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On the fuzzy maximal covering location problem

Manuel Arana-Jiménez, Vı́ctor Blanco, and Elena Fernández

Abstract. In this paper studies the maximal covering location problem, assuming imprecise knowl-

edge of all data involved. The considered problem is modeled from a fuzzy perspective producing

suitable fuzzy Pareto solutions. Some properties of the fuzzy model are studied, which validate the

equivalent mixed-binary linear multiobjective formulation proposed. A solution algorithm is devel-

oped, based on the augmented weighted Tchebycheff method, which produces solutions of guaranteed

Pareto optimality. The effectiveness of the algorithm has been tested with a series of computational

experiments, whose numerical results are presented and analyzed.

Keywords: Covering Location, Fuzzy Optimization, Multiobjective Optimization.

MSC 2010: 90C70, 90B50, 90B80.

1. Introduction

Covering location models have been extensively studied in the literature. Broadly speaking, in these

problems there is a set of users with service demand, which can be satisfied by activating (opening)

facilities sufficiently close to the demand points. In particular, a given demand user will be served

(covered), and its demand captured if it is located within the coverage radius of some activated facility;

that is, if its distance to some open facility does not exceed a given radius. In particular, if a set of

facilities S is opened, the demand of user i, wi, will be captured if an only if dij < Rj for some

j ∈ S, where dij denotes denotes the distance from user i to facility j and Rj is a given coverage

radius, which may be different for each potential facility. The two seminal models in this area are the

minimum-cover location problem and the maximal covering location problem. In the minimum-cover

location problem, introduced by Toregas and ReVelle [34], the objective is to find a set of facilities that

covers all the demand points at minimum cardinality. Church and ReVelle [8] proposed the maximal

covering location problem (MCLP), in which there is a set-up cost for each activated facility and a

budget that limits the overall set-up cost that can be incurred. Such a budget constraint reduces to a

cardinality constraint if all the set-up costs are equal. The objective is to find a set of facilities that

maximizes the total covered demand.

Applications of covering location models arise in multiple fields and include the location of health

care or emergency services, where successful service strongly depends on the distance from facilities

to demand points, the location of signal-transmission facilities (TV, radio, cell-phone antennas, etc.),

where coverage is only achieved within a certain distance from the facility, or the location of retail

facilities, where the attractiveness of a facility for a potential customer clearly depends on its distance

from the customer location.

The diversity of applications and the theoretical interest of the underlying optimization models have

stimulated active research on the area in the last decades. The interested reader is addressed to [4]

and references therein for an inspiring overview on the topic.
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Coverage and coverage radius are two concepts inherent to covering location, which are typically

subjected to several modeling assumptions. One of the main assumptions is that a demand user is

either fully covered or not covered at all. Another classical assumption is that the coverage radius

that determines whether or not a demand user is covered is known. However, as discussed in [4], in

many applications these assumptions may be unrealistic. Examples that illustrate this weakness are,

for instance, the location of health care or emergency services, or the location of signal transmission

facilities. This has motivated the study of extensions of classical models, more flexible with respect

to the meaning and role of coverage and coverage radius. For instance, gradual covering models

mitigate the above concern by extending the all-or-nothing coverage assumption to the gradual coverage

assumption, which is modeled by associating the coverage level of demand points with their distance

to open facilities [4, 5, 9]. Specifically, the captured demand of a given user is computed as wf(d),

where w denotes the demand of the user, d its distance to the closest open facility, and f(d) ∈ [0, 1]

is a non-increasing coverage function such that f(d) = 1 for d ≤ δ−, f(d) = 0 for d > δ+, where

0 < δ− ≤ δ+ are two given parameters. That is, all its demand will be served if the user is at distance

at most δ− from some open facility, and none of its demand will be served if its distance to all open

facilities is greater than δ+. Otherwise a fraction of w will be served, which decreases as the distance

d increases. Note that the MCLP is a particular case of a gradual coverage model where δ− = δ+ for

all the users.

A concrete aspect that contributes to make further questionable the applicability of the modeling

assumptions discussed above, is that covering location models often suffer from uncertain knowledge

or lack of precision on the data that define specific instances. Note that, in addition to the coverage

concept and the coverage radius already mentioned, information related to users’ demand, set-up costs

or budgets may also be imprecise. Stochastic approaches can be suitable when uncertainty can be

modeled by means of a probability distribution or a set of scenarios (see, e.g., [10]), although it is not

appropriate when the lack of precision stems from different sources, or when the decision-maker only

has an idea concerning the range for the parameters’ values and a kind of belief that some values are

more likely to occur than some others. In such cases, a fuzzy perspective seems particularly suitable

for modeling the MCLP. This is the approach that we follow in this paper where we propose a fuzzy

mixed-binary linear programming model to deal with the MCLP as well as a solution framework for

it.

Since the seminal works in the area [36, 37] fuzzy mathematical programming has been applied to

address different types of optimization problems with possibilistic uncertain data, as an alternative

to crisp models where precise knowledge of data is assumed. Modeling alternatives for dealing with

fuzzy entities in mathematical programming models were already discussed in [22]. Approaches for

handling models with integer or binary variables have also been studied (see, e.g. [20, 21]), including

specific frameworks for some fuzzy programmes [2], as well as complexity results [7]. In fact, the MCLP

has already been studied from a fuzzy perspective. In [18] the authors assume flexibility as for the

coverage, which is modeled by means of fuzzy constraints, although it is assumed that the remaining

input data are precisely known. The authors then apply a parametric approach to transform the

fuzzy model into a series of parametric crisp models, which are solved using an iterated local search

heuristic. In [12] the authors propose a Particle Swarm Optimization scheme to solve the MCLP when

fuzzy distances and radii are considered in the problem. A different fuzzy framework for the MCLP is
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provided in [11], in which a measure of the covered demand is maximized when the distances between

the users and potential facilities are treated as fuzzy events.

In this paper we study a general model for the MCLP, assuming that imprecise knowledge is not

restricted to some of the parameters and constraints, but affects to all data, namely users’ demand,

distances, and coverage radius, as well as to all the data referring to the budget limitations. This means

that all the involved entities will be fuzzy, including parameters, constraints and the objective function.

For dealing with this general MCLP we propose a novel fuzzy programme in which the decision

variables that represent the coverage of users are also modeled as fuzzy numbers. Nevertheless, we

will see that it is enough to consider the crisp counterpart of such variables. Following the methodology

used with other problems dealing with fuzzy objectives [2, 7, 20], for solving our model we operate on

an equivalent mixed-binary linear multiobjective formulation. In search of compromise solutions for

that problem, i.e., Pareto solutions whose objective values are as close as possible to the ideal point, we

propose a solution algorithm based on the augmented weighted Tchebycheff method, which produces

solutions of guaranteed Pareto optimality (see, e.g. [29]). For the sake of simplicity, our developments

consider triangular fuzzy numbers, although our results can be extended to any fuzzy number with a

finite ranking system. Finally, we have carried out extensive computational experiments in order to

study the effectiveness of the proposed solution algorithm in terms of both its computational efficiency

and the quality of the solutions that it produces. The obtained results are presented and analyzed.

Summarizing, the main contributions of this paper are the following:

• We consider a general version of the MCLP, in the sense that we assume imprecise knowledge

affects to all data: distances, coverage radius, users’ demand, data referring to the budget

limitations. We model the considered problem as a fuzzy mixed-binary linear programme,

where all the involved entities are fuzzy.

• We transform the considered programme into an equivalent mixed-binary linear multiobjective

formulation, and we propose an augmented weighted Tchebycheff method for obtaining Pareto

solutions for it.

• We consider a general budget constraint, where we assume that potential facilities at different

locations may have different set-up costs, and there is a budget that limits the overall set-up

cost of all the facilities that are opened. To the best of our knowledge, in the literature the

budget constraint in the MCLP is modeled as a cardinality constraint on the maximum number

of facilities that can be opened. That is, it is assumed that all potential facilities have the

same set-up cost.

• We carry out extensive computational experiments on benchmarking instances to evaluate the

effectiveness of the proposed method and to analyze the quality of the obtained solutions. The

obtained results indicate that the empirical difficulty for obtaining individual solutions of the

fuzzy MCLP coincides with the difficulty of solving the classical MCLP.

The remaining of this paper is structured as follows. With the aim of making the paper self-

contained, Section 2 recalls some preliminaries of fuzzy sets and fuzzy mixed-binary linear program-

ming that will be used in the paper. Section 2 also recalls the definition of the MCLP. Section 3

formally defines the fuzzy extension of the MCLP that we study. Section 4 develops the proposed so-

lution algorithm based on the augmented weighted Tchebycheff method, whereas Section 5 describes
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the computational experience and presents and analyzes the obtained results. The paper ends in

Section 6 with some conclusions and comments about promising avenues for future research.

