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Abstract 

In our state-of-the-art study, we improve neural network-based models for predicting energy 

consumption in buildings by parallelizing the CHC adaptive search algorithm. We compared 

the sequential implementation of the evolutionary algorithm with the new parallel version to 

obtain predictors and found that this new version of our software tool halved the execution 

time of the sequential version. New predictors based on various classes of neural networks 

have been developed and the obtained results support the validity of the proposed approaches 

with an average improvement of 75% of the average execution time in relation to previous 

sequential implementations.   
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1. Introduction

Energy Efficiency (EE) is currently one of the greatest areas of interest for governments

since the implementation of building energy-saving policies has a major impact on reducing 

pollutant emissions and has the greatest potential for delivering significant economic savings. 

It is also undoubtedly a matter of concern to the international community who must adhere to 

Directive 2012/27/EU of the European Parliament regarding energy management in terms of 

compliance with the overall objectives of improving energy efficiency, increasing the use of 

renewable energy sources, and reducing greenhouse gas emissions [1]. This paper presents a 

performant solution to the energy consumption prediction problem with time based on a 

simple parallelization of the CHC adaptive search algorithm [2]. 

The successful application of models to address the EE issue in buildings or in a distributed 

location environment typically requires the use of real-time applications [3, 4] if we need to 

obtain timely, dependable data to feed the mentioned models. Processing this type of 

information, however, requires the use of fast, accurate techniques so that decisions can be 

made quickly [5], and energy consumption prediction with time restrictions therefore 

represents a fundamental problem to be solved in order to achieve exhaustive energy 

management in buildings. 

The problem of consumption forecasting has been explored for building energy 

management in recent years [6-8]. Nevertheless, these approaches are ad hoc solutions to EE 

problems and are based on classical techniques which require high computational costs if we 

want to achieve optimal solutions. Different soft computing paradigms such as artificial neural 

networks (ANN) [8-10] or evolutionary computation (EC) [6, 11, 12] can be used to find 

predictable energy management systems that reduce energy waste in buildings: ANN-based 

systems have proved to be successful for models for energy consumption prediction [9, 10, 

13], energy inefficiency diagnosis and fault detection [14, 15]; EC-based ones support multi-

objective applications that can be combined with Data Mining (DM). There are several EC 

applications worth mentioning and these include ones that deal with cost-optimal analysis 

[16], classification of new electricity customers [17], or selection of the most relevant features 

[18] and detection of outliers [14, 19, 20].
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It is expected that the growing availability of data will soon require innovative tools to face 

the challenges posed by the variety, volume and velocity of data generation [21]. A sensorized 

environment generates high speed data streams, which involve the development of fast 

technology that is capable of processing large amounts of data from all the sensors of the 

equipment currently used for heating, ventilation, air-conditioning (HVAC) and lighting. We 

can deploy DM techniques that are strongly supported by parallel computing [22] to greatly 

reduce the data transfer overload while huge volumes of data are processed. Furthermore, the 

adaptation of EE-prediction sequential algorithms, which are themselves highly parallelizable, 

requires the development of designs using powerful parallel techniques which are now 

available. The application of these methods allows us to obtain valuable benefits in computing 

time to solve more complex problems by means of parallel approaches [23]. Our proposal for 

solving such problems is therefore based on estimating the most efficient handling of energy 

possible by applying ANN and EC techniques and accelerating knowledge extraction and 

evaluation of data related to energy savings in real time through advanced parallelization 

techniques. 

Although DM techniques require meaningful amounts of data in order to acquire relevant 

knowledge and reach useful conclusions, they are not generally suited to processing large 

amounts of data and responding within a reasonable period of time. Addressing these two 

issues represents a fundamental challenge, especially nowadays, when taking prompt decisions 

is essential to save costs in terms of energy consumption efficiency  [5]. It is essential to 

optimize energy consumption prediction techniques for processing real-time data in scenarios 

where the dataflow is constant and permanent [24]. 

Generally speaking, the main goal of parallel techniques is to detect and exploit the 

available computational resources in order to make optimal use of them. DM techniques and 

evolutionary algorithms often present an iterative process which might be a significant 

opportunity for improvement in terms of time. Finding the optimal subset of code which 

supplies these requirements is an arduous task and may require a large number of 

modifications to be made to the sequential algorithm [25].  

Our study proposes a modified implementation of the CHC algorithm [26] for optimizing 

the models used in energy consumption forecasting methods. This optimization algorithm has 
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been widely used in recent studies. There are as many papers as task scheduling policies for 

providing services to numerous users in cloud environments for solving cloud computing 

problems [27]. These papers maximize resource utilization and minimize task processing time, 

or optimize the configuration of a new evolutionary fuzzy k-NN algorithm as in the proposal 

by Derrac et al. [28]. The CHC algorithm is used to establish the model parameters by self-

optimization. Within this study domain, articles can be also found that follow the CHC 

scheme, such as  the proposal shown in [29] which can forecast energy consumption from 

short-term to long-term time series using radial basis function neural networks.   

We have used four well-known types of ANN: the non-linear autoregressive neural network 

(NAR) with exogenous inputs (NARX), the Elman neural network (ENN) and the Long Sort-

Term Memory (LSTM) for modelling energy-consumption time series and predicting future 

consumption using only the historical energy-consumption record. The disadvantage of NAR 

models being affected by external inputs has been addressed by including NARX models, and 

the advantage of adding memory to the model by incorporating the ENN and LSTM are 

included in our study.  

The main goal of this paper is to propose a methodology for energy consumption 

forecasting by making optimal use of existing resources. In addition, since this method 

provides two essential features (i.e. the good fit of the ANN for time series and the 

improvement of these models by GA optimization which avoids entrapment in a local 

minimum), our method therefore enables us to obtain optimal solutions. 

The ANN deployed in our study implementation have been fed with raw data with treated 

missing values extracted from energy consumption meters in buildings on a daily basis. The 

ANN were trained with real data sets obtained from buildings at our University and the results 

showed a prediction mean square error of 0.013 in the worst case and 0.0003 in the best. We 

also showed that different types of NN such as Elman, LSTM can even improve these results.  

For NN parallelization, we have deployed a simple parallelization of a map/reduce-like 

algorithm based on manager-workers which are connected by a crossbar switch on an Intel® 

Core™ i7-6700 processor (CPU 3.40GHz, 16 GB RAM), which yields an excellent 

enhancement of the time cost for the four NN used (NAR, NARX, Elman and LSTM) for 

implementing the model’s algorithms.  
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The paper is structured as follows: Section 2 presents the methodology proposed to obtain a 

feasible solution to energy consumption time series prediction in buildings, this section also 

introduces mathematical models of NAR, NARX, Elman and LSTM and its graphical 

topologies; Section 3 examines the genetic algorithm used to model the time series of one of 

the energy consumptions for one of the buildings in this study; Section 4 discusses the dataset 

comprising raw consumption-data for one year from various buildings at our University; 

Section 5 details the results obtained in the different tests conducted in the study; and finally, 

Section 6 outlines our conclusions and details some practical implications. 

2. Methodology

This section presents the proposed method for energy time series prediction and for

minimizing cost over time, enabling full advantage to be taken of available energy resources 

and innovations to be developed that will provide better results when applied to the use of 

these resources. The first part of our method deals with data collection and pre-processing. 

The second part examines the forecast modelling tool. The third step explores genetic 

optimization with the integration of parallelization techniques. In the final step, the obtained 

results are validated and analyzed. 

Diverse techniques have been employed to solve forecasting problems for many years with 

different scopes. For instance, in medicine —studies have been carried out to predict and 

reduce abdominal aortic aneurysm diseases using hemodynamic prediction [30] or to predict 

drug responses in cancer based on multiple types of genome using Regression Vector Machine 

[31]—, in marketing —data analysis of data produced by social networks such as Facebook, 

YouTube, LinkedIn and Twitter to predict influenza epidemic or stock market trends using 

Self Organizing Fuzzy Neural Networks and Support Vector Machine [32]— or 

environmental sciences —Jung et al. [33] applied a Genetic Algorithm and a Least Squares 

Support Vector machine to predict daily building energy consumption and in Deb et al. [34] a 

complete time series forecasting methods review employed in this subject is done, where other 

techniques are employed in recent years, such as Grey prediction models and Fuzzy 

Systems—. There are also recent works that combine time series techniques such as Discrete 

Wavelet Transform and Empirical Mode Decomposition in order to improve electric load 
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forecasting [35] or even, Deep Learning models, i.e.: Xueheng et al. [36] propose an ensemble 

Deep Learning model with Empirical Mode Decomposition for load demand prediction, and 

demonstrate that these models show advantages when prediction horizon increases.  

The scientific community has conducted a large number of studies into the problem of 

energy time series forecasting. Artificial Neural Networks (ANN) have proved promising 

because of the good/excellent results [2, 37, 38] they yield. In this paper, we use four widely 

known ANN models: the non-linear autoregressive neural network (NAR) and the non-linear 

autoregressive neural network with exogenous inputs (NARX), Elman neural network (ENN) 

and Long Short-Term Memory neural network (LSTM).   

