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Abstract

This paper addresses the least-squares quadratic filtering problem in
discrete-time stochastic systems with random parameter matrices in both
the state and measurement equations. Defining a suitable augmented sys-
tem, this problem is reduced to the least-squares linear filtering problem
of the augmented state based on the augmented observations. Under the
assumption that the moments, up to the fourth-order one, of the original
state and measurement vectors are known, a recursive algorithm for the op-
timal linear filter of the augmented state is designed, from which the optimal
quadratic filter of the original state is obtained. As a particular case, the
proposed results are applied to multi-sensor systems with state-dependent
multiplicative noise and fading measurements and, finally, a numerical sim-
ulation example illustrates the performance of the proposed quadratic filter
in comparison with the linear one and also with other filters in the existing
literature.

Keywords: Random parameter matrices, least-squares quadratic
estimation, fading measurements, innovation approach, recursive filter

1. Introduction

A basic assumption in classical estimation theory for linear stochastic
systems is the knowledge of the model parameter matrices; also, the addi-
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tive noises and the initial state are assumed to be Gaussian and mutually
independent. As it is well known, under these conditions, the systems are
Gaussian and the Kalman filter provides the conditional expectation of the
state given the observations, that is, the optimal least-squares (LS) estima-
tor. However, there exists a considerable number of situations in which the
joint distribution of the state and the observations is not Gaussian and the
Kalman filter provides only the linear LS estimator. In these cases, the opti-
mal LS estimator is not a linear function of the observations and, generally,
it is not easy to be obtained; this fact has motivated the necessity of looking
for suboptimal estimators which are computationally easier, such as linear
estimators or, more generally, polynomial estimators.

In systems where the usual assumption of Gaussian noises must be re-
moved in order to obtain a more realistic statistical description of the random
processes involved, De Santis et al. [1] were the first to obtain a recursive
algorithm for the quadratic LS filter, by improving the widely used linear
filter. A more general study is carried out in [2], where the arbitrary-order
polynomial LS estimation problem is addressed.

Systems with multiplicative noises in the state and/or observation equa-
tions constitute another kind of non-Gaussian systems in which the Kalman
filter does not provide the optimal LS estimator and, hence, it is necessary
to look for suboptimal estimators. This class of systems has been receiving
great attention in the last years, mainly due to the fact that this kind of
formulation arises in many applications, as image processing problems and
communication systems. Therefore, under different hypotheses and perfor-
mance criterions, the study of the linear LS estimation problem in systems
with random multiplicative noises has become an active research area in the
last years (see e.g. [3]-[5], and reference therein).

Because of its important applications, it is worth noting especially some
classes of systems where the influence of multiplicative noises affects only the
measurements of the model; for example, in cases where there are intermit-
tent failures in the observation mechanism, fading phenomena in propaga-
tion channels, accidental loss of some measurements, or data inaccessibility
during certain times. This kind of systems, named systems with uncertain
observations or missing measurements, are modeled including in the obser-
vation equation, besides the additive noise, a multiplicative noise component
described by a sequence of Bernoulli random variables. Under different hy-
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potheses on the Bernoulli variables and the additive noises involved in the
system equations, the linear and polynomial estimation problems have been
widely studied in such systems (see e.g. [6]-[12], and references therein).
Recently, this missing measurement model, described by Bernoulli variables,
has been generalized considering any random variables with arbitrary prob-
ability distribution over the interval [0, 1], which allows us to cover some
practical applications where only partial information is missing. In this situ-
ation, considering also different assumptions on the system noises, the linear
LS estimation problem has been treated in [13] and [14].

The above-mentioned systems are a special case of systems with ran-
dom parameter matrices which clearly are non-Gaussian systems, even under
the assumption that the additive noises are Gaussian. Also, systems with
random delays and packet dropouts can be transformed into an equivalent
stochastic parameterized system (see [15]-[17], among others). Due to the
numerous realistic situations and practical applications in which both state
transition and measurement are random parameter matrices, such as digi-
tal control of chemical processes, systems with human operators, economic
systems, and stochastically sampled digital control systems (see e.g. [18]-
[21], among others), the linear estimation problem in this type of systems
has gained significant research interest in recent years (see e.g. [13], [22]-
[24] and references therein). Considering scalar measurements with random
observation matrices, the quadratic LS filtering problem has been addressed
in [25] by applying the Kalman filter to a suitably augmented system with
deterministic observation matrices.

Despite the importance of this kind of systems and the significant im-
provement that the quadratic LS estimators provide over the linear ones,
to the best of the authors knowledge, the quadratic LS estimation problem
in systems with both random parameter state transition and measurement
matrices has not been investigated. This paper makes the following con-
tributions: (1) random parameter matrices in both the state and observation
equations are considered simultaneously in the system state-space model, thus
providing a unified framework to treat some classes of uncertainties, such as
multiplicative noises or missing and fading measurements, and, hence, the
proposed quadratic LS filter outperforms the linear LS estimators derived in
the existing literature for systems with such uncertainties; (2) unlike [25],
where deterministic state transition matrices and scalar measurements are
assumed, we consider random state transition matrices and multidimensional
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observations; hence, the proposed estimators can be applied to multi-sensor
systems and, furthermore, different uncertainty characteristics in the sensors
can be considered; specifically, an application to multi-sensor systems with
state-dependent multiplicative noise and fading measurements is presented;
(3) also, unlike [25], the proposed quadratic filtering algorithm is obtained
without requiring the original system transformation into one with determin-
istic observation matrices.

