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Abstract

Earth construction techniques, such as rammed earth, are present worldwide
due to the availability of the material and its mechanical performance. Today
they are also attracting attention as an environmentally friendly way of build-
ing, although additivation is usually needed. Lime stabilization is an interesting
option with long tradition, well-known capacity to improve soil properties and
limited environmental impact. This study evaluates the effect of increasing lime
contents in the compressive strength and stiffness of rammed earth, and anal-
yses the strength development process of the material. Carbonation depth and
ultrasonic pulse velocity are also evaluated due to their relationship with the
mechanical behavior. The results show that 12 % lime maximized the com-
pressive strength and stiffness of the rammed earth material; the strength was
mostly developed during the first month but needs over a hundred days to be
fully developed. A good linear correlation between the ultrasonic pulse velocity
and the compressive strength is observed.

Keywords: rammed earth, lime stabilization, strength development,
mechanical characterization, carbonation, ultrasonic pulse velocity

1. Introduction1

The construction sector, nowadays, is well aware of the severe environmental2

impact caused by its activities, including resource consumption, waste genera-3

tion and pollution. This situation, which is getting worse over the years due to4

the increasing demand for housing as the global population grows, has drawn5

the attention of builders and researchers to non-conventional construction tech-6

niques and materials with lower environmental impacts. One such technique,7

with very long tradition and a promising future, is rammed earth (RE) [1–4].8
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RE building technique consist of compacting, between formwork, 7 to 15 cm-9

thick layers of sandy soil mixed with a certain amount of water in order to create10

walls with a thickness of 30–60 cm [5–8]. Natural soil can be directly used to11

build RE structures, leading to the so-called unstabilized rammed earth (URE),12

with clay acting as the only binder; but when higher strength or durability are13

required it is common to add different kinds of additives to the mixture. This14

technique is called stabilized rammed earth (SRE).15

One of the additives with longest tradition for rammed earth stabilization is16

lime, existing several examples of historic constructions made of lime-stabilized17

rammed earth (LSRE) [6, 9–13]. The RE used in these heritage buildings usually18

contained very significant percentages of lime, e.g., between 10 % and 15 % in the19

medieval walls of Seville (Spain) [14] and in traditional RE houses in Southern20

Portugal [15], 20 % in the Alcazaba Qadima and the Alhambra of Granada21

(Spain) [10, 16], also 20 % in the Saadian sugar refinery of Chichaoua (Morocco)22

[9], and ca. 25 % in the Fujian Tulou (China) [17] or in the Cáceres city walls23

(Spain) [14].24

There is also a broad consensus that lime stabilization improves the me-25

chanical and hydraulic behavior of soils [18–22]. When lime is added to a soil,26

the concentration of Ca2+ and OH- increases due to the hydration reaction of27

lime. This generates the flocculation of particles (affecting soil plasticity) and28

increases the pH, causing the dissolution of silica and alumina from soil minerals,29

which react with calcium forming calcium silicate (or aluminate) hydrates that30

cement soil particles and increase the mechanical performance of the material31

[19, 23, 24].32

However, and despite its historical use, today lime has been superseded33

by cement as the most common stabilizer for rammed earth [25], and as a34

consequence there is a lack of scientific research specifically analyzing the effects35

of lime stabilization in the mechanical properties of RE. Ciancio et al. [7] carried36

out a study evaluating the optimum lime content for LSRE, obtaining a value37

equal to 4 % by weight, but lime contents greater than 6 % were not considered.38

Da Rocha et al. [26] also analyzed LSRE materials, from 3 %wt to 9 %wt,39

concluding that the uniaxial compressive strength increased with increasing lime40

contents and indicating the need of long curing times. Also Canivell et al.41

[27] and Arto et al. [28] have recently evaluated the compressive strength and42

fracture energy, respectively, of RE materials stabilized with high percentages43

of lime.44

Understanding the mechanical behavior of LSRE is essential in order to prop-45

erly preserve the large number of heritage buildings made with this technique,46

but also because of its potential benefits in the development of an environmentally-47

friendly way of constructing. Lime is considered to be a much less energy-48

intensive binder compared to the frequently used Portland cement [7], as its49

manufacturing temperature is significantly lower (ca. 900 ◦C as opposed to50

1 500 ◦C) [29], which reduces the CO2 emissions during production. It is es-51

timated that ca. 0.9 t of CO2 are produced per tonne of cement, while the52

manufacturing process of lime produces less than 0.7 t of CO2 per tonne of lime53