The NAR network allows us to model energy-consumption time series most simply. This 

model is capable of predicting future consumption by using only the historical energy-

consumption record. Xian Zhang et al. report good performance forecasts for electric vehicle 

sales in the automobile industry with an NAR neural network [39], although, as they also point 

out, the main disadvantage of NAR models is that they may be affected by other external 

factors. As a result, it is necessary to extend ANN-based models in order to be able to 

integrate more information that can enrich these models [40]. 

The ENN is a less well known model, however, this neural network introduces a new 

significant term, crucial when historical information is processed. This is the concept of 

memory. Thus, the ENN’s architecture adds a new temporal component to consider previous 

states in the network to predict the future values of the time series. The ENN has demonstrated 

excellent performance, especially at the time series problems where past behaviour guides 

future responses [41, 42] and have proved to be a strong competitor against NAR and NARX 

models [6].  

Finally, due to the increasing interest in Big Data technologies and Deep Learning methods, 

the LSTM neural network has become very popular over the past few years. The LSTM is the 

most sophisticated model of all presented here and is also a strong competitor if sufficient data 

is available. Some studies compare ENN and LSTM architectures achieving very similar 

results [43], in that study, Mohab et al. show that the ENN is stronger than the authors 

expected and benefits greatly from their approach. The LSTM models have been also 

exploited in the energy field and have yielded remarkable outcomes [44, 45].  
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In this study, a new more efficient algorithm must therefore be implemented to use 

computing resources in the best possible way. In this context, one classic CHC [26] has been 

adapted here to improve both ANN accuracy and time-cost. 

2.1. NAR and NARX models 

Artificial neural network are very powerful, accurate techniques and are currently used for 

modelling and predicting in various fields. There are recent proposals in medicine which 

combine the NAR neural network and the autoregressive integrated moving average (ARIMA) 

to forecast the incidence of tuberculosis [46] or applications of this ANN for predicting 

incidence tendency of haemorrhagic fever with renal syndrome [47]. In the sphere of finance, 

these models have been used to forecast stock market returns [48], for fraud detection [49], or 

even smart card security for public transportation applications based on a novel neural 

network analysis of cardholder behaviour [50]. In the EE domain, there is a broader array of 

applications, e.g. simulation-based energy optimization is presented in [51] by applying a 

web-based parallel genetic algorithm to reduce the computation time for a series of test 

buildings in Spain. Petri et al. present a modular optimization model for reducing energy 

consumption in large-scale building facilities using ANN [52]. An updated review of time 

series-based forecasting techniques for building energy consumption can be found in [34].  

We should first define the concept of energy consumption before modelling it. To this 

purpose, energy consumption can be described as a time-series      which represents the 

energy consumption performed at time  . In many circumstances, the data obtained belong to a 

fleeting, transient and ephemeral behaviour of the building energy consumption and since this 

decreases the effectiveness of linear methods, a non-linear approach is therefore 

recommended. A non-linear autoregressive neural network (NAR) can be modelled using 

Equation (1), where    is the current value of a data series   at time  , modelled by the   past-

values of the series. In principle,      is an unknown non-linear function which is 

approximated by the optimizing process that is carried out to obtain the optimal weights and 

bias of the network. The error of the network’s estimation of the value   at time   [9, 53] is 

represented by     : 

(1) 



L.G.B. Ruiz et al / Applied Soft Computing 8 

Similarly, the non-linear autoregressive with exogenous inputs (NARX) is also used when 

data not only depend on the total amount spent but also on other possible factors of influence. 

Nagy et al. [54] use weather conditions as a model feature, and a more accurate predictor of 

energy consumption is supplied for conducting the time series modelling process and previous 

work has proved that this has certain advantages [9]. However, one such advantage of using 

extra information by dynamic feedback input comes with one main disadvantage: it provides a 

more complex alternative model, where the uncertainty of the additional data may limit the 

expected performance of the initial model. The NARX model can be described as the 

following mathematical function: 

(2) 

where        is the external time series at time             and   are the number of past 

values used. It should be noted that the NAR model given by   is zero. The structure of these 

two models can be found in Fig. 1. Both models are described by the   and  matrices.     is 

the weight between input   and the hidden neuron  , and  is the number of neurons in the 

hidden layer.  represents the weight between the hidden neuron   and the output neuron 

and   defines the number of output neurons in this layer. The last matrix,  , specifies the 

weights for the connections between the exogenous input and the hidden layer. The inputs 

 and        where  are the input time series with   past values and the 

 previous values employed to model the future value of the series  . 

In every case, the parameter is the bias associated with its neuron.
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Fig. 1. Representing the structure of a non-linear autoregressive neural network (NAR) using one time 
series as the input and the next value (a) as the output, and with exogenous inputs NARX (b) where an 
extra time series is included in the input layer.

2.2. Elman Neural Network 

The Elman model (ENN) is a type of network with a recurrent topology and was elaborated 

by Jeffrey Elman [55]. ENN are a satisfactory time series forecasting method and have proved 

to be a fast, accurate tool for making future predictions in a wide range of scenarios [56-58]. 

As with the previous ANN, these models can be found in financial time series prediction to 

forecast the stock market price indexes [41] and have many different applications such as that 

proposed by Chu et al. in [59] which presents an ENN to identify elderly fall signals. In the 

EE field, an ENN was developed by Kelo and Dudul [42] to predict electrical power load due 

to temperature variation. A hybrid model is proposed in [60] for short-term load forecasting 
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and the article also includes a genetic algorithm to achieve the optimal ENN structure. A 

combination of wavelet and this recurrent network is developed by Sami et al. to identify the 

location of energy transmission faults [61]. 

The energy forecasting problem works with the evolution of data over time and results in a 

model that is capable of recording previous results, because the consumption normally shows 

a cyclic behaviour that justifies ENN deployment. This network introduces recurrence to the 

network through the addition of a set of units called context (or state) to introduce the concept 

of memory. State neurons acquire the input from the previous hidden layer and return the 

output to the next hidden layer. This recurrent connection allows the ENN to detect and learn 

time-varying patterns.  

The first difference between the ENN and NAR(X) models is the context layer shown in 

Fig. 2.  The state neuron layer has the previous values of the hidden nodes obtained 

previously: at time the output of the hidden neuron will be the input of all the hidden 

neurons at time    and therefore, at time    the context units will have the hidden neurons 

values at time   [62]. Our decision to adopt this kind of neural network is supported by 

previous studies, where ENN have yielded significant results, thus demonstrating their 

usefulness and effectiveness [6, 57, 60-63]. 

b

Zi(t-λ)

Hidden layer

h

Output layer

o

Wkj
y(t + 1)

Input

b

y(t)

Context Units

Vij

Fig. 2. Representing the topology of the Elman Neural Network. 

The output of the ENN        is calculated in Equations (3) and (4). The equations detail a 

more general ENN, with a number of   outputs, the values of index   of the equation above 

can be further adjusted to fit future applications accordingly, and         represents the 
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output of neuron   in the last layer. In this study,  , and   is the activation function of the 

output layer;  is the weight associated with the connection of the hidden neuron   and the 

neuron   of the output layer; and  is the state value corresponding to the neuron   at 

time  . 

(3) 

Similarly,  is the output of the neuron   in the hidden layer and is calculated as follows: 

(4) 

where  is the weight of the connection between the input neuron   and the hidden neuron  ; 

 is the input   at that time and  is the activation function of the hidden neurons;   and 

 are the number of neurons in the input and hidden layer, respectively; and  is the weight 

of the connection between the neuron   in the context layer and the neuron   in the hidden 

layer. In the figure,         represents the value of the hidden neuron   at time     where 

 and indicates the past values of the hidden neurons stored. 

The Levenberg-Marquardt (LM) backpropagation algorithm has been used as the network 

training function in order to update weight and bias values, according to LM optimization. 

This is often the fastest algorithm that ensures the best convergence and yields a minimum 

error in function approximation problems [64].  

2.3. Long Short-Term Memory Neural Network 

The recurrent neural networks with long short-term memory (LSTM) have recently risen as 

a powerful and scalable model for diverse learning problems related to sequential data. LSTM, 

in a similar way to ENN, are effective at learning temporal dependences with the advantage 

that they do not experience the optimization barriers of the simple recurrent networks [65] and 

have been employed to solve countless problems. This covers activity recognition —i.e.: 

Ordóñez and Roggen [66] suggest a Deep Convolutional framework for activity recognition 
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based on convolutional and LSTM recurrent units— handwriting recognition —i.e.: Xiaoqiang 

et al. propose an innovative recurrent neural method to learn discriminate binary codes, and 

they use LSTM to learn feature vector by using the convolutional feature map as input for 

image retrieval [67]—, handwriting generation, language modeling and translation, acoustic 

modeling of speech, speech synthesis, analysis of audio and video among others [65].  

