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1 WHAT IS THE SHAPE OF A CUPOLA?

RAFAEL LÓPEZ

Abstract. This article examines the shape of a surface obtained by a hanging flex-
ible, inelastic material with prescribed area and boundary curve. The shape of this
surface, after being turned upside down, is a model for cupolas (or domes) under the
simple hypothesis of compression. Investigating the rotational examples, we provide
and illustrate a novel design for a roof which has the extraordinary property that its
shape, although natural, is modeled by a surface of revolution whose axis of rotation
is horizontal.

1. Introduction.

Historically, the shape of a cupola (or dome) has been of enduring interest. The Greek’s
use of columns and the Roman’s use of arches as a basic element in construction
enabled architects to build ever larger walls and pillars, increasing the relevance of the
cupola as the crowning element of the entire edifice. The use of flying buttresses to
distribute loads and tensions in walls over a large area transformed the low windowless
Romanesque churches into the tall, slender Gothic cathedrals that embellish the cities
of Europe.

The construction of cupolas involves an intricate interplay of artistic and structural
issues requiring the architect to specify a variety of variables such as the choice of
materials and the desired stylistic effect. The essential engineering problem to be
solved is to build a large structurally stable, aesthetically appealing roof that rises
over a large, empty space. In order to achieve this, architects certainly required the
support of the sciences. In the 15th and 16th centuries, the Renaissance was a period of
scientific and artistic development propitious for the building of domes. The examples
of the Florentine Cathedral of Santa Maria del Fiore by Filippo Brunelleschi and the
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Vatican’s Basilica Papale di San Pietro of Michelangelo (Figure 1) demonstrate the
resulting triumphant achievements that fascinate us up to the present day.

Figure 1. Domes of Santa Maria del Fiore in Florence (left) and the
Basilica Papale di San Pietro in Vaticano (right). The first image is
licensed under the Creative Commons Attribution-Share Alike 4.0 In-
ternational license at commons.wikimedia.org/wiki/File:Florence duomo
fc10.jpg. The second image is licensed under the public domain at com-
mons.wikimedia.org/wiki/File:Petersdom von Engelsburg gesehen.jpg.

Owing to the issues outlined above, it is not clear how one should go about formulating
the problem of finding the optimal shape for a cupola. Here we take a mathematician’s
perspective. A first thought that comes to mind is that the cupola is sustained along
its boundary by its own weight. As a first approximation, we imagine a bounded,
massive, homogenous piece of cloth whose boundary is represented by a fixed prescribed
curve. Supported by this curve, the cloth evolves under the force of gravity to a static
equilibrium. The reason the surface of the cloth is closely related to that of a cupola
is that a surface suspended solely by its own weight experiences only tensional forces
tangent to its interior. When this surface is inverted, it produces the optimal shape of
a cupola. The inversion transforms the tensional force into a force of compression. In
our context of cupolas, we can rephrase the words of Robert Hooke about the shape
of an arch by saying that as hangs the flexible surface so inverted will stand the rigid
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cupola.1 The inverted surface satisfies the same equation of equilibrium as the original
surface so the only question to be answered is:

What is the shape of a flexible hanging surface of uniform mass acted upon solely by

gravity?

As is often the case, some insight can be achieved by considering the one dimensional
analog of the problem stated above, which is to determine the optimal shape of a
hanging cable. The answer, as is well known, is a catenary curve given by the simple
expression y(x) = a−1 cosh(ax), for a positive constant a. The optimal shape of arches
has also attracted the interest of mathematicians, where catenaries and parabolas have
competed for this role; see, for example the beautiful discussion of R. Osserman on
the shape of the Gateway Arch in Saint Louis, Missouri ([23]). The renowned Spanish
architect Antonio Gaud́ı (1852-1926), who included many beautiful catenary shaped
corridors, was an avid enthusiast of this shape (see Figure 2).

The list of mathematicians who have investigated the shape of surfaces hanging under
their own weight includes the names of Beltrami, Germain, Jellet, Lagrange and Poisson
([2, 11, 15, 16, 27, 31]). Surely, it was Cisa de Gresy who stated most lucidly [12, p.
260]:

“Si on suppose, par example, une surface en équilibre, sollicitée unique-
ment par la gravité, et suspendue à la circonférence d’un cercle fixé hor-
izontalement, it est clair que les éléments de cette surface n’éprouveront
qu’une simple tension dans le sens des méridiens ou de la courbe génératrice.”
[If we suppose, for example, that a surface is subjected only to the force
of gravity and it is suspended from a circular perimeter, it is clear that
the elements of this surface will only exert a simple tension in all direc-
tions of the meridians or the generating curve.]

However, it is possible that there is not a minimum of the height of the center of gravity
for surfaces with prescribed area and boundary curve. We present an example which
is a slightly simplified version of the one given by Nitsche in [21].