[30–33]. In addition, the carbonation reaction (through which lime uptakes54
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atmospheric CO2) during the lifetime of the building can counterbalance the55

carbon emissions generated in the manufacturing and transportation process,56

leading to a reduction of the net carbon footprint of lime-stabilized materials57

[29, 34, 35].58

Against this background, this study presents an analysis of the effect of59

lime stabilization in the mechanical behavior of rammed earth, evaluating the60

compressive strength and stiffness of the material with diverse lime contents61

and analyzing its strength development process.62

2. Materials63

2.1. Soil64

The main source material used for the RE in this study was a natural soil65

from a quarry in Padul (Granada, Spain), classified according to the European66

Soil Classification System (ESCS, ISO 14688-2:2018) as clayey well-graded sand,67

after been passed through a 10 mm sieve in order to remove the coarser parti-68

cles. The particle size distribution of the resulting earthen material is shown in69

Figure 1, been in agreement with recent studies regarding rammed earth stabi-70

lization [36–38] and fitting withing the envelope recommended by Houben et al.71

[39], widely accepted for URE construction and frequently used also for SRE72

[25]. The soil had chloride and sulfate contents lower than 0.002 % and was free73

of organic matter and light contaminants. This soil can be considered to be74

representative of the material traditionally used in RE construction in Southern75

Spain [13, 14, 16, 28, 40].76

Figure 1: Particle size distribution of the soil.

2.2. Lime77

Natural hydraulic lime with minimum compressive strength of 3.5 MPa at78

28 days, referred to as NHL 3.5 according to European standard EN 459-1:2015,79
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was used as stabilizer. The main components of NHL are portlandite, reactive80

silicates and aluminates formed during calcination from the reaction of crushed81

limestone containing clay or other impurities. Table 1 shows the most relevant82

chemical and physical properties of the lime used in the present study.

Parameter Avg. value
SO3 [%] 1.7
Free lime, Ca(OH)2 [%] 30
Free H2O [%] 0.7
Residual at 90 µm [%] 5.7
Residual at 200 µm [%] 0.8
Bulk density [kg/dm3] 0.671
Real density [kg/cm3] 2.51
Blaine value [cm2/g] 8500
Setting time [min] 296
End of taking [min] 438
Compressive strength at 28 days [MPa] 4.8

Table 1: Chemical and physical properties of the natural hydraulic lime used in the study, as
indicated by the manufacturer.

83

3. Experimental procedure84

3.1. Specimen preparation85

In order to perform the experimental tests, 10 cm-side cubic LSRE specimens86

were manufactured. It is generally assumed that the size and shape of the87

samples may affect the mechanical properties obtained [5], although the relation88

between these parameters is still unclear and it is out of the scope of this paper.89

Similar geometries to the one used for the samples in the present study have90

been previously used by several authors [3, 27, 36, 41–44].91

In order to define the correct amount of water to be added to the mixture,92

Modified Proctor tests (UNE 103501 [45]) were performed on specimens with93

diverse lime contents. Modified Proctor is a widely established and easily re-94

peatable test that provides a compactive effort very close to the one that might95

be applied in the construction of a real wall [7, 41]. It was observed that greater96

amounts of water were needed in order to obtain the maximum dry density97

(MDD) with increasing lime contents, that is to say, the optimum moisture con-98

tent (OMC) linearly increased with the lime content. However, this increase in99

the OMC with the lime content is quite small (equal to ca. 3 %), as it was noted100

by Ciancio et al. [7], that reported variations lower than 2 % for lime contents101

between 0 % and 6 %. Furthermore, other authors [26, 46, 47] propose using102

constant OMC regardless the lime content, as they indicate that the variation103

is negligible. The results of the compaction tests also showed that the MDD104

of the LSRE decreases with the increase in lime content, in a very pronounced105
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way for small lime contents and then gradually stabilizing. The variation of the106

OMC and MDD as a function of the lime content is shown in Figure 2.107

Figure 2: Optimum moisture content and maximum dry density, from Proctor test, as a
function of the lime content.