Due to the explosive growth of data in recent years, it is common to find these kind of 

models with several hidden layers and with a high number of neurons in order to deal with the 

high complexity and the vast amount of information to be processed. As stated above, the 

LSTM neural network provides a more complex architecture than ENN, and it is not utilized if 

little data is available. In this paper, the LSTM architecture chosen for this problem is 

illustrated in Fig. 3. The main components of the LSTM are a sequence input layer and the 

LSTM layer. The first layer is the time series data, the second layer is a recurrent layer that 

enables support for time series and sequence data in the ANN and learns temporal 

dependencies between time steps of sequence data. Finally, the architecture ends with a fully 

connected layer which multiplies the input by a weight matrix and then adds a bias vector, and 

a regression output layer. An important characteristic of the LSTM is that it has been designed 

to learn to bridge time intervals in excess of 1000 steps even in case of incompressible, noisy 

input data, without loss of short-time-lag capabilities [68].  

Input Layer LSTM Layer
Fully Connected 

Layer
Output layer

Fig. 3. Representing the topology of the Long Short-Term Memory Neural Network. 

LSTM architecture distinguishes itself from the rest by the Memory Cells and the Gate 

Units. Fig. 4 shows the structure of the cell    and its gate units    and    . The self-recurrent 

connection indicates feedback with a delay of   time steps. The hidden units explicitly 

manage the flow of information as a function of both the state and input. The state stored in 

this structure is either deleted by a forget gate or saved indefinitely. Knowledge is thus 

guaranteed to be transferred over long lapses of time.  
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Fig. 4. Basic architecture of memory cell of the LSTM neural network. 

In this case, the ADAM algorithm is used for training as the gradient based optimizer, 

instead of SGD method. The ADAM outperformed SGD in terms of faster convergence and 

lower error ratios [69]. The main challenge of the training algorithms —in our case: LM for 

NAR, NARX and Elman networks, and ADAM for LSTM— is that it is typical for solutions 

to converge to a local minimum. We therefore propose an evolutionary algorithm in order to 

obtain better outcomes and to optimize the ANN results. The suggested GA is discussed 

further in the following section. We have selected these four neural networks for testing the 

validity, adaptive capacity and the reliability of our proposal working with different ANN 

architectures.  

3. Genetic Algorithm

A Genetic Algorithm (GA) is a stochastic optimization method based on the concept of

natural evolution. GAs comprise a population of chromosomes (or individuals) and each 

represents the possible solution to the problem. Each individual has an associated objective 

value which designates the goodness degree of a solution. Furthermore, the GA has three 

essential functions: selection, crossover and mutation. 

In this paper, the adaptation of the binary “Cross generational elitist selection, 

Heterogeneous recombination, and Cataclysmic mutation” (CHC) algorithm has been adapted 

for real-coded solutions [26]. The CHC algorithm finds the optimal neural network weights 
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and biases, and has been adapted to a parallel approach in order to reduce time-cost 

computation.  

The computation time taken to reach a good solution, and of course to improve this 

solution, is one of the main driving forces behind this study. Maximizing the potential of 

available resources is an important task and one that is often neglected in many studies and 

rarely explored as it is in this paper. A large number of publications focus on developing 

excellent models but do not mention the time cost involved, even though constrained time cost 

is a common requirement for industry and business. 

Nevertheless, various examples of published studies can be found and He and Sun [70] 

presented their convolutional neural network research to fulfil the requirement of a constrained 

time budget. They investigate the accuracy of these models under a constrained time cost and 

design a very fast, accurate architecture that reaches the top-5 error. Lee et al. presented an 

advanced stochastic time-cost trade-off analysis, based on a critical path method guided by a 

genetic algorithm in order to reduce the computation time, reliability and usability of a 

previous algorithm. They use the GA for optimization and also to identify the new initial 

parent chromosomes [71]. A least squares support vector machine to predict building energy 

consumption improved with real coded GA is used in [33], the purpose of which is to obtain a 

faster computation speed and greater prediction accuracy. The method performed better in 

terms of convergence time and iteration economy.  

The study presented here exploits the advantages of the CHC algorithm for searching for 

good solutions and the ANN’s disadvantage of falling in a local minimum. Our proposal also 

benefits from the computational capabilities of the CPU to cope with the high GA time-cost. 

The proposed parallel GA improves the excessive computation time by distributing the 

iterative tasks to different workers. We should first explain our coding of the ANN algorithm 

and so by considering Fig. 1, an individual can be codified as shown in Fig. 5.  

 

   
     

  …    
     

 
    

 
 …    

 
         …     

Fig. 5. Genetic encoding of a neural network 

where   is the number of connexions between the input and the first network layer,   is the 

number of neurons in the hidden layer and   the number of neurons in the output layer;    
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represents the weight between the input neuron   and the hidden neuron  ;     represents the 

weight associated with the recurrent connection between the output neuron  , and the hidden 

neuron  , and  represents the weight associated with the connection between the hidden 

neuron and the output neuron  . When the chromosome acts as NAR neural network 

architecture, then  is not part of the solution. The structure of the assumed algorithm is 

shown in Fig. 6. This figure includes a flowchart to explain the different steps of the 

procedure.  

SelectionNew 
population?

No

Change preventing 
incest threshold

Is preventing 
incest 0?

Yes

Yes

No

Stopping 
condition?

No

Yes

End

Local Search
Local Search

Local Search

Crossover and 
mutation

Create 
population

Evaluation
Evaluation

Evaluation

Fig. 6. Flowchart of the proposed genetic algorithm, adapted from Eshelman’s CHC.

Each step is described as follows:  

1. A totally random, initial population is created. Each gene is initialized in a defined range

  and the individuals are created in parallel. Parallelism is performed at the level 

of the chromosome, illustrated in Fig. 7a.  

2. The local search is performed according to the following formula:

(5) 
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where      is the expected response in the output neurons on the instant time  ,      is the 

activation function of the output neurons,      is a vector containing the hidden neuron state 

of the network on  , and      represents a vector with input values of the network on  . 

The prime aim is to minimize an objective function which depends on the network weights 

and the expected output. This idea is illustrated by the following equation: 

                    
 

   

     (6)  

where      is the expected output on the instant time  ,      is the output on the instant  , 

  refers to a matrix with     values with the output layer error on  , and   is the variable 

vector to optimize. The parallelism in this step is presented at the level of the individual. 

According to resources available, a number of individuals are simultaneously optimized 

with the local search as shown in Fig. 7b.  

The hybridization of the evolutionary algorithm and local search method results in the well-

known memetic algorithm (MA).  

3. The individual objective value is measured using mean square error (MSE) in order to 

optimize an individual with the local search: 

    
 

   
            

 
 

   

 (7)  

where   is the sample size and   is the number of parameters in the model. This function is 

parallelized as in the two previous steps. Computer resources are divided up among the 

individuals so as to avoid idle times which force 100% CPU to be used. This approach is 

illustrated in Fig. 7a.  

4. The individuals are selected using the roulette method [72]. Each individual in the 

population is assigned a probability of being selected. This probability is proportional to its 

adjustment, in other words, to its error. The best individuals receive a greater slice of 

roulette than the worst.  

The operator for generating new offspring is the BLX-  crossover operator [73]. A new son 

            is born according to a random number    selected in interval         
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           , where            
    

  ,            
    

  ,            , and   
 
 

is the gene   of the parent chromosome  . The parameter   is introduced by the user 

between      . This procedure has been parallelized at the gene level as illustrated in Fig. 

7b. The new genes of an individual are calculated in tandem. In this phase, this approach 

has been followed because the crossover is performed if it overcomes a defined probability. 

Since not all the chromosomes reproduce, this could result in idle times. 

5. The mutation operator is responsible for selecting an individual gene and setting a random 

value between            . This step has been parallelized as in the previous phase. 

6. The next population shall be constructed by the   best individuals by considering 

individuals of the previous population and its offspring. 

7. The algorithm ends when a number of generations   is achieved. 
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Fig. 7. Parallel distribution of the loads into   workers,   denotes procedures performed on the 
individual, procedures which include individual creation, local search and objective function (a). 
Parallel distribution of the chromosome divided into   workers.   

 
 denotes the gene   of the parent   

(b). 

 

There is also a diversification strategy to prevent local minimum stagnation so that the 

algorithm can continue to search the solution space and for this purpose, a re-initialization 

mechanism is applied. This procedure means that it is necessary to return to Step 1. The 
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criterion established for resorting to this procedure is if there has been no improvement in the 

results in   generations.  

The parallelism depicted in Fig. 7a splits the load into   workers defined as follows: 

      (8) 

The total number of models is  : 

(9) 

These workers are the control process units (CPUs) and each CPU  assumes the operations 

for the individual set CWj, according to Equation (10): 

(10) 

where   is the number of assignments given to each worker and calculated as follows: 

(11) 

Similarly, the cross-cutting of chromosome  (  genes in length) is carried out by means of 

the following equation: 

(12) 

where   is the total number of genes allocated to the  available workers: 

(13) 

4. Dataset

In this work, a data set has been collected from a building automation system that records

energy-consumption over time. These specific systems usually control energy wastage due to 

the heating, ventilation, air conditioning and lighting systems of a building. Our study uses data 
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on energy-consumption and weather conditions of the University of Granada (UGR, Granada, 

Spain). The dataset includes data from two buildings with the same demographic characteristics.  