1Actually Hooke considered the problem of the hanging cable writing an anagram in Latin that
deciphers to “ut pendet continuum flexile, sic stabit contiguum rigidum inversum” which translates as
“as hangs the flexible line, so but inverted will stand the rigid arch” ([14, p. 31]).
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Figure 2. Left: Corridor in the Colegio Teresiano, Barcelona. Right:
loft in La Pedrera, Barcelona. The first image is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license at
commons.wikimedia.org/wiki/File:049 Col·legi de les Teresianes, arcs
parabòlics.JPG. The second image is licensed under the GNU Free Doc-
umentation License at commons.wikimedia.org/wiki/File:LaPedreraParabola.jpg.

Example 1. Let Γ be the circle in the plane z = 0 of radius 1 and centered at the
origin. For 0 < R < 1, let ΩR be the annulus {(x, y, 0) ∈ R

3 : R2 ≤ x2 + y2 ≤ 1}.
Consider the surface SR formed by ΩR together with the cone CR underneath Ω with
boundary CR = {(x, y, 0) ∈ R

3 : x2 + y2 = R2} and height h =
√

2 + 1/R2. We can
parametrize SR in polar coordinates (r, θ) by

u(r) =

{

−hR−r
R

, 0 ≤ r < R
0, R ≤ r ≤ 1.

See Figure 3. The boundary of SR is the circle Γ and with these choices of R and h, the
area of SR is constantly 2π independently of R (the value 2π is only for convenience;
any area greater than π can be taken). It is well known that the center of gravity of
the (hollow) cone of height h is h/3 from the base. So the center of gravity of SR is at
height

−h
3
· area(CR)

area(SR)
=

−h
3
πR

√
h2 +R2

2π
= −1 +R2

6

√

2 +
1

R2
.
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In particular, the center of gravity can be made as low as one likes, by taking R suffi-

CR

z=0

h

Γ

ΩR

Figure 3. The problem of minimizing the height of the center of gravity
has no solution when the prescribed area is 2π and the boundary curve
is the circle Γ. See Example 1.

ciently small. This example can obviously also be made smooth by small modifications.

This example contrasts with the one dimensional version of the problem because, as
was proved by Jacob Bernouilli, the catenary has the property that its center of gravity
is lower than that of any curve of equal length, and with the same fixed endpoints.

As is usual in optimization problems, and in light of the above example, we approach
the problem by requiring something less than an absolute minimum for the height of the
center of gravity. Indeed, when a (flexible, inelastic) material hangs under its weight,
the surface that is formed is a local extremum for the height of the center of gravity, in
the space of smooth surfaces with given area and boundary. Therefore techniques from
the Calculus of Variations are key for deriving the differential equation of the surface.
In relation to this, Joseph-Louis Lagrange states in his Mécanique Analytique:

“[...] on verra par l’uniformité et la rapidité des solutions combien ces
méthodes sont supérieures à celles que l’on avait employées jusqu’ici
dans la Statique”. [[...] one will see by the consistency and speed of
solvability, how these methods are greater than to those that have been
employed until now in Statics.] See [16, p. 113].
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But it was Siméon Denis Poisson who definitively found the equilibrium equation for
the surface, improving the assumptions and calculations of Lagrange. What’s more,
Joseph Bertrand, who edited the collected works of Lagrange, added a footnote:

‘Cette manière d’évaluer l’ensemble des forces que développe l’élasticité
sur un point n’est pas suffisamment justifiée [...] Nous pouvons même
ajouter que cela n’est pas exact. Poisson en a fait la remarque dans
le Mémoires de l’Institut pour l’année 1812”. [This way of evaluating
the collection of forces, which develop the elasticity at a point, is not
sufficiently justified [...]. We may even add that it is not exact. Poisson
made this observation in Mémoires de l’Institut in 1812]. See [16, p.
158].

Indeed, Poisson considered a much more general problem of a surface under different
forces and tensions. As a particular case, he derived the correct equation of the surface
stretched by its weight, which we will see in the next section. So, assuming only the
effect of the weight, he asserts:

“Considérons enfin la surface pesante, et prenons l’axe des z vertical et
dirigé dans le sens de la pesanteur”. [Let us finally consider the heavy
surface. We take the vertical axis pointing along the direction of the
gravitational field.] See [27, p. 185].

Then he successfully derived the equation for a nonparametric surface z = z(x, y) (see
Figure 4), where k2 = 1 + p2 + q2, p = zx, q = zy, g is the gravitational acceleration
and ǫ is the density of the surface. Finally, he writes:

Figure 4. The equation deduced by Poisson that satisfies a surface
z = (x, y) acted upon solely by gravity.

“Cette équation d’équilibre de la surface pesante et également épaisse,
doit comprendre l’équation ordinaire de la châınette, qui s’en déduit, en
effect, en y supposant z indépendante de l’une des deux variables x ou y,
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de y, par exemple”. [This equilibrium equation of the heavy surface with
uniform thickness must include the known equation of the suspended

chain, which is deduced from it by assuming that z is independent of
one of the two variables x or y, say of y]. See [27, p.186].