The material was prepared by uniformly mixing the natural soil with a cer-108

tain amount of lime. Water was added to the mixture until reaching a water109

content equal to the OMC+2 %, following the recommendations of Walker et110

al. [4] and the New Zealand Standard NZS-4298 [48].111

The mixture was then poured into cubic molds and compacted by layers of112

ca. 2 cm, so each specimen was made up of five earth layers. The small thick-113

ness of the layers was chosen in order to provide a more uniform compaction114

and to reach a high compaction level by manual means. The material was com-115

pacted to 98 % of the MDD, according to NZS.4298 [48]. Once the upper layer116

was compacted and its surface smoothed, the samples were carefully removed117

from the mold and stored on wire racks, so all the faces could be in contact118

with the environment. The specimens were cured under constant conditions of119

about 25 ◦C and 40 % relative humidity, replicating common natural ambient120

conditions in Southern Spain.121

Figure 3: Some of the LSRE specimens, with different lime contents, stored on wire racks
during the curing period.
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3.2. Experimental evaluation122

The uniaxial compressive strength (UCS) and stiffness of the LSRE spec-123

imens were determined performing uniaxial compression tests, applying a ho-124

mogeneously distributed load on the upper face of the sample, perpendicular to125

the direction of the earth layers. The tests, in the absence of specific standards126

for RE testing, were performed according to European Standard EN 12390-3127

“Testing hardened concrete. Part 3: Compressive strength of test specimens”128

[49]. A linear variable differential transformer (LVDT) was used to measure the129

longitudinal displacements for the calculation of the stiffness modulus. In the130

first part of the study, UCS tests were carried out on specimens with increasing131

lime contents, from 0 % to 18 % every 3 %.132

Once the results were evaluated, more samples were manufactured with the133

lime content that led to a better mechanical performance (i.e. 12 %). These134

specimens were subjected to UCS tests at different curing times, from 2 to 100135

days, with a minimum of three specimens per curing time. The time intervals136

between the tests were smaller during the first weeks (every 2–5 days), as a137

greater variation of the mechanical properties was expected –and observed–,138

and longer for older specimens (every 10 days approx.). After the compression139

tests, the depth of the carbonation front in the specimens was measured by140

using phenolphthalein solution 1 % in ethanol as indicator, carefully cleaning141

the surfaces before testing using a compressed air gun. The carbonation depth142

is measured using a sliding gauge at 3 to 5 equidistant points on each of the143

four faces on a slice of the specimen, perpendicularly to the exposed surface of144

the cube, as indicated in standard EN-12390-12 [50]. The carbonation depth145

considered to be representative of the specimen was obtained as the average of146

those measurements.147

During the curing period, the specimens were periodically weighted to con-148

trol the loss of moisture, and subjected to ultrasonic pulse velocity (UPV) tests.149

UPV method is one of the non-destructive testing techniques whit a longest150

tradition for assessing the mechanical properties and inner cracks of building151

materials. A ultrasonic device, consisting of a transmitting and a receiving152

transducer, was used to measure the time of pulse of ultrasonic waves over a153

known path length [51]. Although UPV method has been widely used for con-154

crete, metal of wooden materials, only a few recent studies have applied it to155

determine RE mechanical properties [27, 43]. The UPV was measured for the156

manufactured LSRE specimens in a direction parallel to the earth layers.157

4. Results and discussion158

4.1. Stress-strain behavior159

The compressive behavior of RE specimens was obtained from the com-160

pression tests carried out according to standard EN 12390-3 [52], as mentioned161

above. This standard indicates that the results of the tests can be considered162

valid if all four exposed faces are cracked approximately equally, generally with163

little damage to faces in contact with the platens, as shown in Figure 4.164
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Figure 4: Satisfactory failures of cubic specimens, according to EN 12390-3 [52].