The UGR comprises five campuses: Centro, Cartuja, Fuentenueva, Aynadamar and Ciencias 

de la Salud, spread over the city of Granada. In total there are 22 colleges, 5 technical 

engineering schools, 8 training centres and 5 additional centres for culture, sport and general 

services.  

Since current Spanish Data Protection Laws prevent us from specifying the exact location of 

the buildings and facilities, we numbered them from 1 to 8. Buildings have been selected in light 

of two representative energy-consumption data for each campus. 

Fig. 8 depicts two examples of raw consumption-data for one year. These two consumptions 

show a linear upward trend since the original data are recorded by the building’s energy meter. 

The raw data shown in the figure therefore represent consumption to date, i.e. the information 

stored is cumulative consumption. The energy consumed    at time   is calculated using the 

energy price at that moment in time,   , and the previous one      as the following equation 

illustrates: 

               (14)  

 
Fig. 8. Meter readings for two examples of raw data consumption over a year.
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5. Results

This section presents all of the results obtained in the various tests that have been

conducted. Fig. 8 gathered an example of raw data from an energy meter, which periodically 

accrue the total consumption. It is therefore necessary to summarize and transform the data in 

order to present them in a usable format. Any incomplete, noisy or unreliable data are also 

dealt with, and incomplete data have been filled using a linear interpolation imputation 

method. This method fits a straight line between the endpoints of the gap and enables the 

missing values to be calculated in a straightforward way by employing the following line 

equation [74]: 

(15) 

The value   is calculated as follows: 

(16) 

where  is the interpolant,   symbolizes the time point of the interpolant,  and  are the 

coordinates of the starting point of the gap,  and  indicate the coordinates of the end point 

of the missing interval.    

Fig. 9 depicts two examples of the results captured by the imputation method. It should be 

noted that linear imputation is the best choice in this problem due to its simplicity and quick 

computation and because it responds reasonably to the consumption behaviour. Although 

other imputation methods have been tested (e.g. cubic spline imputation, shape-preserving 

piecewise cubic interpolation, previous neighbour interpolation, next neighbour interpolation, 

nearest neighbour interpolation), their behaviour is undesirable and meaningless in this 

problem. Two such examples of this behaviour are negative consumption or a zero 

consumption period with a single large spike. 
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Fig. 9. Two examples of linear imputation values for the energy meters. 

The raw data with missing values that have been treated are modified to assemble daily 

consumption. Energy consumption has also been normalized between 0 and 1 to have the 

same range of values for each input to the NN, thereby ensuring that the model does not give 

more weight to the higher range attributes. The data would then be reconstructed as shown in 

Fig. 10.  

Fig. 10. Daily normalized consumption over a 100-day period.

So that such results may be obtained, the following parameters have been set for the GA: 

the population size has been set to 25 individuals; the maximum and minimum gene values are 

10 and -10, respectively; the stop criteria were established at 100 generations; and the 

crossover and mutation probability has been set at 90% and 10%. In order to train all the 

models, the dataset has been randomly split into training and test sets with 70% of the 

examples allocated to training and 30% to testing. So as to obtain the best parameters for the 

models, ten tests have been run. Table 1 displays all the errors for each network structure and 
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reports the best number of neurons for each case. It is evident that the NAR and NARX 

models obtain the best error with 10 neurons, although the optimum is achieved in two 

consumptions with 8 and 9 neurons, respectively. However, for most buildings, the ENN 

obtains the optimum solution with 9 neurons. Likewise, the best results of the LSTM network 

are acquired with 8, 9 and 10 , although if  Table 1 is looked closely, we realise that if we were 

to remove the top three cases (cases 2, 3 and 10), 5 and 7 become the best neuron parameters. 

Table 1 
Results of experimental time series consumptions: comparison of the three neural networks optimized 
using the memetic algorithm to display the mean square error 

Neurons 

Model 1 2 3 4 5 6 7 8 9 10 

NAR 
Cons. 1 0.0215181 0.0129090 0.0118595 0.0110900 0.0107224 0.0100682 0.0099646 0.0098942 0.0093493 0.0092648 
Cons. 2 0.0401715 0.0211694 0.0190867 0.0172446 0.0162044 0.0159827 0.0154314 0.0146710 0.0149999 0.0147922 
Cons. 3 0.0367283 0.0205938 0.0168575 0.0155420 0.0146244 0.0142023 0.0132543 0.0128636 0.0128842 0.0122394 
Cons. 4 0.0008630 0.0008324 0.0008291 0.0008266 0.0008268 0.0008216 0.0008212 0.0008205 0.0008222 0.0008217 
Cons. 5 0.0134595 0.0105834 0.0100412 0.0091431 0.0089837 0.0086461 0.0083847 0.0082914 0.0082652 0.0080677 
Cons. 6 0.0279272 0.0132078 0.0101502 0.0089602 0.0083126 0.0079794 0.0073542 0.0069932 0.0067491 0.0064842 
Cons. 7 0.0377470 0.0191129 0.0151643 0.0140364 0.0134968 0.0128224 0.0121629 0.0117132 0.0114873 0.0114223 
Cons. 8 0.0254187 0.0153050 0.0136017 0.0112555 0.0105364 0.0100957 0.0101201 0.0102848 0.0097331 0.0097186 

NARX 
Cons. 1 0.0172769 0.0134489 0.0110335 0.0102405 0.0105713 0.0100784 0.0096436 0.0096312 0.0090996 0.0092894 
Cons. 2 0.0351362 0.0206990 0.0192705 0.0180993 0.0180576 0.0168802 0.0158672 0.0155706 0.0144174 0.0146818 
Cons. 3 0.0326071 0.0191206 0.0170564 0.0165537 0.0158502 0.0149622 0.0143571 0.0129777 0.0135710 0.0127612 
Cons. 4 0.0009212 0.0008938 0.0008991 0.0009013 0.0009001 0.0008833 0.0009095 0.0008910 0.0008932 0.0008797 
Cons. 5 0.0104558 0.0084836 0.0079764 0.0073544 0.0073420 0.0070150 0.0069223 0.0066998 0.0065222 0.0064522 
Cons. 6 0.0200192 0.0112923 0.0096900 0.0089700 0.0085108 0.0079184 0.0078619 0.0074871 0.0074983 0.0071489 
Cons. 7 0.0396858 0.0197610 0.0159657 0.0150626 0.0146919 0.0125092 0.0116735 0.0117385 0.0113365 0.0112290 
Cons. 8 0.0187236 0.0130301 0.0106711 0.0099076 0.0097993 0.0093895 0.0092843 0.0092153 0.0090727 0.0088996 

Elman 
Cons. 1 0.0181928 0.0080617 0.0071009 0.0065562 0.0064105 0.0057446 0.0053506 0.0039186 0.0030866 0.0036516 
Cons. 2 0.0327652 0.0145094 0.0133701 0.0120689 0.0110340 0.0092417 0.0093951 0.0072378 0.0075160 0.0058396 
Cons. 3 0.0326860 0.0116246 0.0099089 0.0095616 0.0092085 0.0083863 0.0079345 0.0076725 0.0065537 0.0060289 
Cons. 4 0.0008494 0.0007999 0.0007916 0.0006404 0.0007576 0.0006625 0.0003674 0.0005721 0.0006332 0.0007974 
Cons. 5 0.0118462 0.0056386 0.0053088 0.0052252 0.0049409 0.0044106 0.0040186 0.0036410 0.0033035 0.0033780 
Cons. 6 0.0220548 0.0065676 0.0056810 0.0056224 0.0052802 0.0042862 0.0038940 0.0033211 0.0024795 0.0028352 
Cons. 7 0.0331632 0.0108750 0.0094952 0.0093967 0.0088470 0.0085891 0.0076741 0.0071685 0.0062178 0.0068952 
Cons. 8 0.0200358 0.0075694 0.0068414 0.0067670 0.0063285 0.0061455 0.0056810 0.0048660 0.0041578 0.0047037 

LSTM 
Cons. 1 0.0092897 0.0033385 0.0020597 0.0025722 0.0021547 0.0014317 0.0010614 0.0011855 0.0006317 0.0009949 
Cons. 2 0.0421114 0.0129763 0.0084729 0.0081993 0.0050532 0.0041174 0.0031338 0.0032180 0.0033550 0.0027195 
Cons. 3 0.0291953 0.0085740 0.0035432 0.0044459 0.0028404 0.0025456 0.0017075 0.0012760 0.0016341 0.0014364 
Cons. 4 0.0022123 0.0019221 0.0018247 0.0018727 0.0018015 0.0017007 0.0015570 0.0015211 0.0013734 0.0014758 
Cons. 5 0.0191191 0.0102992 0.0082567 0.0065753 0.0049700 0.0046626 0.0048182 0.0052757 0.0042051 0.0037791 
Cons. 6 0.0397496 0.0232968 0.0143120 0.0088149 0.0077170 0.0065207 0.0069664 0.0081868 0.0033985 0.0045700 
Cons. 7 0.0293439 0.0106638 0.0057946 0.0041042 0.0034333 0.0012890 0.0023552 0.0009120 0.0014171 0.0010371 
Cons. 8 0.0232106 0.0067959 0.0054637 0.0031309 0.0036474 0.0024250 0.0023462 0.0020388 0.0013697 0.0016317 

The results are summarized in Table 2, in nearly all cases the best are obtained with the 

LSTM network, nevertheless, there are three cases where the Elman network achieves better 

outcomes: in every case, Elman and LSTM are well below half the computed MSE values for 

the other two models. It is also interesting to note that the NAR and NARX networks have a 
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similar error. Although in previous studies, the NARX models with the exogenous input 

performed best in every case [9], here the MA optimizes the NAR in such a way that it enables 

a better result to be obtained in the fit of the NARX neural networks in three cases: 

Consumption 3, 4 and 6. The errors of both models are quite similar.   