2. Preliminaries

In this section we recall the main notions and results on fuzzy sets and fuzzy integer programming

that will be useful for the rest of the paper.

2.1. Fuzzy Numbers and Nonnegative Triangular Fuzzy Numbers. A fuzzy set on R
n is a

mapping µ̃ : Rn → [0, 1], called membership function. Membership functions allow to quantify the

degree of truth of the statement “the element x ∈ R
n belongs to a set S ⊆ R

n”. If x clearly belongs to

the desired set, one will have µ̃(x) = 1, whereas if it clearly does not belong to the set, one will have

µ̃(x) = 0. In case the membership of x to S is not sufficiently clear, the partial membership of x to S

is modeled by values 0 < µ̃(x) < 1, such that the closest they are to one, the clearer it becomes that

x belongs to S. Fuzzy sets are useful to model uncertainty when it is derived from imprecision. For

instance, it is usual to assume that the demand of a user for a certain service is precisely known, but

in practice one may have an imprecise interval of possible demand values, where some such values are

more likely to occur than others. Standard sets, also known as crisp sets, are examples of fuzzy sets,

since indicator functions are just a particular case of membership functions.

Any fuzzy set µ̃ can be characterized by means of the so-called α-cuts, which are defined as follows:

[µ̃]α =




cl(supp(µ̃)), if α = 0,

{x ∈ R
n : µ̃(x) ≥ α}, if α ∈ (0, 1],

where supp(µ̃) = {x ∈ R
n : µ̃(x) > 0}, and cl(A) is the closure of the set A. A fuzzy set is convex if

all its α-cuts are convex sets.

A special and very useful type of fuzzy sets are fuzzy numbers. A fuzzy set on R, µ̃ : R → [0, 1], is a

fuzzy number if it is normal ([µ̃]1 6= ∅), upper semicontinuous, convex, and [µ̃]0 is compact. A fuzzy

number µ̃ is nonnegative if [µ̃]α ⊆ R+ for all α ∈ [0, 1]. We will denote by F and F+ the family of all

fuzzy numbers and nonnegative fuzzy numbers, respectively. Observe that the α-cuts of fuzzy numbers

are intervals of the form [µ̃]α =
[
µ
α
, µα

]
, with µ

α
, µα ∈ R, and [µ̃]α2 ⊆ [µ̃]α1 , for all 0 ≤ α1 ≤ α2 ≤ 1.

Thus µ̃ is a nonegative fuzzy number if and only if µ
0
≥ 0. Any crisp number p ∈ R can be identified

with the fuzzy number whose α-cuts are given by {p}.

Next we describe how to perform simple arithmetic operations with fuzzy numbers. Given µ̃, ν̃ ∈ F

the membership function of the sum, product by a scalar λ ∈ R, and multiplication of two fuzzy

numbers can be defined as:

(µ̃+ν̃)(z) = sup
z=x+y

min{µ̃(x), ν̃(y)}; (λµ̃)(z) =

{
µ
(
z
λ

)
, if λ 6= 0,

0, if λ = 0;
(µ̃·ν̃)(z) = sup

z=x·y
min{µ̃(x), ν̃(y)}.
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In terms of α-cuts the above operations translate into operations with closed intervals (see, e.g.,

[14, Theorem 2.6]). Specifically, for any µ̃, ν̃ ∈ F , λ ∈ R and α ∈ [0, 1]:

[µ̃+ ν̃]α =
[
µ
α
+ να , µα + να

]
,(1)

[λµ̃]α =
[
min{λµ

α
, λµα},max{λµ

α
, λµα}

]
,(2)

[µ̃ · ν̃]α = [min{µ
α
να, µαν, µα

να, µανα},max{µ
α
να, µαν, µα

να, µανα}].(3)

In this paper, in addition to performing basic operations, we will compare fuzzy numbers between

them using a (partial) ordering. Several definitions based on interval binary relations (see [16]) can

be used to this end. For instance, the well-known LU -fuzzy partial order (see [32, 35]) is defined as

follows. Given µ̃, ν̃ ∈ F , µ̃ is smaller than or equal to ν̃ (µ̃ � ν̃) if and only if:

(4) µ
α
≤ να and µα ≤ να, ∀α ∈ [0, 1].

The relationship µ̃ greater than or equal to ν̃ (µ̃ � ν̃) can be introduced in a similar manner. By

means of the previous order relationship, we can state that µ̃ ∈ F+ if and only if µ̃ � 0, where, as

indicated above, the crisp number 0 is identified with the fuzzy number whose α-cuts are given by {0}.

Many families of fuzzy numbers have been used to model imprecision in different situations, e.g.,

L-R, triangular, trapezoidal, polygonal, Gaussian, quasi-quadric, exponential, and singleton fuzzy

numbers. The reader is referred to [3, 19, 33] for a description of some of these families and their

properties. Even if, in general, fuzzy numbers are characterized by infinitely many α-cuts, some of the

most popular families of fuzzy numbers can be fully described by means of a finite set of α-cuts. In

such a case, the fuzzy number is said to have a finite ranking system (FRS). This is the case of trian-

gular, trapezoidal or polygonal fuzzy numbers. Furthermore, other more sophisticated fuzzy numbers

can be accurately approximated by fuzzy numbers with a FRS [15].

In this paper we will use nonnegative fuzzy numbers with a FRS. Moreover, for the sake of simplicity,

we will consider nonnegative triangular fuzzy numbers (TFNs), although all the results that we obtain

are extendable to any fuzzy number with a FRS. TFNs have been widely used because of their easy

interpretation (see, for instance, [13, 23, 24, 27, 33]), and also because they can be an initial step for

more sophisticated modelling approaches [31]. Next we give the definition of a TFN, as well as the

particularization to TFNs of the simple operations described above.

A fuzzy number µ̃ ∈ F is a TFN if there exist µ−, µ, µ+ ∈ R such that the membership function of

µ̃ is given by

µ̃(x) =





x−µ−

µ−µ−
, if µ− ≤ x ≤ µ,

µ+−x
µ̃−µ

, if µ < x ≤ µ+,

0, otherwise.

Note that any TFN, µ̃, is completely identified with the triplet µ̃ = (µ−, µ, µ+) and that the α-cuts

of a given TFN, µ̃ = (µ−, µ, µ+) can be easily derived as:

[µ̃]α = [µ
α
, µα] = [µ− + α(µ− µ−), µ+ − α(µ+ − µ)], for all α ∈ [0, 1].
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The sets of TFNs and nonnegative TFNs are respectively denoted by T and T+. Observe also that

T+ = {µ̃ = (µ−, µ, µ+) ∈ T : µ− ≥ 0}.

Figure 1 shows the shape of a (nonnegative) TFN (left picture) and one of its α-cuts (right picture).

1

µ
−

µ µ
+

1

α

µ
α

µ
αµ

−

µ
+

Figure 1. Shape of the triangular fuzzy number µ̃ = (µ−, µ̂, µ+) and one of its α-cuts.

If µ̃ = (µ−, µ, µ+), ν̃ = (ν−, ν, ν+) ∈ T and λ ∈ R, operations (1) and (2) above reduce to:

µ̃+ ν̃ = (µ− + ν−, µ+ ν, µ+ + ν+),

λµ̃ =

{
(λµ−, λµ, λµ+) if λ ≥ 0,

(λµ+, λµ, λµ−) if λ < 0.

On the contrary, it is well-known that the general multiplication operator (3) is not suitable for

fuzzy numbers with a FRS, and, in particular, for TFNs. Different multiplication rules have been

proposed for TFNs (see [1, 23, 24, 26]). In the case of nonnegative TFNs all of them coincide in the

following simple expression, which we will use through this paper:

µ̃ · ν̃ = (µ− · ν−, µ · ν, µ+ · ν+).

Finally, the ordering (4) can also be simplified for TFNs [2], as indicated below:

(5) µ̃ � ν̃ if and only if µ− ≤ ν−, µ ≤ ν and µ+ ≤ ν+.

2.2. Fuzzy Mixed-Binary Programming. Fuzzy Integer Linear Programming (FILP) is widely

used to address optimization problems involving linear expressions in which some of the variables are

restricted to take discrete values, when there is imprecision on the information that determines the

problem, and fuzzy numbers become a suitable methodology for modeling them. Depending on the

characteristics of the problem and involved data, several alternatives can be used for incorporating

fuzzy information within a mathematical programming model, as already discussed in [22]. Explicit

considerations for FILP have been discussed in [20] and the complexity of these models studied in

[7]. As a generalization of FILP, fuzzy mixed-integer linear programming (FMILP) incorporates fuzzy

continuous decision variables to the formulations of the problems. FMILP results in fuzzy mixed-

binary linear programming (FMBLP) when all the integer variables are restricted to take binary

values. Next we briefly summarize the main concepts and results for FMBLP, which we will apply in

our study of the Fuzzy Maximal Covering Location Problem.

