
“Light organ with musical events microcontrolled
synchronization”

BACHELOR’S DEGREE IN
COMPUTER ENGINEERING

Bachelor’s Thesis

“Light organ with musical events microcontrolled
synchronization”

ACADEMIC COURSE: 2023/2024

Juan Andrés Peña Maldonado

BACHELOR IN COMPUTER SCIENCE

“Light organ with musical events microcontrolled
synchronization”

AUTHOR:

Juan Andrés Peña Maldonado

SUPERVISED BY:

Prof. Andrés Roldán Aranda

DEPARTMENT:

Electronics and Computer Technologies

Juan Andrés Peña Maldonado, 2023/2024

 2023/2024 by Juan Andrés Peña Maldonado and Andrés M. Roldán Aranda:
“Light organ with musical events microcontrolled synchronization”.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA
4.0) license.

This is a human-readable summary of (and not a substitute for) the license:

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you
or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

To view a complete copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

“Light organ with musical events microcontrolled synchronization”

Juan Andrés Peña Maldonado

KEYWORDS: GUI, MIDI, Arduino, Qt, music, organ

ABSTRACT:

This Bachelor’s Thesis main objective is to develop an application capable of reproducing a song on an
Arduino board while assinging each note a light on the board which will be turn on and o accordingly
starting from a MIDI le. It will also have a Python interface which will allow the user to interact with it.
The programm will be able to:

• Read and get all the necessary information from a MIDI le (Notes, tracks, instruments, etc...)

• Reproduce MP3 les and manage the organs lights

• Compile and execute Arduino code necessary from the interface

This Bachelor’s thesis is part of one of the TFGs oered by the Aerospace Electronics group, GranaSAT.

“Órgano de luces con sincronización microcontrolada de eventos
musicales”

Juan Andrés Peña Maldonado

PALABRAS CLAVE: GUI, MIDI, Arduino, Qt, música, órgano

RESUMEN:

El objetivo de este Trabajo de Fin de Grado es desarrollar una aplicación que pueda partiendo de una
canción en formato MIDI, reproducir dicha canción en una placa Arduino asignandole a cada nota una luz de
la placa que se ilumine de forma correspondiente. Contara también con una interfaz en Python que permitira
interactuar con el programa. El programa podrá:

• Analizar un archivo MIDI y extraer la información necesario de este (Notas, pistas, instrumentos, etc...)

• Reproducir archivos MP3 y controlar las luces del órgano

• Compilar y ejecutar el código Arduino necesario para la placa desde la propia interfaz

Este Trabajo de n de Grado forma parte de uno de los TFGs ofertados por el grupo de Electrónica
Aeroespacial,GranaSAT.

“But this didn’t feel like magic. It felt a lot older than that. It felt like
music.”

Terry Pratchett
Soul Music, 1994.

Acknowledgements

To my family for always being there for everything I have ever needed and to my friends and colleges for
putting up with me. Thank you everyone.

Agradecimientos

A mi familia por estar siempre para todo lo que me ha hecho falta y a mis amigos y compañeros por
aguantarme. Muchas gracias a todos.

Contents

License v

Defense authorization vi

Library deposit authorization viii

Abstract (English) x

Abstract (Spanish) xii

Dedication xiv

Acknowledgements (English) xvii

Acknowledgements (Spanish) xix

Contents xxi

Glossary xxiv

Acronyms xxv

1 Introduction 1

1.1 Motivation . 1

1.2 Project goals and objectives . 2

1.3 Project structure . 2

2 Project Analysis 3

2.1 Task Analysis . 3

Light organ with musical events microcontrolled synchronization xxi

0
xxii Contents

2.2 Time Analysis . 4

3 Background Knowledge 5

3.1 The MIDI format[1] . 5

3.1.1 MIDI messages[2] . 5

3.1.2 Working with MIDIs in Python: MIDO[3] . 6

3.2 Arduino[4] . 8

3.2.1 Arduino UNO . 9

3.2.2 Arduino Programming . 9

3.2.3 Arduino Libraries . 9

3.2.3.1 ShiftRegister 74HC595 . 10

3.2.3.2 AltSoftSerial . 10

3.2.3.3 DFRobotDFPlayerMini . 11

3.2.3.4 TinyIRReceiver . 11

3.2.4 Arduino-cli[5] . 12

3.2.4.1 PyDuino-cli[6] . 13

3.3 FluidSynth[7] . 13

3.4 PyQt Interfaces[8] . 13

3.4.1 QtDesigner . 13

4 System design 15

4.1 MIDI le converter with Python . 15

4.1.1 MIDI message extraction . 15

4.1.2 Header writing . 17

4.2 Arduino Application Programming . 19

4.3 PyQt GUI design and implementation . 25

4.3.1 Add songs to the board . 26

4.3.2 Remove songs from the board . 27

4.3.3 Compile code . 27

5 System Testing 29

5.1 GUI usage . 29

5.2 Board testing and demonstration . 39

Juan Andrés Peña Maldonado

Contents xxiii

0
6 Conclusion and future improvements 40

Bibliography 41

Light organ with musical events microcontrolled synchronization

Glossary

A | G | M | P

A

Arduino Electronics Platform. WIP .

G

GranaSAT Electronics Aerospace Group. An academic project from the UGR. This organization has an
electronics laboratory where students from dierent degrees and education levels develop
multidisciplinary projects [9] .