Table 2 
Mean square error performance of the best prediction NAR, NARX, Elman and LSTM networks 

optimized with the memetic algorithm. 

Building NAR NARX Elman LSTM 

Consumption 1 0.0092648 0.0090996 0.0030866 0.0006317 

Consumption 2 0.0146710 0.0144174 0.0058396 0.0027195 

Consumption 3 0.0122394 0.0127612 0.0060289 0.0012760 

Consumption 4 0.0008205 0.0008797 0.0003674 0.0013734 

Consumption 5 0.0080677 0.0064522 0.0031310 0.0037791 

Consumption 6 0.0064842 0.0071489 0.0024795 0.0033985 

Consumption 7 0.0114223 0.0112290 0.0062178 0.0009120 

Consumption 8 0.0097186 0.0088996 0.0041578 0.0013697 

One example of the application of our proposal is illustrated in Fig. 11 for case 5, which has 

the most similar MSE. This illustrates the prediction evolution of the different neural networks 

performed by the memetic algorithm at various instances of the algorithm, and more 

specifically, Generations 1, 25, 50, 75 and 100. This graph displays the evolution of MSE 

performed by the three ANN during the optimization process. It should be noted that the first 

error obtained has been omitted because of its high value so as not to distract attention from 

the other results. Fig. 11a shows ANN prediction and the real value of the series in the first 

generation of the algorithm. It is easily apparent that these models return an almost random 

prediction because their weights and bias have been randomly initialized, and it is not possible 

to obtain good results in a single generation. Otherwise, adopting this approach would not be 

justified.  

Nevertheless, Fig. 11b shows how all the models are able to fit the curves more clearly with 

25 generations. Fig. 11f supports this assertion because there is an important decrease in the 

estimated error in every case between generations 40 and 50, after which there is a gradual 

reduction in the MSE.  During the 50
th

 generation, there is improvement in the neural
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networks and various local peaks have been refined, such as the estimation of the prediction of 

the consumption at Day 48. 

Successive improvements, however, are barely noticeable. Furthermore, from the 50
th

 

generation to the end, as the NARX model is not able to improve, the population is 

reinitialized since the incest threshold has been crossed and no improvement has been found. 

Something similar occurs with the NAR models which have a softer learning curve than other 

models. The NAR network was trapped in a local minimum and its population is reset, but in 

this case, the model achieves a better solution near the 90
th

 generation.  

In conclusion, the ENN and LSTM produces very similar results. It is interesting to see how 

there are considerably wider fluctuations in the ENN in Fig. 11a and these are soon well 

calibrated. These are not apparent in Fig. 11f because of their high MSE as we explained 

previously. Another interesting behaviour is illustrated in the same Fig. 11a where LSTM 

yields the worst prediction, however, it presents a fair view of the trend throughout the whole 

series. The Fig. 11b shows how the LSTM begins to adjust better and its predictions are in 

much the same way NAR and NARX models, but soon starts improving and its results are 

close to the results of the ENN network. In this instance the ENN model produces the best fit 

in every generation compared to LSTM and also achieves a better forecasting the more 

generations are performed.   

Table 3 
Execution time in seconds. Comparison of sequential and parallel memetic algorithm with NAR, 
NARX, Elman and LSTM models. 

 

Sequential Parallel 

Cons. NAR NARX Elman LSTM NAR NARX Elman LSTM 

1 756 1207 10351 2123 169 242 4714 681 

2 835 1582 10330 1990 194 372 4652 557 

3 74 1095 10402 2508 166 231 4523 698 

4 675 1524 10260 2560 181 353 5084 694 

5 555 1040 8908 2480 161 243 4571 718 

6 386 1556 5462 2082 117 192 1957 517 

7 623 1582 11073 2560 189 351 4631 720 

8 574 1129 10937 2504 169 268 4630 646 

Mean 644 1339 9715 2351 168 281 4345 654 
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Finally, Table 3 shows the time cost executions and the computational cost in seconds for 

every experiment. The table has nine columns: the first identifies the building, and the 

remaining columns summarize the average execution time breakdown for each test performed. 

The MA takes 644.29 seconds (    minutes) with NAR networks with the sequential version 

and 168.33 seconds ( 3 minutes) with the parallel process. This represents a time cost 

improvement of up to 73.87%. It should be noted that the NAR model is the fastest method 

because its topology is simpler than the NARX and Elman networks. Similarly, the parallel 

and sequential approaches of the MA with the NARX networks have a time cost of  1339.43 

seconds ( 22 minutes) and 281.48 ( 5 minutes), respectively, with a time cost improvement 

of 78.98%. An unexpected result is obtained with the LSTM and ENN networks, the ENN 

takes longer to provide the optimal results, and it has an average improvement of 55.28%. 

Nonetheless, the LSTM achieves in more than half the cases a better error than ENN. On the 

other hand, LSTM spends far less time to optimize the models, improving time cost by 

72.18%. According to the Matlab documentation, the Elman networks are no longer 

recommended to use, instead they suggest NARX and NAR. This is probably happening 

because ENN is not optimized in the same way than NAR, NARX and LSTM neural 

networks.   

The codes are executed in Intel® Core™ i7-6700 CPU 3.40GHz, 16 GB RAM memory and 

Microsoft’s Windows 10 (x64) operating system with Matlab R2018a. In accordance with 

these features, the number of workers has been set to 8.
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 11. Example of the optimization process in 100 generations; the model forecasting for the 50-day period in 

the first generation (a); optimization achieved in Generation 25 (b), in Generation 50 (c), in Generation 75 (d) and 

the final generation (e); and the mean square error achieved during the process (f) in each generation.  
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6. Conclusions

This article introduces a modified implementation of the CHC adaptive search algorithm to

improve and optimize energy consumption forecasting models. The novelty of our approach is 

to show how the CHC algorithm can be modified to produce a parallel memetic energy 

efficiency prediction proposal in order to satisfactorily improve the algorithm’s time cost. 

This paper examines the problem of developing technologies to predict future energy 

consumption in buildings and the ensuing temporary constraints which are crucial for 

appropriate building energy management. We tested the usefulness of the genetic algorithm to 

improve solutions, and explored a method to speed up the process by using parallel techniques 

which have been applied. 

We have compared the performance and computational cost of parallel and sequential 

implementations of the MA to achieve optimal predictors. The parallel algorithm has been 

found to be computationally much more efficient than the sequential version, with no negative 

impact on the quality of the solutions. The proposed, properly optimized models are extremely 

valuable tools for predicting energy consumption, and parallelization of the optimization 

method provides a 50% reduction in time in the worst case. The predictor models NAR, 

NARX, ENN and LSTM are successfully developed and the results support the validity of the 

proposed approach, achieving an average improvement of 75%.  

Our experiments highlight the fact that the ENN and LSTM are the most suitable technique 

for energy consumption prediction. We should also highlight that all of the models shown here 

provide good results in terms of time-cost, which confirms the importance of our proposal in 

every test conducted.  

Although good results were obtained in the experiments, in the future we want to enhance 

the model to improve energy management and cost saving. By way of future work, we 

therefore plan to use feature selection and clustering methods to detect consumption profiles 

and abnormal consumption, and identify the relationship between supposedly independent 

consumption periods and peak demand. We also intend to pinpoint groups or patterns of 

behaviour with certain specific features. The use of a MapReduce approach will improve the 
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scalability of the methodology and this will result in better system efficiency and greater 

computational capacity so that larger amounts of data can be processed. 

By way of conclusion, although this study achieves good results in reasonable execution 

times, it would be extremely interesting to perform an additional comparative study using 

differential evolution (DE) approaches. Additionally, incorporating a new randomization-

based method and applying decomposition to the time series will probably improve the study 

results in future work. Furthermore, the development of new deep learning models to deal with 

this problem will be an interesting alternative to explore for comparison with our method. 
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NARX Non-linear autoregressive with external input. 

UGR University of Granada. 



29 

9. Bibliography

[1] E.E. Directive, Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on

energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and

2006/32, Official Journal, L, 315 (2012) 1-56. [http://ec.europa.eu/energy/en/topics/energy-efficiency]

[2] R. Bhandari, J. Gill, An Artificial Intelligence ATM forecasting system for Hybrid Neural Networks,

International Journal of Computer Applications, 133 (2016) 13-16.