All the aforementioned works were apparently nearly forgotten until the 1980’s, when
there was an explosion of interest in the evolution of surfaces by functions of their
mean curvature. There is also the issue of the elasticity of the materials used in the
construction. As the reader can well imagine, a dome’s actual material is not nearly
so flexible as the cloth example discussed above. See a historical approach in [30].
Here, we would like to take note of the paper [7] by Ulrich Dierkes, which was surely
motivated by the work of the German architect Frei Otto ([24]). Later, the problem
was revisited by Bemelmans, Böhme, Dierkes, Hildebrandt, and Huisken in their works
([3, 4, 6, 7, 8]).

The literature in architecture on the shape of cupolas is extensive and cannot be cata-
logued here. We refer only to [9, 13, 22, 26, 29]. Since we lack expertise in the fields of
architecture and engineering, we have approached the problem from the perspective of
differential geometry, although we have avoided its technical concepts, such as shape
operator, principal curvatures, and second fundamental form, to maintain accessibility
for a larger readership.

The surfaces we discuss below will be graphs, surfaces of revolution, or cylindrical
surfaces whose parameterizations are simple. In Section 2 we will employ the calculus
of variations to derive the equation that a function z = u(x, y) must satisfy for its graph
to define a surface whose shape is determined only by its own weight. These surfaces
are called singular minimal surfaces. We will see that the boundary of the surface
imposes geometric restrictions to the shape of the entire surface and this question
will be briefly discussed. In Section 3 we focus on singular minimal surfaces that are
surfaces of revolution, thinking of the shape of cupolas. Finally, in Section 4 we will
present a new roof design modeled by a singular minimal surface. The novelty is that
the roof is a surface of revolution but its rotation axis is horizontal, which is contrary
to our common sense.
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2. Singular minimal surfaces.

Consider (x, y, z) the canonical coordinates of the three-dimensional Euclidean space
R

3 where z indicates the vertical direction. Let Γ be a closed curve and A > 0 a fixed
positive number. We wish to determine the differential equation that governs a surface
S spanning Γ with area A which is suspended from Γ by its weight. Suppose that S is
made of a flexible, incompressible material of uniform density σ per unit area. In order
to simplify the arguments, we restrict our attention to surfaces given by the graph of
a smooth function z = u(x, y) defined on Ω, a bounded planar domain with smooth
boundary ∂Ω. The weight per unit area of S is σ

√

1 + u2
x + u2

y, where the subscripts
indicate the derivatives with respect to the corresponding variables. Under the effect
of the weight, the surface S attains a point of equilibrium when the height of its center
of gravity is a local extremum. Assume that the gravitational potential at one point
(x, y, z) is simply the distance z to the xy-plane. In particular, all our geometric objects
(curves and surfaces) lie over the plane of equation z = 0. Let us also observe that the
problem is invariant under translations in any horizontal direction. The height of the
center of gravity is

1

A

∫

Ω

σ u
√

1 + u2
x + u2

y dxdy.

The minimization is understood to be in the class of smooth functions u with prescribed
boundary u = ϕ > 0, where the graph of ϕ : ∂Ω → R is just the boundary curve Γ.
We can assume that A and σ take the value 1.

We now consider simple arguments of calculus of variations and make an infinitesimal
change in the surface z = u(x, y) given by u(x, y) + th(x, y), t ∈ R and h : Ω → R a
smooth function vanishing on ∂Ω. Adopting a Lagrange multiplier for the constraint
on the area of the surface, define the functional

(1) J(u) =

∫

Ω

u
√

1 + |∇u|2 dxdy + λ

∫

Ω

√

1 + |∇u|2 dxdy,

where ∇u = (ux, uy) stands for the gradient of u and λ ∈ R. The domain of J is the
set of all smooth functions u defined on Ω with boundary condition u = ϕ along ∂Ω
and fixed surface area equal to 1. The class X of admissible variations is formed by
the smooth functions h : Ω → R which vanish on the boundary of Ω, h = 0 along ∂Ω.
Thus an extremal u of J implies

d

dt

∣

∣

∣

t=0

J(u+ th) = 0
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for all h ∈ X . Set the Lagrangian L(x, y, u, p, q) = (u+ λ)
√

1 + p2 + q2, the integrand
in (1), with p = ux and q = uy, and let

F =

(

∂L

∂p
,
∂L

∂q

)

= (u+ λ)

(

ux
√

1 + |∇u|2
,

uy
√

1 + |∇u|2

)

.