We present the more general version of a FMBLP model where we assume that imprecise information

affects to all the entities of the problem so there are fuzzy constraints, fuzzy numbers defining the

constraints, fuzzy numbers in the objective function, as well as fuzzy continuous variables. In particular
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a FMBLP is given by:

(FMBLP) max c̃y + w̃z̃

s.t. Ãy + D̃z̃ � b̃,

yj ∈ {0, 1} j ∈ J,

z̃k ∈ F , k ∈ K,

where J = {1, 2, ..., n}, and K = {1, 2, ..., h} are given index sets, c̃ = (c̃j)j∈J and w̃ = (w̃k)k∈K row

vectors of fuzzy numbers with a FRS, Ãm×n = (ãij)i∈I,j∈J and D̃m×h = (d̃ik)i∈I,k∈K matrices of fuzzy

numbers with a FRS, b̃ = (b̃i)i∈I a column vector of fuzzy numbers with a FRS, and I = {1, ...,m}.

Observe that Ãy + D̃z̃ � b̃ denotes a set of m fuzzy constraints.

Recall that the operations between fuzzy numbers are derived using the rules described in Section

2.1 and that the “max” operator refers to maximal solutions with respect to the partial order induced

when comparing two feasible fuzzy numbers. Hence, the fuzzy objective c̃y + w̃z̃, determines a fuzzy

number with a FRS associated with each feasible solution, and such numbers can be ranked resorting

to the solution of equivalent multiobjective optimization problems. Taking into account (5), for the

case that all parameters are TFNs, FMBLP is equivalent to a three-objective mixed-binary linear

problem (see [2] for details).

Therefore, usual multiobjective techniques for mixed-binary linear programming, focusing on finding

Pareto solutions, can be applied for solving FMBLP. Let us recall the concept of fuzzy Pareto solution

of FMBLP.

Definition 1. A feasible FMBLP solution (Y, Z̃) is a fuzzy Pareto solution for FMBLP if there does

not exist a feasible FMBLP solution (Y ′, Z̃ ′) such that w̃Z̃ � w̃Z̃ ′ and w̃Z̃ 6= w̃Z̃ ′.

2.3. The Maximal Covering Location Problem. Next we formally define the maximal covering

location problem [4, 8], which is the crisp optimization problem that we study from a fuzzy perspective

in the following sections. Let I and J respectively denote the index sets for the demand points and

the potential locations for facilities. For each pair (i, j) ∈ I × J , dij ≥ 0 denotes the distance between

demand point i and potential facility j. Associated with each demand point i ∈ I there is a service

demand wi ≥ 0. Associated with each potential location j ∈ J there is a set-up cost fj for activating

a facility at location j. There is a budget B for the total set-up cost of all the activated facilities.

Each facility j ∈ J , if activated, has a coverage radius Rj . This means that if a facility is opened at

location j ∈ J the demand of all points whose distance to j does not exceed Rj will be served. The

MCLP is to find a set of facilities whose overall set-up cost does not exceed B, that maximizes the

overall served demand.

The reader may observe that, in fact, the problem that we have defined above is more general than

the one that is usually labeled as MCLP (see, e.g., [4]):

• We use a general budget constraint, which allows for facilities with different set-up costs.

Classical models for the MCLP use a cardinality constraint limiting the number of constraints

that can be activated. Our general budget constraint clearly reduces to a cardinality constraint

when the set-up cost of all the facilities are the same.
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• In its turn, allowing for facilities with different set-up costs further increases the flexibility of

the model that we consider as it permits having several candidate facilities placed at the same

site, each of them with a different coverage radius and set-up cost.

Our mathematical programming formulation for the MCLP uses the same decision variables as for

classical models. Specifically, we use the following sets of decision variables:

yj =

{
1 if facility j is actived

0 otherwise,
zi =

{
1 if demand of node i is covered

0 otherwise,

for all j ∈ J , i ∈ I.

Furthermore, we use we use the notation Ji to represent the set of potential locations that cover

the demand point i ∈ I, i.e., Ji = {j ∈ J : dij ≤ Rj}. The MCLP formulation is:

(MCLP) max
∑

i∈I

wizi(7a)

s.t.
∑

j∈J

fjyj ≤ B,(7b)

zi ≤
∑

j∈Ji

yj, i ∈ I,(7c)

zi ∈ [0, 1], i ∈ I,(7d)

yj ∈ {0, 1}, j ∈ J.(7e)

Constraint (7b) ensures that the overall set-up cost of the facilities that are opened does not exceed

the budget B, whereas the set of constraints (7c) imposes that each served demand point is in the

coverage radius of some open facility. The objective (7a) maximizes the overall sum of the demands of

the served points. The domain of the variables is defined in (7d)-(7e). Note that variables zi can been

relaxed to their continuous counterpart, since the maximization objective function already guarantees

their integrality for optimal solutions provided that the location y variables are binary. Formulation

(7a)-(7e) is thus a mixed-binary linear programme.

3. The Fuzzy Maximal Covering Location Problem.

In this section we introduce the fuzzy maximal covering location problem that we study, present a

FMBLP formulation for it, and study some of its properties.

In the problem that we address, uncertainty affects all parameters, constraints and continuous vari-

ables. We assume that all parameters in MCPL are fuzzy numbers with a FRS. In particular, for each

potential facility j ∈ J , f̃j denotes its fuzzy set-up cost and R̃j its fuzzy coverage radius; w̃i � 0 is the

fuzzy demand at node i; d̃ij � 0 the fuzzy distance between demand point i ∈ I and potential facility

j ∈ J ; and, B̃, the fuzzy budget for the total set-up cost of the activated facilities. Moreover, now the

index set of potential facilities covering the demand point i ∈ I is defined as J̃i = {j ∈ J : d̃ij � R̃j}.
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The fuzzy maximal covering location problem FMCLP is to find sets of facilities that do not violate

the fuzzy budget constraint, together with a fuzzy number for the coverage of each demand point,

that maximizes the overall fuzzy demand. The FMCLP has some well-known particular cases.

• The FMCLP extends the MCLP recently studied by Guzmán et al. [18], in which which

uncertain values are considered for distances and the coverage radius, but all other parameters,

as well as the allocation decision variables z are crisp.

• The FMCLP also extends the gradual covering location problem (GCLP) [9, 5, 6, 4], also

known as the general gradual cover decay location problem, which aims at finding a set of p

facilities that maximize the total captured demand.

We recall that in the GCLP, the captured demand is computed as follows. Two given coverage

thresholds, δ−i and δ+i , 0 < δ+i ≤ δ−i , are associated with each demand point i ∈ I. Then, the

amount of demand of user i ∈ I that is captured when all the facilities of S ⊆ J are opened is

modeled as wifi(∆i(S)), where fi(d) ∈ [0, 1] is a non-increasing coverage level function, with

fi(d) = 1 for d ≤ δ−i , fi(d) = 0 for d > δ+i , where 0 < δ−i ≤ δ+i are two given parameters, and

∆i(S) = minj∈S dij . That is, all the demand of user i will be served if i is at distance at most

δ−i from some open facility, and none of its demand will be served if its distance to all open

facilities is greater than δ+i . Otherwise a fraction of wi will be served, which decreases as the

distance of i to the closest open facility increases.

Indeed, any non-increasing coverage level function fi(d) ∈ [0, 1] defines a membership function.

Thus, the GCLP is a particular case of the FMCLP, where uncertainty only affects to the

objective function and all other entities are crisp. Furthermore, most of the considered coverage

functions in the literature, as for instance linear or step-function coverages, are actually fuzzy

numbers with a FRS.

In order to build a FMBLP formulation for the FMCLP we use the same location binary variables

y as in formulation (7a) -(7e) for the crisp MCLP, plus a set of decision variables z̃i, modeled as fuzzy

numbers, associated with the demand points i ∈ I, with compact support contained in [0, 1] (i.e.,

[z̃i]
0 ⊆ [0, 1]), where z̃i indicates the fuzzy coverage level of demand point i. A formulation for the

FMCLP is therefore:

(FMCLP) max
∑

i∈I

w̃iz̃i(8a)

s.t.
∑

j∈J

f̃jyj � B̃,(8b)

z̃i �
∑

j∈J̃i

yj, i ∈ I,(8c)

[z̃i]
0 ⊆ [0, 1], i ∈ I,(8d)

yj ∈ {0, 1}, j ∈ J,(8e)

where the fuzzy vector objective function
∑

i∈I w̃iz̃i is a fuzzy sum of fuzzy multiplications of w̃i’s and

z̃i’s. Similarly to the MCLP, we represent the variable domain by (y, z̃) ∈ {0, 1}|J | ×F |I|. Note that,

as mentioned in the previous section, binary vectors y ∈ {0, 1}|J | can be considered in fuzzy partial

orders and fuzzy arithmetic in the FMCLP.
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Below we derive a property of formulation (8a)-(8e), which is essential to obtain an equivalent

formulation for the FMCLP where the fuzzy decision variables z̃ can be replaced by their crisp coun-

terpart.

