graph of the two clusters made for each normalization.
Fig. A.1. Correlation between the registered resident label and the rest of the variables.
-

area. We selected an optimal clustering algorithm based on the data
distribution and two potential normalization algorithms. We found
that the min–max normalization was the most effective for detailed
segmentation of individuals and their visiting behavior in the area and
detection of atypical behavior of individuals not registered as residents
of the area but showing resident behavior. The 𝓁2 normalization could
be useful in specific situations requiring a distinction from the region
of origin. This analysis could assist area managers in crafting tailored
strategies to keep certain tourists, considering their income and origin,
and promoting overnight stays. This could boost the local economy
and reduce traffic. Additionally, these patterns could inform policies to
engage non-registered residents in the community, such as tax breaks
or social programs. In Spain, this data is crucial for tasks like licensing
pharmacies, investing in public health, and scheduling security forces
based on seasonal fluctuations. Our pipeline and analysis could also
assist data analysts in improving their solutions and making informed
decisions. In the future, we aim to conduct an independent clustering
analysis on the dataset of passing vehicles in the area. The objective
is to identify movement patterns and promote longer stays within
the vicinity. Likewise, we will try to find useful datasets that could
enhance the results, such as vacation accommodation occupancy or
local events, although in small villages, it could be a challenge to find
good datasets.
17
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Table A.1
Mean and std. deviation for registered residents and rest of individuals in dataset.

nights total_distance total_entries entry_in_holiday

Residents Others Residents Others Residents Others Residents Others

mean 158.47 19.99 205.82 13.60 19.46 2.35 4.26 0.72
std 72.37 48.07 238.52 47.78 23.57 6.58 5.49 1.70

gross_income km_to_dest visits_dif_weeks total_high_season

Residents Others Residents Others Residents Others Residents Others

mean 16,084 25,007.07 1.02 374.73 4.57 1.48 27.53 3.84
std 0.00 7671.19 0.59 486.97 4.03 1.97 14.75 9.00

total_holiday avg_visit std_visit population

Residents Others Residents Others Residents Others Residents Others

mean 52.54 6.83 23.60 10.54 20.26 4.15 406.66 19,8175.90
std 23.71 15.06 34.85 31.87 23.35 16.05 121.16 56,7183.30
Fig. A.2. Correlation matrix for all variables in the proposed dataset.
Investigación / 10.13039/501100011033, and the R&D&i Project Ref.
C-SEJ-128-UGR23 funded by Junta de Andalucía and ‘‘ERDF A way of
making Europe’’, and also by the project ‘‘Thematic Center on Mountain
Ecosystem & Remote sensing, Deep learning-AI e-Services University
of Granada-Sierra Nevada’’ (LifeWatch-2019-10-UGR-01), which has
been co-funded by the Ministry of Science and Innovation through
the FEDER funds from the Spanish Pluriregional Operational Program
2014–2020 (POPE), LifeWatch-ERIC action line. The project has also
18
been co-financed by the Provincial Council of Granada. Funding for
open access charge: Universidad de Granada / CBUA.

Appendix. Supplementary correlation and variable statistics

See Figs. A.1 and A.2 and Table A.1.



Information Fusion 104 (2024) 102164D. Bolaños-Martinez et al.
References

[1] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Comput. Netw.
54 (15) (2010) 2787–2805.

[2] M. Bermudez-Edo, P. Barnaghi, K. Moessner, Analysing real world data streams
with spatio-temporal correlations: Entropy vs. Pearson correlation, Autom.
Constr. 88 (2018) 87–100.

[3] F.M. Garcia-Moreno, M. Bermudez-Edo, E. Rodríguez-García, J.M. Pérez-Mármol,
J.L. Garrido, M.J. Rodríguez-Fórtiz, A machine learning approach for semi-
automatic assessment of IADL dependence in older adults with wearable sensors,
Int. J. Med. Inf. 157 (2022) 104625.

[4] R.P. Centelles, F. Freitag, R. Meseguer, L. Navarro, S.F. Ochoa, R.M. Santos,
A lora-based communication system for coordinated response in an earthquake
aftermath, Multidiscip. Digit. Publ. Inst. Proc. 31 (1) (2019) 73.

