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Abstract. In this paper we present a Mixed Integer Nonlinear Programming model that we

developed as part of a pilot study requested by the R&D company Metrolab R©1 in order to
design tools for finding solutions for line planning and timetable situations in automated urban

metro subway networks. Our model incorporates important factors in public transportation

systems from both, a cost-oriented and a passenger-oriented perspective, as time-dependent
demands, interchange stations, short-turns and technical features of the trains in use. The

incoming flows of passengers are modeled by means of piecewise linear demand functions which

are parameterized in terms of arrival rates and bulk arrivals. Decisions about frequencies, train
capacities, short-turning and timetables for a given planning horizon are jointly integrated to

be optimized in our model. Finally, a novel Math-Heuristic approach is proposed to solve
the problem. The results of extensive computational experiments are reported to show its

applicability and effectiveness to handle real-world subway networks.

1. Introduction

In this paper, we propose a model for line planning and timetabling on general urban sub-
way transportation systems. This study was originated by a real-world problem proposed by
Metrolab R©, a French R&D company, dealing with the line planning and timetabling of trains of
existing subway networks. It was a pilot experience to automatize the decision making process,
at the tactical and operational level, of a small section of the Paris subway network.

The development of flexible tools to control, automatically, a transportation system according
to a set of indicators of its service quality may have a considerable impact in its efficiency and
usefulness. The quality perception of a public transportation system from a customer’s point of
view is highly dependent of its reliability, comfortability and effectiveness when comparing with
alternative transportation means. If just poor-quality connections are offered or the quality-price
relationship does not fulfil the passengers’ expectations, they may decide to use alternative trans-
portation means. Therefore, the quality of a public transportation system, from the passengers’
point of view, is a key objective in its design and management, besides infrastructure constraints,
operational limitations or budget considerations [12].

The existing literature on line planning is very extensive (see e.g., [11, 12, 25] and the references
therein), including different models which can be classified according to the decisions covered
(determination of train routes, frequency setting, or both), infrastructure and operational as-
pects, objective functions and the way in which passengers’ decisions are taken into account in
the decision making process. For instance, in [12], line planning models are classified with respect
to their objective functions into models with cost-oriented or with passenger-oriented objective
functions. Our model will consider both points of view in an attempt to find an equilibrium
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between these conflicting objectives which, as mentioned in [14], is an important challenge in a
public transportation system.

However, building an effective model is much more complex than selecting the appropriate
nature of the objective function. The correct delimitations of the considered features in the
context of the transportation system or in the set of customers served by this system is a very
important phase in the actual modeling. Often, an initial line planing must be re-engineered
motivated by changes on costumers’ flows induced by changes in passengers’ route choices, [12].
This gives rise to a bilevel optimization problem with a line planning problem on the upper level
and a passenger’s route choice problem on the lower level. Moreover, the existence of several
decision-makers is not the only difficulty of this problem. There exist uncertainties in the number
of passengers that must be served (demands), in the origin-destination pairs that customers want
to go across or in the times needed to cover the network links due, for instance, to machine failures
or other incidents. In this situation it seems hard to integrate all these elements in a suitable
optimization model.

Usually, some simplifications must be assumed in order to obtain operational solutions for
realistic situations. The usefulness of the model will be strongly conditioned by these assump-
tions. Having a valid model for a wide range of scenarios might be a lofty target but one worth
aiming for. The resulting approximation can be seen not only as a model to optimize the ex-
isting resources in a given transportation system but also as a what-if tool to make rational
decisions. For instance, it can be used to check the implementation of possible modifications in
the structure of the existing network (adding stations, new connections, . . . ) or in the conditions
(demand variation, service disruptions, . . . ) under which the transportation system is working
at present.

Line planning is only one of the planning process’s stages. Indeed, following [11, 21, 26], the
planning process in public transportation includes several phases that usually are sequentially
executed in the following order:

(1) network design, where the stations, links and routes of the lines are established,
(2) line planning, specifying the frequency and the capacity of the vehicles used in each

line (line concept, [12]),
(3) timetabling, defining the arrival/departure times and
(4) scheduling, in which vehicles and/or crews are planned.

The first phase, namely network design, is done at the strategic level and implies a high cost (see
e.g., [3]). Moreover, the remaining steps involve decisions at the tactical and operational levels
which are conditioned by that design. Thus, it seems appropriate to assess different designs by
means of a what-if analysis based on the efficiency of the system under a given scenario. In that
case, after initializing with a reasonable design, the procedure could optimize the efficiency of the
transportation system using tactical/operational decisions. This may reveal possible weaknesses
of the current design and, after fixing some of them, will give rise to a new design. The process
could be repeated until a compromise transportation design is found.

In addition to the literature on line planning commented above, one may also find a rich
literature on timetabling and scheduling (see e. g. [1, 7, 8, 19, 27] for timetabling models
and [6, 10, 28] for scheduling models). Timetabling models are usually classified according to
the capacity of the transportation system or the requirements of passengers. Regarding to the
scheduling literature, models can be classified into single and multiple depot frameworks [4].
Besides, we can find periodic and time-dependent timetabling and scheduling models and many
other variants depending on the considered constraints. Considerable effort has also been made
to analyze the practical effects of the different elements or features covered by these models. For
instance, as mentioned in [22], periodic timetables easily allow passengers to remember the exact
departure times at stations but, in general, they are not fully sensitive to time-varying passenger
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demands, which could result in long waiting times and reduced service reliability, particularly
under irregular over-saturated conditions.

Once the framework of the transportation system has been delimited, the resulting model
should be optimized. However, as pointed out in [26], going through the above-mentioned stages
of the planning process in a sequential way, often leads just to suboptimal solutions. Recent
research (see [13, 14, 18, 24, 26]) is increasingly oriented towards integrated planning in which
two or even more of these planning stages are simultaneously addressed. These integrated opti-
mization models are frequently superior to those optimizing sequentially the considered stages,
as it has been recognized in the literature (see e.g., [26] and the references therein).

In this paper we propose a new integrated model in which line planning and timetabling are
simultaneously optimized using a combination of cost- and passenger-oriented objective function.
In our model, time-dependency on demands is considered in addition to two other elements
that, as far as we know, have only been addressed separately in the literature: short-turns and
interchange stations.

Short-turning is a tactical decision for which some trains can perform short cycles in order to
increase frequency in specific sections of a line. In general, due to their analytical complexity, the
approaches to manage short-turnings in the context of railways planning are based on particular
cases and there are no general models that can be applied without modifications to every situ-
ation [5]. Besides, most of the literature analyzing short-turning in a railway context is limited
to a single two-way transit line [5, 9, 20, 29]. Our model incorporates decisions concerning the
activation of short-turns simultaneously in several lines of the network.

On the other hand, interchange or transfer stations are shared by several lines in the system
allowing passengers to change from one to another line. Papers dealing with interchange stations
(see e.g. [15, 16, 30]) usually aim for minimizing the total transfer waiting time of passengers by
synchronizing train arrival times at transfer stations. We will manage here the effective flows of
passengers at the interchange stations and compute the corresponding effects both in the quality
of the service and in technical constraints, as those related to the capacities of the trains.

The final aim is to model a real system, inspired by one initially proposed by Metrolab R©, using
its more relevant features whilst its computational tractability is preserved. This is an important
challenge taking into account the combinatorial, stochastic, multilevel and multiobjective nature
of the problem. The resulting outcome is a Mixed Integer Second Order Cone Programming
model, which can be solved using off-the-shelf optimization solvers, but only for limited sizes.
For larger sizes we propose a Math-Heuristic approach in which the system is decoupled into
different lines. Afterward, each subsystem is optimized individually but including in the input
data the flows of passengers generated after optimizing other lines. The process is repeated like
in a block coordinate descent procedure (see e.g., [2]) until a given stoping rule is verified.

The remainder of this paper is organized as follows. Section 2 deals with a detailed description
of the optimization problem and its main elements. In Section 3 we present the Mathematical
Programming formulation of the problem. The demand function modelling how the flow of
passengers entering into certain stations of a line changes according to the effects of the other
lines or due to external factors is detailed in Section 4. The usefulness of the proposed model is
illustrated in Section 5 with a case study using real data on a section of the Paris subway provided
by Metrolab R©. Our Math-Heuristic approach is proposed in Section 6 and the corresponding
computational results, including its comparison with the exact method, are reported in Section
7 using several network topologies adapted from the literature. The paper ends with a section
where some conclusions and future extensions of the model are outlined.
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2. Problem description

Let us assume that the technical features of a public transportation network, which is a part
of a complex underground train system, are known. Our goal is to model the problem of how to
operate different metro lines on this network according to a set of technical requirements and a
given structure of the demand requesting for this service. Suppose that a set of routes for the
potential lines (lines pool) and a set of interchange stations are specified. Furthermore, some
other factors involved in the system performance such as passenger flows, set of possible train
capacities, maximum number of allowed trips in a given line during the planning horizon, demand
fluctuation (e.g., rush/off-peak hours) or stopping time windows, amongst others, are assumed
to be also available. The goal is to model such a system using its more relevant features whilst
its computational tractability is preserved. In the description of our approach we will consider
three main blocks: input data, feasible actions and assessment of a particular solution together
with some additional specifications of our model.

2.1. Input data. In addition to the input network, including the topological route map and the
interchange stations, the main block of input data corresponds to the passenger flow amongst
the considered set of stations. Obviously, the number of passengers awaiting in a specific station
for the next train which connects to a given destination is a stochastic process. Furthermore,
the stochastic processes corresponding to the set of considered stations are interdependent due
to the flow relationships amongst the stations which, in addition, may change over time. In our
model, given that we deal with a heavily congested subway line, these stochastic processes will
be replaced by average rates of the number of passengers. The dynamic dependence of these
processes on time should be preserved in some way in the optimization model since it is one of
the relevant elements in order to obtain realistic operating solutions. We will do it through a
function measuring the intensity of the demand.