[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.734.7389&rep=rep1&type=pdf]

[3] T. Ekwevugbe, N. Brown, V. Pakka, D. Fan, Real-time building occupancy sensing using neural-network

based sensor network, in:  2013 7th IEEE International Conference on Digital Ecosystems and Technologies

(DEST), 2013, pp. 114-119.  [http://dx.doi.org/10.1109/DEST.2013.6611339]

[4] C. Fiori, K. Ahn, H.A. Rakha, Power-based electric vehicle energy consumption model: Model development

and validation, Appl Energ, 168 (2016) 257-268.   [http://dx.doi.org/10.1016/j.apenergy.2016.01.097]

[5] J. Jackson, Promoting energy efficiency investments with risk management decision tools, Energy Policy, 38

(2010) 3865-3873.   [http://dx.doi.org/https://doi.org/10.1016/j.enpol.2010.03.006]

[6] L.G.B. Ruiz, R. Rueda, M.P. Cuéllar, M.C. Pegalajar, Energy consumption forecasting based on Elman neural

networks with evolutive optimization, Expert Systems with Applications, 92 (2018) 380-389.

[http://dx.doi.org/10.1016/j.eswa.2017.09.059]

[7] D. Masa-Bote, M. Castillo-Cagigal, E. Matallanas, E. Caamaño-Martín, A. Gutiérrez, F. Monasterio-Huelín,

J. Jiménez-Leube, Improving photovoltaics grid integration through short time forecasting and self-

consumption, Appl Energ, 125 (2014) 103-113.   [http://dx.doi.org/10.1016/j.apenergy.2014.03.045]

[8] M. Macarulla, M. Casals, N. Forcada, M. Gangolells, Implementation of predictive control in a commercial

building energy management system using neural networks, Energy and Buildings, 151 (2017) 511-519.

[http://dx.doi.org/http://dx.doi.org/10.1016/j.enbuild.2017.06.027]

[9] L.G.B. Ruiz, M.P. Cuellar, M. Delgado, M.C. Pegalajar, An Application of Non-Linear Autoregressive

Neural Networks to Predict Energy Consumption in Public Buildings, Energies, 9 (2016) 21.

[http://dx.doi.org/10.3390/en9090684]

[10] H. Khosravani, M. Castilla, M. Berenguel, A. Ruano, P. Ferreira, A Comparison of Energy Consumption

Prediction Models Based on Neural Networks of a Bioclimatic Building, Energies, 9 (2016) 57.

[http://www.mdpi.com/1996-1073/9/1/57]

[11] E. Asadi, M.G.d. Silva, C.H. Antunes, L. Dias, L. Glicksman, Multi-objective optimization for building

retrofit: A model using genetic algorithm and artificial neural network and an application, Energy and

Buildings, 81 (2014) 444-456.   [http://dx.doi.org/10.1016/j.enbuild.2014.06.009]

[12] G. Kumar, M.K. Rai, An energy efficient and optimized load balanced localization method using CDS with

one-hop neighbourhood and genetic algorithm in WSNs, Journal of Network and Computer Applications, 78

(2017) 73-82.   [http://dx.doi.org/10.1016/j.jnca.2016.11.013]

[13] M. Beccali, G. Ciulla, V. Lo Brano, A. Galatioto, M. Bonomolo, Artificial neural network decision support

tool for assessment of the energy performance and the refurbishment actions for the non-residential building

stock in Southern Italy, Energy, (2017).   [http://dx.doi.org/10.1016/j.energy.2017.05.200]

[14] F. Magoulès, H.-x. Zhao, D. Elizondo, Development of an RDP neural network for building energy

consumption fault detection and diagnosis, Energy and Buildings, 62 (2013) 133-138.

[http://dx.doi.org/10.1016/j.enbuild.2013.02.050]

[15] T. Muhammed, R.A. Shaikh, An analysis of fault detection strategies in wireless sensor networks, Journal of

Network and Computer Applications, 78 (2017) 267-287.   [http://dx.doi.org/10.1016/j.jnca.2016.10.019]

[16] F. Ascione, N. Bianco, C. De Stasio, G.M. Mauro, G.P. Vanoli, A new methodology for cost-optimal

analysis by means of the multi-objective optimization of building energy performance, Energy and Buildings,

88 (2015) 78-90.   [http://dx.doi.org/10.1016/j.enbuild.2014.11.058]

http://ec.europa.eu/energy/en/topics/energy-efficiency
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.734.7389&rep=rep1&type=pdf
http://dx.doi.org/10.1109/DEST.2013.6611339
http://dx.doi.org/10.1016/j.apenergy.2016.01.097
http://dx.doi.org/https:/doi.org/10.1016/j.enpol.2010.03.006
http://dx.doi.org/10.1016/j.eswa.2017.09.059
http://dx.doi.org/10.1016/j.apenergy.2014.03.045
http://dx.doi.org/http:/dx.doi.org/10.1016/j.enbuild.2017.06.027
http://dx.doi.org/10.3390/en9090684
http://www.mdpi.com/1996-1073/9/1/57
http://dx.doi.org/10.1016/j.enbuild.2014.06.009
http://dx.doi.org/10.1016/j.jnca.2016.11.013
http://dx.doi.org/10.1016/j.energy.2017.05.200
http://dx.doi.org/10.1016/j.enbuild.2013.02.050
http://dx.doi.org/10.1016/j.jnca.2016.10.019
http://dx.doi.org/10.1016/j.enbuild.2014.11.058


L.G.B. Ruiz et al / Applied Soft Computing 30 

[17] J.L. Viegas, S.M. Vieira, R. Melício, V.M.F. Mendes, J.M.C. Sousa, Classification of new electricity

customers based on surveys and smart metering data, Energy, 107 (2016) 804-817.

[http://dx.doi.org/10.1016/j.energy.2016.04.065]

[18] J.-P. Burochin, B. Vallet, M. Brédif, C. Mallet, T. Brosset, N. Paparoditis, Detecting blind building façades

from highly overlapping wide angle aerial imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 96

(2014) 193-209.   [http://dx.doi.org/https://doi.org/10.1016/j.isprsjprs.2014.07.011]

[19] F. Duque-Pintor, M. Fernández-Gómez, A. Troncoso, F. Martínez-Álvarez, A New Methodology Based on

Imbalanced Classification for Predicting Outliers in Electricity Demand Time Series, Energies, 9 (2016) 752-

752. [http://dx.doi.org/10.3390/en9090752]

[20] A. Capozzoli, F. Lauro, I. Khan, Fault detection analysis using data mining techniques for a cluster of smart

office buildings, Expert Systems with Applications, 42 (2015) 4324-4338.

[http://dx.doi.org/10.1016/j.eswa.2015.01.010]

[21] A. Ahmad, M. Khan, A. Paul, S. Din, M.M. Rathore, G. Jeon, G.S. Chio, Towards modeling and

optimization of features selection in Big Data based social Internet of Things, Future Generation Computer

Systems, (2017).   [http://dx.doi.org/https://doi.org/10.1016/j.future.2017.09.028]

[22] B. Balaji, J. Xu, A. Nwokafor, R. Gupta, Y. Agarwal, Sentinel: occupancy based HVAC actuation using

existing WiFi infrastructure within commercial buildings, in:  Proceedings of the 11th ACM Conference on

Embedded Networked Sensor Systems, ACM, Roma, Italy, 2013, pp. 1-14.

[http://dx.doi.org/10.1145/2517351.2517370]

[23] J.H. Reif, Synthesis of parallel algorithms, Morgan Kaufmann Publishers Inc., 1993.

[http://dl.acm.org/citation.cfm?id=562546]

[24] A. Ali, G.A. Shah, J. Arshad, Energy efficient techniques for M2M communication: A survey, Journal of

Network and Computer Applications, 68 (2016) 42-55.   [http://dx.doi.org/10.1016/j.jnca.2016.04.002]

[25] J.-M. Adamo, Data mining for association rules and sequential patterns: sequential and parallel algorithms,

Springer Science & Business Media, 2012.

[http://books.google.es/books?hl=es&lr=&id=CXPjBwAAQBAJ&oi=fnd&pg=PA49&dq=parallel+and+sequen

tial+implementations+data+mining&ots=X9oC3aiqq0&sig=YqLrFUfswlReoT4p0mucYz-bORU]

[26] L.J. Eshelman, The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in

Nontraditional Genetic Recombination, in: R. Gregory J.E (Ed.) Foundations of Genetic Algorithms, Elsevier,

1991, pp. 265-283.  [http://dx.doi.org/10.1016/B978-0-08-050684-5.50020-3]

[27] D. Kanani, K. Shah, R.G. Vaishnav, Cloud Computing–Task Scheduling based on Modified CHC

Algorithm, environment, 1 (2016) 2. [http://www.irjet.net/archives/V3/i7/IRJET-V3I791.pdf]

[28] J. Derrac, F. Chiclana, S. García, F. Herrera, Evolutionary fuzzy k-nearest neighbors algorithm using

interval-valued fuzzy sets, Information Sciences, 329 (2016) 144-163.