[5] M.A. Mondal, Z. Rehena, Identifying traffic congestion pattern using k-means
clustering technique, in: 2019 4th International Conference on Internet of Things:
Smart Innovation and Usages, IoT-SIU, IEEE, 2019, pp. 1–5.

[6] M. Lin, X. Zhao, Application research of neural network in vehicle target
recognition and classification, in: 2019 International Conference on Intelligent
Transportation, Big Data & Smart City, ICITBS, IEEE, 2019, pp. 5–8.

[7] M.L.M. Peixoto, A.H. Maia, E. Mota, E. Rangel, D.G. Costa, D. Turgut, L.A. Villas,
A traffic data clustering framework based on fog computing for VANETs, Veh.
Commun. 31 (2021) 100370.

[8] Z. Ning, J. Huang, X. Wang, Vehicular fog computing: Enabling real-time traffic
management for smart cities, IEEE Wirel. Commun. 26 (1) (2019) 87–93.

[9] Ş. Kolozali, M. Bermudez-Edo, N. FarajiDavar, P. Barnaghi, F. Gao, M.I. Ali, A.
Mileo, M. Fischer, T. Iggena, D. Kuemper, et al., Observing the pulse of a city:
A smart city framework for real-time discovery, federation, and aggregation of
data streams, IEEE Internet Things J. 6 (2) (2018) 2651–2668.

[10] O. Golovnin, Data-driven profiling of traffic flow with varying road conditions.
[11] G. Yang, D. Coble, C. Vaughan, C. Peele, A. Morsali, G.F. List, D.J. Findley,

Waiting time estimation at ferry terminals based on license plate recognition, J.
Transp. Eng. A: Syst. 148 (9) (2022) 04022064.

[12] W. Yao, J. Yu, Y. Yang, N. Chen, S. Jin, Y. Hu, C. Bai, Understanding travel
behavior adjustment under COVID-19, Commun. Transp. Res. (2022) 100068.

[13] P. Wang, J. Lai, Z. Huang, Q. Tan, T. Lin, Estimating traffic flow in large road
networks based on multi-source traffic data, IEEE Trans. Intell. Transp. Syst. 22
(9) (2020) 5672–5683.

[14] Z. Liu, Y. Liu, Q. Meng, Q. Cheng, A tailored machine learning approach for
urban transport network flow estimation, Transp. Res. C 108 (2019) 130–150.

[15] H. Sun, Y. Chen, J. Lai, Y. Wang, X. Liu, Identifying tourists and locals by K-
means clustering method from mobile phone signaling data, J. Transp. Eng. A:
Syst. 147 (10) (2021) 04021070.

[16] C. Morris, J.J. Yang, A machine learning model pipeline for detecting wet
pavement condition from live scenes of traffic cameras, Mach. Learn. Appl. 5
(2021) 100070.

[17] J. Enes, R.R. Expósito, J. Fuentes, J.L. Cacheiro, J. Touriño, A pipeline archi-
tecture for feature-based unsupervised clustering using multivariate time series
from HPC jobs, Inf. Fusion 93 (2023) 1–20.

[18] B.P.L. Lau, S.H. Marakkalage, Y. Zhou, N.U. Hassan, C. Yuen, M. Zhang, U.-X.
Tan, A survey of data fusion in smart city applications, Inf. Fusion 52 (2019)
357–374.

[19] F.T. Sáenz, F. Arcas-Tunez, A. Muñoz, Nation-wide touristic flow prediction with
Graph Neural Networks and heterogeneous open data, Inf. Fusion 91 (2023)
582–597.

[20] Z. Doborjeh, N. Hemmington, M. Doborjeh, N. Kasabov, Artificial intelligence: a
systematic review of methods and applications in hospitality and tourism, Int.
J. Contemp. Hosp. Manag. 34 (3) (2022) 1154–1176.

[21] D. Bolaños-Martinez, M. Bermudez-Edo, J.L. Garrido, Clustering study of vehicle
behaviors using license plate recognition, in: Proceedings of the International
Conference on Ubiquitous Computing & Ambient Intelligence, UCAmI 2022,
Springer, 2022, pp. 784–795.

[22] M. Mallik, A.K. Panja, C. Chowdhury, Paving the way with machine learning for
seamless indoor-outdoor positioning: A survey, Inf. Fusion (2023).

[23] O. Cats, F. Ferranti, Unravelling individual mobility temporal patterns using
longitudinal smart card data, Res. Transp. Bus. Manag. 43 (2022) 100816.