In our framework, we assume that two main situations affect to the passengers flows: tran-
sitions between stations or lines and arrival of external demand functions. The first one refers
to the behaviour of the passengers with respect to the mobility pattern. These data fix an as-
signment for the destination of the passengers catching a train in a given station, what is known
in the literature as line planning with route assignment, [12]. The alternative approach of line
planning with route choice seems to be more appropriate just in those transportation systems
with high density of connections (with alternative paths between two given locations) and low
trip frequency. However, this is not the case in our model since these two features rarely appear
in underground train systems.

We will use an Origin-Destination (OD)-matrix per line having as entries the proportions of
passengers moving between pairs of stations of the line and also a set of values quantifying the
proportion of passengers which want to change from one metro line to another in each one of the
transfer stations. These proportions may be considered as estimations of the probabilities with
which a passenger moves through the network and could be dependent on the dynamic nature
of the transportation system. Following [26], in order to model the passengers’ flows, OD-data
gives rise to more realistic applications than those based on traffic loads since the paths followed
by passengers depend strongly on the line concept. As observed by several authors ([12, 26]),
the optimization models derived from the management of OD-data are often harder to be solved
numerically, and thus, approximated ad-hoc algorithms need to be used to deal with problems
of realistic sizes.

The second concept, the arrival of external demand functions, refers to the intensity of use
of the transportation network. The external demand models the incoming flow of passengers
entering to the system from outside during the planning horizon. These functions determine the
relative importance, in the overall planning cost, of the stations used to access the system and
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it may change depending on time. Also, rush hours at given time periods, irregular weather
conditions, or the celebration of events at certain places close to stations may provoke increasing
or decreasing of the incoming flow of passengers taken into account in our model.

These external demand functions, together with the OD-data corresponding to movements
between pairs of stations and the proportions of transfer passengers, give rise to a model having
time-dependent passenger flows. Time-dependent flows are an appropriate feature of a realistic
approach for traffic planning and, as pointed out in [26], at present, there is not much research
literature covering integrated optimization planning models under these conditions.

2.2. Feasible actions. In our model, the line concept design is specified by choosing the oper-
ating frequencies and the train capacities for each line considered in the lines pool. Furthermore,
our line concept design allows short-turning in some lines, i.e., the possibility of activating, for
some or all the trains, and at certain time periods, short cycles, in order to increase the frequency
in specific (consecutive) stations suffering from intensive demand. This situation is typical in
lines which connect distant residential areas with the city center or economic centers.

In the integrated planning model, the line concept design is optimized together with their
corresponding timetable. Both elements define the feasible solutions of the problem once a set
of technical constraints, involving passenger flows and leaving/arrival times, is specified.

The line concept design will be the main source of discrete decision variables for the formulation
of our problem. As, for instance, the selection, among a finite set of capacities for the trains.
On the contrary, the actual number of trips of a given line will be modeled using a finite set
of replicas of continuous variables corresponding to potential timetables. On the basis of these
decision variables a number of additional auxiliary variables will be considered in the optimization
model in order to control the times in which different events happen at each station during the
planning horizon. In our model, unlike most of the approaches deriving optimal timetables in
transportation systems, the departure times are not discretized and the period of time elapsing
between consecutive train departures is not constrained to be constant. Thus, it provides more
flexible decisions as well as timetables sensitive to the changeable conditions in the passengers’s
flow during the planning horizon, turning out, in general, in an aperiodic timetabling.

Different train speeds are not taken into account in our line concept design because the
pilot proposal by Metrolab R© only considered constant and fixed speeds between each pair of
consecutive stations. Nevertheless, continuous variables modeling the speed of a train between
two consecutive stations could be easily added to our model as explained in Remark 1.

2.3. Assessing a planning solution. As commented above, due to the multi-objective nature
of the problem, one of the most difficult modeling issues is that of assessing a feasible solution
(line concept+timetable). Maintenance/operational planning costs are usually easy to handle as
a part of the objective function. However, in order to consider also the passenger-oriented nature
of the objective, the cost induced by the quality of the service provided by the system should
be included in the objective function. This will be incorporated into the model quantifying the
cost of unmet (non-served) demand, that is, passengers who cannot take a train due to lack
of capacity. Non-served passengers contribute a given amount, in terms of costs, due to their
confidence loss in the transportation system, their balking rate or a combination of these two
and some other factors. Obviously, calibrating these costs is not an easy task, but it may be
partially handled by managing a finite set of cost estimates and solving the problem for each one
of them in order to evaluate the influence of these hard-to-calibrate parameters in the proposed
solution.

2.4. Specifications of our model. In the following we list the assumptions that are imposed
to derive a suitable Mathematical Programming formulation for our model.
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Planning horizon:: Our model considers a continuous time interval in which all the
events must start and decisions occur. The range of this interval depends on the data
collection accuracy and with-in-day variability of the demand changes. This planning
horizon is fixed a priori but, as mentioned in Remark 2, our model allows to join two
consecutive planning horizons by passing data about numbers of passengers and ar-
rival/departure times obtained from an optimal solution on a given planning period as
input data for the next one.

One direction trips:: We assume that each line in the pool operates only in one direction,
from a given line-header station to the final one. Usual round-trip lines are modeled as
two symmetric lines by interchanging the order of the stations. A trip consists in making
the complete walk along all the ordered stations of a given line, from the head to the
final station. Thus, a physical round-trip starting and ending at the same station will
be given by two lines sharing the stations but in the opposite order.

Short-turns:: We consider that specific sections of consecutive stations in certain lines
are allowed to be activated in some of the trips.

Interchange stations:: We consider that the lines in the lines pool may share common
interchange stations where some of the passengers change of line to go to their final
destination.

Train capacities:: The model assumes that a finite set of admissible capacities for the
trains operating a line is given.

Safety interval :: A minimum security time window between consecutive trips in any line
is established.

Maximum number of trips:: We assume, w.l.o.g., that the maximum number of possi-
ble trips in each line is given beforehand. Note that an upper bound of this maximum
number can be obtained taking into account the range of the planning horizon and the
safety interval. In our formulation, we resort to a set of decision variables controlling
the time in which different events happen. These variables must be replicated as many
times as the maximum number of trips, although only some of those trip-variables are
activated and then represent actual trips. Hence, the size of the formulation strongly
depends on this maximum number. The idea is to consider that the potentially variable
number of trips of the line concept is fixed to the maximum number although, in fact,
some of them are really fake trips. This trick will ease the task of building constraints
to ensure non-overlapping events and the safety interval between consecutive trips in the
stations of a given line.

Piecewise linear cumulative incoming demand :: We model the accumulated number
of passengers arriving to each station up to a given instant during the planning horizon
by the so-called demand function. With this function we manage variable arrival rates
during the planning horizon and bulk arrivals due to special events, like for instance
the end of a football match in a close location, the arrival of passengers coming from
another transportation mean or, in the interchange stations, the arrival of passengers
coming from another line of the subway network. As proposed by Metrolab R© for its
pilot experience, we consider that this function is a piecewise linear function of time
(further details are given in Section 4).

Figure 1 illustrates some of the considered features of the networks under study. There, we
represent by circles or squares the nodes corresponding to the stations of two subway lines. An
interchange station common to two lines is marked with a black square. We have also included
a possible short-turn in the horizontal line covering a set of four consecutive squared stations
(drawn as a dashed line in the picture).
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Figure 1. Representation of a sample network in our framework.

3. MINLP Formulation

In this section we provide a Mathematical Programming formulation for the problem described
in Section 2. First of all, we are given an input network, like the one depicted in Figure 1,
including the topological route map and the stations, some of them being interchange stations
and the lines pool L defined over this network. In addition, short-turning decisions are allowed
in some lines of the lines pool. These decisions always concern a set of given consecutive stations
of those lines. In what follows and when no confusion is possible, we will refer to both, the set of
consecutive stations and the trip concerned by a short-turning decision as a short-turn. On the
other hand, trips trough the full-length lines will be referred as whole trips. In order to introduce
the model we start by defining the set of parameters describing the remainder of the input data
as well as the decision variables used to identify a feasible solution.

3.1. Parameters. The input parameters for our model are the following:

• [0, T ]: Planning horizon in which trains start their journeys at a given head of line station.
Note that a train may start its last journey on [0, T ] while its last stop may occur in a
time instant t > T .

• L: Set of lines in the network (lines pool). As mentioned above, round-trip lines are
considered as two different lines sharing the stations but traversed in opposite directions
(rigorously speaking, the stations represent platforms of the corresponding line). Each
one of the lines is assumed to be described by its node stations and its directed connec-
tions between consecutive stations. Additionally we will denote by LS the set of lines
containing a short-turn and by LNS the remainder (those in which none of its proper
subsets of stations can be activated as short-turns). Clearly, L = LS ∪ LNS.

• N` = {1, . . . , n`}: Set of stations of line ` ∈ L. Stations are assumed to be ordered in its
travelling direction. Observe that if the lines ` and `′ correspond to the same round-trip
line but traversed in opposite directions they have the same number of stations (n` = n`′)
and station i ∈ ` represents the opposite platform to station n`′ − i+ 1 ∈ `′.

Additionally, for each line ` ∈ LS we will denote by S` the set of stations in the
(unique) short-turn, being 1S`

the first station of the short-turn and nS`
the last one.

In order to present a clearer Mathematical Programming model, we will also denote

from now on by S =
{

(i, `) : i ∈ N`, ` ∈ LNS
}
∪
{

(i, `) : i ∈ N`\S`, ` ∈ LS
}

, i.e., those

stations which are not part of the available short-turns.
• d`i : Distance (measured as travel time) between the stations i and i+1 of line ` ∈ L. Recall,

as mentioned in Section 2, that we assume that the speed of the trains operating between
consecutive station i and i+ 1 is fixed, and thus, this distance is trip independent.
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• e`i : Stopping time for any train at station i of line ` before leaving to station i+ 1. This
value represents a time window to perform different operations as the unload/load of
passengers from/to the train or the fine-tuning of the train. Without loss of generality,
we also consider that the stopping times are trip independent.