[http://dx.doi.org/10.1016/j.ins.2015.09.007]

[29] E. Parras-Gutierrez, V.M. Rivas, J.J. Merelo, A Radial Basis Function Neural Network-Based

Coevolutionary Algorithm for Short-Term to Long-Term Time Series Forecasting, in: K. Madani, A. Dourado,

A. Rosa, J. Filipe, J. Kacprzyk (Eds.) Computational Intelligence: Revised and Selected Papers of the

International Joint Conference, IJCCI 2013, Vilamoura, Portugal, September 20-22, 2013, Springer

International Publishing, Cham, 2016, pp. 121-136.  [http://dx.doi.org/10.1007/978-3-319-23392-5_7]

[30] V. Paramasivam, T.S. Yee, S.K. Dhillon, A.S. Sidhu, A methodological review of data mining techniques in

predictive medicine: An application in hemodynamic prediction for abdominal aortic aneurysm disease,

Biocybernetics and Biomedical Engineering, 34 (2014) 139-145.   [http://dx.doi.org/10.1016/j.bbe.2014.03.003]

[31] F. Azuaje, Computational models for predicting drug responses in cancer research, Briefings in

Bioinformatics, 18 (2017) 820-829.   [http://dx.doi.org/10.1093/bib/bbw065]

[32] J. Fan, F. Han, H. Liu, Challenges of Big Data Analysis, National science review, 1 (2014) 293-314.

[http://dx.doi.org/10.1093/nsr/nwt032]

[33] H.C. Jung, J.S. Kim, H. Heo, Prediction of building energy consumption using an improved real coded

genetic algorithm based least squares support vector machine approach, Energy and Buildings, 90 (2015) 76-

84. [http://dx.doi.org/10.1016/j.enbuild.2014.12.029]

http://dx.doi.org/10.1016/j.energy.2016.04.065
http://dx.doi.org/https:/doi.org/10.1016/j.isprsjprs.2014.07.011
http://dx.doi.org/10.3390/en9090752
http://dx.doi.org/10.1016/j.eswa.2015.01.010
http://dx.doi.org/https:/doi.org/10.1016/j.future.2017.09.028
http://dx.doi.org/10.1145/2517351.2517370
http://dl.acm.org/citation.cfm?id=562546
http://dx.doi.org/10.1016/j.jnca.2016.04.002
http://books.google.es/books?hl=es&lr=&id=CXPjBwAAQBAJ&oi=fnd&pg=PA49&dq=parallel+and+sequential+implementations+data+mining&ots=X9oC3aiqq0&sig=YqLrFUfswlReoT4p0mucYz-bORU
http://books.google.es/books?hl=es&lr=&id=CXPjBwAAQBAJ&oi=fnd&pg=PA49&dq=parallel+and+sequential+implementations+data+mining&ots=X9oC3aiqq0&sig=YqLrFUfswlReoT4p0mucYz-bORU
http://dx.doi.org/10.1016/B978-0-08-050684-5.50020-3
http://www.irjet.net/archives/V3/i7/IRJET-V3I791.pdf
http://dx.doi.org/10.1016/j.ins.2015.09.007
http://dx.doi.org/10.1007/978-3-319-23392-5_7
http://dx.doi.org/10.1016/j.bbe.2014.03.003
http://dx.doi.org/10.1093/bib/bbw065
http://dx.doi.org/10.1093/nsr/nwt032
http://dx.doi.org/10.1016/j.enbuild.2014.12.029


31 

[34] C. Deb, F. Zhang, J. Yang, S.E. Lee, K.W. Shah, A review on time series forecasting techniques for building

energy consumption, Renewable and Sustainable Energy Reviews, 74 (2017) 902-924.

[http://dx.doi.org/10.1016/j.rser.2017.02.085]

[35] X. Qiu, P.N. Suganthan, G.A.J. Amaratunga, Ensemble incremental learning Random Vector Functional

Link network for short-term electric load forecasting, Knowledge-Based Systems, 145 (2018) 182-196.

[http://dx.doi.org/10.1016/j.knosys.2018.01.015]

[36] X. Qiu, Y. Ren, P.N. Suganthan, G.A.J. Amaratunga, Empirical Mode Decomposition based ensemble deep

learning for load demand time series forecasting, Applied Soft Computing, 54 (2017) 246-255.

[http://dx.doi.org/10.1016/j.asoc.2017.01.015]

[37] M. Benedetti, V. Cesarotti, V. Introna, J. Serranti, Energy consumption control automation using Artificial

Neural Networks and adaptive algorithms: Proposal of a new methodology and case study, Appl Energ, 165

(2016) 60-71.   [http://dx.doi.org/10.1016/j.apenergy.2015.12.066]

[38] E. Cadenas, W. Rivera, R. Campos-Amezcua, R. Cadenas, Wind speed forecasting using the NARX model,

case: La Mata, Oaxaca, México, Neural Computing and Applications, 27 (2016) 2417-2428.

[http://dx.doi.org/10.1007/s00521-015-2012-y]

[39] Z. Xian, C. Ka Wing, Y. Xuesen, Z. Yangyang, Y. Kexin, W. Guibin, A comparison study on electric

vehicle growth forecasting based on grey system theory and NAR neural network, in:  2016 IEEE International

Conference on Smart Grid Communications (SmartGridComm), 2016, pp. 711-715.

[http://dx.doi.org/10.1109/SmartGridComm.2016.7778845]

[40] A. Afram, F. Janabi-Sharifi, A.S. Fung, K. Raahemifar, Artificial neural network (ANN) based model

predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a

residential HVAC system, Energy and Buildings, 141 (2017) 96-113.

[http://dx.doi.org/10.1016/j.enbuild.2017.02.012]

[41] J. Wang, J. Wang, W. Fang, H. Niu, Financial time series prediction using elman recurrent random neural

networks, Computational intelligence and neuroscience, 2016 (2016).

[http://dx.doi.org/10.1155/2016/4742515]

[42] S. Kelo, S. Dudul, A wavelet Elman neural network for short-term electrical load prediction under the

influence of temperature, International Journal of Electrical Power & Energy Systems, 43 (2012) 1063-1071.

[http://dx.doi.org/10.1016/j.ijepes.2012.06.009]

[43] M. Elkaref, B. Bohnet, A Simple LSTM model for Transition-based Dependency Parsing, arXiv preprint

(2017). [http://arxiv.org/pdf/1708.08959]

[44] C. Liang, W. Zhen, W. Gang, Application of LSTM Networks in Short-Term Power Load Forecasting Under

the Deep Learning Framework, Electric Power Information and Communication Technology, 15 (2017) 8-11.

[http://www.dlxxtx.com/CN/article/downloadArticleFile.do?attachType=PDF&id=1380]

[45] T. Linzen, E. Dupoux, Y. Goldberg, Assessing the ability of LSTMs to learn syntax-sensitive dependencies,

arXiv preprint arXiv:1611.01368, (2016). [http://arxiv.org/pdf/1611.01368]

[46] K. Wang, C. Deng, J. Li, Y. Zhang, X. Li, M. Wu, Hybrid methodology for tuberculosis incidence time-

series forecasting based on ARIMA and a NAR neural network, Epidemiology & Infection, 145 (2017) 1118-

1129.   [http://dx.doi.org/10.1017/S0950268816003216]

[47] W. Wu, S. An, J. Guo, P. Guan, Y. Ren, L. Xia, B. Zhou, Application of nonlinear autoregressive neural

network in predicting incidence tendency of hemorrhagic fever with renal syndrome, Zhonghua liu xing bing

xue za zhi= Zhonghua liuxingbingxue zazhi, 36 (2015) 1394-1396.

[http://europepmc.org/abstract/med/26850398]

[48] A. Zavadskaya, Artificial Intelligence in Finance: Forecasting Stock Market Returns Using Artificial Neural

Networks (Available on Internet), (2017).

[http://helda.helsinki.fi/dhanken/bitstream/handle/123456789/170154/zavadskaya.pdf?sequence=1]

[49] A. Verma, I. Kaur, A. Kaur, Algorithmic approach to data mining and classification techniques, Indian

Journal of Science and Technology, 9 (2016).