M

MIDO Python Library. The library we will use for MIDI le manipulation. We are using version 1.2.10. .

P

PyQt Python binding for Qt. It allows us to use tu use Python code with Qt. We are using version 5.9.2
of PyQt and version 5.9.7 of Qt .

Python Programming Language. It will be the main programming language we use for this project. We
are using version 3.9.7 of Python. .

xxiv Light organ with musical events microcontrolled synchronization

Acronyms

A | G | M | U

A

API Aplication Programming Interface.

G

GUI Graphical User Interface.

M

MIDI Musical Instrument Digital Interface.

U

UGR University of Granada.

Light organ with musical events microcontrolled synchronization xxv

Chapter 1

Introduction

This Bachelor Thesis shows the result of knowledge and skills acquired by the student in the Bachelor’s
Degree in Computer Engineering which has been tested during the development process of this project.

This document is meant to reect the development process of this application. It will include MIDI
le reading and processing, Python GUIs development, Arduino board coding and compiling among other
dierent processes, all of which will be necessary in order to create a fully functioning light organ GUI.

This Final Degree Project is carried out in collaboration with the academic project GranaSAT. This is an
aerospace development group of the University of Granada (UGR), formed only by students from dierent
elds of Engineering, such as Aerospace Engineering, Electronic Engineering, Computer Engineering or
Telecommunications Engineering among others, under the supervision of Professor Dr. Andrés María Roldán
Aranda.

Figure 1.1 – The GranaSAT logo.

1.1 Motivation

When I was scrolling through the open TFG topics list I did not have anything in particular in my mind,
but when I saw this one, I immediately knew this was exactly what I wanted.

It sounded like a fun topic, something that would be very visually appealing once it was nished and it
allowed me to work with Arduino boards which was something I had already enjoyed in the past although
it seemed like a challenge specially compared to the instances I had used Arduino before.

Light organ with musical events microcontrolled synchronization 1

1

2 Chapter 1. Introduction

1.2 Project goals and objectives

When I started this project, my main objectives for its development were:

Obj. Nº Description

Obj. 1 Create an Arduino application capable of reproducing a song while simultaneously
turning on and off 32 lights assigned to each tone of the music.

Obj. 2 Develop code that is able to process a MIDI file to get a lights sheet that tells the
program which lights to turn on and off and when.

Obj. 3 Coding an GUI that will help the user interact with the organ being able to add
and delete songs as necessary.

Obj. 4 Being able to carry on a project of this size and document it in this document so
that future improvements can be carried out by other team.

Table 1.1 – Top-level objectives of this Bachelor Thesis.

1.3 Project structure

This document will be divided into ve chapters, each of one will detail the dierent parts of the project.

Those chapters are:

1. Chapter 1: Introduction. In this chapter we will establish the structure of the TFG and a brief
summary of what it consists of. It will also set up the layout of subsequent chapters

2. Chapter 2: Background Knowledge. This section will be dedicated to introducing all the dierent
concepts and ideas that will be necessary for the project and the understanding of its development.

3. Chapter 3: Project Planning. Chapter 3 explains in detail the planication of the dierent stages
of the project. It will contain a Gantt Diagram with the expected duration of each stage of the project
and a summary of how well I adjusted to that timetable and the dierence that ended up happening.

4. Chapter 4: System description and design. This chapter will be give an overview of the whole
system, its dierent parts and their design and development.

5. Chapter 5: System testing.

Contains dierent examples of how the nal application works and how to navigate it.

6. Chapter 6: Conclusion and future improvements. Finally, the last chapter is dedicated to the
conclusions and lessons learned throughout the project as well as dierent improvements that could be
added

The addenda will contain dierent information such as tutorials on how to get the application to work
on dierent computers as well as anything that didn’t have a home in another chapter but was relevant to
this document nonetheless.

Juan Andrés Peña Maldonado

Chapter 2

Project Analysis

Now that we have established the structure this document will take, we will start analysing this project, how
will we approach it and the tasks that will be required.

2.1 Task Analysis

Here is a diagram of how we will want our system to operate

Figure 2.1 – System Diagram

As we can see, our Python code will be in charge of extracting the information from the MIDI les

Light organ with musical events microcontrolled synchronization 3

2

4 Chapter 2. Project Analysis

and converting it into both notes for the header le and an MP3 le for the SD Card. Implementing this
functionality will be our rst task.

After that, the Arduino board will be in charge of both reading the lights information from the header
le and the MP3 le from the SD and reproduce both. Designing the code for the board so that it can do
this will be our second task.

Once all the functionalities are implemented we will be designing the GUI, so that the program can be
interacted with. This will be the third task

Finally, after everything is done, we will need to test everything and round up the documentation. That
will be the nal tasks.

2.2 Time Analysis

For us to visualize this information more eectively, we will use a Gantt Diagram in which we will layout
the dierent tasks that will be required in a timetable, assigning to each of them a time period in which that
task should be nished and we will also establish the time dependencies among them.

Figure 2.2 – Gantt Diagram

Juan Andrés Peña Maldonado

Chapter 3

Background Knowledge

In this chapter, we will collect all the information necessary for this project.

3.1 The MIDI format[1]

Figure 3.1 – MIDI logo

MIDI is a protocol which allows digital instruments to communicate with each other. A MIDI le is just
a record of this conversation which allows us to play it back by reproducing each of the dierent messages
recorded.