Using div(h ·F ) = 〈∇h, F 〉+h · divF , where 〈·, ·〉 denotes the usual scalar product, we
have

d

dt

∣

∣

∣

t=0

J(u+ th) =

∫

Ω

(

∂L

∂u
h+ hx

∂L

∂p
+ hy

∂L

∂q

)

dxdy

=

∫

Ω

(

∂L

∂u
h+ 〈∇h, F 〉

)

dxdy

=

∫

Ω

h ·
(

∂L

∂u
− divF

)

dxdy +

∫

Ω

div(h · F ) dxdy.

The Divergence Theorem allows us to rewrite the last integral as an integral over the
boundary ∂Ω. So, using h = 0 on ∂Ω, we have

∫

Ω

div(h · F ) dxdy =

∫

∂Ω

h · 〈F,n〉 = 0,

where n is the unit outward-pointing normal of ∂Ω. As a consequence of the Funda-
mental Lemma of the calculus of variations, u is an extremal if and only if

∂L

∂u
− divF =

∂L

∂u
−
(

∂L

∂p

)

x

−
(

∂L

∂q

)

y

= 0.

By the definition of L, this identity can be expressed as

√

1 + |∇u|2 −
(

(u+ λ)
ux

√

1 + |∇u|2

)

x

−
(

(u+ λ)
uy

√

1 + |∇u|2

)

y

= 0.

Rewriting this identity, we conclude that an extremal u of the variational problem
satisfies the Euler-Lagrange equation

(

ux
√

1 + |∇u|2

)

x

+

(

uy
√

1 + |∇u|2

)

y

=
1

(u+ λ)
√

1 + |∇u|2
,
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where λ is a Lagrange multiplier. By translating the surface in the vertical position,
we can assume that λ = 0, hence

(2) div
∇u

√

1 + |∇u|2
=

1

u
√

1 + |∇u|2
.

Notice that we are only interested in smooth surfaces so, from (2), we are only interested
in functions u(x, u) which are nowhere zero. It is also clear that if u = u(x, y) satisfies
(2), then so does −u(x, u). Thus, without loss of generality, we will only consider
strictly positive functions u(x, y) that satisfy (2). In such a case, we will say that the
surface z = u(x, y) is a singular minimal surface. This definition was first coined by
Dierkes in [7] and motivated by two reasons. First, because the first integrand in (1)
degenerates if u vanishes. Although as we said, our surfaces are smooth, in a more
general context, one may admit singular solutions, that is, u = 0 somewhere. A simple
example of a “singular solution” of Equation (9) is u(r) = r in polar coordinates. This
surface corresponds to a cone whose vertex is the origin and forming a 450 angle with
respect to the rotational axis. Notice that this solution vanishes at r = 0.

A second reason is that the left-hand side of (2) is a known quantity in differential
geometry and it coincides with the mean curvature H of the surface z = u(x, y).
Minimal surfaces are those that satisfy H = 0 everywhere. In the one dimensional case
(for functions of one variable), the solution of (2) is the catenary and for this, Equation
(2) is also known as the two-dimensional analogue of the catenary ([4]). Indeed, Poisson
already observed that if the function u depends only on x, i.e., u = u(x), then (2)
simplifies to

(

u′

√
1 + u′2

)′

=
1

u
√
1 + u′2

, u′ =
du

dx
,

or equivalently,

(3)
u′′

1 + u′2
=

1

u
,

whose solution is the catenary u(x) = a−1 cosh(ax + b), a 6= 0, a, b ∈ R. Of course,
the solutions of (2) are not minimal surfaces, but when we rotate the one dimensional
solution (the catenary) with respect to the x-axis, we obtain the catenoid which is a
minimal surface. This explains that another reasonable name of a solution of (2) is
symmetric minimal surface ([10]). A consequence of the derivation of the solutions of
(2) in the one dimensional case is that the corresponding cylindrical surface constructed
with the catenary u(x, y) = a−1 cosh(ax+ b) and repeated along the y-direction

X(x, y) = (x, y, u(x)) = (x, 0, u(x)) + y(0, 1, 0)
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is a singular minimal surface whose rulings are all parallel to the y-axis. After inverting
this surface, we again obtain the shape of Gaud́ı’s famous corridors.

We rewrite (2) in a form that will be used in the rest of the article. Any surface of
R

3 is locally the graph of a function in one of the three coordinate planes of R3. We
will assume that it is the graph over the xy-plane. Then locally S = {(x, y, u(x, y)) :
(x, y) ∈ Ω} for some smooth function u. We parametrize S as

X : Ω → R
3, X(x, y) = (x, y, u(x, y)).

We have pointed out that the left-hand side of (2) is just the mean curvature H at any
point p ∈ S. For the right-hand side, consider the upward pointing unit normal vector
field N on S which is orthogonal to the tangent plane. For the parametrized surface
X(x, y), the tangent plane is spanned by {Xx, Xy}, so N can be computed by

N =
Xx ×Xy

|Xx ×Xy|
=

1
√

1 + |∇u|2
(−ux,−uy, 1).