The rest of the paper is organized as follows. In Section 2, we present the
system model with random parameter matrices to be considered and the as-
sumptions and properties under which the quadratic LS estimation problem
is addressed. The augmented system is constructed in Section 3 using the
technique proposed by [1], consisting of augmenting the state and observa-
tion vectors with their second-order Kronecker powers. Also, in this section,
the statistical properties of the augmented processes are analyzed. The pro-
posed methodology reduces the quadratic estimation problem to the linear
estimation problem in the augmented system, and the recursive algorithm for
the linear LS filter of the augmented state is derived in Section 4. The appli-
cation to multi-sensor systems with state-dependent multiplicative noise and
fading measurements, together with a numerical simulation example which
shows the effectiveness of the proposed quadratic estimators in contrast to
the linear ones are both presented in Section 5. Finally, some conclusions are
drawn in Section 6.

Notation: The notation used throughout this paper is standard. Rn and
R

m×n are the n-dimensional Euclidean space and the set of all m × n real
matrices, respectively. For any matrix A, AT and A−1 denote its transpose
and inverse, respectively. The shorthand Diag(A1, . . . , Am) denotes a block
diagonal matrix whose diagonal blocks are the matrices A1, . . . , Am, and
[A1 · · · | Am] represents a partitioned matrix into sub-matrices A1, . . . , Am.
I and K denote the identity and commutation matrices, respectively, of ap-
propriate dimensions. A[2] = A⊗A where ⊗ denotes the Kronecker product.
vec(·) stands for the ‘vec’ or ‘stack’ operator. δk,s is the Kronecker delta
function and ◦ denotes the Hadamard product.

Moreover, for any random vector or matrix M , we denote M = E[M ] and

M̃ = M −M , where E[·] stands for the expectation operator. For arbitrary
random vectors β and γ, we denote Cov[β, γ] = E[(β −E[β]) (γ −E[γ])T ]
and Cov[β] = Cov[β, β].
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2. Problem formulation

Consider a class of discrete-time linear stochastic systems and denote
xk ∈ R

n and yk ∈ R
r the state vector and its measurement at time k,

respectively. The evolution of the state and its measurements are given by
the following equations:

xk = Fk−1xk−1 + wk−1, k ≥ 1, (1)

yk = Hkxk + vk, k ≥ 1, (2)

where {Fk}k≥0 and {Hk}k≥1 are sequences of random parameter matrices,
{wk}k≥0 is the process noise and {vk}k≥1 is the measurement noise.

Our aim is to obtain the least-squares (LS) quadratic estimator of the
state xk based on the measurements {y1, . . . , yk}. As it is known, this esti-
mator is its orthogonal projection onto the space of n-dimensional random
variables obtained as linear transformations of y1, . . . , yk and their second-
order powers, y

[2]
1 , . . . , y

[2]
k . To address the LS quadratic estimation problem,

it is necessary that E[y
[2]T
i y

[2]
i ] < ∞, and therefore, the fourth-order mo-

ments of vectors yi, i = 1, . . . , k must be finite. Specifically, the following
assumptions are required:

(A1) The initial state x0 is a random vector whose moments up to the fourth-

order one are known. We will denote x0 = E[x0], P0 = Cov[x0], P
(3)
0 =

Cov[x0, x
[2]
0 ] and P

(4)
0 = Cov[x

[2]
0 ].

(A2) {Fk}k≥0 and {Hk}k≥1 are sequences of independent random parameter
matrices with known mean matrices F k and Hk. The covariances and
cross-covariances between the entries of the matrices Fk and F

[2]
k , as well

as between the entries of the matrices Hk and H
[2]
k , are also assumed

to be known.

(A3) The noise processes {wk}k≥0 and {vk}k≥1 are zero-mean white sequences
with known moments, up to the fourth-order ones. We will denote

Qk = Cov[wk], Q
(3)
k = Cov[wk, w

[2]
k ], Q

(4)
k = Cov[w

[2]
k ],

Rk = Cov[vk], R
(3)
k = Cov[vk, v

[2]
k ], R

(4)
k = Cov[v

[2]
k ].

(A4) The initial state x0, the random parameter matrices {Fk}k≥0, {Hk}k≥1

and the processes {wk}k≥0, {vk}k≥1 are mutually independent.
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Note that, usually, and without loss of generality, the initial state, x0,
the process noise, {wk}k≥0, and the observation noise, {vk}k≥1, are assumed
to be white gaussian noises; in such situations, the existence of fourth-order
moments required in (A1) and (A3) is clearly satisfied. Also, under the
general assumption of non-Gaussian noises, they usually take a finite number
of values and their probability distributions are assumed to be known, so
that the moments up to the fourth order can be computed, as required by
assumptions (A1) and (A3). The conditions established in (A2) are also
satisfied in most common applications of systems with random parameter
matrices; for example, the multiplicative noises involved in uncertain systems
are usually gaussian noises, and missing measurements or random delays and
packet dropouts are usually modelled by Bernoulli processes, and hence the
means, covariances and cross-covariances required in (A2) can be calculated.