[24] A. Gutiérrez, A. Domènech, B. Zaragozí, D. Miravet, Profiling tourists’ use of
public transport through smart travel card data, J. Transp. Geogr. 88 (2020)
102820.

[25] Z. Wang, H. Liu, Y. Zhu, Y. Zhang, A. Basiri, B. Büttner, X. Gao, M. Cao,
Identifying urban functional areas and their dynamic changes in Beijing: using
multiyear transit smart card data, J. Urban Plann. Dev. 147 (2) (2021) 04021002.

[26] F.T. Lima, V.M. Souza, A large comparison of normalization methods on time
series, Big Data Res. (2023) 100407.

[27] M. Nicholson, R. Agrahari, C. Conran, H. Assem, J.D. Kelleher, The interaction of
normalisation and clustering in sub-domain definition for multi-source transfer
learning based time series anomaly detection, Knowl.-Based Syst. 257 (2022)
109894.

[28] W. Yao, C. Chen, H. Su, N. Chen, S. Jin, C. Bai, Analysis of key commuting
routes based on spatiotemporal trip chain, J. Adv. Transp. 2022 (2022).
19
[29] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemometr. Intell.
Lab. Syst. 2 (1–3) (1987) 37–52.

[30] C.C.D. Oliveira, V.M.D.A. Calado, G. Ares, D. Granato, Statistical approaches to
assess the association between phenolic compounds and the in vitro antioxidant
activity of Camellia sinensis and Ilex paraguariensis teas, Crit. Rev. Food Sci.
Nutr. 55 (10) (2015) 1456–1473.

[31] M. Halkidi, Y. Batistakis, M. Vazirgiannis, Clustering algorithms and validity
measures, in: Proceedings Thirteenth International Conference on Scientific and
Statistical Database Management, SSDBM 2001, IEEE, 2001, pp. 3–22.

[32] W. Yao, M. Zhang, S. Jin, D. Ma, Understanding vehicles commuting pattern
based on license plate recognition data, Transp. Res. C 128 (2021) 103142.

[33] S. Pasupathi, V. Shanmuganathan, K. Madasamy, H.R. Yesudhas, M. Kim, Trend
analysis using agglomerative hierarchical clustering approach for time series big
data, J. Supercomput. 77 (2021) 6505–6524.

[34] B. Yu, J. Xiong, A novel WSN traffic anomaly detection scheme based on BIRCH,
J. Electron. Inf. Technol. 44 (1) (2022) 305–313.

[35] K. Kim, Spatial contiguity-constrained hierarchical clustering for traffic predic-
tion in bike sharing systems, IEEE Trans. Intell. Transp. Syst. 23 (6) (2021)
5754–5764.

[36] X. Bai, Z. Ma, Y. Hou, D. Yang, A data-driven iterative multi-attribute clustering
algorithm and its application in port congestion estimation, 2022, Available at
SSRN 4086627.

[37] A. Belhadi, Y. Djenouri, G. Srivastava, D. Djenouri, J.C.-W. Lin, G. Fortino, Deep
learning for pedestrian collective behavior analysis in smart cities: A model of
group trajectory outlier detection, Inf. Fusion 65 (2021) 13–20.

[38] A.J. Martín, I.M. Gordo, J.J.G. Domínguez, J. Torres-Sospedra, S.L. Plaza, D.G.
Gómez, Affinity propagation clustering for older adults daily routine estimation,
in: 2021 International Conference on Indoor Positioning and Indoor Navigation,
IPIN, IEEE, 2021, pp. 1–7.

[39] S. Zhao, K. Zhao, Y. Xia, W. Jia, Hyper-clustering enhanced spatio-temporal deep
learning for traffic and demand prediction in bike-sharing systems, Inform. Sci.
612 (2022) 626–637.

[40] F.S. de Moura, C.T. Nodari, Application of the Affinity Propagation Clustering
Technique to obtain traffic accident clusters at macro, meso, and micro levels,
2022, arXiv preprint arXiv:2202.05175.

[41] B. Priambodo, A. Ahmad, R.A. Kadir, Predicting traffic flow propagation based
on congestion at neighbouring roads using hidden Markov model, IEEE Access
9 (2021) 85933–85946.