• t17→1Sl
: Distance (measured as travel time plus stopping time at the last and intermediate

stations) between the head of line station and the first station of the short-turn for line
l ∈ LS. Note that, this parameter is given by the following expression:

t17→1Sl
=

1Sl
−1∑

r=1

(dlr + e`r+1). (1)

• IS`: Minimum safety time interval between consecutive trips in a given line ` ∈ L.
• K` = {1, . . . , k̄`}: Set of trips in line ` ∈ L. It is worth noting that the exact number

of trips in a line is a decision of the line planning process and which is not known
beforehand. In fact, some trips will not be actually used on the planning. We will refer
to them as fake trips. Note also that the maximum number of possible trips in the line
` ∈ L can always be upper bounded by

⌈
T
IS`

⌉
+ 1. Typically the value k̄` will be smaller

than this bound and should be estimated on the basis of the technical specifications of
the network.

• Q = {q1, . . . , q|Q|}: Admissible capacities for trains operating in all the lines. In some
cases, a single capacity profile is allowed while in some others a base capacity is available
and, by adding extra wagons, it can be doubled, triplicated, etc.

We also need the proportion of passengers, which, not being able to catch the train in a given
attempt, still insist on using the system and wait for the next train. In addition, our model
corresponds to a line planning with route assignment in which the OD-matrix, whose entries
describe the proportions of passengers moving among stations of each line is given.

• α: Proportion of passengers that cannot get on a train because of lack of capacity and
await for the next one (proportion of persisting passengers). This parameter is assumed
to be independent of stations and lines. It can also model the probability that a passenger
gives up from getting on a crowded train and awaits for the next one.

• p`ij : Proportion of passengers awaiting at station i to go to the station j using the line
` ∈ L. Note that this parameter can assume positive values only if i < j, i.e., if station
i is previous to station j.

The following parameters will be used to assess a given planning solution. As explained in
Section 2, we propose the aggregation of the maintenance/operational planning costs together
with a quantification of the social cost whose purpose is to measure the quality of the service
provided by the system. Obviously, the correct estimation of these costs is fundamental for a
meaningful model.

• b`q: Fixed cost for starting a whole trip at line ` ∈ L with capacity q ∈ Q. Usually,
the larger the capacities, the higher the fixed costs on the trips. These costs model the
consumption of resources to prepare a train for a new trip, the energy spent in the trip,
the fixed costs of the staff needed to control the train, etc.

• b`Sq: Fixed cost for starting a short-turn at line ` ∈ LS with capacity q ∈ Q. As in the
previous cost, larger capacities and lengths of the short-turns usually involve higher costs
on the trips. These fixed costs are usually smaller than the corresponding ones for whole
trips.

• γ`ij : Unitary profit for transporting a passenger from the station i to the station j of the
line ` ∈ L. It represent the cost of the ticket paid by a single passenger to use the service
for a given origin-destination trip.
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• µ1: Unitary penalty for passengers who cannot get on the first arriving train due to its
limited capacity and still insist on using the system. This parameter is an estimation of
the loss supported by the service for unsatisfied passengers that still keep waiting to use
the subway service.

• µ2: Unitary penalty for passengers who give up using the network and leave the system
after they cannot get on the first arriving train due to its limited capacity. This parameter
is an estimation of the loss supported by the service for unsatisfied passengers that are
lost by the system.

The above set of parameters are listed in a more compact form in Table 1

Parameter Description

[0, T ] Planning horizon.
L Lines of the network (Lines pool).
LS Lines enabling short-turns.
LNS Lines without short-turns.

N` = {1, . . . , n`} Stations of line ` ∈ L.
S` = {1S` , . . . , nS`} Stations in the short-turn of line ` ∈ LS.

S Stations not affected by short-turns.

d`i Distance (measured as time) between stations i and i+ 1 of line ` ∈ L.

e`i Stopping time that a train spends in the station i of the line ` ∈ L.
t1 7→1Sl

Distance (measured as time) between the head of line station and the
first station of the short-turn for line ` ∈ LS.

IS` Minimum safety time interval between consecutive trips, for line ` ∈ L.
K` = {1, . . . , k̄`} Set of trips in line ` ∈ L, some of them being fake trips.
Q = {q1, . . . , q|Q|} Admissible capacities for trains operating in all the lines.

p`ij Proportion of passengers moving between stations i and j of line ` ∈ L.
α Proportion of persisting passengers.

b`q Fixed cost for starting a whole trip at line ` ∈ L with capacity q ∈ Q.

b`Sq Fixed cost for starting a short-turn at line ` ∈ LS with capacity q ∈ Q.

γ`
ij Unitary profit for transporting a passenger from the station i to the

station j of line ` ∈ L.
µ1 Unitary penalty for persisting passengers.
µ2 Unitary penalty for passengers who give up using the system.

Table 1. Parameters of the model.

3.2. Decision variables. The following set of decision variables are used in our Mathematical
Programming model:

• Continuous Variables:
– tk`1 : Departure time from the initial station of line ` ∈ L at its k-th trip, k ∈ K`.

Since the travel time between consecutive stations and the stopping time at each
station are fixed, the departure time from the initial station of a line will be the
reference time to calculate the departure time from the rest of stations of the line.

It is worth mentioned that we will force any fake trip to operate on the line at the
same time as the previous true trip. Thus, the departure time from the initial station of
the line of a fake trip must coincide with the departure time from the initial station of
the previous true trip and therefore, the departure time from the rest of stations must
also coincide. Note also that if ` ∈ LS some of its trips may be short-turns. When
a short-turn is activated the stations not affected by the short-turn are considered as
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nodes of a fake trip, being the departure times from these stations fixed to the ones of
the previous true whole trip. In order to avoid infeasible solutions due to inconsistent
times relating departure times in consecutive stations (in and out the short-turn) the
following continuous variables are needed.
– wk`: Difference between the actual departure time from the first station of the short-

turn of the k-th trip, k ∈ K`, of line ` ∈ LS and the time when it should depart
from this station taking into account its departure time from the initial station of
the line. Note that if the k-th trip is a whole trip then, wk` = 0.
Note also that in the definition of these variables we are implicitly assuming that the
initial station of the line is not part of the short-turn. If this occurs, we need to take
as reference time the departure time from any other station out of the short-turn.

For modeling purpose we need to distinguish between the flow of passengers that get
on a train that performs a whole trip and the flow of passengers that get on a train that
only performs a short-turn. Note that the first one is defined for any line of the lines
pool whilst the second is only defined for those lines containing a short-turn.
– fk`i : Flow of passengers captured in the station i ∈ N` by the train that covers the

k-th trip of the line ` ∈ L, being k ∈ K` a whole trip.
– gk`i : Flow of passengers captured in the station i ∈ S`\{nS`

} by the train that covers
the k-th trip of the line ` ∈ LS, being k ∈ K` a short-turn.

Note that the k-th trip of a line ` ∈ LS is either, a whole trip or a short-turn. Thus, if
gk`i > 0 then, fk`i = 0 and viceversa. Furthermore, if the k-th trip is a fake trip for line
` ∈ LS (resp. ` ∈ LNS), then gk`i = 0, for all i ∈ S`\{nS`

} and fk`i = 0 for all i ∈ N`
(resp. fk`i = 0 for all i ∈ N`).

• Binary Variables:
– The decisions about the capacities of the trains at each trip are modeled using the

following variables:

yk`q =

 1 if the k-th trip of line ` is a whole trip
with capacity q

0 otherwise,
k ∈ K`, q ∈ Q, ` ∈ L.

yk`Sq =

 1 if the k-th trip of line ` traverses every
station of the short-turn S` with capacity q

0 otherwise,
k ∈ K`, q ∈ Q, ` ∈ LS.

Note that if the k-th trip of line ` ∈ LS is a short-turn with capacity q then, yk`Sq = 1

and yk`q = 0. On the other hand, if the k-th trip of line ` ∈ LS is a whole trip with

capacity q (yk`q = 1), the train traverses all the stations of the line and, in particular,

the stations of the short-turn, and then, yk`Sq = 1. So, we have the following relationship
between the two sets of variables:

yk`q ≤ yk`Sq k ∈ K`, q ∈ Q, ` ∈ LS. (2)

Observe that we can detect whether the k-th trip is a fake trip for line ` ∈ LS (resp.
` ∈ LNS) by checking if

∑
q∈Q y

k`
Sq = 0(=

∑
q∈Q y

k`
q ) (resp.

∑
q∈Q y

k`
q = 0).

• Auxiliary Variables: A set of auxiliary variables, computed from the previous ones, is
considered in order to ease the reading of our Mathematical Programming formulation.
– tk`i : Time instant in which a train departs from station i at the k-th trip of line ` ∈ L.

This value can be obtained by adding the travel times between consecutive stations
plus the stopping times at the traversed stations. Thus, this time is given by the
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following expressions:

tk`i = tk`1 +

i−1∑
r=1

(d`r + e`r+1), i > 1, (i, `) ∈ S, k ∈ K`, (3)

tk`i = tk`1 +

i−1∑
r=1

(d`r + e`r+1) + wk`, i > 1, i ∈ S`, k ∈ K`, ` ∈ LS. (4)

Expressions (3) allow us to appropriately define our auxiliary variables tk`i by up-
dating the time in which a train starts its journey at the first station of the line to
the time spent until it leaves station i for stations outside a short-turn. Equations
(4) allow us to compute the arrival time of a train to any station of the short-turn.
As mentioned before, trips that only cover stations in the short-turn are considered
as fake trips for the stations which are not part of the short-turn and their corre-
sponding departure times are supposed to be the same as the times of the previous
trip. Variables wk` permit to fit departure times of the stations in each short-turn
trip. These variables will take value 0 if the train cover the complete line.

– D`
i (t

k`
i ): Number of passengers accumulated at station i of line ` ∈ L from the origin

of the planning horizon up to time tk`i . This number is given by a function of the
time tk`i and takes into account the external arrivals and also the passengers arriving
to the station to change to another line. As mentioned above, a complete description
of this demand function is given in Section 4.