Because of this, by reading a MIDI le you can get information about each note that is being played,
for how long is it played, at what time, etc... that would be absent from other audio les which only store
sound waves.

3.1.1 MIDI messages[2]

Each MIDI message is composed of two types bytes: A status byte and data bytes.

A status byte informs us about the type of message and the channel used, it always comes rst and its
rst bit is always "1".

Light organ with musical events microcontrolled synchronization 5

3

6 Chapter 3. Background Knowledge

Figure 3.2 – Structure of a status byte

Data bytes come after the status byte, they contain contextual information depending on the type of
message described by the status byte. There can be multiple in a row and their rst bit is always "0"

Channels are a way to separate messages from each other. A device can only read messages from its
assigned channels, which allows us to set what instrument must play what note. Because we only have 4
bits to represent a channel there are only 16 possible channels

There are 8 types of MIDI message which will be covered in this list:

Name Status
byte Description

Note off 1000 Contains information about which note is released and at what velocity

Note on 1001 Contains information about which note is pressed and at what velocity

Polyphonic
Aftertouch 1010 Contains information about the pressure on a held key. I more precise than Channel

Aftertouch

Control
Change 1011 It modifies the values of knobs, sliders and pedals.

Program
Change 1100 This message is not very relevant nowadays and its used to change from one patch1 to

another

Channel
Aftertouch 1101 It contains information on the pressure used on the key with the highest pressure. It

requires less space than Polyphonic Aftertouch

Pitch
Bend
Change

1110 It controls the pitch slider. It has more resolution than the Control Change message.

System
Messages 1111

They don’t need to have a specified channel. They are used to send information
across channels, to synchronize different clock-based MIDI components and to send
manufacturer relevant information[10]

Table 3.1 – List of MIDI messages

3.1.2 Working with MIDIs in Python: MIDO[3]

In order to work with MIDI messages we will use the Python library MIDO.

1Synthesizers used to have a list of 128 presets or patches which allowed them to reproduce a particular type of instrument.
These encompassed things like Violin, Recorder or Organ, but because they were also used for video games, the list contained
weird patches like Gunshot or Bird

Juan Andrés Peña Maldonado

3.2. Arduino[4] 9

3

3.2.1 Arduino UNO

Figure 3.7 – Arduino UNO board

There are lots of Arduino boards models to choose from. We won’t need a lot of power for what we are
aiming for, so we can choose one of the lower-end Arduino boards. Because we will need a lot of dierent
lights to be connected, we could choose an Arduino Mega, but we will instead settle for the Arduino Uno and
use libraries to circumvent this. We will do this because as we said before we already own one and because
it would be cheaper if we didn’t but you can realistically justify using an Arduino Mega.

As we said previously, we will reuse a board from a previous year[11], which is soldered to a PCB board
with LEDs and other sockets. The board is also equipped with a clock, a speaker, an LED display and an
external SD card.

3.2.2 Arduino Programming

Arduino utilizes its own language derived from C++. It uses most of the C++ only with a few changes.
The main one is that it utilizes void setup() and void loop(). void setup() is a function executed when the
board is booted, we could call it the startup function and on the other hand, void loop() is called repeatedly
whenever it nishes, its the main function which we want the board to perform.

3.2.3 Arduino Libraries

In order to implement all the required functionalities for the board, we will use a collection of dierent
libraries that will help us manage everything

Light organ with musical events microcontrolled synchronization

3.2. Arduino[4] 11

3

After that, we can use it as a normal serial port, using the begin, print, available and read functions.

3.2.3.3 DFRobotDFPlayerMini

This library allows us to use the DFPlayer, which we will use to reproduce the MP3 les we need from
the board.

In order for us to do this, we rst need to create a serial port with the AltSoftSerial library and then we
will create a player by creating a player object and then assining that port to the player object.

Figure 3.10 – DFRobotDFPlayerMini player initialization

This will allow us to play the songs stored in the SD card by calling the player.play(number_of_song)
function.

3.2.3.4 TinyIRReceiver

Finally, TinyIRReceiver is a library that will help us control the board with an infrared remote. This
will be handled via interruption events which will allow the rest of the code to be played at the same time.
These interruptions are handled entirely by the library which calls the function handleRecievedTinyIRData()
which must be declared in the code.

Light organ with musical events microcontrolled synchronization

3

12 Chapter 3. Background Knowledge

Figure 3.11 – IRReceiver interrupts handling code

It is important to note that we must make two possible declarations for handleRecievedTinyIRData(),
one for when ESP8266 or ESP322 are dened and one where they are not. This is because if we are using
an ESP8266 or an ESP32 microcontroller, we want the code for an interruption to run on RAM instead of
ash memory so that it ends as fast as possible which is indicated by the IRAM_ATTR marker at the start
of the function declaration.

Once that is out of the way, the code is really simple. When the function is called, it will take the data
from aCommand which contains the information on the button pressed on the remote and will execute a line
of code depending on its content.

3.2.4 Arduino-cli[5]

Arduino-cli is an Arduino command line tool. It allows board management, library management, sketch
builder, board detection and more. This will be crucial, since we will need to compile the Arduino code we
have written directly from the GUI.

Juan Andrés Peña Maldonado

3.3. FluidSynth[7] 13

3

3.2.4.1 PyDuino-cli[6]

PyDuino is a Python library that will allow us to use the Arduino-cli functionalities from Python code.