[42] J. Park, J. Jeong, Y. Park, Ship trajectory prediction based on bi-LSTM using
spectral-clustered AIS data, J. Mar. Sci. Eng. 9 (9) (2021) 1037.

[43] H. Li, J.S.L. Lam, Z. Yang, J. Liu, R.W. Liu, M. Liang, Y. Li, Unsupervised
hierarchical methodology of maritime traffic pattern extraction for knowledge
discovery, Transp. Res. C 143 (2022) 103856.

[44] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, Understanding of internal clustering
validation measures, in: 2010 IEEE International Conference on Data Mining,
IEEE, 2010, pp. 911–916.

[45] A. Oliveira-Brochado, F.V. Martins, et al., Assessing the number of components
in mixture models: a review, in: FEP Working Papers (194), Universidade do
Porto, Faculdade de Economia do Porto, 2005.

[46] C. Olivier, F. Jouzel, A. Matouat, Choice of the number of component clusters
in mixture models by information criteria, in: Proc. Vision Interface, 1999, pp.
74–81.

[47] Z. Hu, Initializing the EM Algorithm for Data Clustering and Sub-Population
Detection (Ph.D. thesis), The Ohio State University, 2015.

[48] J.-P. Baudry, CLADAG 2015. Book of abstracts, ISBN: 978888467749-9, 2015,
Ch. Estimation and model selection for model-based clustering with the
conditional classification likelihood.

[49] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical
Learning, Vol. 112, Springer, 2013.

[50] J.A. Rodrigo, Análisis de Componentes Principales (Principal Component Anal-
ysis, PCA) y t-SNE, 2017, Cienciadedatos.Net. available under a Attribution 4.0
International (CC BY 4.0). (Accessed 29 March 2023).

[51] H. Henderi, T. Wahyuningsih, E. Rahwanto, Comparison of min-max normaliza-
tion and Z-score normalization in the K-nearest neighbor (kNN) algorithm to test
the accuracy of types of breast cancer, Int. J. Inf. Inf. Syst. 4 (1) (2021) 13–20.

[52] S. Patro, K.K. Sahu, Normalization: A preprocessing stage, 2015, arXiv preprint
arXiv:1503.06462.

[53] K. Polat, U. Sentürk, A Novel ML Approach to Prediction of Breast Cancer:
Combining of mad normalization, KMC based feature weighting and AdaBoostM1
classifier, in: 2018 2nd International Symposium on Multidisciplinary Studies and
Innovative Technologies, ISMSIT, IEEE, 2018, pp. 1–4.

[54] M. Ayub, E.-S.M. El-Alfy, Impact of normalization on BiLSTM based models for
energy disaggregation, in: 2020 International Conference on Data Analytics for
Business and Industry: Way Towards a Sustainable Economy, ICDABI, IEEE, 2020,
pp. 1–6.

[55] R. Gallardo García, B. Beltrán, D. Vilariño, C. Zepeda, R. Martínez, Comparison
of clustering algorithms in text clustering tasks, Comput. Sist. 24 (2) (2020)
429–437.

[56] S.D. Whitaker, Did the COVID-19 pandemic cause an urban exodus? Clevel. Fed
Dist. Data Brief (20210205) (2021).