– hk`i : Excess of passengers that where not able to get on the train at station i of the
k-th trip of line ` ∈ L because a lack of capacity of the train. To compute this
variable we distinguish between whole trips in any of the pool of lines and short-
turn trips in those lines containing a short-turn. In the last case we assume that
the passengers catching a short-turn train with destination to a station outside the
short-turn get-off from the train in the last station of the short-turn to catch a whole
trip train of the same line. Taking into account these assumptions, the excess of
passengers can be computed as follows:

h1`
i = D`

i (t
1`
i )− f1`

i , for (i, `) ∈ S, (5)

h1`
i = D`

i (t
1`
i )− f1`

i − g1`
i , for i ∈ S`\{nS`

}, ` ∈ LS, (6)

h1`
i = D`

i (t
1`
i )− f1`

i +

i−1∑
r=1S`

n∑̀
j=i+1

prjg
1`
r , for i = nS`

, ` ∈ LS, (7)

hk`i = D`
i (t

k`
i )−D`

i (t
(k−1)`
i ) + αh

(k−1)`
i − fk`i , for (i, `) ∈ S, k = 2, . . . , k̄`, (8)

hk`i = D`
i (t

k`
i )−D`

i (t
(k−1)`
i ) + αh

(k−1)`
i − fk`i − gk`i ,
for i ∈ S`\ {nS`

}, k = 2, . . . , k̄`, ` ∈ LS, (9)

hk`i = D`
i (t

k`
i )−D`

i (t
(k−1)`
i ) + αh

(k−1)`
i − fk`i +

i−1∑
r=1S`

n∑̀
j=i+1

prjg
k`
r ,

for i = nS`
, k = 2, . . . , k̄`, ` ∈ LS. (10)

In the first trip, the excess of passenger is computed by subtracting to the demand
the flow of passengers already caught by the train (equations (5)-(7)). For modeling
the flow of caught passengers we take into account in (6) that the trip could be either,
a whole trip (f1`

i ) or a short-turn (g1`
i ). In the special case of the last station of the

short-turn, one needs to add to the excess of passengers, those that get-off from a



Line Planning and Timetabling in Subway Networks 12

train of a short-turn trip to catch a train of a whole trip of the same line (equations
(7)). For the rest of the trips (equations (8)–(10)), we take into account the demand
accumulated after the previous trip plus the excess of persisting passengers of the
previous trip.

• Semicontinuous Variables: We also consider a set of semicontinuous variables collect-
ing the excess of passengers only for true trips:

xk`i =

{
hk`i if k is a true trip for station i of line `
0 otherwise,

k ∈ K`, i ∈ N`, ` ∈ L.

This set of variables will allow us to account in the objective function for the actual
excess of passengers, i.e., the ones associated to true trips.

Table 2 summarizes the set of above mentioned variables.

Variable Description

tk`1 Departure time from the initial station of line ` ∈ L at its k-th trip.

fk`
i Flow of passengers captured in the station i by the train that covers the k-th trip of the line

` ∈ L, when k is a whole trip.

gk`i Flow of passengers captured in the station i ∈ S`\{n`} by the train that covers the k-th trip
of the line ` ∈ LS, when k only covers the short-turn stations.

wk` Difference between the actual departure time from the first station of the short-turn of the
k-th trip of line ` ∈ LS and the time when it should depart from this station taking into
account its departure time from the initial station of the line.

yk`q

{
1 if the k-th trip of line ` ∈ L is a whole trip with capacity q
0 otherwise

yk`Sq

{
1 if the k-th trip of line ` ∈ LS traverses the short-turn S` with capacity q.
0 otherwise

tk`i Departure time from the station i of line ` in its k-th trip.

D`
i (t

k`
i ) Number of passengers accumulated from instant 0 up to instant tk`i in the station i of line

` ∈ L.

hk`
i Excess of passengers that where not able to get on the train at station i at the k-th trip of

line ` ∈ L because of a lack of capacity.

xk`i Excess of passengers only if k is a true trip for station i of line ` ∈ L.

Table 2. Variables of the model.

Using the variables described above, we give now the formulation of our problem distinguishing
the two main elements: (1) an objective function aggregating the economical and social costs
of any feasible solution; and (2) a set of technical constraints where the line concept and the
timetable are specified in order to serve the estimated flow of passengers over the planning
horizon.

3.3. Objective Function. In what follows we describe the different costs and rewards that
are considered in the objective function of our model, for a given line `∈ L, in terms of the
variables and parameters described above.

• Capacity cost:
It accounts for the costs b`q and b`Sq corresponding to the train capacity q ∈ Q for every

trip of line ` ∈ L. This capacity is controlled by means of the variables yk`q or yk`Sq
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depending on whether the line contains short-turns or not.
∑
k∈K`

∑
q∈Q

b`qy
k`
q if ` ∈ LNS,∑

k∈K`

∑
q∈Q

b`qy
k`
q +

∑
k∈K`

∑
q∈Q

b`Sq(y
k`
Sq − yk`q ) if ` ∈ LS.

(Cap(`))

Observe that in the second expression, if proper short-turns with capacity q are acti-
vated, one has yk`Sq = 1 and yk`q = 0, and thus, the amount b`Sq is accounted for. In case

of whole trips with capacity q, by (2), one has that yk`Sq = 1 and yk`q = 1 . Thus, the

second addend is zero, and only b`q is accounted for, modeling adequately the capacity
costs.

• Reward per served passengers:
The unitary reward per served passenger computes the estimated revenue received when
passengers use a line. It is obtained as the average revenue given by the different trans-
port tickets used by the passengers. In order to compute the overall reward per served

passengers, observe that if the k-th trip is a whole trip, the expression
∑i−1
r=0 prif

k`
r

returns the estimated number of passengers getting off at the station i (coming from
any other previous station). Note that, in case a short-turn is activated on any line
` ∈ LS, it is needed to add the rewards of passengers being routed within the short-turn

(
∑
i∈S`

∑i−1
r=1S`

p`rig
k`
r ) together with the reward from those which use the short-turn to

get-off at the last station and continue with the next whole trip. Then, the overall reward
per served passengers is:

∑
i∈N`

∑
k∈K`

i−1∑
r=0

γ`rip
`
rif

k`
r if ` ∈ LNS,

∑
k∈K`

∑
i∈N`

i−1∑
r=0

γ`rip
`
rif

k`
r +

∑
i∈S`

i−1∑
r=1S`

γ`rip
`
rig

k`
r +

∑
r∈S`:
r 6=nS`

n∑̀
j=nS`+1

γ`rnS`
p`rjg

k`
r

 if ` ∈ LS.

(RewPPass(`))
• Costs of non-served passengers:

It accounts for the social cost incurred when a passenger cannot get on the train arriving
to the station due to its lack of capacity. The unitary cost should aggregate some
indicators of the service quality and some subjective measures of the satisfaction degree
perceived by the passengers. The overall cost is computed by using the total number of
passengers exceeding the capacity of the system at some instant of the planning horizon,
scaled by the average penalties of persisting/giving up passengers, as follows:

αµ1

∑
i∈N`

∑
k∈K`

xk`i + (1− α)µ2

∑
i∈N`

∑
k∈K`

xk`i , (NonServed(`))

Observe that a high excess of passenger at the end of the planning horizon can be
easily avoided by increasing the µ-parameters for the last trip or by adding appropriate
constraints involving the x-variables.

The overall cost of using line ` ∈ L during the planning horizon can be expressed as:

(Cap(`))− (RewPPass(`)) + (NonServed(`)) (COST(`))
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3.4. Modelling Constraints. In what follows we describe the constraints linking the variables
and parameters in our model. They have been classified in four main blocks: capacity constraints,
time control constraints, flow control constraints and passenger surplus constraints.

• Capacities and true/fake trips:

∑
q∈Q

y1`
q = 1, ` ∈ LNS, (C1− 1)

∑
q∈Q

yk`q ≤ 1, k > 1, ` ∈ L, (C1− 2)

∑
q∈Q

yk``q = 1, ` ∈ L, (C1− 3)

yk`q ≤ yk`Sq, q ∈ Q, k ∈ K`, ` ∈ LS, (C1− 4)∑
q∈Q

y1`
q +

∑
q∈Q

y1`
Sq ≥ 1, ` ∈ LS, (C1− 5)

∑
q∈Q

yκ``
q =

∑
q∈Q

y1`
Sq −

∑
q∈Q

y1`
q , ` ∈ LS, (C1− 6)

∑
q∈Q

yk`Sq ≤ 1, k > 1, ` ∈ LS, (C1− 7)

where κ` =
[
t17→1Sl

IS`

]
+ 1, i.e. the number of short-turn trips of line `∈ LS which fit

within the period of time taken by a train to go from the head of line to the first station
of the short-turn.

When short-turns are not allowed for a line, the appropriate definition of the capacity
variables is ensured by constraints (C1− 1)–(C1− 3). They enforce that exactly one of
the allowed capacities is chosen for the first and the last trip and at most one for the rest
of them. Fake (resp. true) trips are identified by trips with capacities equal to (resp.
greater than) zero. Thus, constraints (C1− 1) and (C1− 3) determine that the first and
the last trip of each line are true trips. We will see later that this permits the actual
trains to be scheduled from the beginning to the end of the planning horizon, providing
the users a complete service during that time interval. Note that constraints (C1− 2)
and (C1− 3) are also valid for lines allowing short-turns and then, when short-turns are
allowed for a line, the appropriate definition of the capacity variables is warranted by
constraints (C1− 2)–(C1− 7). Constraints (C1− 4) indicate that when a whole trip is
a true trip, it is also a true trip for the short-turn stations. Constraints (C1− 5) fix
that the first trip (being either, a whole trip or a short-turn) is a true trip. Constraints
(C1− 6) force trip κ` to be a true whole trip (resp. a fake trip) if the first trip is a short-
turn (resp. if the first trip is a whole trip). These constraints, together with (C1− 5) are
the equivalent to (C1− 1) for lines with short-turns, and they ensure that a real train is
scheduled from the beginning of the planning horizon. Finally, constraints (C1− 7) are
the equivalent to (C1− 2) for short-turn trips.