3.3 FluidSynth[7]

Figure 3.12 – FluidSynth logo

Our Arduino board is only able to play MP3 les, so we will need FluidSynth to convert the MIDI
les into MP3. Fluidsynth is a real-time software synthesizer based on the SoundFont2 specications, and
although it lacks a GUI, it has a very powerful API.

From FluidSynth we will only use the command: uidsynth -ni soundfont.sf2 MIDI.mid -F MP3.mp3 -r
sample_rate which will convert a MIDI le into an MP3 le, just like we wanted.

3.4 PyQt Interfaces[8]

Figure 3.13 – PyQt logo

PyQt is one of the most popular Python bindings for the Qt cross-platform C++ framework. It will
allow us to create Qt GUIs making use of the multiple tools that come with it like Qt Designer while using
Python for the programming part.

3.4.1 QtDesigner

QtDesigner is a program utilized to as its name implies design Qt GUI in a graphical way without having
to code it directly. We will be able to add dierent elements from its toolbox and arrange them as we see t

Light organ with musical events microcontrolled synchronization

3

14 Chapter 3. Background Knowledge

to create a responsive and useful GUI. This toolbox includes buttons, menus, lists, text boxes, etc...

Figure 3.14 – QtDesigner GUI

Juan Andrés Peña Maldonado

Chapter 4

System design

4.1 MIDI file converter with Python

The rst task in our project will be to create an application that will take a MIDI le (.mid) and extract
all the relevant information about it that we will need for the light organ.

We will be using Python as the programming language for this purpose because it’s the one I am more
acquainted with, it is very exible which is useful when working with dierent types of data and it has
dierent libraries that interact with MIDI les and as we explained in Chapter 3, we will be using the MIDO
library to work with MIDI les. I have chosen this library because of its ease of use and large documentation.

4.1.1 MIDI message extraction

As we explained in Chapter 3, every MIDI le contains tons of dierent messages but we will focus only
on what we will need for the organ.

Our objective will be to have a matrix in which we will store what note is being played, when it starts,
its duration, and what track does it belong to.

We will need to read each note_on/o message and convert its time notation into seconds. We will also
store the time where a note starts in seconds since the begining of the song, instead of ticks since last message
for clarity purpose and because it will help us later when we are programming the organ.

First, we will need an auxiliary class which we will call note_obj. This class will store a notes track, its
tone, its starting time and its nishing time. This will allow us to create note objects from the information
we get by reading the messages.

Light organ with musical events microcontrolled synchronization 15

4

16 Chapter 4. System design

Figure 4.1 – Code for the note_obj class

We will create two lists: One will contain the notes that have been started by a note_on message but
have no nishing time, we will call this list unnished_notes. The second one will be notes, which will store
notes which have a nishing time. We will also create a tempo and beat variable in which we will store the
xed tempo of the le and the current ticks_per_beat of the current track. We will update this variable
each time we read a tempo change message.

Finally, we will read each message on each track. When we read a note_on message, if it doesn’t have
velocity 0, we will create a note_obj with the note, its starting time in seconds (Calculating it from the time
in ticks, the beat and the tempo), and the channel it belongs to. Whenever we read a note_o message or a
note_on with velocity 0, we will look for that note in unnished_notes and add the nishing time calculated
just as the starting time and we will move that note_obj into textitnotes.

Figure 4.2 – Code for the reading of messages

Juan Andrés Peña Maldonado

4.1. MIDI file converter with Python 17

4

Now that we have everything organized in note_obj inside a list, we will convert it to a Numpy array.
Numpy arrays are much easier to work with and faster to operate with. This Numpy array will have 4
columns: Note, Start, Duration and Track. And with that out of the way, we have successfully converted a
MIDI le into a data structure with which we can work and operate.

Figure 4.3 – Numpy array creation

4.1.2 Header writing

The next part of the task will be to convert this Numpy array into a form of data our Arduino board will
be able to read and we will also need to convert each tone of the song into a corresponding light. For this
purpose we will be creating the le musiclight.sh which will be a header le separate from the main Arduino
le and will store the information of all songs.

The rst part of this process will be converting the tones of the dierent notes into lights. Because we
want dierent instruments to be dierentiated in the organ, we will convert each track individually, assigning
them a set of lights. For example, if we only have one track, any of the 32 dierent lights could be turned
on. Contrary to that, if we have 4 tracks in the song, the notes of each track must be represented by only 8
lights each. Then we will use a mapping function to convert the original tone range to the new lights range.

The mapping function in question works like this:

1. We take the original notes range and we subtract the lowest note from all elements

2. The result should be new range from 0 to the new highest note. We divide each element by that new
highest number

3. Now our range goes from 0 to 1 so we multiply it by the size of the new range (Size is equal to the
highest number minus the lowest number)

4. Finally, we add to each element what we want to be the new smallest element (The lowest number
from the light range)

This function follows the following properties:

1. It respects the proportions of the original range (The separation between notes is kept the same)

2. It makes sure that the highest and lowest light always get used.

3. Its easy to implement

However, it also has the following downsides:

Light organ with musical events microcontrolled synchronization

4

18 Chapter 4. System design

1. It doesn’t force each light to be used meaning depending on the song some lights might be used for a
lot of notes while others don’t get used at all

2. It doesn’t reect the spread of the original song. It doesn’t matter how high were the highest notes or
how low were the low ones, everything is put into the same range.