If ~v = (0, 0, 1) is the unit vector in the positive direction of the z-axis, then 〈X,~v〉 = u
and Equation (2) can be expressed simply by

(4) H(p) =
〈N(p), ~v〉
〈p,~v〉 , p ∈ S.

Now the condition that the surface is a singular minimal surface is expressed free of
coordinates. Many questions are now open to us, some of which have connections with
the shape of a cupola. In this article we will deal with the following two aspects:

(1) Given a closed curve Γ, does the geometry of Γ impose restrictions to the shape
of a singular minimal surface spanning Γ?

(2) What is the shape of a surface of revolution that satisfies the singular minimal
surface equation (4)?

We return for the moment to historical considerations. As stated before, equation (2)
has been forgotten for some time. Independently, the shape of a cupola was addressed
by Antonio Gaud́ı. He was particularly interested in the shape of a suspended surface.
For the construction of his unfinished work on the basilica known as the Sagrada
Familia (Sacred Family), see Figure 5, left, he wanted to reproduce the shape of these
surfaces. This was important to him because of his own style of reproducing forms from
nature. So, Gaud́ı designed the structure of a dome by suspending loads from wires
that simulated the different arches and pillars upside down, as can be seen in Figure
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5, right. Many years later, Frei Otto again reproduced this design in the Institute for
Lightweight Structures at the University of Stuttgart ([25]).

Figure 5. Left: Dome on la Sagrada Familia, Barcelona, viewed
from below. Right: model of the church of Colonia Güell used by
Gaud́ı (Museum of Sagrada Familia). The first image is licensed un-
der the Creative Commons Attribution-Share Alike 3.0 Unported license
at commons.wikimedia.org/wiki/File:Sagrada familia, Boveda princi-
pal.jpg. The second image is licensed under the GNU Free Documenta-
tion License at commons.wikimedia.org/wiki/File:Maqueta funicu-
lar.jpg.

We present some properties of the singular minimal surfaces.

(1) The set of singular minimal surfaces is invariant by rigid motions that fix the

vertical direction and whose translation vectors are horizontal. They are also

invariant by dilations from any point of the xy-plane. Indeed, let M : R3 → R
3

be a rigid motion, with M(p) = Ap+~b, where A ∈ O(3) is a linear isometry and
~b ∈ R

3 is the translation vector. Let S̃ = M(S) and denote p̃ = M(p) = Ap+~b
for p ∈ S. At corresponding points p and p̃, the mean curvature coincide and
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N(p̃) = AN(p). Thus (4) becomes

H(p̃) =
〈A−1N(p̃), ~v〉

〈A−1p̃, ~v〉 − 〈A−1~b, ~v〉
=

〈N(p̃), A~v〉
〈p̃, A~v〉 − 〈A−1~b, ~v〉

.

Since we want to keep the vertical direction for gravity, we need that A~v = ~v,

concluding 〈~b, ~v〉 = 0, too. Examples of these motions are rotations about a ver-
tical straight line, symmetries about vertical planes, and horizontal translations
(recall that the vertical translations were already used in the elimination of λ
in the derivation of (2)). The proof for dilations is straightforward because we
can again assume that, after a horizontal translation, the dilation is expressed
by h(p) = λp, λ > 0. In such a case, if p̃ = h(p), then H(p̃) = H(p)/λ and
N(p̃) = N(p).

(2) Writing the surface as z = u(x, y), we see that the function u has no local

maximum at the interior points of Ω. Indeed, if q = (x0, y0) ∈ Ω is a local
maximum, then ∇u(q) = (0, 0) and uxx(q) ≤ 0 and uyy(q) ≤ 0. If we expand
out (2), we have

(5) (1 + u2

y)uxx − 2uxuyuxy + (1 + u2

x)uyy =
1

u
(1 + u2

x + u2

u).

At q, this identity reduces to

(uxx + uyy)(q) =
1

u(q)
> 0,

which is not possible. Notice that (5) coincides with the equation of Figure 4,
up to the constants g and ǫ.

(3) As a consequence, if the boundary Γ of S is contained in a horizontal plane and

S is compact, then S lies below that plane.

(4) Suppose the function ϕ : ∂Ω → R defining the boundary curve Γ is smooth. We
prove that if u satisfies (2), then

(6)
area(Ω)

length(∂Ω)
< max

∂Ω
ϕ.

This gives a necessary condition in terms of the geometry of the boundary curve
Γ for the existence of a singular minimal surface spanning Γ. The proof of (6)
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is as follows. A simple computation yields

div

(

u · ∇u
√

1 + |∇u|2

)

=
|∇u|2

√

1 + |∇u|2
+ u · div

(

∇u
√

1 + |∇u|2

)

=
√

1 + |∇u|2.
Integrating over Ω and using the Divergence Theorem, we obtain

∫

Ω

√

1 + |∇u|2 dxdy =

∫

∂Ω

ϕ
〈n,∇u〉

√

1 + |∇u|2
.