Proposition 1. If (Y, Z̃) is a fuzzy Pareto solution of FMCLP, then there exists Z ∈ R
|I|, with

Zi ∈ [Z̃i]
0, for all i ∈ I, such that (Y,Z) is feasible for FMCLP, and w̃Z̃ = w̃Z.

Proof. If Z̃i is crisp for all i ∈ I, then the result is proved. Otherwise, we have that [Z̃k]
0 = [Zk,0, Zk,0]

with Zk,0 < Zk,0 for some k ∈ I. Consider (Y, Z̃ ′), with Z̃ ′
i = Z̃i for all i 6= k, and define the fuzzy

number Z̃ ′
k with support [Z̃ ′

k]
0 = {Zk,0}. We have that Z̃ ′

k reduces to the crisp number Zk,0. It is not

difficult to see that Z̃ ′
k verifies (8c), and then (Y, Z̃ ′) is feasible for FMCLP.

Now, let us check that w̃Z̃ � w̃Z̃ ′. To this end, we apply (4) and compare their α-cuts. Thus, given

α ∈ [0, 1], from (3), and taking into account that the variables are non-negative,

[w̃k]
α × [Z̃k]

α = [wk,αZk,α, wk,αZk,α],

[w̃k]
α × [Z̃ ′

k]
α = [wk,αZk,0, wk,αZk,0].

Since Zk,α ≤ Zk,α ≤ Zk,0, it follows that

wk,αZk,α ≤ wk,αZk,0 and wk,αZk,α ≤ wk,αZk,0.

Therefore, since the previous expression is satisfied for any α ∈ [0, 1], we have that

w̃kZ̃k � w̃kZ̃
′
k,

and then,

w̃Z̃ =
∑

i∈I

w̃iZ̃i =
∑

i 6=k

w̃iZ̃i + w̃kZ̃k �
∑

i 6=k

w̃iZ̃
′
i + w̃kZ̃

′
k =

∑

i∈I

w̃iZ̃
′
i = w̃Z̃ ′.

We iterate this process on any other index k′ ∈ I such that Z̃k′ is not crisp. In the end, we get

Z ∈ R
|I|, with Zi = Z̃ ′

i, Zi ∈ [Z̃i]
0, for all i ∈ I, such that (Y,Z) is feasible for FMCLP and

w̃Z̃ � w̃Z.

By hypothesis, (Y, Z̃) is fuzzy Pareto, which, combined with (3), implies

w̃Z̃ = w̃Z.

And the proof is complete. �

Two consequences can be derived from Proposition 1. On the one hand, we can substitute the set

of fuzzy variables z̃ by a set of crisp continuous decision variables, which again will be denoted by z.

On the other hand, similarly to the formulation for the crisp MCLP counterpart, the crisp allocation

variables z can be relaxed to take continuous values, since fuzzy Pareto solutions (Y,Z) will take

binary values.

In the following, for ease of presentation, we assume that all the above fuzzy parameters belong

to the set T of triangular fuzzy numbers, although our results easily extend to fuzzy numbers with a

FRS. Therefore,

• f̃j = (f−
j , fj , f

+
j ), for all j ∈ J .
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• R̃j = (R−
j , Rj , R

+
j ), for all j ∈ J .

• w̃i = (w−
i , wi, w

+
i ), for all i ∈ I.

• d̃ij = (d−ij , dij , d
+
ij), for all i ∈ I, j ∈ J .

• J̃i = {j ∈ J : d−ij ≤ R−
j , dij ≤ Rj , d

+
ij ≤ R+

j }, for all i ∈ I.

Similarly to [2], we can formalize the relationship between fuzzy Pareto solutions of FMCLP and

Pareto solutions of a multiobjective problem as stated in the following result.

Theorem 1. (y, z̃) ∈ {0, 1}|J | × (T )|I| is a fuzzy Pareto solution of FMCLP if and only if (y, z) ∈

{0, 1}|J | × R
3|I| is a Pareto solution of the following mixed integer multiobjective problem:

(MMCLP) max (
∑

i∈I

w−
i zi,

∑

i∈I

wizi,
∑

i∈I

w+
i zi)(9a)

subject to
∑

j∈J

f−
j yj ≤ B−,(9b)

∑

j∈J

fjyj ≤ B,(9c)

∑

j∈J

f+
j yj ≤ B+,(9d)

zi ≤
∑

j∈J̃i

yj, i ∈ I,(9e)

zi ≤ 1, i ∈ I,(9f)

zi ≥ 0, i ∈ I,(9g)

yj ∈ {0, 1}, I ∈ J.(9h)

For the sake of simplicity, we denote byD = {(y, z) ∈ {0, 1}|J |×[0, 1]|I| :
∑

j∈J f
−
j yj ≤ B−,

∑
j∈J fjyj ≤

B,
∑

j∈J f
+
j yj ≤ B+, zi ≤

∑
j∈J̃i

yj} the feasible domain to MMCLP defined by (9b)-(9h).

Remark 1. As mentioned, the previous results apply analogously, not only for TFNs but also for

fuzzy numbers with a FRS. The only difference is that, if the demand w̃ admits a FRS with s α cuts,

then, the multiobjective problem has s objective functions. The number of constraints also increases if

the budget and costs have FRSs with more than 3 α-cuts.

Example 1. We illustrate our methodology on the 30 points instance provided in [28]. We consider

the same coordinates and demands as in the referenced source, but randomly generated the set-up costs

from a uniform distribution U [a, b] with a = 100 and b = 1000. The budget was fixed to B = a+b
2 .

The crisp formulation produced a solution with objective value 3470 in which the set of open facil-

ities is {2,13,20}. The solution is drawn in Figure 2 (left). We also generated a fuzzy version of

the instance by constructing triangular fuzzy numbers for each of the parameters of the model. In

all cases the center point coincides with the crisp number, but the lower and upper extremes were

randomly generated from an interval ±50% with respect to the central point, respectively. The evalu-

ation of the crisp solution on the three-objective formulation is (2550.88, 3470, 4184.95) (observe that

the crisp solution is not necessarily feasible for the multiobjective formulation because of constraints

(9e)). Figure 2 (center and right) depicts two Pareto solutions of the fuzzy formulation, which open

facilities {2, 13} and {2, 20, 22}, respectively, and whose captured fuzzy demands are the TFNs given

by (2437.80, 3290, 3970.53) and (2392.47, 3250, 3971.95), respectively.
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Figure 2. Solutions for the crisp (left) and fuzzy (center and right) models for Exam-
ple 1.

Note that the J̃-sets (users covered by each open facility) are different in the crisp and the fuzzy

instances. In fact, the list of users covered by a facility is more restrictive under the fuzzy framework

than in the crisp counterpart. This happens because the crisp sets are Ji = {j ∈ J : dij ≤ Rj}, while

the fuzzy sets are J̃i = {j ∈ J : d−ij ≤ R−
j , dij ≤ Rj , d

+
ij ≤ R+

j }. Thus, although any feasible solution of

the fuzzy problem is also feasible for the crisp problem, the opposite is not true in general.

Figure 3 represents the overall demands covered in the two Pareto solutions, i.e., the TFNs indicating

the served demands for both solutions. The gray dashed TFN is the evaluation of the crisp solution of

the instance over the three objective functions of the fuzzy problem. Clearly, the two obtained solutions

are incomparable with the induced fuzzy order. Observe that the crisp solution is not feasible for the

fuzzy problem and the objective values of the crisp solution are greater (component-wise) than the fuzzy

solutions. The reason is that, as explained before, the fuzzy problem is more restrictive than the crisp

one.

1

0

3470

2
4
3
7
.
8

3
2
9
0

3
9
7
0
.
5
3

2
3
9
2
.
4
7

3
2
5
0

3
9
7
1
.
9
5

Figure 3. Representation of the Pareto solutions obtained in Example 1.
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4. Fuzzy Pareto solutions via augmented weighted Tchebycheff method

In this section we present a solution method to generate solutions for FMCLP using the multiobjec-

tive formulation provided in the previous section. In particular, we look for fuzzy Pareto solutions close

to the ideal point. Recall that the ideal point is obtained by solving separately a single-objective prob-

lem for each of the objective functions of (9a). Specifically, let (Y w−

, Zw−

), (Y w , Zw), (Y w+

, Zw+

) ∈ D

be the solutions to the single-objective problems that consider separately each of the objective func-

tions, w−z, wz and w+z, respectively, and F I
1 , F

I
2 , and F I

3 their objective values. F I = (F I
1 , F

I
2 , F

I
3 )

is usually called the ideal point in the criterion space. In general, the point F I is not attainable by

any feasible solution (y, z) ∈ D unless (Y w−

, Zw−

) = (Y w , Zw) = (Y w+

, Zw+

).