Nevertheless, although this is something that I think must be discussed, we are willing to accept this
trade o. In the future we may implement dierent more mapping functions but for now this is more than
enough.

Figure 4.4 – Visual representation of the mapping process

Finally, we will take all this processed information and we will add it to the musiclights.h le. Each song
consists of:

• The tag: Its a comment before the song that indicates its number (Its main use is for le writing
management)

• #dene note: Its a keyword that will signal that the following variables are dened. This will be useful
when we build the Arduino code

• notes: The number of notes in the song

• light: An array containing the dierent lights that must be turned on. They are listed in chronological
order

• start: An array where each element corresponds to same numbered element of light and determines
when that light has to be turned on. It’s measured in tenths of second.

• delay: The nal component of a song. Its another array whose elements correspond to the same
numbered elements of light and determines for how long must that light be kept shining. Its also
measured in tenths of second.

We will need a function that adds a new song to the le (add_song_to_header()) and a function that
deletes and existing song from the le (delete_song_from_header()). We must respect the order of the
songs, avoiding having a song number two and a song number four without the existence of a song number
three.

Juan Andrés Peña Maldonado

4.2. Arduino Application Programming 19

4

• add_song_to_header: It reads the musiclights.h le, stores each line in a list and then looks for where
the song tag for the correct place is and saves the song’s data right after that

• delete_song_from_header: This function also reads the same le and stores each line on an list. When
it reads each line, it looks for the song tag of the song we want to remove and then write each line
after substituting each songs number for the previous one. So if we remove song number four from the
header le, the next songs will become song number 4, song number 5, etc...

We must also make sure that if a le doesn’t exist, it is created and populated with the necessary text
that will be required (Like #ifndef statements to check that the le has not been compiled multiple times
and the aforementioned song tag)

4.2 Arduino Application Programming

Now that our header le is ready and we can add as many songs as we want, we will start developing the
code that reads this header les. This code must be able to read all the notes in the header le and turn on
the lights accordingly as time passes. It will also have to allow us to select the dierent songs that exist in
the board and will also have to reproduce the MP3 les which will be associated to each song and stored in
the SD card.

First, we will import the necessary libraries and musiclights.h. We will need to setup some variables
which are required for the dierent libraries we will be using like we saw in Chapter 3.

Figure 4.5 – Libraries import

We will also need to declare some global variables for our program:

Light organ with musical events microcontrolled synchronization

4

20 Chapter 4. System design

• starting_time: It stores the time given by the function millis() in which the current song started

• current_time: It is used later to store the current time also given by the function millis(). It is updated
in each loop

• playing_song: If its -1, it means no song is being played. 0 means keep playing whatever song is
currently playing and any value above 0 sets the variables to play the song with that number. For
example, if playing song is 7, the required variables will be setup so the seventh song is played and
then it will become 0 again until the song ends.

• current_note: When a song is playing, it stores the position of the last note played

• delay_on_lights: Its an array which helps us keep track of how long lights should stay on. Each position
represents a light and stores the amount of time it must remain lit which is updated accordingly as
time passes.

• pinValues: Its a 4 bytes array, each bit representing a light. It is used for the function setAll() to turn
on or o all the lights.

• total_notes: The total amount of notes in the currently played song

• start_array: A pointer to the start array of the currently played song

• light_array: A pointer to the light array of the currently played song

• delay_array: A pointer to the delay array of the currently played song

Juan Andrés Peña Maldonado

4.2. Arduino Application Programming 21

4

Figure 4.6 – Global Variables Declaration

Now that those variables are declared, we will start construction the turnOnLights() function. It will take
the delay_on_lights array and the pinValues array as an input. It will set all the positions in pinValues to 0
to make sure that initially all lights are turned o. Then, we will in order read each value of delay_on_lights
and if that position is greater than 0, we turn on the bit representing that light in the pinValues array. Doing
this requires a bit of knowledge on bit operators, masks and on how the lights are arranged in the board.
For this purpose, I have arranged a diagram which illustrates what bit of what byte turns on each light in
the board:

Light organ with musical events microcontrolled synchronization

4

22 Chapter 4. System design

Figure 4.7 – Lights layout on the Arduino board

As we can see, the order of the bytes is not the same order in which the lights are arange, so we take rst
8 positions correspond to the range of pinValues[3], next comes pinValues[1], then pinValues[2] and nally
pinValues[4]. It is also important to point out that pinValues[2] and pinValues[4] have their zero bit light
right at the end instead of the beginning like the other bytes, so we will have to account for that too.

Once all of that is accounted for, we will use pinValues as an input for the setAll() function which will
turn on all the corresponding lights.

Juan Andrés Peña Maldonado

4.2. Arduino Application Programming 23

4
Figure 4.8 – Lights_on function

The next step is to feed to this function we just created the information provided by musiclights.h. This
is not a trivial task, since we need to make it in such a way that the board can be interacted with while a
song is playing so we can modify the volume, change songs or even stop the program.

One way to solve this problem is with multithreading, but since our Arduino board doesn’t have enough
processing power to do that, we will use interruptions. An interruption is a signal to the processor that
disrupts whatever the processor is doing to execute some code designed to react to whatever external stimulus
is being fed to the Arduino. In this case, our interruption will be provoked by our IR Remote using the
TinyIRReceiver library as explained in Chapter 3. We will get into the code of the interruption later but for
now, we will focus on the code that we will use for the void loop() function.