[http://www.indjst.org/index.php/indjst/article/view/88874/71913]

http://dx.doi.org/10.1016/j.rser.2017.02.085
http://dx.doi.org/10.1016/j.knosys.2018.01.015
http://dx.doi.org/10.1016/j.asoc.2017.01.015
http://dx.doi.org/10.1016/j.apenergy.2015.12.066
http://dx.doi.org/10.1007/s00521-015-2012-y
http://dx.doi.org/10.1109/SmartGridComm.2016.7778845
http://dx.doi.org/10.1016/j.enbuild.2017.02.012
http://dx.doi.org/10.1155/2016/4742515
http://dx.doi.org/10.1016/j.ijepes.2012.06.009
http://arxiv.org/pdf/1708.08959
http://www.dlxxtx.com/CN/article/downloadArticleFile.do?attachType=PDF&id=1380
http://arxiv.org/pdf/1611.01368
http://dx.doi.org/10.1017/S0950268816003216
http://europepmc.org/abstract/med/26850398
http://helda.helsinki.fi/dhanken/bitstream/handle/123456789/170154/zavadskaya.pdf?sequence=1
http://www.indjst.org/index.php/indjst/article/view/88874/71913


L.G.B. Ruiz et al / Applied Soft Computing 32 

[50] G. Düzenli, RFID card security for public transportation applications based on a novel neural network

analysis of cardholder behavior characteristics, Turkish Journal of Electrical Engineering & Computer

Sciences, 23 (2015) 1098-1110. [http://journals.tubitak.gov.tr/elektrik/issues/elk-15-23-4/elk-23-4-13-1306-

96.pdf]

[51] C. Yang, H. Li, Y. Rezgui, I. Petri, B. Yuce, B. Chen, B. Jayan, High throughput computing based

distributed genetic algorithm for building energy consumption optimization, Energy and Buildings, 76 (2014)

92-101.   [http://dx.doi.org/10.1016/j.enbuild.2014.02.053]

[52] I. Petri, H. Li, Y. Rezgui, Y. Chunfeng, B. Yuce, B. Jayan, A modular optimisation model for reducing

energy consumption in large scale building facilities, Renewable and Sustainable Energy Reviews, 38 (2014)

990-1002.   [http://dx.doi.org/10.1016/j.rser.2014.07.044]

[53] M. Ibrahim, S. Jemei, G. Wimmer, D. Hissel, Nonlinear autoregressive neural network in an energy

management strategy for battery/ultra-capacitor hybrid electrical vehicles, Electric Power Systems Research,

136 (2016) 262-269.   [http://dx.doi.org/10.1016/j.epsr.2016.03.005]

[54] G.I. Nagy, G. Barta, S. Kazi, G. Borbély, G. Simon, GEFCom2014: Probabilistic solar and wind power

forecasting using a generalized additive tree ensemble approach, International Journal of Forecasting, 32 (2016)

1087-1093.   [http://dx.doi.org/10.1016/j.ijforecast.2015.11.013]

[55] J.L. Elman, Finding Structure in Time, Cognitive Science, 14 (1990) 179-211.

[http://dx.doi.org/10.1207/s15516709cog1402_1] 

[56] A. Kose, E. Petlenkov, System identification models and using neural networks for Ground Source Heat

Pump with Ground Temperature Modeling, in:  2016 International Joint Conference on Neural Networks

(IJCNN), 2016, pp. 2850-2855.  [http://dx.doi.org/10.1109/IJCNN.2016.7727559]

[57] G. Bao, Q. Lin, D. Gong, H. Shao, Hybrid Short-term Load Forecasting Using Principal Component

Analysis and MEA-Elman Network, in: D.-S. Huang, K. Han, A. Hussain (Eds.) Intelligent Computing

Methodologies: 12th International Conference, ICIC 2016, Lanzhou, China, August 2-5, 2016, Proceedings,

Part III, Springer International Publishing, Cham, 2016, pp. 671-683.  [http://dx.doi.org/10.1007/978-3-319-

42297-8_62]

[58] S. Qin, J. Wang, J. Wu, G. Zhao, A hybrid model based on smooth transition periodic autoregressive and

Elman artificial neural network for wind speed forecasting of the Hebei region in China, International Journal

of Green Energy, 13 (2016) 595-607.   [http://dx.doi.org/10.1080/15435075.2014.961462]

[59] C.-T. Chu, C.-H. Chang, T.-J. Chang, J.-X. Liao, Elman neural network identify elders fall signal base on

second-order train method, in:  Next Generation Electronics (ISNE), 2017 6th International Symposium on,

IEEE, 2017, pp. 1-4.  [http://dx.doi.org/10.1109/ISNE.2017.7968722]

[60] P. Li, Y. Li, Q. Xiong, Y. Chai, Y. Zhang, Application of a hybrid quantized Elman neural network in short-

term load forecasting, International Journal of Electrical Power & Energy Systems, 55 (2014) 749-759.

[http://dx.doi.org/10.1016/j.ijepes.2013.10.020]

[61] S. Ekici, S. Yildirim, M. Poyraz, A transmission line fault locator based on Elman recurrent networks,

Applied Soft Computing, 9 (2009) 341-347.   [http://dx.doi.org/10.1016/j.asoc.2008.04.011]

[62] M. Cuéllar, M. Delgado, M. Pegalajar, Multiobjective evolutionary optimization for Elman recurrent neural

networks, applied to time series prediction, Fuzzy Economic Review, 10 (2005) 17-33.

[http://search.proquest.com/docview/228956321]

[63] M. Delgado, M.C. Pegalajar, M.P. Cuéllar, Memetic evolutionary training for recurrent neural networks: An

application to time-series prediction, Expert Systems, 23 (2006) 99-114.   [http://dx.doi.org/10.1111/j.1468-

0394.2006.00327.x]

[64] V. Singh, K. Tiwari, Prediction of GreenHouse Micro-Climate using Artificial Neural Network, Applied

Ecology and Environmental Research, 15 (2017) 767-778. [http://www.aloki.hu/pdf/1501_767778.pdf]

[65] K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, J. Schmidhuber, LSTM: A Search Space Odyssey,

IEEE Transactions on Neural Networks and Learning Systems, 28 (2017) 2222-2232.

[http://dx.doi.org/10.1109/TNNLS.2016.2582924]

[66] F.J. Ordóñez, D. Roggen, Deep convolutional and lstm recurrent neural networks for multimodal wearable

activity recognition, Sensors, 16 (2016) 115.   [http://dx.doi.org/10.3390/s16010115]

http://journals.tubitak.gov.tr/elektrik/issues/elk-15-23-4/elk-23-4-13-1306-96.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-15-23-4/elk-23-4-13-1306-96.pdf
http://dx.doi.org/10.1016/j.enbuild.2014.02.053
http://dx.doi.org/10.1016/j.rser.2014.07.044
http://dx.doi.org/10.1016/j.epsr.2016.03.005
http://dx.doi.org/10.1016/j.ijforecast.2015.11.013
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1109/IJCNN.2016.7727559
http://dx.doi.org/10.1007/978-3-319-42297-8_62
http://dx.doi.org/10.1007/978-3-319-42297-8_62
http://dx.doi.org/10.1080/15435075.2014.961462
http://dx.doi.org/10.1109/ISNE.2017.7968722
http://dx.doi.org/10.1016/j.ijepes.2013.10.020
http://dx.doi.org/10.1016/j.asoc.2008.04.011
http://search.proquest.com/docview/228956321
http://dx.doi.org/10.1111/j.1468-0394.2006.00327.x
http://dx.doi.org/10.1111/j.1468-0394.2006.00327.x
http://www.aloki.hu/pdf/1501_767778.pdf
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.3390/s16010115


33 

[67] X. Lu, Y. Chen, X. Li, Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical

Convolutional Features, IEEE Transactions on Image Processing, 27 (2018) 106-120.

[http://dx.doi.org/10.1109/TIP.2017.2755766]

[68] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation, 9 (1997) 1735-1780.

[http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735]

[69] D.L. Marino, K. Amarasinghe, M. Manic, Building energy load forecasting using Deep Neural Networks, in:

IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 7046-7051.

[http://dx.doi.org/10.1109/IECON.2016.7793413]

[70] K. He, J. Sun, Convolutional neural networks at constrained time cost, in:  Computer Vision and Pattern

Recognition (CVPR), 2015 IEEE Conference on, IEEE, 2015, pp. 5353-5360. [http://www.cv-

foundation.org/openaccess/content_cvpr_2015/papers/He_Convolutional_Neural_Networks_2015_CVPR_pape

r.pdf]

[71] H.G. Lee, C.Y. Yi, D.E. Lee, D. Arditi, An Advanced Stochastic Time‐ Cost Tradeoff Analysis Based on a

CPM‐ Guided Genetic Algorithm, Computer‐ Aided Civil and Infrastructure Engineering, 30 (2015) 824-842.

[http://dx.doi.org/10.1111/mice.12148]

[72] T. Blickle, L. Thiele, A comparison of selection schemes used in genetic algorithms, (1995).

[http://pdfs.semanticscholar.org/fef8/1135f587851f19fe515cb8eb3812e3706b27.pdf]

[73] F. Herrera, M. Lozano, J.L. Verdegay, Tackling Real-Coded Genetic Algorithms: Operators and Tools for

Behavioural Analysis, Artificial Intelligence Review, 12 (1998) 265-319.

[http://dx.doi.org/10.1023/a:1006504901164]

[74] H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen, M. Kolehmainen, Methods for imputation of missing

values in air quality data sets, Atmospheric Environment, 38 (2004) 2895-2907.

[http://dx.doi.org/10.1016/j.atmosenv.2004.02.026]

http://dx.doi.org/10.1109/TIP.2017.2755766
http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/IECON.2016.7793413
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/He_Convolutional_Neural_Networks_2015_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/He_Convolutional_Neural_Networks_2015_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/He_Convolutional_Neural_Networks_2015_CVPR_paper.pdf
http://dx.doi.org/10.1111/mice.12148
http://pdfs.semanticscholar.org/fef8/1135f587851f19fe515cb8eb3812e3706b27.pdf
http://dx.doi.org/10.1023/a:1006504901164
http://dx.doi.org/10.1016/j.atmosenv.2004.02.026