Compromise solutions consist of selecting, among the whole set of fuzzy Pareto solutions, those

whose objective values are as close as possible to the ideal point. Given a distance measure in the

objective space, d : R3 → R+, compromise solutions can be obtained by finding an efficient feasible

solution (y, z) ∈ D, whose objective vector F (z) = (F1(z), F2(z), F3(z)) = (w−z, wz,w+z) is at

minimum distance to F I ; i.e., d
(
F (z), F I

)
, is minimized. Thus, a compromise solution can be found

by solving the following bilevel Compromise Solution Problem:

(CSP0) min d
(
F (z), F I

)

s.t. (y, z) ∈ argmax (w−z, wz,w+z)

(y, z) ∈ D.

CSP0 is a bilevel mixed-integer programming problem, whose solution is, in general, complex. The

following result, whose proof is straightforward, states the equivalence of CSP0 and a single-level

mixed-integer programming problem.

Proposition 2. CSP0 is equivalent to the following single-level mixed-integer problem:

(CSP) min d
(
F (z), F I

)

s.t. (y, z) ∈ D.

Several types of distances can be considered for finding compromise solutions, such as those induced

by lp-norms, with p ∈ N ∪ {∞}. In this work we use p ∈ {1,∞} so CSP reduces to the following

mixed-integer linear programming problems:

(CSP1) min

3∑

r=1

(
F I
r − Fr(z)

)

s.t. (y, z) ∈ D,

(CSP∞) min α

s.t. α ≥
(
F I
r − Fr(z)

)
, r = 1, . . . , 3,

(y, z) ∈ D,

where the absolute values involved in the definition of the ℓ1 and the ℓ∞-norms can be avoided since

the components of ideal points are always greater than or equal to the objective function value at any

feasible solution.

Prior information of preferences can also be useful in the search of compromise solutions. In

particular, a priori information can be integrated within CSP via, for instance, a weighted min-

max formulation also known as the weigthed Tchebycheff method. This method produces solutions



14 MANUEL ARANA-JIMÉNEZ, VÍCTOR BLANCO, AND ELENA FERNÁNDEZ

that satisfy necessary conditions for Pareto optimality (see Miettinen [30]), although not necessarily

sufficient conditions (see Koski and Silvennoinen [25]). This weakness is overcome in the augmented

weighted Tchebycheff method. This method minimizes ad-hoc objective functions on the original

feasible domain and, for discrete problems involving linear constraints (polyhedral problems) like

the MMCLP that we address, produces solutions of guaranteed Pareto optimality. Specifically, Pareto

solutions can be obtained by optimizing the following objective function (see [29] and references therein

for details on this method):

H(y, z) = max
r∈{1,2,3}

{λr(F
I
r − Fr(z))} + ρ

3∑

r=1

(F I
r − Fr(z)), for all (y, z) ∈ D,

where all weights are strictly positive, with ρ sufficiently small positive scalar assigned by the decision-

maker.

Taking into account the previous considerations, the following modified model is proposed for solving

the MMCLP:

(ModMMCLP) min max
r∈{1,2,3}

{λr(F
I
r − Fr(z))} + ρ

3∑

r=1

(F I
r − Fr(z))

s.t. (y, z) ∈ D.

Pareto solutions for the MMCLP can thus be obtained by solving ModMMCLP for given strictly

positive weights (λ, ρ). Suitable simplifications allow to transform ModMMCLP to:

(ModMMCLP’) min α+ ρ

3∑

r=1

(F I
r − Fr(y, z))

s.t. λr(F
I
r − Fr(z)) ≤ α, r ∈ {1, 2, 3},

(y, z) ∈ D,

α ≥ 0.

Proposition 3. Given a strictly positive coefficients vector (λ, ρ) ∈ R
|I|+1
+ , if (Y,Z) ∈ D is an optimal

solution to ModMMCLP’, then (Y,Z) is a Pareto solution to FMCLP, and (Y, Z̃) ∈ {0, 1}|J | × (T )|I|

is a fuzzy Pareto solution of FMCLP.

Proof. The proof is straightforward from [29]. �

Pareto Optimality Test

Let us remark that when some component or weight of (λ, ρ) is null, the solutions produced by

ModMMCLP’ are weakly Pareto, although they are not guaranteed to be Pareto solutions. In par-

ticular, note that compromise solutions for both the ℓ∞-norm and the ℓ1-norm can be obtained from

the sets of optimal solutions to ModMMCLP’ for suitable values of the parameters λ and ρ. In

particular, the set of optimal solutions to ModMMCLP’ with (λ, ρ) = (1, 1, 1, 0) coincides with the

ℓ∞-compromise solution set. For (λ, ρ) = (0, 0, 0, 1) we obtain the ℓ1-compromise solution set, while for

(λ, ρ) ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}, ModMMCLP’ reduces to maximizing independently each

objective.
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In the above cases, it is possible to check whether or not the obtained solution is Pareto by means of

several methods summarized in Miettinen [30], and described in Marler and Arora [29]. In particular,

we have the following simple test for a given weakly Pareto solution (Y,Z):

P (Y,Z) max

3∑

r=1

δr

s.t. Fr(y, z) − δr = Fr(Y,Z), r ∈ {1, 2, 3},

δr ≥ 0, r ∈ {1, 2, 3},

(y, z) ∈ D.

If there is an optimal solution to P (Y,Z) with all δr’s at value zero, then (Y,Z) is a Pareto solution

for MMCPL, and its corresponding fuzzy vector given by (Y, Z̃) is a fuzzy Pareto solution of FMCLP.

Furthermore, if δr > 0 for some r ∈ {1, 2, 3}, we can also generate a a fuzzy Pareto solution for

FMCLP from an optimal solution to P (Y,Z) as follows.

Proposition 4. Let (Y,Z) be a weakly Pareto solution of MMCPL and (δ∗, Y ∗, Z∗) an optimal solution

to P (Y,Z). If δ∗r > 0, for some r ∈ {1, 2, 3}, then (Y ∗, Z∗) is a Pareto solution for MMCLP.

Proof. By definition of P (Y,Z), (Y ∗, Z∗) is feasible for MMCLP. Suppose that (Y ∗, Z∗) is not a Pareto

solution for MMCLP. This implies that there exists (Ȳ , Z̄) ∈ D such that F (Ȳ , Z̄) ≥ F (Y ∗, Z∗) and

F (Ȳ , Z̄) 6= F (Y ∗, Z∗). That is, there exists δ̄ = (δ̄1, δ̄2, δ̄3) ≥ 0, with δ̄r0 > 0 for some r0 ∈ {1, 2, 3},

such that

Fr(Ȳ , Z̄)− δ̄r = Fr(Y
∗, Z∗), r ∈ {1, 2, 3}.

Since (Y ∗, Z∗) is feasible for P (Y,Z), it follows that

Fr(Ȳ , Z̄)− δ̄r − δ∗r = Fr(Y
∗, Z∗)− δ∗r = Fr(Y,Z), r ∈ {1, 2, 3}.

Define δ̂ = δ∗ + δ̄. Then, δ̂ ≧ δ∗ with δ̂r0 > δ∗r0 . Therefore, (δ̂, Ȳ , Z̄) is feasible for P (Y,Z) with∑3
r=1 δ̂r >

∑3
r=1 δ

∗
r , contradicting that (δ∗, Y ∗, Z∗) is optimal for P (Y,Z). �

Combining the above proposition and Theorem 1 we obtain the following result.

Corollary 1. Let (Y,Z) be a weakly Pareto solution of MMCPL and (δ∗, Y ∗, Z∗) an optimal solution

to P (Y,Z). If δ∗r > 0, for some r ∈ {1, 2, 3}, then (Ỹ ∗, Z̃∗) ∈ {0, 1}|J | × (T )|I| is a fuzzy Pareto

solution of FMCLP.

The above results can be exploited to derive a solution algorithm for generating fuzzy Pareto

solutions for FMCLP. In particular, given a set of (λ, ρ)-weights, Λ ⊆ R
4
+, we propose the procedure

described in the pseudocode of Algorithm 1.