http://refhub.elsevier.com/S1566-2535(23)00480-3/sb1
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb1
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb1
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb2
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb2
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb2
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb2
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb2
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb3
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb3
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb3
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb3
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb3
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb3
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb3
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb4
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb4
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb4
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb4
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb4
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb5
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb5
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb5
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb5
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb5
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb6
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb6
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb6
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb6
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb6
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb7
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb7
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb7
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb7
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb7
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb8
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb8
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb8
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb9
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb9
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb9
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb9
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb9
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb9
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb9
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb11
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb11
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb11
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb11
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb11
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb12
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb12
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb12
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb13
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb13
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb13
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb13
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb13
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb14
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb14
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb14
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb15
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb15
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb15
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb15
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb15
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb16
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb16
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb16
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb16
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb16
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb17
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb17
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb17
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb17
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb17
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb18
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb18
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb18
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb18
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb18
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb19
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb19
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb19
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb19
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb19
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb20
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb20
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb20
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb20
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb20
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb21
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb21
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb21
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb21
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb21
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb21
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb21
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb22
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb22
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb22
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb23
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb23
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb23
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb24
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb24
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb24
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb24
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb24
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb25
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb25
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb25
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb25
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb25
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb26
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb26
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb26
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb27
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb27
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb27
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb27
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb27
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb27
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb27
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb28
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb28
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb28
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb29
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb29
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb29
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb30
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb30
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb30
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb30
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb30
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb30
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb30
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb31
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb31
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb31
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb31
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb31
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb32
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb32
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb32
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb33
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb33
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb33
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb33
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb33
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb34
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb34
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb34
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb35
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb35
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb35
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb35
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb35
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb36
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb36
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb36
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb36
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb36
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb37
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb37
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb37
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb37
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb37
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb38
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb38
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb38
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb38
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb38
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb38
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb38
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb39
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb39
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb39
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb39
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb39
http://arxiv.org/abs/2202.05175
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb41
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb41
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb41
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb41
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb41
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb42
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb42
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb42
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb43
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb43
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb43
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb43
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb43
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb44
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb44
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb44
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb44
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb44
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb45
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb45
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb45
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb45
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb45
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb46
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb46
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb46
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb46
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb46
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb47
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb47
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb47
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb48
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb48
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb48
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb48
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb48
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb49
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb49
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb49
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb50
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb50
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb50
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb50
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb50
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb51
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb51
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb51
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb51
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb51
http://arxiv.org/abs/1503.06462
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb53
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb53
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb53
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb53
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb53
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb53
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb53
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb54
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb54
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb54
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb54
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb54
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb54
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb54
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb55
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb55
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb55
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb55
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb55
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb56
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb56
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb56


Information Fusion 104 (2024) 102164D. Bolaños-Martinez et al.
[57] V. Pinilla, M.-I. Ayuda, L.-A. Sáez, Rural depopulation and the migration
turnaround in Mediterranean Western Europe: a case study of Aragon, J. Rural
Commun. Dev. 3 (1) (2008).

[58] Á.D.R. Escudero, La Alpujarra granadina: un espacio rural diverso y complejo.
De Sierra Nevada al litoral, in: Nuevas realidades rurales en tiempos de crisis:
territorios, actores, procesos y políticas: XIX Coloquio de Geografía Rural de
la Asociación de Geógrafos Españoles y II Coloquio Internacional de Geografía
Rural, Universidad de Granada, 2018, pp. 782–794.
20
[59] A. Bertuglia, S. Sayadi, A. Guarino, C. López, et al., Reverse migration:
from the city to the countryside. The Spanish case of Alpujarra Granadina,
Agriregionieuropa 7 (27) (2011) 62–64.

[60] V. Rodriguez, G. Fernandez-Mayoralas, F. Rojo, International retirement migra-
tion: Retired Europeans living on the Costa del Sol, Spain, Popul. Rev. 43 (1)
(2004) 1–36.

[61] D. Reynolds, Gaussian mixture models, in: S.Z. Li, A. Jain (Eds.), Encyclopedia
of Biometrics, Springer US, Boston, MA, 2009, pp. 659–663.

http://refhub.elsevier.com/S1566-2535(23)00480-3/sb57
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb57
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb57
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb57
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb57
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb58
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb58
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb58
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb58
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb58
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb58
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb58
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb58
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb58
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb59
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb59
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb59
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb59
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb59
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb60
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb60
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb60
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb60
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb60
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb61
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb61
http://refhub.elsevier.com/S1566-2535(23)00480-3/sb61

	Clustering pipeline for vehicle behavior in smart villages
	Introduction
	Related Work
	Fundamentals
	Main clustering algorithms
	Clustering performance
	Principal Component Analysis
	Normalization
	Dataset geometry

	Clustering Pipeline
	Background
	Data collection
	Data Cleaning
	Data Fusion
	License Plate Recognition Data
	Vehicle Information Data
	Demographic and Economic data
	National calendar data
	Geographic data
	Merge of all the processed datasets

	Preprocessing
	Dimensionality reduction
	Clustering and evaluation
	Visualization
	Data Privacy and Security

	Results
	Preprocessing and Dimension reduction results: Normalization selection
	Exploration of Clustering Algorithm categories
	Evaluation results
	Evaluation results: Min–max normalization
	Evaluation results: ℓ2 normalization

	Visualization results
	Visualization: Min–max normalization
	Visualization: ℓ2 normalization


	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Supplementary Correlation and Variable Statistics
	References