First of all we have to check the playing_song variable to check if a song should be playing, in case its -1,
nothing happens and we keep checking. The variable will be changed in the interruption so we don’t have
to worry about that for now either. If playing_song says that a specic song should playing (playing_song
greater than 0) we will assign the pointer variables and the total_notes value to the correspondent arrays
and value in musiclights.h. We will also set the starting time to the current time, the current_note to 0 and
the playing_song variable to 0 so that we know a song is playing. When we were saving the information
of each song in musiclights.h, we discussed the addition of a #dene NOTESX line: this line will help us
check if the song we are locking for exists in the le or not. Unlike a normal if statement, #ifdef is checked
at compilation time and if its clause isn’t fullled, the code it precedes isn’t compiled at all, so if we have
#ifndef NOTES1, the code will not be compiled unless there is a #dene NOTES1 line at musiclights.h and
if there isn’t, we will just set playing_song to -1 indicating that no song is playing now.

Light organ with musical events microcontrolled synchronization

4

24 Chapter 4. System design

Figure 4.9 – Music Check Function

In the case that we exit that verication and there is a song playing, we will execute the next chunk of
code:

1. We start by storing the current time as current_time. We will also need to know: What note must be
turned on next, when we will have do it and how long will it stay on. We can obtain this information
from current_light, current_start and current_delay respectively more specically from their item
in the current_note position. We will store that information in current_light, current_start and
current_delay.

2. Next, we will check if the time has come to start a new note, we will need to know if there are notes
that haven’t been played (total_notes greater than current_note) and if it’s time for the next light to
be turned on (current_start less than current_time). If that is the case, we proceed as normal, in any
other case we skip next step

3. If a note should be played, we add its delay plus the current time to the corresponding position
(current_light) in the delay_on_lights array and once we have done that, we increment current_note
and check if we have notes left to play. If we don’t the song is over otherwise we update current_start,
current_delay and current_light

4. Finally, we update delay_on_lights by checking if the time at which they will turn o has already
passed, if it has, we convert that to 0, else we do nothing. Once that is ready we pass delay_on_lights
to the turnOnLights() function and repeat from step1

We have also added a small delay between iterations of the cycle so that there is capability of meaningful
change between each iteration. Also, because of a technical problem with the board, the LED at the

24th

Juan Andrés Peña Maldonado

4.3. PyQt GUI design and implementation 25

4

position must always be on so that the other lights work otherwise, nothing even starts. This is just a
temporary solution but a small line has been added to keep that light on in the meantime.

With that out of the way, it is now time to talk about the code in the interruption. The interruption
will take control of the CPU whenever an IR signal is received by the board. This allows us to run the main
program all the time while being able to attend to the instructions given by the user via the remote. This
interruption is dened in Chapter 3 so we will go to the important part.

In this code we will read the information received from the remote, and depending on what number from
1 to 9 it will try to play that song which means calling the MP3 player function (player.play()) and setting
playing_song to the correct number. The Up and Down messages control the volume and okay pauses the
song.

Figure 4.10 – Interrupt Code Function

4.3 PyQt GUI design and implementation

Because the rst part of this assignment is developed in Python I decided that the GUI of the application
should also be made in Python, so after a rough rst sketch with the Tkinter library, I decided to use PyQt
to create a more sophisticated and much better looking GUI.

Our GUI must have the following functionalities:

• It should allow you to load any song into the board. This should load the MP3 le and add the song
to the header le as seen in the rst section of this chapter

• It must be able to remove songs from the board by deleting the MP3 le and the song from the header
while renaming all les accordingly.

• It has to be able to compile the code in the board without any external functionality. This includes
selecting the correct board from a list and giving proper errors when compiling is not possible

We will create the main layout of the GUI in QtDesigner as described in Chapter 3: PyQt. It will look
like this and will be saved as Organ.ui:

Light organ with musical events microcontrolled synchronization

4

26 Chapter 4. System design

Figure 4.11 – QtDesigner view of the GUI

As we can see, because of the use of layouts, the GUI will be responsive and will adjust the size of its
elements to correspond with the current resolution of the main window.

Once the design of the GUI is created, we need to export it to Python, which will create the Organ.py
le. This le contains all the necessary code for the GUI, but its buttons are disconected and don’t really
do anything. We will need to create some functions to connect them to the buttons.

4.3.1 Add songs to the board

Before we can save a song on the board we must have rst found the path to the SD card and also selected
the path to the song we want to add. Without those requirements, the save a song function shouldn’t work.

We will create the searchSD() function to the GUI. It will be located on the top left drop-down menu
Seleccionar on the Buscar SD button. It will open a le explorer in which you will be able to select a folder
which will be stored in the SDpath variable and its contents will be displayed in the songs list at the left
part of the screen.

Now, we have to select the MIDI le from which we will extract the information for the song. This
functionality will be added to the top part of the GUI, on the Explorar archivos button. It will also open
a le explorer only in this case it will only allow you to select .mid les. Once a le is selected the path to
said le will apear in the text box on the left. You can also write the path there if you want.

Finally, we will add the saveSong() function. This function will be conected to the Guardar Canción
button on the right side of the GUI. It will rst check if both the le path and SD path are valid and it will
throw an error message in case any of them is not. Once that is checked, we will save the song to the device.