Remark 1. Hereafter, it will be necessary to calculate different expectations
associated with the random parameter matrices Fk, F

[2]
k , Hk and H

[2]
k . For

this purpose, the following property is used:

Let A =
(
aij

)
i=1,...,N1

j=1,...,N2

and B =
(
bij

)
i=1,...,M1

j=1,...,M2

be random parameter matri-

ces, then for any deterministic matrix C =
(
cij

)
i=1,...,N2

j=1,...,M2

, the (p, q)-th entry

of the matrix E[ÃCB̃T ] is given by

(
E[ÃCB̃T ]

)
pq

=

N2∑

i=1

M2∑

j=1

Cov(api, bqj)cij , p = 1, . . . , N1, q = 1, . . . ,M1.

(3)

3. Quadratic estimation problem statement

Given the system model (1)-(2) under assumptions (A1)-(A4), the prob-
lem at hand is to find the LS quadratic estimator, x̂q

k/k, of the state xk based
on the measurements until time k. For this purpose, the following augmented
state and measurement vectors are defined by assembling the original vectors
and their second-order Kronecker powers:

Xk =

(
xk

x
[2]
k

)
, Yk =

(
yk

y
[2]
k

)
.
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Since the space of linear transformations of Y1, . . . ,Yk is equal to the space of
linear transformations of y1, . . . , yk and y

[2]
1 , . . . , y

[2]
k , the LS quadratic filter,

x̂
q
k/k, is the LS linear estimator of xk based on Y1, . . . ,Yk. This estimator

is obtained by extracting the first n entries of the LS linear estimator of Xk

based on Y1, . . . ,Yk. Therefore, the quadratic estimation problem for the
original state is reduced to the linear estimation problem for the augmented
state.

In order to address the LS linear estimation problem of the augmented
state based on the augmented measurements, the evolution of the vectors
Xk and Yk is analyzed. Using the Kronecker product properties [26], the

evolution of the second-order powers, x
[2]
k and y

[2]
k , is given by (see [1]):

x
[2]
k = F

[2]
k−1x

[2]
k−1 + Φk−1, k ≥ 1,

y
[2]
k = H

[2]
k x

[2]
k +Ψk, k ≥ 1,

where Φk = (I+K)((Fkxk)⊗wk)+w
[2]
k and Ψk = (I+K)((Hkxk)⊗vk)+v

[2]
k .

Then, the augmented vectors Xk and Yk satisfy the following equations:

Xk = Fk−1Xk−1 +Wk−1, k ≥ 1,

Yk = HkXk + Vk, k ≥ 1,

where

Fk = Diag(Fk, F
[2]
k ), Hk = Diag(Hk, H

[2]
k ), Wk =

(
wk

Φk

)
, Vk =

(
vk
Ψk

)
.

For simplicity, since the additive noises of this new model, Wk and Vk,
are non-zero mean vectors, with

Wk =

(
0

vec(Qk)

)
, Vk =

(
0

vec(Rk)

)
,

the above equations are rewritten in terms of the centered augmented vectors,
Xk = Xk−X k and Yk = Yk−Yk, obtaining the following augmented system:

Xk = Fk−1Xk−1 +Wk−1, k ≥ 1, (4)

Yk = HkXk + Vk, k ≥ 1, (5)
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where Wk = F̃kX k + W̃k and Vk = H̃kX k + Ṽk, being X k =

(
xk

vec(Dk)

)
with

Dk = E[xkx
T
k ].

Taking into account the state equation (1) and under assumptions (A1)-
(A4), the mean vector xk and the correlation matrix Dk are recursively cal-
culated by

xk = F k−1xk−1, k ≥ 1,

Dk = F k−1Dk−1F
T

k−1 + E[F̃k−1Dk−1F̃
T
k−1] +Qk−1, k ≥ 1; D0 = P0 + x0x

T
0 ,

where the (p, q)-th entry of the matrix E[F̃kDkF̃
T
k ] is obtained as in (3).

It should be mentioned that the LS linear estimator of Xk based on
Y1, . . . , Yk provides the LS linear estimator of Xk based on Y1, . . . ,Yk, adding
the mean vector X k. Therefore, the required quadratic filter x̂q

k/k is obtained
by adding the mean xk to the vector constituted by the first n entries of the
LS linear filter of Xk.

In order to obtain the LS linear filter ofXk, the properties of the processes
involved in the system (4)-(5) are required.

Clearly, the initial state X0 is a zero-mean random vector with covariance
matrix given by

P ∗
0 =

(
P0 P

(3)
0

P
(3)T
0 P

(4)
0

)
.

Moreover, it is easy to show thatX0 and {Wk}k≥0, {Vk}k≥1, {Fk}k≥0, {Hk}k≥1

are uncorrelated.
Next, the second-order statistical properties of the noise processes {Wk}k≥0

and {Vk}k≥1 are established in propositions 1 and 2, respectively.