• Time control:
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t1`1 = 0, ` ∈ L, (C2− 1)

tk`1 = T, ` ∈ L, (C2− 2)

tκ``
1 ≤ T

1−
∑
q∈Q

y1`
Sq +

∑
q∈Q

y1`
q

 , ` ∈ LS, (C2− 3)

IS

∑
q∈Q

yk`q

 ≤ tk`i − t(k−1)`
i ,

k = 2, . . . , k`, (i, l) ∈ S with k 6= κ` if ` ∈ LS, (C2− 4)

tk`i − t
(k−1)`
i ≤ T

∑
q∈Q

yk`q

 , k = 2, . . . , k`, (i, l) ∈ S (C2− 5)

IS

∑
q∈Q

yk`Sq

 ≤ tk`i − t(k−1)`
i , i ∈ S`, k = 2, . . . , k`, ` ∈ LS, (C2− 6)

tk`i − t
(k−1)`
i ≤ (T + t17→1Sl

)

∑
q∈Q

yk`Sq

 , i ∈ S`, k = 2, . . . , k`, ` ∈ LS, (C2− 7)

−t1 7→1Sl

1−
∑
q∈Q`

yk`q

 ≤ wk`, k ∈ K`, ` ∈ LS, (C2− 8)

wk` ≤ (T + t17→1Sl
)

1−
∑
q∈Q`

yk`q

 , k ∈ K`, ` ∈ LS, (C2− 9)

Constraints (C2− 1) and (C2− 2) state that the first and the last trip of each line
should exactly start at the first station of the complete line at instant time 0 and T ,
respectively. If the line does not contain a short-turn, these constraints together with
(C1− 1) and (C1− 3) ensure that there are trains traveling the line during the whole
planning horizon. If the line contains short-turns, recall that constraints (C1− 5) permit
the first trip to be a short-turn trip. In this case, constraints (C2− 3) together with
constraints (C1− 6) force trip κ` to be a true whole trip starting at time 0 at the head
of the line.

Constraints (C2− 4) ensure that the arrival times between consecutive trains satisfy
the safety time window interval. Constraints (C2− 5) force a fake trip to operate on the
line at the same time as the previous true trip. For lines allowing short-turns constraints
(C2− 4)–(C2− 7) represent the same as the above but taking into account that in this
case the trip can be either, a whole trip or a short-turn.

Observe that in (C2− 4) if ` ∈ LS the case k = κ` is excluded. The reason is that
constraints (C1− 6) force trip κ` to be a true whole trip if and only if the first trip (k = 1)
is a short-turn and, in this case, constraints (C2− 3) ensure that trip κ` starts at the
head of the line station at time 0, and then, it is the first whole trip. Finally, constraints
(C2− 8) and (C2− 9) fix the upper and lower bounds on the values of variables wkl

when the k-th trip is a short-turn, enforcing that this variable is 0 if the trip is a whole
trip.



Line Planning and Timetabling in Subway Networks 16

• Flow control:

fk`i +

i−1∑
r=1

fk`r

 n∑̀
j=i+1

p`rj

 ≤∑
q∈Q

qyk`q , k ∈ K`, i ∈ N`, ` ∈ L, (C3− 1)

gk`i +

i−1∑
r=1S`

gk`r

 nS∑̀
j=i+1

p`rj

 ≤∑
q∈Q

q(yk`Sq − yk`q ), k ∈ K`, i ∈ S`\{nS`
}, ` ∈ LS, (C3− 2)

f1`
i ≤D`

i (t
1`
i ), i ∈ N`, ` ∈ L, (C3− 3)

fkli ≤ D`
i (t

k`
i )−D`

i (t
(k−1)`
i ) + αh

(k−1)`
i , k = 2, . . . , k`, i ∈ N`, ` ∈ L, (C3− 4)

g1`
i ≤ D`

i (t
1`
i ), i ∈ S`\{nS`

}, ` ∈ LS, (C3− 5)

gk`i ≤
(
D`
i (t

k`
i )−D`

i (t
(k−1)`
i )

)
+ αh

(k−1)`
i , k = 2, . . . , k`, i ∈ S`\{nS`

}, ` ∈ LS. (C3− 6)

The flow of passengers catching a given train is determined by the capacity of the
train and the mobility pattern of people. Hence, the effective capacity of the trains
arriving to a given station depends of the passengers that caught the train in previous
stations of this same trip and whose destination is a subsequent station of the line. Such
an effective capacity is warranted, depending on the case (short-turn allowed or not), by
constraints (C3− 1) and (C3− 2). With constraints (C3− 3) (resp. (C3− 4)) we ensure
that the flow of passengers captured at a given station by a train that covers the first
trip (resp. the k-th trip for k > 1) is at most the demand of passengers accumulated at
station i since the beginning of the planning horizon (resp. since the instant in which the
previous train departed from that station plus the passengers that were not able to get
on the previous train because of lack of capacity and wait for the next one). Constraints
(C3− 5) and (C3− 6) are the analogous ones for short-turn trips.
• Passenger surplus:

In order to compute only the surplus of passengers of a true trip, we use the set of
semi-continuous variables xk`i :

xk`i =

{
hk`i ×

∑
q∈Q y

k`
q if (i, l) ∈ S or (i = nS`

, ` ∈ LS),

hk`i ×
∑
q∈Q y

k`
Sq if i ∈ S`\{nS`

}, ` ∈ LS,

which can be linearized as follows:

xk`i ≥ hk`i −M `
i

1−
∑
q∈Q`

yk`q

 , (i, l) ∈ S or (i = nS`
, ` ∈ LS), (C4− 1)

xk`i ≥ hk`i −M `
i

1−
∑
q∈Q`

yk`Sq

 , i ∈ S`\{nS`
}, ` ∈ LS, (C4− 2)

being M `
i a large enough constant bounding the surplus of passengers at any station i of

line ` ∈ L.

3.5. A compact MINLP formulation. According to the decision variables, the objective func-
tion and the constraints described above, the following Mathematical Programming formulation
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is valid for our line planning and timetabling model:

min
∑
`∈L

COST(`)

s.t. (C1), (C2), (C3) and (C4),

0 ≤ tk`1 ≤ T, k ∈ K`, ` ∈ L,

fk`i ≥ 0, k ∈ K`, i ∈ N`, ` ∈ L, (P)

gk`i ≥ 0, k ∈ K`, i ∈ S`\{nS`
}, ` ∈ LS,

wk` ∈ R, k ∈ K`, ` ∈ LS,

xk`i ≥ 0, k ∈ K`, i ∈ N`, ` ∈ L,

yk`q ∈ {0, 1}, k ∈ K`, q ∈ Q, ` ∈ L,

yk`Sq
∈ {0, 1}, k ∈ K`, q ∈ Q, ` ∈ LS.

Observe that although the above formulation seems to be separable by lines in L, the lines are
linked through the demand functions D`

i (t) (constraints (C3− 3)-(C3− 6)) which represent the
accumulated flow of passengers awaiting for a train at a given station i of line l ∈ L at time
instant t. As we will describe in Section 4, such a flow is affected not only by the line ` but also
by other lines through passengers changing of lines at transfer stations. This function introduces
new variables and non linear constraints into the above formulation.

Several extensions may be easily accommodated within the above model as highlighted in the
following remarks:

Remark 1. In our model the speed of trains is considered to be constant during the whole
journey. However, one can easily modify expressions (1), (3) and (4) using variables vk`i > 0 to
decide the speed of the train during a trip k of line ` between stations i and i+ 1. For instance,
let ρi be the physical distance between stations i and i+ 1 and let ωk`i represent the inverse of the
speed, i.e., ωk`i = 1

vk`
i

, then one could replace the travel times d`i by ρi × ωk`i in expressions (1),

(3) and (4). By adding to the objective function a cost assessing the resource consumption due
to speed changes one can have a more general model preserving the structure of the one stated
above. Similar modifications can be also considered by enabling the model to decide about variable
stopping times at any station.

Remark 2. The model allows us to join two consecutive planning horizons by passing data about
numbers of passengers and arrival/departure times obtained from an optimal solution on the first
planning period as input data for the second one, and so on. In particular, the passengers that
may remain at station i of line ` ∈ L at the end of the first planning horizon can be considered
as passengers at station i to use line ` at the beginning of the second planning horizon, and so
on. This information has to be incorporated in order to compute the demand function, as we will
see in the next section.

4. The Demand function

One of the main goals of our model is to incorporate, in the design of the line planning and
timetabling of an existing network, information about the flow of passengers moving through the
network during the planning horizon. Clearly, the flow of passengers arriving to a given station
is a random variable. Thus, we will incorporate to the model an estimation of its average value.

In order to model the number of passengers entering to the transportation system through
a given station of a fixed line, we use the so-called demand function, which maps at a given
instant t the accumulated number of passengers wanting to catch a train at this station (from
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the beginning of the planning horizon). Here, the estimation process should be carefully done in
order to capture the essential behaviour of the demands served by the system.

Different shapes for the function are possible within this framework to approximate the de-
mand. The choice of such a shape is a crucial step in the modeling process since one has to find
an equilibrium between obtaining accurate estimations and providing manageable mathematical
programming formulations. Once again, motivated by our pilot experience with Metrolab R©, we
use a piecewise linear approximation whose slope is fixed for any given station i ∈ N`, but whose
breakpoints and discontinuities may change according to the flow induced by external block of
arrivals and by the rest of the lines. For a given line ` ∈ L and a station i ∈ N`, we estimate the
demand function as follows:

D`
i (t) = β`0i + β`i t+ JEi` (t) +

∑
`′ 6=`,`′3i

JIi``′(t), (D)

for t ∈ [0, T̂`], with T̂` = T +
∑n`−1
r=1 (d`r + e`r+1), i.e., the maximum time in which the train can

reach the last station of the line, and where:

β`0i is the number of passengers awaiting a train of line ` ∈ L in the station i ∈ N` at the
beginning of the planning horizon.

β`i is the average rate of passengers arriving to the station i ∈ N` of line ` ∈ L by unit of time.
JEi` (t) is the sum of the external block of arrivals of passengers up to the instant t to the

station i ∈ N` of line ` ∈ L.
JIi``′(t) is the sum of the block arrivals of passengers up to the instant t to the station i ∈ N`

of line ` ∈ L from line `′ ∈ L.