We rst convert the le to MP3 and for that we will have to use the program Fluidsynth as described in
Chapter 3: Fluidsynth. By calling the uidsynth command using subprocess, it will convert it to MP3 and
store it in the proper folder provided by SDpath. We will also add a tag before the name of each song so
that they maintain an order within the SD card. This is useful because the Arduino player stores the songs
in this order and are referred internally as numbers.

Now that the song is stored as an MP3 on the SD, we will store it in the header le of the board.

First, we cheek if said le exists and if not, we create it and populate it with the necessary elements

Juan Andrés Peña Maldonado

4.3. PyQt GUI design and implementation 27

4

(#ifndef declarations and rst song tag), then we call the function add_midi() which calls to the functions
we wrote in the rst section of this chapter to create a header and then to add_song_to_header(). Once
this is all done we update the song’s list.

4.3.2 Remove songs from the board

Once the SD is selected, all the songs in the board will appear on the left side of the GUI, from where
they can be selected. We will add a function deleteSong() which will delete the selected song. It will rst
check if there is an SD route and then it will check if a song is selected, if its not the case, it will throw an
error message, otherwise it will start the deletion process.

First, we get the number of the song we need to remove. This is important because unlike added songs
which are added at the end of the list, songs can be deleted from the middle or the beginning and the other
le must be renamed accordingly. After we have the number of the song we need to delete, we will remove
the le from the SD card and then we will update the tag of each song after that by updating its number
on the list accordingly to its new position.

Finally, we call the delete_song_from_header() function and update the songs list

4.3.3 Compile code

The last task our GUI must be able to handle is the compilation of Arduino code in the board, and for
that we will use pyduinocli, a library created for this intent and purpose which we discussed in .

To compile Arduino code into a board we will need three things:

• The Arduino .ino le which contains all the Arduino code. This le is called project_granasat and
already exists

• The Arduino port address which we will need to nd out

• And nally the fqbn, which is a descriptor of the type of board we are using and will require an
explanation later.

The Arduino port address is obtained by using the board.list() function from pyduinocli: It returns
a dictionary with some elements, but we only care about "result", which contains a list of information
about the dierent boards attached to the computer. From each board, we will want its port address
which is accessed via "port" then "address". The nal information we’ll want is obtained by looking for
Arduino.board.list()["result"][number_of_board]["port"]["address"]. Now that we know how to access the
information, we will add it to the GUI. We will add a new menu in the "Seleccionar" QMenu which will be
called Seleccionar Arduino. Whenever it opens, it will call the board.list() function and create a button for
each result it gets, said button will be named after the port is assigned to and we will add a function to
it which will save said port as a global variable which we will call savedPort whenever we click the button.
This allows us to select what board we will want to compile our code.

For the fgbn, the code is pretty similar, using board.list() too and looking at
["result"][number_of_board]["matching_boards][0]["fqbn"] instead but for some reason our board is not
recognised so we cannot access the information this way. I’ve been looking for ways to get the information
out of the board but I couldn’t nd any, so to x this I’ve decided that I’ll add a default fqbn which will be
the one for Arduino Uno boards: "arduino:avr:uno" which will be used whenever the board can’t provide
one. This is by no means a perfect solution but it works for the board we are using.

Now that we have all the things we need, we can start working on the compiling function. This function
will be called by the "Compilar el código" button and should do the following:

Light organ with musical events microcontrolled synchronization

4

28 Chapter 4. System design

• It will check if a port has been selected, if not, it will give an error message

• Then, it checks if the port that has been selected is still conected, if not, it gives an error message too

• If the port is connected, it will try to check if we can get its fqbn. If it can, it will store it and if it
can’t, it just uses the default one.

• Finally, if nothing else failed, we run the compile and upload functions.

• When it nishes, it shows a complete compilation message

And with that nished, the application is completed

Juan Andrés Peña Maldonado

Chapter 5

System Testing

This chapter will be dedicated to the use and understanding of the dierent parts of the system.

5.1 GUI usage

In this section, we will test each function of the interface and how each of them works perfectly. We will
start by saving a song:

Figure 5.1 – Main screen of the interface

As we can see, the interface starts with no SD selected and no MIDI selected. If we try to save a song as
is, we will get an error warning us that no SD card has been selected:

Light organ with musical events microcontrolled synchronization 29

5

30 Chapter 5. System Testing

Figure 5.2 – No SD selected error

This error is solved by selecting an SD card path in "Seleccionar" menu on the top left. If we click there,
the "Buscar SD" action will appear and we will be able to select the folder in which our SD card is located
from there once the SD card is selected, all the songs will appear in the songs list. If the SD is empty, so
will the songs list:

Figure 5.3 – Select SD button

Juan Andrés Peña Maldonado

5.1. GUI usage 31

5

Figure 5.4 – Find SD path

If we try to save a song now, the GUI will inform us that no MIDI le has been selected, so we will do
that next by either typing its path in the upper box or by clicking the "Explorar Archivos" button.

Figure 5.5 – No MIDI was selected error

Light organ with musical events microcontrolled synchronization

5

32 Chapter 5. System Testing

Figure 5.6 – Find file button

Figure 5.7 – Find MIDI path

Once the le is located, if we click the save song button, it will properly save the song in the SDCard, in
the songs list and in the musiclights.h le.