Proposition 1. The noise {Wk}k≥0 is a zero-mean white process with co-
variance matrix, E[WkW

T
k ] = QW

k , given by

QW
k =

(
Qk Q12

k

Q12T
k Q22

k

)
+ E[F̃kX kX

T

k F̃
T
k ],
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where

Q12
k = ((F kxk)

T ⊗Qk)(I +K) +Q
(3)
k ,

Q22
k = (I +K)

((
F kDkF

T

k + E[F̃kDkF̃
T
k ]
)
⊗Qk

)
(I +K) +Q

(4)
k

+ (I +K)
(
(F kxk)⊗Q

(3)
k

)
+
(
(F kxk)⊗Q

(3)
k

)T
(I +K)

and

E[F̃kX kX
T

k F̃
T
k ] =




E[F̃kxkx
T
k F̃

T
k ] E[F̃kxkvec(Dk)

T F̃
[2]T
k ]

E[F̃
[2]
k vec(Dk)x

T
k F̃

T
k ] E[F̃

[2]
k vec(Dk)vec(Dk)

T F̃
[2]T
k ]


 ,

whose blocks are calculated as in (3).

Proof. Clearly, ∀k ≥ 0, E[Wk] = 0. Now, taking into account the mutual
independence between {wk}k≥0, {Fk}k≥0 and the initial state x0, it is easy to

prove that E[W̃kX
T

s F̃
T
s ] = 0, E[F̃kX kX

T

s F̃
T
s ] = E[F̃kX kX

T

k F̃
T
k ]δk,s, ∀k, s ≥

0, and, hence

E[WkW
T
s ] = E[W̃kW̃

T
s ] + E[F̃kX kX

T

k F̃
T
k ]δk,s.

Then, we only need to prove that ∀k, s ≥ 0,

E[W̃kW̃
T
s ] :=

(
Q11

k,s Q12
k,s

Q12T
k,s Q22

k,s

)
=

(
Qk Q12

k

Q12T
k Q22

k

)
δk,s.

• Since {wk}k≥0 is a zero-mean white sequence with covariances Qk, ∀k ≥
0, it is immediately clear that Q11

k,s = E[wkw
T
s ] = Qkδk,s.

• Using the Kronecker product properties, Assumption (A3) and since
E[Fkxk] = F kxk, it is easy to obtain that Q12

k,s = E[wkΦ
T
s ] = Q12

k δk,s.

• From the conditional expectation properties we have E
[
Fkxkx

T
k F

T
k

]
=

F kDkF
T

k + E[F̃kDkF̃
T
k ], then, using again Assumption (A3) and the

Kronecker product properties, we get

Q22
k,s = E[(Φk − vec(Qk)) (Φs − vec(Qs))

T ] = Q22
k δk,s.

�
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Proposition 2. The noise {Vk}k≥1 is a zero-mean white process with covari-
ance matrix, E[VkV

T
k ] = RV

k , given by

RV
k =

(
Rk R12

k

R12T
k R22

k

)
+ E[H̃kX kX

T

k H̃
T
k ],

where

R12
k =

(
(Hkxk)

T ⊗Rk

)
(I +K) +R

(3)
k ,

R22
k = (I +K)

((
HkDkH

T

k + E[H̃kDkH̃
T
k ]
)
⊗ Rk

)
(I +K) +R

(4)
k

+ (I +K)
(
(Hkxk)⊗R

(3)
k

)
+
(
(Hkxk)⊗ R

(3)
k

)T
(I +K)

and

E[H̃kX kX
T

k H̃
T
k ] =




E[H̃kxkx
T
k H̃

T
k ] E[H̃kxkvec(Dk)

T H̃
[2]T
k ]

E[H̃
[2]
k vec(Dk)x

T
k H̃

T
k ] E[H̃

[2]
k vec(Dk)vec(Dk)

T H̃
[2]T
k ]


 ,

whose blocks are calculated as in (3).

Proof. This proof is analogous to that of Proposition 1 and, hence, it is
omitted. �

Remark 2. From the augmented state equation (4) and Proposition 1, the
following recursive equation for the matrix Dk = E[XkX

T
k ] holds:

Dk = Fk−1Dk−1F
T

k−1 + E[F̃k−1Dk−1F̃
T
k−1] +QW

k−1, k ≥ 1; D0 = P ∗
0 , (6)

where

E[F̃kDkF̃
T
k ] =




E[F̃kDkF̃
T
k ] E[F̃kD

(3)
k F̃

[2]T
k ]

E[F̃
[2]
k D

(3)T
k F̃ T

k ] E[F̃
[2]
k D

(4)
k F̃

[2]T
k ]


 ,

with D
(3)
k = E[xkx

[2]T
k ] and D

(4)
k = E[x

[2]
k x

[2]T
k ] the blocks of the matrix Dk.