In the pseudocode, P denotes our solution set, and F I the ideal point, which is first computed and

becomes our reference point in the criterion space to construct feasible solutions as close as possible

to it. For each combination of (λ, ρ)-weights in Λ, ModMMCLP is solved. In case all the (λ, ρ)-

weights are strictly positive, we are done, and the solution is added to the set P. Otherwise, a weakly

Pareto solution, (Y,Z), is obtained. Since (Y,Z) is not guaranteed to be a fuzzy Pareto solution for

FMCLP, the test P (Y,Z) is performed. After solving P (Y,Z), either (Y,Z) is proved to be a fuzzy

Pareto solution or the new solution produced by P (Y,Z) is guaranteed to be fuzzy Pareto (Corollary
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Algorithm 1: Solution algorithm to generate Pareto solutions for FMCLP.

Data: f̃j, R̃j , w̃i, d̃ij ∈ T+, for all i ∈ I, j ∈ J , B̃ ∈ T+, Λ ∈ R
4
+.

P = ∅.
Compute the ideal point: F I = (F I

1 , F
I
2 , F

I
3 ).

for (λ, ρ) ∈ Λ do
Solve ModMMCLP: (Y,Z) and F = (F1, F2, F3).
if F = F I then
P ← P ∪ {(Y,Z)}
Terminate

end

if (λ, ρ) > 0 then
P ← P ∪ {(Y,Z)}.

else

Solve P (Y,Z): (δ̄, Ȳ , Z̄).
P ← P ∪ {(Ȳ , Z̄)}

end

end

Result: P.

1). After executing the algorithm for the considered set of weights we obtain a set of fuzzy Pareto

solutions for FMCLP with cardinality at most |Λ|. Note that in case the ideal point is attainable, it

will be found in the first iteration of the for loop and we are done, since the set of solutions, P is just

the singleton composed by such an ideal point.

5. Computational Experiments

In this section we describe our computational experience and summarize the obtained numerical

results. We have performed a series of experiments on a set of maximal covering location benchmark

instances widely used in the literature. In particular, we consider the datasets in [10] and [28] with

30, 324, 402, 500, 708 and 818 points (http://www.lac.inpe.br/%7Elorena/instancias.html). We

run two different classes of experiments on these instances. First, using the original information, in

which the set-up costs f were fixed to one, so the budget constraints reduce to cardinality constraints,

and the budgets B ranging in {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}. Second, randomly generating f from an

independent normal distribution with mean 100 and standard deviation 10. B is defined as the sum

of the p smallest fi values, for values of p ranging in {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}. This last choice

allows us to test the model over general budget constraints. The triangular fuzzy numbers for the

parameters in the instances were generated such that the central point of each triangular fuzzy number

coincides with the original (crisp) value in the reference instance and the lower and upper extremes

were randomly generated. In particular, the fuzzy numbers, (a−, a, a+), were obtained such that a−

and and a+ were drawn from uniform distributions in U [0.80a, a] and U [a, 1.20a], respectively. We

generated five instances for each of the datasets. The parameters for each of the instances as well as

the detailed results are available at http://bit.ly/FMCInstances.

For each instance in our testbed we have applied Algorithm 1 with nine different choices of (λ, ρ)-

weights Λ = {(0, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 1, 0.001), (1, 1, 1, 0), (1, 1, 0, 0.001),

(1, 0, 1, 0.001), (0, 1, 1, 0.001)}. Hence, for each combination (n,B), we have tested 45 runs, i.e., nine

choices of Λ for each of the five random instances with the combination (n,B).

http://www.lac.inpe.br/%7Elorena/instancias.html
http://bit.ly/FMCInstances
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All the formulations were coded in Python, and solved using Gurobi 8.0 [17] in a Mac OSX Mojave

with an Intel Core i7 processor at 3.3 GHz and 16GB of RAM.

In Tables 1 and 2 we report the following information referring to each group of 45 instances with

fixed n (5 randomly generated instances and 9 (λ, ρ)-weights):

• CPUTime: Average computing time of Algorithm 1, over the 45 instances in each group.

• CPUTime-Crisp: Average computing time for solving the crisp version of the problem (over

the 45 instances in each group).

• Different Pareto: Average number of different Pareto solutions produced by Algorithm 1 (over

the 45 instances in the group).

• CheckPareto: % of instances (out of the 45 in each group) in which the CheckPareto produces

a solution different from the one previously obtained.

• ReachIdeal: % of instances (out of the 45 in each group) for which the ideal point was attained.

One can observe that the required times for solving each of the instances of the fuzzy models are

slightly larger than those needed to solve the crisp model. We were able to solve all the instances in

small computing CPU times. The most time consuming instance (with n = 818 and p = 7) was solved

in 102 seconds. As expected, these times increase with the size of the instances. We found that in

most of the instances the ideal point is attained. In particular, in 74% of the instances of cardinality-

constrained problem and 70% of the budget-constrained problem, the ideal point was found. These

percentages are quite similar for the different sizes and range in [50%, 80%] for all values of n.

Also, the test to check Pareto optimality of solutions does not produce, except in a few cases, a

new solution, corroborating the Pareto-optimality of the obtained solutions. Although, in principle, it

could be possible to find up to nine different Pareto solutions per instance (one for each combination of

weights), the average number of different solutions ranges in [2, 3], often obtaining the same solutions

associated with different sets of weights. We also observed that the solutions obtained when solving

ModMMCPL are in most of the cases fuzzy Pareto solutions, being the outcome of the test for Pareto

optimality, P (Y,Z), negative in the 99.5% of the solved problems. This fact confirms the good quality,

relative to the fuzzy problem, of the solutions produced by ModMMCPL.

In Tables 3 and 4 we report the following information concerning the solutions produced by the

fuzzy and the crisp models, for the same set of instances. We provide:

• %CoveredCrisp: Average percentage of covered demand with the crisp model.

• %CoveredFuzzy−/%CoveredFuzzy/%CoveredFuzzy+ : Average lower bound/center/upper bound

on the covered demand with the fuzzy model.

• #OpenCrisp: Number of open plants in the crisp model. In the cardinality-constrained model,

this amount coincides with p, so it is omitted.

• #OpenFuzzy: Number of open plants in the fuzzy model.

Observe that the triplets (%CoveredFuzzy−, %CoveredFuzzy, %CoveredFuzzy+) correspond to the

triangular fuzzy numbers of the obtained solutions relative to the total demand.

The results of Tables 3 and 4 indicate that the covered demands and the number of open plants

are quite similar in the cardinality constrained and budget constrained models. Nevertheless, the

results of these tables also indicate that the fuzzy models are more restrictive than the crisp ones,

both in terms of the covered demand and the number of open plants. As explained when discussing
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Example 1, this is due to the definition of the coverage sets J̃ as well as to the three cardinality/budget

constraints. We must however recall that the fuzzy model is more general than the crisp one, as it

deals with imprecise knowledge of all data involved.

6. Conclusions

In this paper we propose a new and general model for the maximal covering location with imprecise

knowledge on all data, by means of fuzzy numbers and variables. The properties of the proposed

model allow to formulate it with an equivalent mixed-binary linear multiobjective programme. For

obtaining fuzzy Pareto solutions we propose a solution algorithm based on an augmented weighted

Tchebycheff method. The effectiveness of the proposed solution algorithm has been confirmed by

extensive computational experiments whose numerical results are presented and analyzed.

Promising avenues for future research include the study from a fuzzy perspective of other classical dis-

crete location models, like the plant location problem. From a different point of view, further insight

for dealing with imprecise knowledge with these types of problems can be derived from the study of

more sophisticated fuzzy sets like, for instance, intuitionistic numbers.
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[10] de Assis Corrêa F, Lorena LAN, Ribeiro GM. A decomposition approach for the probabilistic maximal covering

location-allocation problem. Computers & Operations Research 36(10), 2729–2739 (2009).

[11] Davari, S, Zarandi, M, Hemmati, A. Maximal covering location problem (MCLP) with fuzzy travel times. Expert

Systems with Applications, 38(12), 14535–14541 (2011).



On the Fuzzy MCLP 19

[12] Drakulić, D, Takaci, A, Marić, M. New model of maximal covering location problem with fuzzy conditions. Com-

puting and informatics, 35(3), 635–652 (2016).

[13] Dubois D, Prade H. Operations on fuzzy numbers. Ins. J. Systems Sci. 9, 613–626 (1978).