The left-hand side in the above identity is the area of S. On the other hand,
since |〈n,∇u〉| ≤ |n||∇u| = |∇u|, we deduce

area(S) <

∫

∂Ω

max
∂Ω

ϕ = (max
∂Ω

ϕ) · length(∂Ω).

Hence, because area(Ω) < area(S), the inequality (6) holds, as claimed. Here
we point out that Nitsche already gave an upper bound area(S) < A(Γ), A(Γ)
depending only on Γ, when S is a rotational singular minimal surface and Γ is
a horizontal circle ([21]).

(5) As a consequence of (6), the existence of a solution to the Dirichlet problem
associated to (2) with boundary conditions u = ϕ on ∂Ω is not assured for
general ϕ. On the other hand, it is also not known under what conditions one
has uniqueness of solutions for the Dirichlet problem, or whether a solution is
in fact a minimizer of the variational problem. See [18, 19].

We conclude this section with an expected property that requires difficult techniques
beyond the scope of this article. Suppose that the boundary Γ is just a circle contained
in a horizontal plane Π. If S is a compact singular minimal surface spanning Γ, does
S inherit the axisymmetric shape of Γ? The answer is yes if we assume that S is a
surface without self-intersections (as is the case for graphs). Firstly, by property (3), S
lies below Π. Now an argument due to Alexandrov ([1]) using reflection across vertical
planes together with the Maximum Principle, proves that given any vertical plane P ,
there is another parallel plane to P such that S is invariant by reflections across that
plane. Doing this for every vertical plane, one concludes that, indeed, the surface is
rotationally symmetric about a vertical line ([20]).

Theorem 1. Let S be a compact singular minimal surface without self-intersections.

If the boundary is a horizontal circle, then S is a surface of revolution about a straight

line parallel to the z-axis.
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3. Rotational cupolas.

Let us come back to our initial problem of the construction of cupolas. The common
idea to build a cupola is that its shape is modeled by a surface of revolution whose
rotation axis is a vertical line. Even in this case, the real construction of a rotational
cupola never occurs because architects use ‘discrete’ methods of construction. So, the
base of the cupola is never a circle, but it is a ‘discrete’ circle formed by a union
of rectilinear segments adopting circular shape. In fact, the cupolas of Figure 1 are
not surfaces of revolution: their shape is invariant by a finite group of rigid motions,
which coincides with the number of arches connecting the top of the cupola to its base.
In the case of the cupola of Brunelleschi, this number is 8, while it is 16 in that of
Michelangelo. Other cupolas whose shapes better resemble surfaces of revolution are
shown in Figure 6.

Figure 6. Cupolas that look like surfaces of revolution: the
Dome of the Rock at Jerusalem (left) and the Reichstag in
Berlin by Norman Foster (right). The first image is licensed
under the Creative Commons Attribution-Share Alike 4.0 Un-
ported license at commons.wikimedia.org/wiki/File:Jerusalem-
2013(2)-Temple Mount-Dome of the Rock (SE exposure).jpg
(Andrew Shiva). The source of the second image is
https://www.bundestag.de/en/visittheBundestag/dome/registration-245686,
Deutscher Bundestag/Neuhauser.

Although we know that cupolas are surfaces of revolution, from a mathematical per-
spective it is not clear that their rotation axes must be parallel to the direction of
gravity. We investigate this question. To facilitate the computations, we suppose that
the rotation axis of the surface S is the z-axis but the direction of gravity is indicated

https://www.bundestag.de/en/visittheBundestag/dome/registration-245686
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by the direction ~v = (a1, a2, a3) with |~v|2 = 1. All points p = (x, y, u(x, y)) ∈ S that lie

at the same horizontal plane, are circles centered at the z-axis of radius r =
√

x2 + y2.
Thus u is a radial function u = u(r). Let us parametrize S by introducing polar
coordinates x = r cos θ, y = r sin θ,

(7) X(r, θ) = (r cos θ, r sin θ, u(r)).

We express (4) in terms of the derivatives of u with respect to r. A change of variables
transforms the left-hand side of (2) (equivalent to the mean curvature H in (4)) into

(8)
u′(1 + u′2) + ru′′

r(1 + u′2)3/2
.

We now compute the right-hand side in (4). The unit normal vector field of S is

N =
Xr ×Xθ

|Xr ×Xθ|
=

1√
1 + u′2

(−u′ cos θ,−u sin θ, 1).

Since 〈X,~v〉 = a1r cos θ + a2r sin θ + a3u, Equation (4) is

u′

r
+

u′′

1 + u′2
=

−a1u
′ cos θ − a2u

′ sin θ + a3
a1r cos θ + a2r sin θ + a3u

.