4. LS quadratic estimator

To address the LS linear estimation problem of Xk based on Y1, . . . , Yk,
an innovation approach is used. Since the measurements are non-orthogonal
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vectors, this procedure consists of transforming the measurement process
{Yk; k ≥ 1} into an equivalent one of orthogonal vectors {νk; k ≥ 1} called

innovations. The innovation at time k is defined as νk = Yk − Ŷk/k−1, where

Ŷk/k−1 is the one-stage linear predictor of Yk. Therefore, the LS linear filter

of the augmented state, X̂k/k, can be calculated as a linear combination of
the innovations, as follows:

X̂k/k =
k∑

i=1

E[Xkν
T
i ]Π

−1
i νi, k ≥ 1, (7)

where Πi = E[νiν
T
i ].

Next, a recursive algorithm for the optimal LS linear filter of the aug-
mented state is derived.

Theorem 1. The linear filter of the augmented state is recursively obtained
by the following relation

X̂k/k = X̂k/k−1 + GkΠ
−1
k νk, k ≥ 1; X̂0/0 = 0, (8)

where the state predictor, X̂k/k−1, is calculated by

X̂k/k−1 = Fk−1X̂k−1/k−1, k ≥ 1. (9)

The innovation, νk, satisfies

νk = Yk −HkX̂k/k−1, k ≥ 2; ν1 = Y1, (10)

The matrix, Gk = E[Xkν
T
k ] is determined by

Gk = Σk/k−1H
T

k , k ≥ 1, (11)

where the prediction error covariance matrix, Σk/k−1, is obtained by

Σk/k−1 = Fk−1Σk−1/k−1F
T

k−1 + E[F̃k−1Dk−1F̃
T
k−1] +QW

k−1, k ≥ 1, (12)

with Dk given in (6) and Σk/k, the filtering error covariance matrix, calculated
by

Σk/k = Σk/k−1 − GkΠ
−1
k GT

k , k ≥ 1; Σ0/0 = P ∗
0 . (13)
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The innovation covariance matrix, Πk, satisfies

Πk = E[H̃kDkH̃
T
k ] +HkGk +RV

k , k ≥ 1, (14)

where

E[H̃kDkH̃
T
k ] =




E[H̃kDkH̃
T
k ] E[H̃kD

(3)
k H̃

[2]T
k ]

E[H̃
[2]
k D

(3)T
k H̃T

k ] E[H̃
[2]
k D

(4)
k H̃

[2]T
k ]


 ,

whose blocks are calculated as in (3).

Proof. From expression (7), relation (8) for the state filter, X̂k/k, in terms of

the one-stage predictor, X̂k/k−1, is directly derived.
Expression (9) for the state predictor is immediately obtained from (4)

and the Orthogonal Projection Lemma (OPL).

Obtaining an explicit formula for the innovation, νk = Yk − Ŷk/k−1, is

equivalent to calculate Ŷk/k−1, which, from (5) and using again the OPL, can
be expressed as

Ŷk/k−1 = HkX̂k/k−1, k ≥ 1. (15)

Next, identity (11) for Gk is deduced. Applying the OPL, it is clear that

E[XkX̂
T
k/k−1] = E[X̂k/k−1X̂

T
k/k−1] = Dk − Σk/k−1, k ≥ 1,

therefore,

Gk = E[Xkν
T
k ] = E[Xk(Xk − X̂k/k−1)

T ]HT
k = Σk/k−1H

T

k , k ≥ 1.

Since Σk/k−1 = E[XkX
T
k ]−E[X̂k/k−1X̂

T
k/k−1], using (6) for E[XkX

T
k ] and

(9) for X̂k/k−1, expression (12) is easily deduced, taking into account that

E[X̂k−1/k−1X̂
T
k−1/k−1] = Dk−1 − Σk−1/k−1, k ≥ 1.

Similarly, Σk/k = E[XkX
T
k ] − E[X̂k/kX̂

T
k/k] and, therefore, by using (8)

for X̂k/k, formula (13) is obtained.
Finally, we prove expression (14) for the innovation covariance matrix

Πk = E[YkY
T
k ]−E[Ŷk/k−1Ŷ

T
k/k−1]. On the one hand, from (5), we have

E[YkY
T
k ] = E[HkXkX

T
k H

T
k ] +RV

k

12



where, by considering the conditional expectation properties, it is satis-

fied that E[HkXkX
T
k H

T
k ] = HkDkH

T

k + E[H̃kDkH̃
T
k ]. On the other hand,

using (15) and the OPL, it is deduced that E[Ŷk/k−1Ŷ
T
k/k−1] = Hk(Dk −

Σk/k−1)H
T

k , k ≥ 1. Then, the innovation covariance (14) is proved. �

Remark 3. As mentioned in Section 3, the LS quadratic filter, x̂q
k/k, of the

original state xk is obtained by adding the mean xk to the vector constituted
by the first n entries of X̂k/k; specifically,

x̂
q
k/k = [I | 0]X̂k/k + xk, k ≥ 1.

Remark 4. In comparison with the linear filter, the computational cost
of the quadratic filter is clearly higher, as the augmented state vector has
greater dimension than the original state. Actually, the linear filter of the
n-dimensional state vector has the computational order of magnitude O(n3),
while the quadratic filter has the order of magnitude O((n + n2)3) as it is
obtained from the linear filter of the (n + n2)-dimensional augmented state
vector. Hence, the quadratic filter might have an expensive computational
cost when the dimension of the original state is very high; nevertheless, this
is compensated by the significant improvement that the quadratic estimators
generally provide over the linear ones.