Stress-strain curves were obtained from uniaxial compression tests for the165

specimens with different lime contents after 28 days of curing. Figure 5 shows166

the stress-strain curves of all tested samples. It is possible to observe that, for167

almost all the specimens, at the beginning of the test, the material suffers sig-168

nificant strains for small load increments, while the earth particles are settling169

and so the fine grains fill the empty spaces between the coarser ones. Then,170

at ca. 0.01 mm/mm strain, the stiffness significantly increases and the material171

shows linear behavior until approximately 75 % of the maximum stress. This172

linear phase, however, also comprises plasticity due to the formation of microc-173

racks, so it cannot be considered as linear-elastic [47, 53–55]. This is followed by174

a plastic phase with a reduction of the stiffness until maximum stress is reached,175

then crack propagation occurs rapidly until failure.176

4.2. Compressive strength and stiffness177

According to the evaluation of the stress-strain curves obtained from the
experimental tests, the material shows a linear behavior approximately between
35 % and 75 % of the maximum stress, so the stiffness modulus (E) of the
samples was calculated according to the following equation, which is based on
the formulation proposed in ASTM C469 [56] for concrete samples, and used
for rammed earth in previous studies [36, 38]:

E = (S75 − S35)/(ε75 − ε35) (1)

where S35 and S75 are the stresses corresponding to 35 % and 75 % of the maxi-178

mum stress, respectively; and ε35 and ε75 are the longitudinal strains produced179

by stresses S35 and S75, respectively.180

The parameter E defined in Equation 1 is a secant stiffness modulus, fol-181

lowing the recommendation of the aforementioned standard and Koutous and182

Hilali [47], which indicates that the secant modulus is the best parameter to183

describe the elastoplastic mechanical behavior of earthen materials. These au-184

thors also noted that the value of the secant modulus is equal to approximately185
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Figure 5: Stress-strain behavior of RE specimens with diverse lime contents at day 28.

0.62 times the initial tangent modulus for unstabilized, cement-stabilized and186

lime-stabilized rammed earth.187

Table 2 shows the main results obtained from the uniaxial compressive tests188

for each lime content evaluated. The average coefficient of variation (CV) is189

equal to 11.0 % for the UCS and 17.4 % for the stiffness modulus. These values190

are reasonable taking into account the intrinsic heterogeneity of the material,191

and are comparable (and slightly lower) to the CV presented for SRE in previous192

studies [38, 57].193

It is possible to observe that an increase in the lime content increased the194

UCS and E of the RE specimens and decreased the strain reached at maximum195

stress. The UCS at 28 days obtained for U specimens is comparable to the196

values commonly obtained for URE [5], and was increased by about 11 % when197

adding 9 % of lime, while larger lime contents did not seem to provide greater198
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Spec. UCS [MPa] E [MPa] εc [mm/mm]
U 1.48 (9.3 %) 64.97 (9.8 %) 0.036 (5.5 %)
L3 1.53 (11.9 %) 73.43 (18.0 %) 0.031 (11.8 %)
L6 1.56 (13.2 %) 72.99 (21.5 %) 0.038 (13.5 %)
L9 1.64 (11.9 %) 81.49 (16.9 %) 0.033 (17.8 %)
L12 1.64 (12.8 %) 91.01 (17.0 %) 0.028 (12.4 %)
L15 1.65 (9.6 %) 92.56 (26.5 %) 0.030 (18.9 %)
L18 1.63 (8.5 %) 93.45 (12.2 %) 0.028 (12.7 %)

Table 2: Uniaxial compressive strength (UCS), stiffness modulus (E) and strain at max. stress
(εc) obtained for URE and LSRE specimens after 28 days of curing. Coefficient of variation
in parenthesis.

strength. The reason why increasing lime contents did not improved strength is199

probably indicating that above that critical lime content there is an insufficient200

amount of aluminosilicate material in the soil to support additional stabilization201

reactions with the lime.202

The UCS results obtained in the present study have been compared with203

those ones reported in literature, although the latter are very scarce and present204

a great dispersion. Ciancio et al. [7] obtained higher improvements (ca. 70 %) in205

the UCS with an optimum lime content of 4 %, but the initial strength for URE206

was extremely low (0.70 MPa), and so it was the maximum strength reached207

adding lime. Arto Torres [58] also performed compression tests on 10 cm-side208

cubic samples, with very high lime contents –20 and 25 %vol–, obtaining UCS209

equal to 2.64 MPa and 2.38 MPa, respectively. A similar dosage (18 %vol lime)210

was used by Canivell et al. [27], obtaining an average compressive strength of211