After some manipulations, this equation can be written as A(r) cos θ + B(r) sin θ +
C(r) = 0, where

A(r) = a1r
(

u′(1 + u′2) + ru′′ + u′(1 + u′2)
)

B(r) = a2r
(

u′(1 + u′2) + ru′′ + u′(1 + u′2)
)

C(r) = a3
(

u(u′(1 + u′2) + ru′′)− r(1 + u′2)
)

.

Since the functions {1, cos θ, sin θ} are linearly independent, the functions A, B and
C must vanish in their domain. One case is that a1 = a2 = 0. Then the direction of
gravity is parallel to the rotation axis and, in addition, C = 0 becomes

(9)
u′′

1 + u′2
=

1

u
− u′

r
.

Suppose now that a1 6= 0 (resp. a2 6= 0). Then we deduce from A = 0 (resp. B = 0),

(10)
u′′

1 + u′2
= −2u′

r
.

For the equation C(r) = 0, we distinguish two subcases. If a3 = 0, then ~v is orthogonal
to the axis of rotation. If a3 6= 0, then u(u′(1+u′2)+ru′′)−r(1+u′2) = 0 and combining
with (10), we deduce uu′ = −r. Thus u(r) =

√
r2 + c, for some constant c. However,
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this function does not satisfy (10). This establishes the following theorem which is now
written when the direction of the gravity is given, as usual, by the vertical axis ([17]).

Theorem 2. If a surface of revolution is a singular minimal surface, then the axis of

rotation is vertical or the axis of rotation is contained in the plane z = 0.

The second case is striking because we have discovered a model of a rotational cupola
whose rotation axis is horizontal! We separate the two cases and, in this section, we
focus on the case where the rotation axis is parallel to the force of gravity. Here ~v in the
proof of the theorem is actually the vertical direction of R3 and u satisfies (9). From
the standard theory of ordinary differential equations, the solution of the ordinary
differential equation (9) is obtained once we give initial conditions

(11) u(r0) = u0, u′(r0) = ū0, r0 > 0, u0 > 0.

Let us observe that (9) is singular at r = 0, so r0 must be positive. However, keeping
in mind the shape of cupolas, our interest is that a solution meets the rotation axis.
So we want to know if the solution u can be prolongated until r = 0. This question
is problematic. It is possible that under some initial conditions in (11), the solution
does not meet the z-axis (see the example in Remark 1 below). In such a case, after
rotating the graphic of u = u(r) about the z-axis, we would obtain a cupola with a
“hole” at the top. However we are interested in those solutions whose initial conditions
in (11) occur at r0 = 0. An argument using the Banach Fixed Point Theorem proves
the existence of a solution with u(0) = u0 > 0 ([17]). In such a case, the intersection of
the surface with the rotational axis must be orthogonal by smoothness of the surface.
This is equivalent to u′(0) = 0.

Rotational singular minimal surfaces whose axis is vertical have been studied in the
literature: see, for example, [6, 7]. Recall that in Section 2 we showed the singular
solution u(r) = r, a cone with vertex at the origin. In this case, after inverting the
surface, the shape of the cupola looks like a Native American teepee.

In Figure 7, left, we show, using Mathematica, some numerical solutions of (9)-(11)
when r0 = 0, u′(0) = 0, and for different values of u0. All these curves will give shapes
of domes once we invert them as Figure 7, right, shows.

Remark 1. If r0 > 0 in (11), then the standard theory of ODE’s ensures the existence
and uniqueness of solutions. In such a case, the maximal domain of the solution around
r0 may not reach the value 0, that is, the solution may not meet the rotation axis. This
happens when we choose u′(r0) = 0 for a fix value r0 > 0. Indeed, if the domain of u
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Figure 7. Left: numerical solutions of (9)-(11), where u′(0) = 0 for
different values of u(0): 0.5, 1 and 1.5. Right: the solutions viewed as
cupolas after a symmetry about the horizontal line z = 2.

Figure 8. Left: a solution of (9)-(11), where u(2) = 1 and u′(2) = 0.
Right: the corresponding rotational surface.

contains the value 0, we know that u′(0) = 0. From (9), u′′(r0) = 1/u(r0) > 0, so r = r0
is a strict local minimum. We now see that r = 0 is another strict local minimum. By
L’Hôpital’s rule, letting r → 0 in (9), we get

u′′(0) =
1

u(0)
− lim

r→0

u′(r)

r
=

1

u(0)
− lim

r→0

u′′(r)

1
=

1

u(0)
− u′′(0).

Hence u′′(0) = 1/(2u(0)) > 0. Thus the function u restricted to the interval [0, r0] must
have a local maximum at some point c ∈ (0, r0), which must also be a local maximum
of u = u(x, y). This contradicts property (2) of Section 2. In Figure 8 we show an
example of a rotational surface that does not meet the z-axis.
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4. A new design for a roof.