5. Application in multi-sensor systems with fading measurements

In this section, the optimal LS quadratic filter obtained in Section 4 is
applied to linear discrete-time stochastic systems with fading measurements
coming from multiple sensors. The phenomenon of measurement fading oc-
curs in a random way and it is described by different sequences of scalar
random variables with a certain probability distribution over the interval
[0, 1]. Moreover, a simulation example is given to illustrate the effectiveness
of the proposed recursive filtering algorithm.

5.1. Multi-sensor model and filtering algorithm

Consider the state equation given in (1) satisfying assumptions (A1)-(A3),
and r sensors whose measurements of the state are described by the following
observation equations:

yik = θikC
i
kxk + vik, k ≥ 1, i = 1, 2, . . . , r, (16)

13



where yik ∈ R, is the measured output provided by sensor i at the sampling
time k, {C i

k}k≥1, are random parameter matrices with compatible dimen-
sions, {vik}k≥1 are the measurement noises, and {θik}k≥1 are scalar random
variables which model the fading phenomenon of the i-th sensor. In order to
apply Theorem 1, the following assumptions of the noise processes and the
random parameter matrices are considered:

(i) For i = 1, 2, . . . , r, the sensor additive noises, {vik}k≥1, are zero-mean
white processes. By denoting vk = (v1k, . . . , v

r
k)

T , it is supposed that its
moments, up to the fourth-order one, are known.

(ii) For i = 1, 2, . . . , r, {C i
k}k≥1 are white sequences of random parameter

matrices. By denoting Ck =
[
C1T

k | · · · | CrT
k

]T
, its mean, Ck, is

known and the covariances and cross-covariances between the entries
of the matrices Ck and C

[2]
k , are also assumed to be known.

(iii) For i = 1, 2, . . . , r, the noises {θik}k≥1 are white sequences of scalar ran-
dom variables over the interval [0, 1]. By denoting θk = (θ1k, . . . , θ

r
k)

T ,
it is supposed that its moments up to the fourth one are known. We
will denote

Kθ
k = Cov[θk], K

θ(3)
k = Cov[θk, θ

[2]
k ], K

θ(4)
k = Cov[θ

[2]
k ].

(iv) x0, {Fk}k≥0, {θk}k≥1, {Ck}k≥1, {wk}k≥0 and {vk}k≥1 are mutually in-
dependent.

The observation model (16) can be rewritten in a compact form as follows:

yk = ΘkCkxk + vk, k ≥ 1,

where yk = (y1k, . . . , y
r
k)

T is the measurement vector and Θk = Diag(θ1k,
. . . , θrk). Accordingly, this observation model is a particular case of (2) with
Hk = ΘkCk, and clearly verifies the assumptions given in Section 2.

The corresponding augmented measurement equation is given by

Yk = TkCkXk + Vk, k ≥ 1,

where Tk = Diag(Θk,Θ
[2]
k ), Ck = Diag(Ck, C

[2]
k ) and Vk = (TkC̃k+ T̃kCk)X k+

Ṽk. This measurement equation is a particular case of (5) with Hk = TkCk,

and it is immediately clear that H̃k = TkC̃k + T̃kCk.
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By applying the Hadamard product properties, for any deterministic ma-
trix A ∈ R

(n+n2)×(n+n2), it is easy to see that

E[(TkC̃k + T̃kCk)A(TkC̃k + T̃kCk)
T ]

= E[Jθ
kJ

θT
k ] ◦ E[C̃kAC̃T

k ] + Cov[Jθ
k ] ◦ (CkAC

T

k ), k ≥ 1,

where Jθ
k =

(
θTk

θ
[2]T
k

)
and Cov[Jθ

k ] =

(
Kθ

k K
θ(3)
k

K
θ(3)T
k K

θ(4)
k

)
.

Hence, taking into account this property and Proposition 2, we obtain
that the covariance matrix of the noise process {Vk}k≥1 is given by

RV
k =

(
Rk R12

k

R12T
k R22

k

)
+ E[Jθ

kJ
θT
k ] ◦ E[C̃kX kX

T

k C̃
T
k ] + Cov[Jθ

k ] ◦ (CkX kX
T

k C
T

k )

where

R12
k =

(
(ΘkCkxk)

T ⊗Rk

)
(I +K) +R

(3)
k ,

R22
k = (I +K)

((
E[θkθ

T
k ] ◦

(
CkDkC

T

k + E[C̃kDkC̃
T
k ]
))

⊗ Rk

)
(I +K) +R

(4)
k

+ (I +K)
(
(ΘkCkxk)⊗R

(3)
k

)
+
(
(ΘkCkxk)⊗ R

(3)
k

)T
(I +K).