In what follows we will refer to [0, T̂`] as the extended planning horizon for line `. Thus, the
demand function at a given time instant t in station i ∈ N` of line ` ∈ L, consists of three parts.
The first one is a linear part, in which, from an initial number of passengers, β`0i, the number
increases by a rate β`i . However, such a base estimation may be modified either by external
block of arrivals (second part), JEi` (t), or by passengers coming from other interacting lines at
interchange stations (third part), JIi``′(t).

As can be seen, in the formulation (P), the demand function D`
i (t) is used exclusively to access

flows in the set of instants t = tk`i for i ∈ Nl, ` ∈ L and k ∈ K`. Each of the time instants in
which the demand function needs to be evaluated induces some sets of inequalities and variables
as those described in subsections 4.1 and 4.2 (for external and internal arrivals).

4.1. External Arrivals: JE. We consider that we are given both a set of breakpoints repre-
senting time instants when the block of arrivals occur and the amounts of passengers entering
to the system at these instants for each station i ∈ N`. That is, we assume that a set of sorted
instants sei`1 < · · · < sei`rei` as well as discontinuity flow jumps associated to each of those in-

stants Ψi`
1 , . . . ,Ψ

i`
rei` are known, i.e., a block arrival of Ψi`

r is assumed at time instant sei`r , for

r = 1, . . . , rei`. The external arrivals represent block of arrivals of passengers for instance, due to
the end of a football match in a place close to one of our stations. For the sake of readability and

without loss of generality, we will assume that sei`0 = 0, sei`rei`+1 = T̂`, and Ψi`
0 = Ψi`

rei`+1 = 0,
i.e., the first and last time instants of external arrivals coincide with the beginning and the end
of the extended planning horizon, and the discontinuity jumps at those instants are null. Given

a time instant t ∈ [0, T̂`], we use the following set of binary variables to determine whether t
belongs to the interval [sei`r , se

i`
r+1) for r = 0, . . . , rei`:

δEri`(t) =

{
1 if t ∈ [sei`r , se

i`
r+1),

0 otherwise,
i ∈ N`, ` ∈ L.
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Note that with these settings, the accumulated discontinuity flow jumps of external arrivals for
a station i ∈ N` of line ` ∈ L can be modeled using the following constraints

JEi` (t) =

rei`∑
r=0

∑
r′≤r

Ψ`
ir′

 δEri`(t), i ∈ N`, ` ∈ L,

sei`r δ
E
ri`(t) ≤ t < sei`r+1δ

E
ri`(t) + T̂`(1− δEri`(t)), r = 0, . . . , rei`, i ∈ N`, ` ∈ L,

rei`∑
r=0

δEri`(t) = 1, i ∈ N`, ` ∈ L,

δEri`(t) ∈ {0, 1} r = 0, . . . , rei`, i ∈ N`, ` ∈ L.

(DE)

The reader may observe that the first constraint allows us to appropriately define JE by
accumulating the flow jumps previous to a given instant t. The second set of constraints permits
to determine the intervals in which t lies and the third constraint ensures that only one of these
intervals is identified for each t.

4.2. Internal Arrivals. The main difference between internal and external block of arrivals is
that in the latter, the breakpoints and the discontinuity flow jumps are known, while for internal
arrivals, this information depends on the decision variables of the problem. Recall that internal
block of arrivals occur when passengers get off a train in an interchange station to transfer
to another line. Thus, the time instants of those arrivals are part of the decision problem.
Therefore, we need to state a set of equations showing the existing relationships between the
decision variables and the breakpoints and jumps in the flow of passengers they provoke.

In what follows we describe the modeling issues concerning the breakpoint times and flow
jumps of internal arrivals.

• Breakpoint times at line ` ∈ L.
Note that the instants, sii``

′

r , in which an internal flow jump occurs by the arrivals of
trains coming from line `′ ∈ L to an interchange station i ∈ N` ∩N`′ can be computed
in terms of the time tr`

′

i as:

sii``
′

r = tr`
′

i − er`
′

i , r = 1, . . . , k̄`′

that is, the time instant in which the r-th trip of line `′ ∈ L departs to the next station
(tr`

′

i ) minus the waiting time at the station i ∈ N`′ (er`
′

i ), that is, the instants in which
the trains arrive to the interchange station of line `′ ∈ L.

• Discontinuity flow jumps at line ` ∈ L coming from line `′ ∈ L.
The volume of the internal block of arrivals to an interchange station can be derived

from the passenger flows controlled by our decision variables. To compute it we will also
need a set of values quantifying the proportion of passengers which want to change from
one metro line to another one in all the interchange stations. Let τ ``

′

i be the proportion of
the passengers that get off a train in an interchange station i ∈ N`∩N`′ of the line `′ ∈ L
to change to line ` ∈ L. Thus, the flow jump at an instant sii``

′

r for r ∈ K`′ , ` ∈ L, i ∈ N`
is given by

Φ``
′

ir =


τ ``
′

i

∑
j<i

p`
′

jif
r`′

j if (i, `′) ∈ S

τ ``
′

i

∑
j<i

p`
′

jif
r`′

j +
∑

j<i;j∈S`′

p`
′

jig
r`′

j

 if i ∈ S`′ , `′ ∈ LS
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Let SIi``′ =
{
sii``

′

0 , · · · , sii``′
k̄`′+1

}
be the set of sorted breakpoint times at a given interchange

station i ∈ N`∩N`′ of line ` ∈ L caused by line `′ ∈ L. In order to make clearer the formulation,

we will assume, w.l.o.g., that sii``
′

0 = 0, sii``
′

k̄`′+1
= T̂`, and Φ``

′

i0 = Φ``
′

ik̄`′+1
= 0, i.e., the first and

last time instants of internal arrivals coincide with the beginning and the end of the extended
planning horizon, and the flow jumps at those times are null.

Now, we are ready to model the internal flow jumps induced by line `′ ∈ L onto the station
i ∈ N` ∩N`′ of the line `. We proceed analogously as in the external arrivals but incorporating a
set of binary variables (δI) to identify in which time interval between two consecutive breakpoints
a given instant t belongs to:

JIi``′(t) =

k̄`′∑
r=0

∑
r′≤r

Φ``
′

ir′

 δIri``′(t), i ∈ N` ∩N`′ , ` ∈ L, `′ ∈ L,

sii``
′

r δIri``′(t) ≤ t < sii``
′

r+1δ
I
ri``′(t) + T̂`(1− δIri``′(t)), r = 0, . . . , k̄`′ , i ∈ N` ∩N`′ , ` ∈ L, `′ ∈ L,

k̄`′∑
r=0

δIri``′(t) = 1, i ∈ N` ∩N`′, ` ∈ L, `′ ∈ L,

δIri``′(t) ∈ {0, 1} r = 0, . . . , k̄`′ , i ∈ N` ∩N`′ , ` ∈ L, `′ ∈ L.
(DI)

Note that the two first sets of the above inequalities are nonlinear since Φ, SI and δI are decision
variables of our problem.

As mentioned above, the demand function D`
i (t) is only applied to a certain (finite) set of time

instants. Then, it can be incorporated into the model by adding the variables Dk`
i ≡ D`

i (t
k`
i ),

δE and δI , as well as their corresponding linear and nonlinear constraints in (DE) and (DI). We
also include in the model (P) the following two sets of valid inequalities:

δEri`(t
k+1`
i ) ≤

r∑
r′=0

δEr′i`(t
k`
i ), k ∈ K`, , r = 0, . . . , rei`, i ∈ N`, ` ∈ L, (15)

δIri``′(t
k+1`
i ) ≤

r∑
r′=0

δIr′i``′(t
k`
i ), k ∈ K`, r = 0, . . . , k̄`′ , i ∈ N` ∩N`′ , ` ∈ L, `′ ∈ L. (16)

Inequalities (15) and (16), ensure that trip k+1 goes through station i after trip k. Although these
inequalities are redundant with the rest of the constraints in the model, they considerably improve
the performance of the solver over the branch-and-bound tree induced by the mathematical
programming model.

5. Case study: The Metrolab R© pilot experience

We illustrate the MINLP model introduced in Section 3 together with the demand func-
tion described in Section 4 with a simplified version of the network of our pilot experience for
Metrolab R©.

Consider the simple network example depicted in Figure 2. This network has a similar topology
to the one provided by Metrolab R© to calibrate our model in the pilot experience. It represents
a small section of the Paris subway network.

The network consists of two bidirectional lines(1-2-3-4-5 and 1’-2’-3-4’-5’), each of them with
five stations and sharing one of them (station 3) which acts as an interchange station. Both lines
allow short-turns on the planning. The edges of the lines which take part of the short-turn of
each line are marked with dashed lines (2−3−4 for one of the lines and 2′−3−4′ for the other).
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Figure 2. Network of Case study 5.

The travel time between consecutive stations is written next to each edge of the network. The
stopping times are fixed to 30 seconds for stations different from the head and the final ones
(e`i -parameters). Also the minimum safety time between consecutive trips is 2 minutes (IS`-
parameter). Hence, using our notation |L| = 4 (two lines, but each of them in two directions),
|LS| = 4 and |LNS| = 0. The lines will be numbered from 1 to 4, where 1 and 2 correspond
with the horizontal line, left–right and right–left, respectively, and lines 3 and 4 are identified
with the vertical line, up–down and down–up, respectively. The set of available capacities for
the trains are 800 and 1600 passengers.

For illustration purposes, we consider a planning horizon of T = 20 minutes (from 7:30 to
7:50), and a maximum number of trips K` = 7 for the four lines. We assume that all the
passengers that cannot get on a train because it is full await for the next train (α = 1) and that
the unitary penalty for persisting passengers is fixed to µ1 = 0.1875 (except for the last trip in
which we fix it to 10×µ1 = 1.875 to avoid a high excess of passengers at the end of the planning
horizon). We also assume that 40% of the passengers that get-off at station 3 interchange to the
other lines (τ -parameter).