[14] M. Ghaznavi, F. Soleimani, N. Hoseinpoor, Parametric Analysis in Fuzzy Number Linear Programming Problems,

Int. J. Fuzzy Syst. 18(3), 463–477 (2016).
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n B CPUTime CPUTime-Crisp Different Pareto CheckPareto ReachIdeal

30

2 0.0067 0.2601 1.20 0.00% 31%

3 0.0049 0.0014 1.20 0.00% 31%

4 0.0047 0.0012 1.00 0.00% 100%

5 0.0047 0.0012 1.00 0.00% 100%

6 0.0048 0.0012 1.00 0.00% 100%

7 0.0049 0.0012 1.60 0.00% 14%

8 0.0051 0.0012 1.60 0.00% 14%

9 0.0049 0.0013 1.00 0.00% 100%

10 0.0053 0.0013 1.40 0.00% 14%

15 0.0042 0.0012 1.20 0.00% 31%

20 0.0017 0.0003 1.00 0.00% 100%

324

2 0.1235 0.0203 1.00 0.00% 100%

3 0.1128 0.0260 1.20 0.00% 31%

4 0.1250 0.0252 1.60 0.00% 7%

5 0.1630 0.0275 1.40 0.00% 14%

6 0.1351 0.0268 1.20 0.00% 31%

7 0.3242 0.0266 1.60 0.00% 14%

8 0.1016 0.0258 1.20 0.00% 31%

9 0.1021 0.0273 1.40 0.00% 14%

10 0.2268 0.0272 1.40 0.00% 14%

15 0.2303 0.0593 1.40 0.00% 14%

20 0.6160 0.1205 1.40 0.00% 14%

402

2 0.1807 0.0250 1.40 0.00% 14%

3 0.3971 0.0303 1.40 0.00% 14%

4 0.5470 0.0333 1.60 0.00% 7%

5 0.7275 0.0353 2.00 0.00% 7%

6 1.1120 0.0341 1.80 0.00% 14%

7 2.0108 0.0408 1.40 0.00% 31%

8 1.1455 0.0367 1.60 0.00% 31%

9 0.5801 0.0353 1.40 0.00% 14%

10 0.7202 0.0368 1.20 0.00% 31%

15 0.5010 0.0397 1.40 0.00% 14%

20 1.9336 0.1036 2.20 0.00% 3%

500

2 0.3164 0.0289 1.60 0.00% 14%

3 0.6573 0.0407 1.40 0.00% 14%

4 0.3296 0.0396 1.00 0.00% 100%

5 1.5159 0.0439 1.20 0.00% 31%

6 0.2433 0.0436 1.00 0.00% 100%

7 0.1892 0.0418 1.20 0.00% 31%

8 0.1467 0.0434 1.40 0.00% 14%

9 0.8045 0.0458 2.00 0.00% 7%

10 0.5348 0.0557 1.40 0.00% 14%

15 0.7455 0.0480 2.60 0.00% 3%

20 3.2028 0.0650 2.20 0.00% 3%

708

2 0.9872 0.2452 1.20 0.00% 31%

3 0.9582 0.2590 1.20 0.00% 31%

4 0.8131 0.2700 1.00 0.00% 100%

5 1.5395 0.3129 1.00 0.00% 100%

6 2.8213 0.2791 1.00 0.00% 100%

7 2.5991 0.5398 1.40 0.00% 14%

8 1.6095 0.2723 1.00 0.00% 100%

9 3.1732 0.2710 1.20 0.00% 31%

10 1.5106 0.3644 1.00 0.00% 100%

15 0.7631 0.1691 1.00 0.00% 100%

20 0.3489 0.1693 1.00 30.77% 31%

818

2 1.3494 0.3060 1.20 0.00% 31%

3 18.5982 0.2882 1.40 0.00% 14%

4 23.5930 0.3012 1.60 0.00% 31%

5 7.4189 0.3348 1.00 0.00% 100%

6 3.2848 0.4409 1.20 0.00% 31%

7 3.3584 0.3494 1.60 0.00% 14%

8 30.8488 0.3733 1.20 0.00% 31%

9 19.8565 0.3140 1.20 0.00% 31%

10 34.5108 0.9278 1.40 0.00% 31%

15 4.7518 0.2909 1.00 0.00% 100%

20 0.8214 0.1928 1.00 0.00% 100%

Table 1. Average results for cardinality constrained problems.
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n p CPUTime CPUTime-Crisp Different Pareto CheckPareto ReachIdeal

30

2 0.0026 0.0030 1.00 0.00% 100%

3 0.0073 0.0024 1.00 0.00% 100%

4 0.0068 0.0022 1.00 0.00% 100%

5 0.0064 0.0022 1.00 0.00% 100%

6 0.0058 0.0021 1.00 0.00% 100%

7 0.0054 0.0021 1.00 0.00% 100%

8 0.0053 0.0021 1.40 0.00% 14%

9 0.0069 0.0028 1.60 0.00% 7%

10 0.0051 0.0020 1.00 0.00% 100%

15 0.0074 0.0013 1.60 0.00% 7%

20 0.0020 0.0004 1.40 0.00% 14%

324

2 0.0540 0.0300 1.00 0.00% 100%

3 0.1375 0.0511 1.20 0.00% 31%

4 0.1676 0.0604 1.40 0.00% 31%

5 0.1934 0.0561 1.40 0.00% 31%

6 0.1746 0.0389 1.60 0.00% 7%

7 0.2057 0.0332 1.60 0.00% 14%

8 0.1919 0.0412 2.00 0.00% 7%

9 0.2205 0.0462 2.20 0.00% 3%

10 0.2431 0.0587 2.00 0.00% 3%

15 0.4934 0.0659 1.80 0.00% 14%

20 3.6875 0.1615 2.20 0.00% 3%

402

2 0.0782 0.0332 1.20 0.00% 31%

3 0.1384 0.0502 1.00 0.00% 100%

4 0.3412 0.0583 1.20 0.00% 31%

5 0.4761 0.0589 1.20 0.00% 31%

6 0.2379 0.0451 1.40 0.00% 14%

7 0.2989 0.0483 1.20 0.00% 31%

8 0.2809 0.0685 1.20 0.00% 14%

9 0.1648 0.0409 1.20 0.00% 31%

10 0.2939 0.0410 1.40 0.00% 14%

15 0.6319 0.0483 2.00 0.00% 3%

20 0.4941 0.0867 1.80 0.00% 14%

500

2 0.1286 0.0456 1.20 0.00% 31%

3 0.5093 0.0550 1.20 0.00% 31%

4 0.7750 0.0805 1.20 0.00% 31%

5 0.7108 0.1182 1.20 0.00% 31%

6 0.2592 0.0785 1.00 0.00% 100%

7 0.1792 0.0585 1.00 0.00% 100%

8 0.1882 0.0729 1.00 0.00% 100%

9 0.3244 0.0522 1.20 0.00% 31%

10 0.3196 0.0648 1.80 0.00% 3%

15 0.2469 0.0610 1.00 0.00% 100%

20 0.6113 0.0561 1.20 0.00% 31%

708

2 0.4718 0.1827 1.00 0.00% 100%

3 8.7481 0.4953 1.00 0.00% 100%

4 43.5878 0.8488 1.00 0.00% 100%

5 12.1678 0.9080 1.00 0.00% 100%

6 11.4501 1.0463 1.00 0.00% 100%

7 20.8775 1.9400 1.00 0.00% 31%

8 6.3216 2.1380 1.00 0.00% 100%

9 34.5141 2.1440 1.40 0.00% 14%

10 8.4178 2.3144 1.20 0.00% 31%

15 1.9882 0.1593 1.20 7.69% 31%

20 0.2744 0.0929 1.00 0.00% 100%

818

2 0.5556 0.2972 1.00 0.00% 100%

3 32.1120 0.4418 1.25 0.00% 25%

4 54.7338 0.6886 1.25 0.00% 25%

5 33.4988 0.7135 1.25 0.00% 25%

6 34.0156 1.4136 2.25 0.00% 0%

7 54.7128 2.1214 1.50 0.00% 10%

8 12.9773 1.9467 1.50 0.00% 10%

9 26.0821 2.7770 1.75 0.00% 4%

10 13.0448 1.8998 1.50 0.00% 10%

15 4.1847 0.2182 1.25 20.00% 10%

20 0.5317 0.0965 1.00 0.00% 100%

Table 2. Average results for budgeted problems.
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n B %CoveredCrisp %CoveredFuzzy− %CoveredFuzzy %CoveredFuzzy+ #OpenFuzzy