1.87 MPa. Not very different results were obtained by Koutous and Hilali [47],212

leading to UCS between 1.58 MPa and 2.55 MPa for 4 %-LSRE specimens. Da213

Rocha et al. [26] also evaluated the UCS of LSRE, obtaining surprisingly low214

values (under 1.00 MPa for all lime contents from 3 to 9 %). Despite of the215

differences, two aspects observed in the present study were also noted by [26]:216

UCS increases as the lime content increases and UCS increases as the curing217

time increases.218

The huge differences in the results showed in the diverse studies regarding219

lime stabilization of RE make it very difficult to draw general conclusions, so it220

would be necessary to carry out specific tests for particular soils and ambient221

conditions in order to assess the optimum lime content for the compressive222

strength and the maximum value of this parameter for each RE construction223

under consideration. If a range of UCS of LSRE should be established to have224

an order of magnitude, it would be from 1.00 to 2.50 MPa, a range in which the225

results of the present study fit.226

Regarding the elastic (secant) modulus, the values obtained in the present227

study for the URE specimens are in agreement with those proposed by Mania-228

tidis and Walker [59] and Bui and Morel [1]. Some other studies propose higher229

E values [38, 41, 60], but the enormous dispersion in the results presented in230
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literature regarding this parameter does not allow to define a value of consensus231

[5, 25]. Considering the studies specifically evaluating LSRE, only Ciancio et al.232

[7] indicates the measurement of the stiffness, showing values between 150 MPa233

to 200 MPa. Again, the lack of results in literature and their variability make234

it very difficult to draw conclusions about this parameter.235

Analyzing the variation of the stiffness when adding different lime contents,236

it can be observed that no relevant increases were obtained with lime contents237

lower than 9 %, but it significantly improved (about 25 %) when reaching that238

lime content. The increase in the secant stiffness modulus was even higher239

(over 40 %) for L12 specimens and then remained approximately constant when240

higher percentages of lime were added. The significance of these stiffness im-241

provements is assessed through an ANOVA test, obtaining a p-value of 0.003,242

much lower than the significance level (0.05), which provides strong evidence to243

conclude that the population means —mean stiffness for each lime content—244

are significantly different. Figure 6 shows the evolution of the stiffness with the245

lime content, together with the variation of the compressive strength.246

Figure 6: Average uniaxial compressive strength and stiffness for increasing lime contents at
day 28 (Table 2).

In the second part of the study, UCS tests were repeated for 12 %-LSRE
specimens, as it was observed that this lime content was the limit over which
the improvements in the mechanical properties was almost negligible. The tests
performed for the L12 specimens evaluated the strength development process
for this SRE material. The results show an exponential evolution of the UCS of
the specimens along time (Figure 7); Equation 2 is proposed as the expression
that fits better the evolution of the UCS of the LSRE specimens over time, with
a coefficient of determination R2 = 0.82.

UCS = 2.530
(
1 − exp

(
−0.386 t0.277))

(2)

whit UCS in MPa and the curing time, t, in days.247

These results and the proposed equation indicates a maximum UCS of248

2.53 MPa at infinite time. Sixty five percent of this maximum strength is devel-249

oped during the first 28 days of curing, and this percentage increases to 75 %250
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Figure 7: Development of the uniaxial compressive strength over time for L12 specimens.

if waiting until day 100. Although the UCS values obtained for 12 %-LSRE in251

the present study —1.64 MPa at day 28 and 1.89 MPa at day 100— are not252

particularly high if compared with some of the most recent results in literature253

that stabilize RE with diverse combinations of additives (most of them includ-254

ing cement), they are in agreement with most studies considering RE stabilized255

only or mainly with lime, as mentioned above.256

Regarding the strength development process, it is common in literature to257

analyze the UCS of RE at relatively short periods of time (usually 28 days258

[7, 27, 58]), despite the fact that it is well known that the strength develop-259

ment of lime-stabilized earth is a long-term process [20, 22, 24]. In fact, some260

studies regarding LSRE [18, 26] indicate that the UCS of the material is still261

increasing after 100–360 days of curing. In order to reduce these long curing262

periods, Da Rocha et al. [26] proposed limiting the lime content and including263

a significant percentage of fly ash (over 25 %). There are also some examples264

of ancient LSRE structures constructed centuries ago that may help indicating265

the potential strength of this material at “infinite” time; this is the case of the266