Thus, starting from the linear filter X̂k/k given by (8) with X̂k/k−1 the
state predictor determined by (9), a recursive optimal linear filtering algo-
rithm is obtained by calculating the innovation νk, its covariance matrix Πk,
and the matrix Gk as follows:

νk = Yk − T kCkX̂k/k−1, k ≥ 2; ν1 = Y1,

Gk = Σk/k−1C
T

k T k, k ≥ 1,

Πk = E[Jθ
kJ

θT
k ] ◦ E[C̃kDkC̃

T
k ] + Cov[Jθ

k ] ◦ (CkDkC
T

k ) + T kCkGk +RV
k , k ≥ 1,

with Dk and Σk/k−1 given in (6) and (12), respectively, and

E[C̃kDkC̃
T
k ] =




E[C̃kDkC̃
T
k ] E[C̃kD

(3)
k C̃

[2]T
k ]

E[C̃
[2]
k D

(3)T
k C̃T

k ] E[C̃
[2]
k D

(4)
k C̃

[2]T
k ]


 ,

whose blocks are calculated as in (3).

As mentioned in the previous sections, the quadratic filter of the original
state is formed by the first n entries of X̂k/k plus the mean xk.
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5.2. Numerical simulation example

Consider the following uncertain discrete-time system with fading mea-
surements coming from four sensors:

xk = (0.95 + 0.1ǫk−1)xk−1 + wk−1, k ≥ 1,

yik = θikC
i
kxk + vik, k ≥ 1, i = 1, 2, 3, 4

where {ǫk}k≥0 is a zero-mean Gaussian white process with unit variance.
{θik}k≥1, i = 1, 2, 3, 4, are independent sequences of discrete-time random
variables with the following probability distributions over the interval [0, 1]:

• In the first sensor, {θ1k}k≥1 is a sequence of independent and identically
distributed (i.i.d.) Bernoulli variables with P [θ1k = 1] = p(1), ∀k ≥ 1.

• In the second sensor, {θ2k}k≥1 is a sequence of i.i.d. random variables
with P [θ2k = 0] = 0.2, P [θ2k = 0.5] = 0.6, P [θ2k = 1] = 0.2, ∀k ≥ 1.

• In the third sensor, {θ3k}k≥1 is a sequence of i.i.d. random variables
uniformly distributed over [0.3, 0.7].

• In the fourth sensor, {θ4k}k≥1 is a sequence of i.i.d. Bernoulli variables
with P [θ4k = 1] = p(4), ∀k ≥ 1.

The matrices C i
k, i = 1, 2, 3, 4, are defined as C1

k = 0.5 + 0.4ζ1k , C
2
k = 0.6 +

0.4ζ2k , C
3
k = 0.82 and C4

k = 0.74, where {ζ ik}k≥1, i = 1, 2, are independent
zero-mean Gaussian white processes with unit variance. The initial state x0

is a zero-mean Gaussian variable with P0 = 1. The noise {wk}k≥0 is a zero-
mean Gaussian white process with variance Qk = 0.1, for all k, and {vik}k≥1,

i = 1, 2, 3, 4, are independent zero-mean white processes with the following
probability distributions:

P [v1k = −8] =
1

8
, P [v1k =

8

7
] =

7

8
, ∀k ≥ 1,

P [v2k = 1] =
15

18
, P [v2k = −3] =

2

18
, P [v2k = −9] =

1

18
, ∀k ≥ 1,

P [v3k = −1] =
15

18
, P [v3k = 3] =

2

18
, P [v3k = 9] =

1

18
, ∀k ≥ 1,

P [v4k = −
2

5
] =

9

10
, P [v4k =

18

5
] =

1

10
, ∀k ≥ 1.
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To analyze the performance of the proposed quadratic estimator, we ran a
program in MATLAB, in which one hundred iterations of the linear filtering
algorithm ([23]) and the proposed quadratic filtering algorithm have been
carried out, considering different values of the probabilities that the state
xk is present in the measurements of the first and fourth sensors, p(i), i =
1, 4. Linear and quadratic filters of the state are calculated, as well as the
corresponding error variances, which provide a measure of the estimation
accuracy.

Firstly, for p(1) = 0.7 and p(4) = 0.5, the performance of the linear and
quadratic filtering estimators has been compared in Figure 1 on the basis
of the estimates obtained from the corresponding simulated observations of
the state. From this figure, it is deduced that the quadratic filter follows the
state evolution better than the linear one.

Next, to analyze the effectiveness of the proposed quadratic filter and
show the improvement that this estimator provides over the linear one, the
linear and quadratic filtering error variances have been calculated for different
values of p(1) and p(4). The results are displayed in Figure 2; specifically, the
error variances for p(4) = 0.5 and different values p(1) = 0.2, 0.5, 0.7, 0.9
are shown in Figure 2a, and for p(1) = 0.5 and different values p(4) =
0.2, 0.5, 0.7, 0.9 are presented in Figure 2b. From this figures it is observed
that:

i) For each fixed value of p(1) and p(4), the error variances of the quadratic
filter are significantly less than those of each linear filter and, conse-
quently, the quadratic filter outperforms the linear one.

ii) As p(1) or p(4) increases, the filtering error variances are smaller and,
therefore, better estimations are obtained.