In this section we present a new design for a cupola using a surface of revolution but,
contrary to common sense, the rotational axis will be horizontal. In this case, we
feel it is better to refer to the surface as a ‘roof’ rather than a cupola. Thus, we
turn our attention to the singular minimal surfaces given in Theorem 2 whose rotation
axis is included in the plane z = 0. First, we need to change the coordinates in the
proof of Theorem 2 because here we assumed that the rotation axis was the z-axis
and the direction ~v was (a1, 0, 0) or (0, a2, 0). Without loss of generality, we suppose
~v = (1, 0, 0) and consider the positively oriented rigid motion M : R3 → R

3 determined
by the transformation

M :







(1, 0, 0) 7→ (0, 0, 1)
(0, 1, 0) 7→ (0,−1, 0)
(0, 0, 1) 7→ (1, 0, 0).

The surface of revolution in (7) changes to M ◦ X(r, θ) = (u,−r sin θ, r cos θ). On
the other hand, we know that u satisfies (10). We make a new change of variables
interchanging the roles of u and r. Then the parametrization of the surface is

(12) X(r, θ) = (r,−u(r) sin θ, u(r) cos θ),

and (10) is now

(13)
u′′

1 + u′2
=

2

u
.

Notice that this equation looks like the equation (3) of the catenary with the only
difference being that now the numerator in the right-hand side is 2. For this reason,
we call the solutions of (13) 2-catenaries. For non-constant solutions, we multiply by
u′ and integrating, we find

(14) u′ = ±
√
c2u4 − 1, c 6= 0.

In particular, differentiating with respect to r, and using (14)

(15) u′′(r) = ±2c2
u3u′

√
c2u4 − 1

= 2c2u(r)3.

The differential equation (14) is known in the literature as an Emden-Fowler type
equation ([28]). The generating curve u = u(x) is contained in the xz-plane after we
replace the variable r with x. The properties of u are the following:
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(1) The function u has only one critical point. Without loss of generality, we can
assume that this point is x = 0. At x = 0, u has a global minimum. The value
of u in x = 0 is 1/

√
c by (14).

(2) The function u is symmetric about the z-line. The maximal domain of u is a
bounded interval (−a, a) and limx→±a u(x) = ∞.

(3) The function u is convex thanks to (15).

If we were to build the roof rotating the curve u = u(x) around the x-axis, the projec-
tion of the roof would be included in the horizontal strip Ω = {(x, y, 0) ∈ R

3 : −a ≤
x ≤ a} and its walls, or its skeleton structure, would be near vertical at far away points.

We plot numerical solutions of (13) using Mathematica. For this, we consider initial
conditions

u(0) = 1, u′(0) = 0.

The maximal domain (−a, a) occurs for the value a ≈ 1.31102. The surface is tangent
to the vertical planes of equations x = −a and x = a. When we rotate about the
x-axis, the lower half of the surface is located in the halfspace z < 0 which cannot be
considered. In Figure 9, left, we plot the generating curve (thick) and the corresponding
rotations of this curve for angles θ ∈ (−π/2, π/2) (thin). In Figure 9, middle, we invert
with respect to the horizontal plane having equation z = 3 and on the right, we show
the roof modeled by the surface. Both vertical walls are supporting the roof. Notice
that all points of the surface are saddle points.

Figure 9. Left: the 2-catenary (bold) and its rotations about the x-
axis. Middle: the same curves after inverting. Right: the rotational
cupola.
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In the last surface in Figure 9, the roof does not cover the entire corridor (the strip Ω).
We have reduced the size of the roof along the y-axis as Figure 10 shows.

Figure 10. Rotational cupolas by cutting along vertical planes parallel
to the xz-plane. The values for y are varying in the interval [−3, 3] (left),
[−2, 2] (middle) and [−1, 1] (right).

5. Outlook and Conclusions.

Motivated by the shape of a catenary, we have deduced the differential equation gov-
erning surfaces suspended by their own weight and discussed some of their properties.
Singular minimal surfaces can be models for cupolas, at least under the simple hy-
pothesis of compression. Hence, light structures can be constructed in architecture
imitating the shape of these surfaces.

In reality, these surfaces may be difficult to produce on a large scale. However, it
is remarkable that there are singular minimal surfaces that are surfaces of revolution
about a horizontal axis. Thanks to these surfaces, we have presented a novel structural
shape of a roof in Figures 9 and 10 which can be regarded in the context of the so-called
“funicular shape” in architecture. The two families of parametric curves in this surface
show the visual design of a skeleton that opens up towards its border, increasing its
beauty. And, as has been justified, its shape is ‘natural’ in the sense that loads and
tensions act tangentially on the roof, giving solidity and stability to the construction.

Gaud́ı used principles from the natural sciences in his architecture, generating interest
in the design of structures by observing the effect of weight. The idea to create ar-
chitectonic structures inspired by natural shapes is now expanding ([5, 13]), and the
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designs of singular minimal surfaces give stability in these constructions. Finally, in the
future, it would be desirable to investigate the implementation of methods of discrete
differential geometry which can produce this type of roof model in practice.
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