30

2 66.18% 46.67% 52.19% 58.07% 1.3

3 71.85% 62.01% 68.16% 75.80% 2.9

4 76.05% 66.22% 73.09% 80.62% 3.8

5 79.34% 69.34% 76.56% 84.49% 4.8

6 82.08% 72.00% 79.56% 87.79% 5.8

7 84.28% 75.35% 83.33% 91.83% 7.0

8 86.47% 75.78% 84.68% 93.54% 8.0

9 88.48% 78.34% 86.40% 95.25% 8.8

10 90.31% 81.52% 88.30% 97.62% 10.0

15 97.81% 85.66% 96.93% 106.46% 14.8

20 100.00% 90.53% 100.00% 109.96% 18.2

324

2 21.71% 17.93% 20.08% 21.76% 2.0

3 28.77% 23.65% 26.54% 29.04% 3.0

4 35.30% 29.48% 33.13% 35.96% 4.0

5 41.54% 34.28% 38.51% 41.88% 5.0

6 47.74% 39.17% 43.48% 47.95% 6.0

7 52.83% 43.69% 48.62% 53.10% 7.0

8 57.54% 48.79% 54.35% 59.56% 8.0

9 61.92% 51.77% 58.01% 63.33% 9.0

10 66.00% 55.19% 61.88% 67.38% 10.0

15 82.64% 67.82% 75.63% 82.92% 15.0

20 93.46% 78.49% 87.71% 95.83% 20.0

402

2 19.39% 12.45% 13.64% 15.33% 1.6

3 27.61% 20.01% 22.13% 24.81% 3.0

4 34.23% 26.54% 29.13% 32.66% 3.7

5 39.60% 31.30% 34.58% 38.59% 4.6

6 44.96% 35.88% 39.36% 43.73% 5.5

7 49.70% 38.93% 42.64% 47.34% 6.2

8 54.41% 43.00% 47.24% 52.38% 7.2

9 58.28% 48.51% 53.39% 59.05% 8.5

10 61.86% 48.90% 54.70% 60.32% 9.2

15 77.01% 66.07% 72.83% 80.42% 14.5

20 87.86% 73.63% 81.83% 90.55% 19.2

500

2 15.73% 11.80% 13.28% 14.69% 1.9

3 22.07% 15.82% 17.76% 19.53% 2.5

4 28.37% 22.41% 24.88% 27.60% 3.6

5 33.40% 25.11% 28.06% 30.97% 4.2

6 37.74% 31.47% 35.15% 38.79% 5.6

7 41.92% 37.23% 41.01% 45.16% 6.8

8 46.06% 40.14% 44.64% 49.13% 7.9

9 49.77% 41.69% 46.55% 51.49% 8.4

10 52.95% 45.18% 50.20% 55.29% 9.5

15 66.28% 56.09% 62.44% 68.92% 14.5

20 76.51% 65.05% 72.42% 79.89% 19.3

708

2 52.21% 42.73% 47.24% 51.97% 2.0

3 67.25% 59.35% 65.70% 72.51% 3.0

4 79.46% 69.41% 76.74% 84.33% 4.0

5 85.87% 75.21% 83.20% 91.49% 5.0

6 90.15% 79.50% 87.94% 96.70% 6.0

7 93.35% 83.74% 92.53% 102.05% 7.0

8 96.40% 85.77% 94.91% 104.39% 8.0

9 98.29% 88.32% 97.69% 107.85% 9.0

10 99.66% 89.41% 98.95% 108.85% 10.0

15 100.00% 90.35% 100.00% 110.02% 14.6

20 100.00% 90.40% 100.00% 110.41% 19.1

818

2 43.30% 33.55% 37.19% 41.25% 2.0

3 57.27% 46.32% 51.50% 56.46% 3.0

4 69.75% 56.62% 62.89% 69.67% 4.0

5 79.88% 68.00% 75.38% 82.96% 5.0

6 84.54% 73.35% 81.15% 89.67% 6.0

7 89.15% 78.51% 86.77% 95.55% 7.0

8 92.70% 79.27% 87.99% 97.25% 8.0

9 95.68% 82.73% 92.09% 101.11% 9.0

10 97.38% 84.88% 94.20% 104.13% 9.3

15 100.00% 90.05% 99.92% 109.92% 14.6

20 100.00% 90.12% 100.00% 110.01% 19.2

Table 3. Average coverage results for cardinality-constrained problems.
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n p %CoveredCrisp %CoveredFuzzy− %CoveredFuzzy %CoveredFuzzy+ #OpenCrisp #OpenFuzzy

30

2 58.72% 48.40% 54.04% 58.40% 1.6 1.4

3 67.82% 57.13% 63.77% 69.03% 2.4 2.2

4 73.20% 62.22% 69.51% 75.20% 3.6 3.0

5 77.00% 65.98% 73.71% 79.83% 4.6 4.0

6 79.78% 69.02% 77.00% 83.34% 5.2 5.0

7 82.41% 71.57% 79.89% 86.41% 6.2 6.0

8 84.35% 74.49% 82.97% 89.54% 7.0 7.0

9 86.70% 75.85% 84.01% 91.29% 8.3 8.0

10 88.48% 77.43% 86.58% 93.70% 9.0 9.0

15 96.53% 85.45% 94.64% 102.19% 14.0 14.0

20 100.00% 87.52% 99.06% 107.74% 18.0 17.6

324

2 14.00% 11.73% 12.99% 14.27% 1.4 1.0

3 22.98% 19.09% 21.13% 23.04% 2.8 2.0

4 28.82% 25.38% 28.13% 30.79% 3.7 3.0

5 35.30% 31.10% 34.61% 38.19% 4.0 4.0

6 41.54% 35.74% 40.20% 44.38% 5.0 5.0

7 47.74% 41.65% 46.58% 51.50% 6.0 6.0

8 52.83% 45.94% 51.22% 56.46% 7.0 7.0

9 57.54% 49.56% 55.29% 61.03% 8.0 8.0

10 61.92% 53.45% 59.55% 65.75% 9.0 9.0

15 79.93% 69.19% 76.58% 84.74% 14.0 14.0

20 91.50% 78.52% 87.55% 96.55% 19.0 18.3

402

2 13.02% 9.05% 10.24% 11.31% 1.9 1.1

3 20.05% 16.82% 18.53% 20.41% 2.4 2.0

4 28.08% 23.17% 25.91% 28.31% 3.7 3.0

5 35.63% 28.45% 31.74% 34.68% 4.7 4.0

6 39.62% 33.68% 37.26% 41.04% 5.0 5.0

7 45.02% 37.07% 40.67% 44.89% 6.1 6.0

8 49.70% 41.08% 45.36% 49.99% 7.0 7.0

9 54.41% 44.43% 49.24% 54.22% 8.0 8.0

10 58.28% 49.44% 54.70% 60.21% 9.0 9.0

15 74.29% 62.30% 68.87% 75.95% 14.0 14.0

20 86.13% 71.87% 79.54% 87.51% 19.0 19.0

500

2 12.08% 7.66% 8.34% 8.93% 2.0 1.2

3 18.84% 13.90% 15.15% 16.67% 2.9 2.0

4 23.75% 19.02% 20.89% 23.00% 3.8 3.0

5 28.37% 23.90% 26.32% 29.12% 4.0 4.0

6 33.40% 28.88% 31.84% 35.18% 5.0 5.0

7 37.74% 33.12% 36.58% 40.55% 6.0 6.0

8 41.92% 36.66% 40.58% 44.95% 7.0 7.0

9 46.06% 39.52% 43.73% 48.51% 8.0 8.0

10 49.77% 42.91% 47.49% 52.47% 9.0 9.0

15 63.83% 54.42% 60.21% 66.59% 14.0 14.0

20 74.82% 64.52% 71.82% 79.12% 19.0 18.9

708

2 48.16% 38.25% 42.22% 46.55% 2.0 2.0

3 62.08% 50.71% 56.07% 61.75% 3.0 3.0

4 73.83% 60.07% 66.49% 73.22% 4.0 3.8

5 81.76% 68.54% 75.96% 83.53% 4.8 4.6

6 86.69% 74.14% 82.19% 90.42% 5.6 5.2

7 90.45% 80.11% 88.38% 97.26% 6.8 6.7

8 93.49% 81.54% 90.44% 99.51% 7.2 7.0

9 96.40% 84.49% 93.54% 103.08% 8.0 8.0

10 98.29% 87.26% 96.80% 106.28% 9.0 9.0

15 100.00% 90.56% 100.00% 110.04% 14.0 14.0

20 100.00% 90.14% 100.00% 110.24% 18.0 18.8

818

2 37.08% 27.46% 30.59% 33.57% 1.8 1.5

3 51.64% 41.94% 46.81% 51.72% 2.9 2.8

4 64.17% 49.68% 55.60% 61.06% 3.9 3.2

5 74.40% 59.90% 66.91% 73.58% 4.9 4.1

6 80.09% 68.74% 76.58% 84.24% 5.5 5.0

7 84.94% 74.48% 83.04% 91.58% 6.5 6.0

8 89.15% 78.60% 87.65% 96.60% 7.0 7.0

9 92.72% 81.12% 90.26% 99.34% 8.3 8.0

10 95.68% 84.69% 94.43% 104.11% 9.0 9.0

15 100.00% 89.53% 99.71% 109.46% 14.0 14.0

20 100.00% 89.76% 100.00% 110.00% 19.0 18.5

Table 4. Average coverage results for budgeted problems.
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