Juan Andrés Peña Maldonado

5.1. GUI usage 33

5

Figure 5.8 – Ready to save a song

Figure 5.9 – Song saved

This is the resulting les of this operation

Light organ with musical events microcontrolled synchronization

5

34 Chapter 5. System Testing

Figure 5.10 – Resulting SD files

Figure 5.11 – Resulting header file

Next, we are going to delete a song. If we try to just hit the delete button, we will get an error message
because no song has been selected from the list.

Figure 5.12 – No song was selected

Juan Andrés Peña Maldonado

5.1. GUI usage 35

5

So, rst we will select a song from the songs list and then we will hit the delete button. As we can see,
all the other songs are renamed properly when we delete a le making sure that we don’t have song number
3 without a song number 2:

Figure 5.13 – We select a song

Figure 5.14 – We hit delete

Light organ with musical events microcontrolled synchronization

5

36 Chapter 5. System Testing

Figure 5.15 – The song is deleted

Finally, its time to compile our code. For that, we will use the "Compilar el código" button:

Figure 5.16 – Compile Button

If we try to compile it now, we will get an error message because we have not yet selected the port where
the board in which we want to compile the code into is connected. So to do that we will use the "Seleccionar
Arduino" menu on the top left.

Juan Andrés Peña Maldonado

5.1. GUI usage 37

5

Figure 5.17 – No Arduino port was selected

Figure 5.18 – Port menu (Empty)

As we can see, when there are no boards connected to the board the menu is empty, but as soon as
we connect a board, it appears in the menu and we can select it. This will give a succesfully selected port
message:

Light organ with musical events microcontrolled synchronization

5

38 Chapter 5. System Testing

Figure 5.19 – Port menu

Figure 5.20 – Port selected successfully message

Finally, we can click the compile button to compile our code. If the board has been disconected, it will
give us a warning that the board is unavailable and it will not compile, but if the board is connected, it will
compile the code like we wanted:

Juan Andrés Peña Maldonado

5.2. Board testing and demonstration 39

5

Figure 5.21 – The board has been disconnected

Figure 5.22 – the code has been compiled

I have created a video explaining all the functionalities of the board, which can be seen in the following
link: https:
//drive.google.com/file/d/1AofBIRvY2QK2PxBxPGs7y97nTvQoF27T/view?usp=sharing

5.2 Board testing and demonstration

The next section, is a demonstration of the organ on action. Because this is very dicult to test in the
document, I will provide a video of the board working in the following link: https://drive.google.
com/file/d/1qhaujn55S9aTiM17rAAKWflDxjjs0jOK/view?usp=sharing

As we can see in the video, the board lights up acordingly to the music which is exactly what we wanted.

Light organ with musical events microcontrolled synchronization

Chapter 6

Conclusion and future improvements

Now that we have nalized the testing and demonstrated that both the board and the interface work, we
can check that all the objectives expressed at the beginning of this document have been fullled. The nal
product is capable of taking MIDI les of any category and convert them to MP3 while creating a sequence
of lights that accompany the dierent notes of the song and then reproduce said les and lights.

With that being said, with more time and resources put into it, there are a lot of places in which it could
be improved:

• Due to the fact that the lights sequences of the songs are hardcoded, we cannot store them in the SD
card and must be stored in memory and because of this we cannot really store very long songs

• Because we cannot interact with the SD card inside the board, we need to remove it from it and insert
it into the PC each time we want to change songs.

• The interface could be improved with additional features like translation, an MP3 player, etc...

• We could also change so that the board directly reproduces MIDI les without the need to convert
them to MP3

Finally, I would like to talk about my experience working on this thesis. Since it’s been the rst time I’ve
worked in a project of this magnitude in which I had to organize everything myself without deadlines this
has been a very important learning experience. I’ve had the opportunity of learning about a lot of diverse
themes and acquire a lot of obscure knowledge (especially about MIDI les) which is always a lot of fun.

I think this is also a very interesting project because unlike any of my other projects, its something that
will be seen and used by other people which really gives me a sense of accomplishment.

40 Light organ with musical events microcontrolled synchronization

Bibliography

[1] A. Swift, An introduction to MIDI. https://web.archive.org/web/20120830211425/http://
www.doc.ic.ac.uk/~nd/surprise_97/journal/vol1/aps2/.

[2] S. Hutchinson, “The midi protocol: Midi messages.” https://www.youtube.com/watch?v=2BccxWkUgaU.

[3] MIDO. https://mido.readthedocs.io/en/latest/.

[4] “What is arduino,” 2023.

[5] Arduino-Cli Docs. https://arduino.github.io/arduino-cli/0.33/.

[6] “Compiling arduino code in python.” https://www.tinkerassist.com/blog/compile-upload-arduino-
code-with-python.

[7] Fluidsynth. https://www.fluidsynth.org/.

[8] PyQt5 Reference Guide. https://www.riverbankcomputing.com/static/Docs/PyQt5/.

[9] GranaSat webpage. https://granasat.ugr.es Accessed: October 2021.

[10] MIDI control messages. https://gigperformer.com/program-change-management/.

[11] E. D. Águila, “Design of demosntrator device for automotive pilots of high performance vehicles,”
bachelor’s thesis, University of Granada, 2022. https://digibug.ugr.es/handle/10481/80480.

Light organ with musical events microcontrolled synchronization 41