The O-D matrix and rewards per passenger are detailed in Tables 3 and 4, respectively.

p`ij 1 2 3 4 5 p`ij 1’ 2’ 3 4’ 5’

1 0 0.40 0.35 0.20 0 1’ 0 0.40 0.35 0.20 0
2 0.40 0 0.60 0.35 0 2’ 0.40 0 0.60 0.35 0
3 0.35 0.6 0 0.95 0 3 0.35 0.60 0 0.95 0
4 0.20 0.35 0.95 0 1 4’ 0.20 0.35 0.95 0 1
5 0.05 0.05 0.05 1 0 5’ 0.05 0.05 0.05 1 0

Table 3. O-D matrix of Case study 5: Lines 1-2 (left) and 3-4 (right).

For the demand function, we consider the arrival rates of passengers per minute and the initial
number of passengers at each station of each line detailed in Table 5.

The timetabling for the first line obtained after running our model in Gurobi 8.0 [23] is
provided in Table 6. The reported solution was obtained after 12 hours running time with a
MIP GAP of 1.51%. There, we detail for each trip (k, indicating with ’S’ those trips which are
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γ`ij 1 2 3 4 5 γ`ij 1’ 2’ 3 4’ 5’

1 0 0.3 0.4 0.6 1 1’ 0 0.2 0.5 0.7 1
2 0.3 0 0.1 0.3 1 2’ 0.2 0 0.3 0.5 1
3 0.5 0.2 0 0.2 1 3 0.4 0.2 0 0.2 0
4 0.6 0.3 0.1 0 0 4’ 0.7 0.5 0.3 0 0
5 0.9 0.6 0.4 0.3 0 5’ 0.9 0.7 0.5 0.2 0

Table 4. Rewards of Case study 5: Lines 1-2 (left) and 3-4 (right).

Lines
` = 1 ` = 2

Stations (i) 1 2 3 4 5 5 4 3 2 1
β`0i 50 50 50 50 0 50 50 50 50 0
β`i 10 100 120 90 0 10 160 180 150 0

` = 3 ` = 4
Stations (i) 1’ 2’ 3 4’ 5’ 5’ 4’ 3 2’ 1’

β`0i 50 50 50 50 50 50 50 50 50 50
β`i 10 150 170 160 0 10 100 180 150 0

Table 5. Coefficients of the Demand functions of Case study 5.

short-turns ), its optimal capacity, the departing times of each train of each line (DepTime),
and also the flow estimations at each of the stages: the number of passengers that get off the
train (Get-Off), the number of passengers that get-on the train (fk`i for whole trips or gk`i for
short-turns), the excess of passengers (hk`i ), the passengers surplus of true trips (xk`i ) and the
actual load of the train.

Note that trips 3 and 5 are fake trips (they have zero capacity), so the optimal number of trips
for the planning is 5. Two of them, the second and third true trips (trips 2S and 4S in Table 6)
are short-turns, while the remainder are whole trips with different capacities. We can observe
that fake trips operate on the line at the same time as the previous true trip. For instance,
trip 3 departs from station 1, which doesn’t belong to the short-turn, at the same time than
the previous true whole trip (trip 1) and from station 2, which belongs to the short-turn, at
the same time than the previous true trip for this station (short-turn trip 2). Note also that
the µ1-parameter considered for the last trip of the lines causes, in this case, that the excess of
passengers is equal to 0 at the end of the planning horizon.

The departing times of each true trip of all the lines from each of the stations are detailed
in Figure 3. The horizontal axis is the time horizon, while the vertical axis represent spatial
lengths (stations). We also report over each of the itineraries, their optimal capacities. Shortest
itineraries running only over a subset of stations are short-turns. One can observe that the time
difference between consecutive trips is not constant, as expected from the asymmetry of the lines
and the transfer of passengers between them at different time instants. Then, as mentioned
before, we deal with an aperiodic timetabling.

Furthermore, with the solution obtained, the estimated demands at the departing times of
each one of the trips at the interchange station are drawn in Figure 4. Observe that in that
picture we draw in the horizontal axis, the departing times for such an interchange station at the
different trips. In the vertical axis we depict the accumulated demand at those time instants.
Note that the jumps in the demand induced by passengers that interchange to that line occur
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k: Capacity i DepTime Get-Off fk`
i (gk`i ) hk`

i xk`i Load

1: 800

1 07:30:00 0.00 50.00 0.00 0.00 50.00
2 07:33:30 20.00 400.00 0.00 0.00 430.00
3 07:35:00 257.50 627.50 101.50 101.50 800.00
4 07:37:30 746.13 725.00 0.00 0.00 778.88
5 07:40:30 778.88 0.00 0.00 0.00 0.00

2S: 1600
2 07:39:34 0.00 606.94 0.00 0.00 606.94
3 07:41:04 364.17 1231.59 0.00 0.00 1474.36
4 07:43:34 1474.36 0.00 638.18 0.00 91.93

3: 0

1 07:30:00 0.00 0.00 0.00 0.00 0.00
2 07:39:34 0.00 0.00 0.00 0.00 0.00
3 07:41:04 0.00 0.00 0.00 0.00 0.00
4 07:43:34 0.00 0.00 638.18 0.00 0.00
5 07:40:30 0.00 0.00 0.00 0.00 0.00

4S: 800
2 07:43:12 0.00 364.02 0.00 0.00 364.02
3 07:44:42 218.41 603.05 0.00 0.00 748.66
4 07:47:12 748.66 0.00 1014.15 0.00 48.35

5: 0

1 07:30:00 0.00 0.00 0.00 0.00 0.00
2 07:43:12 0.00 0.00 0.00 0.00 0.00
3 07:44:42 0.00 0.00 0.00 0.00 0.00
4 07:47:12 0.00 0.00 1014.15 0.00 0.00
5 07:40:30 0.00 0.00 0.00 0.00 0.00

6: 1600

1 07:46:15 0.00 162.60 0.00 0.00 162.60
2 07:49:45 65.04 655.05 0.00 0.00 752.61
3 07:51:15 449.94 1297.33 0.00 0.00 1600.00
4 07:53:45 1494.25 1494.25 109.44 109.44 1600.00
5 07:56:45 1600.00 0.00 0.00 0.00 0.00

7: 800

1 07:50:00 0.00 37.40 0.00 0.00 37.40
2 07:53:30 14.96 373.99 0.00 0.00 396.43
3 07:55:00 237.48 641.05 0.00 0.00 800.00
4 07:57:30 747.38 446.03 0.00 0.00 498.65
5 08:00:30 498.65 0.00 0.00 0.00 0.00

Table 6. Results for the first line of the Case study 5.

Figure 3. Timetables of the different trips for each line of the Case study of
Section 5.

during the whole time interval between departing times of the interchange station, but we only
account for the accumulated amount when the new train departs.
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Costs/Rewards Line 1 Line 2 Line 3 Line 4 All lines

(Cap(`)) Complete Lines 409.08 294.00 294.00 294.00 1291.08
(Cap(`)) Short-Turns 102.27 55.99 66.00 66.00 290.26

(RewPPass(`)) Complete Lines 1736.16 2514.53 3365.67 2814.05 100430.41
(RewPPass(`)) Short-Turns 541.70 534.52 743.69 780.74 2448.67

(NonServed(`)) 44.85 0 0 0 44.85
OVERALL COST -1721.65 -2699.06 -3749.37 -3234.79 -11404.88

Table 7. Summary of solution obtained for the Case study of Section 5.

Figure 4. Accumulated Demands obtained for the Case study of Section 5.

A summary of the costs and rewards obtained for the reported solution is given in Table 7.
Since an aggregated function of the costs is minimized in our model, the negative overall cost
obtained (−11404.88) can be seen as a positive global reward for the optimal planning.

Problem (P) depends on the demand that occur in each line and on the correlation between
lines induced by interchanging stations. For that reason, to have an exact model the demands by
lines must be considered as variables and hence, the problem that considers all the lines at the
same time becomes very hard by obvious reasons. Among them, the problem is a Mixed Integer
Non Linear Programming Program whose continuous relaxation is neither convex nor concave
because of the bilinear constraints in (DE) and (DI) (which are needed to be linearized, turning
into weak continuous relaxations of the problem); and in addition, the number of variables
increases considerably with each line that is jointly considered in the problem. Therefore, in
order to provide an efficient procedure which is able to handle the model for realistic instance
sizes in reasonable time (recall that the pilot Case study 5 required 12 hours of CPU time to
obtain a nearly optimal solution), we propose a Math-Heuristic approach. This algorithm solves
sequentially Problem (P) for one line, say ` ∈ L, at a time (by fixing appropriately the demand
parameters after each run) to approximate the actual solution of the global problem. We will
denote such a problem as Problem (P)`. This Math-Heuristic approach is developed in the
following section.

6. A Math-Heuristic Approach

In this section we propose an optimization-based heuristic approach to solve (P). Note that
the MINLP formulation stated for the problem involves many continuous and discrete variables,
as well as a large number of constraints. In particular, the number of δ-variables that allows
us to model the internal jumps of the demand function, described in the previous section, is
O(K2N IcL2), where K is the maximum number of trips and N Ic is the number of interchange
stations. That bound implies a high complexity to solve even small-size instances of the problem.
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Initialization: L̂← L, L0 ← L̂

` ∈ Lit

Update Demands

Solve (P)`

Lit ← Lit\{`}

Stabilization?

L̂← L̂\{`}

Lit 6= ∅? it < maxit & L̂ 6= ∅?

Output:
Solve (P) for fixed

binaries.

it← 0
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no

no
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` ∈ Lit

no

yes

it← it+ 1

Lit ← L̂

Figure 5. Flowchart of the Math-Heuristic approach.
.