Analogous results are obtained for other values of the probabilities p(1)

and p(4) of the Bernoulli random variables which model uncertainties of the
first and fourth sensors, respectively. More generally, we study the linear and
quadratic filtering accuracy in function of p(1) and p(4). Specifically, the filter
performances are analyzed when p(4) is varied from 0.1 to 0.9 and values of
p(1) from 0.1 to 0.9. Taking into account that the filtering error variances
have insignificant variation from a certain iteration onwards, Figure 3 shows
the linear and quadratic filtering error variances at a fixed iteration (namely,
k = 100). From this figure it is gathered that the filtering error variances
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become smaller, and hence better estimations are obtained, as p(1) or p(4)

increases. Also, for all the different values of p(1) and p(4), the quadratic
filtering error variances decrease more quickly than those of the linear filter
and their values are smaller. Actually, the highest error variances of the
quadratic filter (obtained for p(i) = 0.1, i = 1, 4) are smaller than the lowest
error variances of the linear filter (obtained for p(i) = 0.9, i = 1, 4), thus
confirming again that the quadratic filtering estimators outperform the linear
ones significantly.

Finally, a comparative analysis is presented between the proposed filter
and the quadratic filter for multi-sensor systems with uncertain observations
[9]. The comparison between these estimators is addressed based on the
filtering accumulative mean-square error (AMSE) together with its corre-
sponding filtering mean-square error (MSE) at each time instant k, which
are calculated from one thousand independent simulations of the mentioned
algorithms considering the probabilities p(1) = 0.7 and p(4) = 0.5. The AMSE

at time k is defined as AMSEk =

k∑

i=1

MSEi, k = 1, . . . , 100, where the MSE

at time k is calculated as MSEk =
1

1000

1000∑

s=1

(x
(s)
k − x̂

(s)
k/k)

2, with {x
(s)
k }1≤k≤100

the s-th set of artificially simulated data and x̂
(s)
k/k the filter at the sampling

time k in the s-th simulation run.

The results of these comparisons are displayed in Figure 4, from which
it is observed that both the AMSE and the MSE of the proposed quadratic
filters are smaller than those of the quadratic filter in [9]. This shows a better
performance of the quadratic filter proposed in this paper over the quadratic
filter in [9]; this fact was expected, since the latter ignores the randomness
in the parameter matrices.

6. Conclusions

The LS quadratic estimation problem has been investigated for discrete-
time linear stochastic systems with random parameter matrices. The main
contributions are summarized as follows:

• Using the technique proposed in [1], consisting of augmenting the state
and observation vectors with their second-order Kronecker powers, an
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augmented system with random parameter matrices has been con-
structed and the quadratic LS filter of the original state is derived
from the linear LS filter of the augmented state. The proposed scheme
has the following advantages: 1) the filter does not require any trans-
formation of the original system into one with deterministic parameter
matrices and can be applied to multi-sensor stochastic uncertain sys-
tems considering the possibility of different uncertainties in the obser-
vations at each sensor; 2) the filter is globally optimal in the quadratic
LS sense and hence outperforms the linear LS estimators for such sys-
tems; 3) since the quadratic filter of the original state is derived from
the linear filter of the augmented state, its structure is recursive, very
simple computationally and suitable for online applications; 4) the lin-
ear filtering algorithm has been obtained by an innovation approach,
which simplifies substantially the derivation of the algorithm since the
innovation process is a white noise.

• The proposed quadratic filter has been applied to systems with fading
measurements coming from multiple sensors, when the fading measure-
ment phenomenon in each sensor is described by different sequences of
scalar random variables with arbitrary probability distribution over the
interval [0,1]. This kind of multi-sensor systems is found in various real-
world situations, such as transmission models involving partial loss of
measurements.

• The usefulness of the proposed results has been illustrated by a numer-
ical simulation example. Error variance comparison has shown that
the quadratic filters outperform the linear ones. Furthermore, a com-
parative analysis with other linear and quadratic filters that have been
reported reveals the superior performance of the proposed quadratic fil-
ter. This example has also highlighted the applicability of the proposed
algorithm in multi-sensor systems with state-dependent multiplicative
noise and fading measurements, which can be addressed by the system
model with random parameter matrices considered in this paper.

Noise independence assumptions might be too restrictive in many real-
world problems, so they have been relaxed or even removed in several recent
studies; for example, the linear estimation problem is addressed in [27] for
stochastic uncertain systems with correlated noises and uncertainties caused
by correlated multiplicative noises in the state and observation equations.
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Hence, a challenging further research topic is to address the quadratic es-
timation problem for systems with random parameter matrices considering
auto-correlation and cross-correlation between the process noise and the mea-
surement noises. Also, an interesting future research topic is to generalize
the current results by considering correlation between random state transi-
tion and measurement matrices, which would cover the uncertain systems
considered in [27], and also systems with randomly delayed measurements or
multiple packet dropouts as particular cases.
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Figure 1: Simulated state and linear and quadratic filtering estimates.
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Figure 2: (a) Linear and quadratic filtering error variances for p(4) = 0.5, p(1) =
0.2, 0.5, 0.7, 0.9.
(b) Linear and quadratic filtering error variances for p(1) = 0.5, p(4) = 0.2, 0.5, 0.7, 0.9.
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Figure 3: Linear and quadratic filtering error variances at k = 100 versus p(4) with p(1)

varying from 0.1 to 0.9.
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Figure 4: (a) Comparison of AMSEk for two filters. (b) Comparison of MSEk for two
filters.
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