Tower of Comares at the Alhambra (Granada, Spain), where cylindrical samples267

were extracted from its walls and tested in laboratory obtaining a compressive268

strength of 2.45 MPa [10, 61].269

It is well known, therefore, that the strength acquisition process is slow and270

requires a significant amount of time to be fully developed. However, it is also271

possible to observe that a huge percentage of the final strength is developed272

during the first weeks of curing, due to the hydration reaction of lime that273

starts just after the lime is added to the soil in the presence of water. It was also274

observed that, during the first ten days of curing, the weight of the specimens275

significantly decreased, mainly due to the evaporation of the water present in the276

mixture, and then remained almost completely constant. The weight variation277
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of the samples during their first month of curing is shown in Figure 8. A similar278

behavior of the moisture loss process was observed by Arto et al. [28] for LSRE279

specimens cured in natural ambient conditions. Curing conditions with higher280

relative humidity could reduce evaporation and extend the hydration process of281

lime, prolonging the time required for the strength to stabilized and allowing282

the material to reach higher strength values.283

Figure 8: Weight variation of L12 specimens during the first 30 days of curing.

Evaluating the stiffness modulus, it is possible to observe the existence of a284

linear correlation between this parameter and the UCS of the LSRE specimens,285

where E is equal to ca. 57 times the UCS with R2 = 0.75, as shown in Figure 9.286

A linear relationship between these two parameters has been noted in several287

previous studies regarding RE with diverse stabilizers [36, 38, 59, 62, 63]. Some288

relevant earth construction standards, such as NZS 4297 [64], also indicate that289

the stiffness can be linearly obtained from the UCS values if there is not more290

specific data.291

4.3. Carbonation292

It is also useful to evaluate the evolution of the carbonation depth in the293

LSRE specimens, as it is closely related to the strength development process294

[35]. Carbonation occurs when the lime added to the soil reacts with the CO2295

present in the air. This phenomenon should generally be avoided, as it subtracts296

the lime to other lime-soil reactions and hence inhibits or limits the formation297

of cementitious products, reducing the maximum potential strength [19, 24].298

Although carbonation speed could be slowed down by limiting the CO2 con-299

centrations in the curing environment, this is unlikely to be possible in a real300

construction site, so natural ambient conditions were considered in the present301

study.302

12



Figure 9: Stiffness modulus as a function of the uniaxial compressive strength.

The carbonation depth in the specimens was measured, after the UCS tests,
as the distance between the external faces of the specimen, exposed to carbon
dioxide, and the carbonation front. Van Balen and Van Gemert [65] proposed
the formula c = k

√
t to explain the evolution the carbonation depth (c) in lime

mortars, where t is the curing time and k is an experimental factor. Basing
on this expression and considering the results obtained in the present study,
equation 3 is proposed to describe the evolution of the carbonation depth in the
12 %-LSRE specimens, with a coefficient of determination equal to 0.93.

c = 4.319 t 0.430 (3)

where c is the carbonation depth in mm and t is the curing time in days.303

Although the growth of the carbonate depth is faster during the first days304

of curing (Figure 10), as it happens with the strength acquisition or moisture305

loss, the carbonation process continues to develop for a much longer time. In306

the case of the 100 mm-side cubic specimens used in this study, the samples307

would be fully carbonated after ca. 300 days of curing. The carbonation speed308

also depends on the lime content, as it can be observed in Table 3, which309

includes the carbonation depth of the specimens for diverse lime contents at310

day 28, when they were subjected to the UCS tests. The carbonation depth311

after 28 days of curing is higher for samples with lower lime contents, probably312

because greater lime percentages result in a finer pore structure that impedes313

CO2 permeation [17, 19, 66]. Also, as the amount of carbon dioxide in the314

atmosphere is controlled, a greater lime content in the material takes longer315

to carbonate and so a reduced carbonation rate occurs with increasing lime316

content.317
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Figure 10: Evolution of the carbonation depth during the curing period.

L3 L6 L9 L12 L15 L18
c [mm] 32 25 19 18 20 18
C.V. [%] 9.1 7.3 10.7 12.3 9.7 10.7

Table 3: Carbonation depth (c) of LSRE specimens after 28 days of curing. Mean value and
coefficient of variation.