In our algorithm we apply a divide-and-conquer strategy by splitting the models by lines, that
is, we solve sequentially the model for a single line ` ∈ L at a time. The output of that solution
together with the solutions of those previously solved are passed to the next line to be solved.
Hence, the flow information provided by the lines in L\{`} (transfer passenger flows and train
arrival times at the interchange stations) are considered as input for solving the problem (P)`
for the fixed line ` ∈ L. In this way, the demand function is updated and a new line is solved
using the same approach. This procedure continues until a stopping rule evaluating the progress
of the overall costs is satisfied, i.e. when the solution stabilizes or until a maximum number of
iterations is reached. This approach allows us to avoid considering all the δ-variables together
in a single model, which is one of the main drawbacks of the exact algorithm. A compact flow
chart of the algorithm is drawn in Figure 5.

In the initial iteration we consider the whole set of lines to solve, L̂ = L, and the time instants
in which the demand is affected by passengers coming from an interchange station, SI (it is
assumed that, for the first line solved, there are no passengers coming from other lines). Then,
for each line ` ∈ L, we update the demand function taking into account the flows and breakdown
times obtained when solving the previous lines and then, we solve the problem for the single
line ` with such an input information. Observe that after the initial line is solved (in which the
connecting flows are set to zero), the optimal flows give us information about the passengers that
get on and get off from the trains of the line, what affect the rest of the lines.

Once all the lines have been solved, we repeat the procedure maxit times, to avoid getting
trapped in locally optimal solutions. Let z`(it) be the objective function value of problem (P)`
at iteration it. If at an iteration it < maxit, this value stabilizes, that is, the relative deviation
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in the objective value with respect to the previous iteration of line ` ∈ L, namely |z
`(it)−z`(it−1)|

z`(it)

is not significant enough (smaller than a tolerance ε), the corresponding solution for this line is
kept fixed for the remainder iterations. Thus, the iterative procedure terminates either, after
the iteration when the solution stabilizes with some degree of accuracy, ε, (for all the lines) or
when a maximum number of iterations is reached. Finally, to obtain a feasible solution (upper
bound), we solve (P) by fixing the binary variables obtained during the heuristic procedure. Such
a problem becomes a continuous Linear Programming problem which is efficiently solved.

7. Experiments

A

2L0T

B

4L1T

C

6L2T

D

4L2T

E

6L1T 6L3T 8L4T 8L3T

Figure 6. Network Topologies for the Experiments.

We have run a series of computational experiments in order to test the model and the per-
formance of our two approaches. We have considered the networks topologies drawn in Figure
6. The names of the networks are in the form XLY T where X is the number of lines and Y
the number of interchange stations. We consider networks with 2, 4, 6 and 8 lines, each of them
with 7 stations except 4L2T that contains 14 stations. For each of the 8 networks, we tested our
approach in two situations: no short-turns are allowed (that is, with our notation |LS| = 0 and
short-turns are allowed in some of the lines (thickest lines/gray nodes correspond with allowed
short-turns for the lines) to evaluate the effect of short-turning. The construction of the different
networks is motivated by the representation of the most common situations in real-world subway
networks (see [17]). The description of the networks is provided in Table 8.

Our set of networks include the one proposed by Metrolab R© (4L1T) to analyze the viability
of automatizing the management of the Paris subway network. Actually, the parameters of these
networks were designed based on that case and are available at http://bit.ly/InputData_

http://bit.ly/InputData_SubwayPlanning
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Network Description

2L0T One bidirectional line with no interchange stations.

4L1T Two bidirectional lines with a single interchange station.

6L2T Three bidirectional lines. One of the bidirectional lines with two interchange
stations, each of them interchanging for a different bidirectional line (2-by-2).

4L2T Two bidirectional lines. One of the bidirectional lines with two interchange sta-
tions, each of them interchanging from the same second bidirectional line.

6L1T Three bidirectional lines with one interchange station for different lines (3-by-3).

6L3T Three bidirectional lines with three 2-by-2 interchange stations.

8L4T Four bidirectional lines with four 2-by-2 interchange stations.

8L3T Four bidirectional lines with three 2-by-2 interchange stations.

Table 8. Description of the network topologies considered in our computational experiments..

Math-Heuristic MINLP (P)

Network |LS| BestObj CPU BestObj CPU GAP (%)

2L0T
0 145702 < 0.1 145573 7 0.09
2 114145 11 112916 TL 1.08

4L1T
0 206729 132 206242 TL 0.24
4 152890 631 152016 TL 0.57

4L2T
0 348267 3522 347224 TL 0.30
4 333102 4892 332665 TL 0.13

6L1T
0 276961 1130 276545 TL 0.15
2 235488 1521 234589 TL 0.38

6L2T
0 249038 606 248854 TL 0.07
4 203080 2882 203080 TL 0.00

6L3T
0 248988 520 248979 TL < 0.01
2 217004 2688 216909 TL 0.04

8L3T
0 404627 432 404147 TL 0.12
4 362916 1467 362908 TL < 0.01

8L4T
0 404469 1191 404211 TL 0.06
4 374067 1144 374064 TL < 0.01

Table 9. Computational Results

SubwayPlanning. All the models were coded in Python 3.6, and solved using Gurobi 8.0 [23]
in a Mac OSX with an Intel Core i7 processor at 3.3 GHz and 16GB of RAM.

7.1. Results. The results of our computational experience are shown in Table 9. In this table
the results are organized in five blocks of columns. The first block reports the network topology
(using the name convention explained above). The second block , “|LS|”, stands for the number
of allowed short-turns on the considered network. The third block gathers the results obtained
with the Math-Heuristic approach described in Section 6, whereas the fourth one reports the
corresponding results obtained with the exact MINLP Formulation described in Section 3. In
both cases, ‘‘BestObj” is the value of the objective function and “CPU” is the time, in seconds,
required to meet the stopping criterion or to reach the time limit (a maximum CPU time of 10
hours has been set for solving the MINLP formulation), respectively. Those instances for which
the time limit was reached are indicated with TL in that column, in whose case, the best obtained
solution is reported. Finally, the block “Gap (%)” is the percentage gap between the objective
function value obtained in the Math-Heuristic approach and the objective function value obtained
when solving the MINLP Formulation. It is worth noting that to improve the performance of

http://bit.ly/InputData_SubwayPlanning
http://bit.ly/InputData_SubwayPlanning
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the MINLP solver, we have initialized it with an initial solution given by the one provided by
the Math-Heuristic approach. This implies that the solution of the exact approach is always as
good as the Math-Heuristic and the %Gap is a measure of the improvement given by the exact
method over the proposed heuristic.

The results reported in Table 9 show the remarkable performance of our Math-Heuristic
algorithm. In all cases, it achieves rather good solutions with gaps with respect to the exact
method smaller than 1.08% and in rather competitive computing times (one order of magnitude
smaller than the exact MINLP solver). Note that the time limit of 10 hours was reached in all the
instances except in the simplest one. The results are particularly exceptional in the most complex
topologies using eight lines where the improvement of the exact method is negligible: gaps are
smaller than 0.12% and computing times of the Math-Heuristic are, on average, around 2% of
those required by the MINLP. Based on our experiment we conclude that the Math-Heuristic
algorithm is a good compromise to solve the line planning and timetabling problem considered
in this paper. Apart from the relative deviations between the solutions obtained with the math-
heuristic and the exact approach, Gurobi was not even able to solve the problems within the time
limit in all the instances except the simplest one, while our math-heuristic is able to obtain good
quality feasible solution of the problem in reasonable CPU times. Finally, it is worth mentioning
that the consideration of short-turns in the network considerably increases the computational
effort needed to solve the problem, but at the same time reduces the overall cost considered in our
objective function (an average reduction of 15% was observed under the considered parameters).
For instance, the exact approach required 7 seconds to solve to optimality the instance 2L0T,
without short-turns. However, it was not able to certify optimality for the same instance with
short-turns, within the time limit of 10 hours. The comparison with respect to the Math-Heuristic
is less dramatic and we report an average relative deviation of 57% in CPU time between the
instances with and without short-turnings.

8. Conclusions and Future work

This paper considers a general model for line planning and timetabling problems on sub-
way networks that was originated by a collaboration with Metrolab R©, a French R&D company
analyzing the viability of automating the metro of Paris. We propose a new Mathematical
Programming- based decision making tool in this context. A number of different elements have
been taken into account in the construction of both, objective function and constraint set of the
proposed integrated line planning and timetabling model. The model aims to reflect as most
real factors as possible of this complex transportation environment, but still being possible its
computational suitability. Our outcome is a Mixed Integer Non Linear Programming formulation
taking into account several quality and operation measures for feasible planing. We incorporate
to the model an integrated cost- and passenger-oriented objective function, time-dependent de-
mands and interchange stations together with several strategic decisions on the planning, as the
starting times for each trip, the activation of short-turns, the determination of the number of
trips in a journey, the selection of capacities for the trips, and the determination of the opti-
mal number of trips. This representation of the problem may allow us to use the optimization
model as a (what-if ) tool to assess potential technological or managerial innovations that may
be introduced into the system. In order to assess such innovations, one can decouple the whole
transportation system and consider just a (small) section of it where the main effects of such
a new element produce a higher impact. Such a reduction process resembles the one followed
in our paper to illustrate the case study. Apart from using a MINLP solver for solving small
instances of the problem, we also develop a novel Math-Heuristic algorithm which allows us to
solve realistic instances. Extensive computational experiments on different network topologies
based on the one provided by Metrolab R© on the metro of Paris, show that the Math-Heuristic
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algorithm performs remarkably well as compared to the exact resolution of the Mathematical
Programming formulation, being an adequate tool to solve this type of problems.

Many future enhancements of the contributions made here could be cited now. Some of them
could refer to the integration of new elements to the model such as variable speed for the trains
or more general demand functions to model the number of passengers awaiting at the stations.
Also, the stochastic nature of the parameters of the problem could be managed by incorporating
the uncertainty on the passenger flows to the problem, and then using tools from Stochastic
Programming to derive a model and different solution approaches for the problem. On the other
hand, an interesting research line could be to obtain theoretical conditions under which one was
able to ensure the convergence of our iterative numerical approach. It would be interesting to
find conditions ensuring the convergence of the Math-Heuristic approach, even in simpler models,
since they may give rise to new versions of the algorithm integrating different stopping rules or
ways to decouple the system in parts.
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