4.4. Ultrasonic pulse velocity318

The UPV through the RE samples was measured before destructive UCS
testing in order to assess a potential relationship between this parameter and the
mechanical properties of the material. In fact, the analysis of the results shows
a linear correlation between the UPV and the UCS of the LSRE specimens,
following Equation 4, where UCS is expressed in MPa and UPV in km/s. This
relationship and its 95 % prediction band and confidence region are shown in
Figure 11.

UCS = −1.416 + 1.897 UPV (4)

Although there are very few studies that use the UPV technique for RE ma-319

terials, some authors have already indicated the existence of a linear correlation320

between compressive strength and ultrasonic pulse velocity [27, 43, 67]. There-321

fore, and despite the evident existing dispersion in the values of the mechanical322

properties of RE materials, which is partially intrinsic to the heterogeneity of323

the material itself [5], the existing relationship between the UCS and the UPV324

makes the measurement of the latter a useful method to estimate the mechan-325

ical properties without damaging the sample. This can be particularly useful326

for existing RE structures, especially in the case of heritage buildings where de-327

structive testing techniques cannot be applied. Previous studies have also noted328
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Figure 11: Uniaxial compressive strength as a function of the ultrasonic pulse velocity.

the usefulness of the UPV technique to predict the compressive behavior and329

to detect damage for other common construction materials, such as concrete330

[68, 69] or brick and stone masonry [70, 71].331

For new constructions, on the other hand, UPV measurements during the332

curing period can be used to assess the evolution of the mechanical properties.333

A stabilization in the UPV values would indicate the stabilization of the UCT334

and stiffness, meaning that the material has already developed the majority of335

its strength (initial part of the strength development curve).336

5. Conclusions337

Rammed earth is a traditional building technique that is attracting a re-338

newed interest due to its low environmental impact and limited construction339

costs. Over the last decades, the scientific research regarding RE construction340

has been mainly focused on unstabilized or cement-stabilized material, in ad-341

dition to some other modern additives. On the other hand, very few studies342

have evaluated the mechanical characteristics of RE stabilized with lime, even343

though it is a traditional additive widely used in soil stabilization, causing an344

environmental impact lower than other common stabilizers such as cement, and345

which is present in several historic RE buildings.346

In the present study, several RE samples with different lime contents and347

curing periods have been evaluated in order to analyze the effect of lime sta-348

bilization on the mechanical properties of the material. The results show an349

increase in the UCS and stiffness when increasing the lime content, in agreement350

with some other previous studies [7, 26], until a certain percentage of lime from351

which no improvement of the mechanical properties was obtained. This strength352

standstill is related to the lack of the aluminosilicate material in the soil, so the353
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optimum lime content (minimum lime content for which the maximum strength354

is reached) may vary depending on the mineralogical characteristics of the soil,355

so it would be recommended to perform some UCS tests for the specific soil to356

be used in a construction before choosing the lime content. For the material357

used in the present study, representative of the soils traditionally used in RE358

construction in Southern Spain, the optimum lime content for the compressive359

strength and stiffness was equal to 12 %.360

The mechanical properties of the 12 %-LSRE samples were also evaluated361

during 100 days of curing, observing an exponential evolution of the UCT that362

shows that a significant percentage of the strength is developed during the first363

20–30 days, but also indicating that the strength development process could364

last hundreds of days (about 75 % of the predicted strength was reached by day365

100). Similar behavior was observed for the material stiffness, which showed a366

linear relationship with the UCS, although the stiffness values showed higher367

dispersion, also noted in previous studies [25].368

Also carbonation of the specimens, considered detrimental to strength devel-369

opment, was evaluated. Carbonation was observed to develop faster in samples370

with low lime contents, were the coarser pore structure leads to a faster carbon371

dioxide permeation. This phenomenon, however, occurs in a slower way than372

other lime-soil reactions, following a potential evolution of the form c = a tb.373

In addition, non-destructive UPV tests were performed. This technique374

has proved to be a useful method to estimate the mechanical properties of375

the material without damaging the sample, due to its linear relation with the376

compressive strength of the material. UPV tests could be easily performed377

on RE walls in a construction site, were the stabilization in the values obtained378

could be used as an indicator that the mechanical parameters have also increased379

and reached a stable value.380
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