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Abstract— Connected and Autonomous Vehicles (CAVs) are 

becoming a reality and are progressively penetrating the markets 
level by level. CAVs are a promising solution for traffic safety 
and are expected to eliminate human driving errors. However, 
robust studies are needed to explore and assess the expected 
behavior. This study attempts to evaluate traffic safety resulting 
from the penetration of CAVs with different levels of automation 
(from Level 1 to Level 4) and the corresponding impact of the 
near-real introduction of CAVs into the traffic flow, considering 
that Level 4 vehicles will not be immediately introduced into the 
traffic. The investigation consisted of the modeling of different 
CAV levels using Gipps’ model calibration, followed by the 
simulation of nine mixed fleets of CAV levels at a modeled 
motorway segment. Subsequently, the Surrogate Safety 
Assessment Model was used for safety analysis using vehicle 
trajectories. According to the results obtained: (1) the gradual 
penetration of CAV levels led to a progressive reduction in traffic 
conflicts. This reduction ranges from 18.9% when the 
penetration of high levels of automation (Level 3 and Level 4 
vehicles) is 5%, to 94.1% when all the vehicles on the traffic flow 
are Level 4. And (2) human-driven vehicles and vehicles with low 
levels of automation (Level 1 and Level 2 vehicles) are more 
frequently involved in conflicts (as possible inductors of risky 
situations; as follower vehicles) than vehicles with high 
automation levels (Level 3 and Level 4 vehicles). In fact, human-
driven vehicles are involved in conflicts from 8% to 122% more 
than its sharing percentage on fleets, while vehicles with high 
automation levels are involved in conflicts from 80% to 18% less 
than its sharing percentage on fleets, depending on the 
combination of different types of vehicles in the traffic flow. In 
general, this study confirms the theory and the conclusions from 
previous literature that indicate a safety gain due to CAV 
penetration. Moreover, it provides a broader perspective and 
support for the introduction of CAVs levels. 

 
Index Terms— Connected and Autonomous Vehicles, levels of 

automation, simulation, surrogate safety assessment, traffic 
safety, V2X. 

 
I. INTRODUCTION 

 
 he projected revolution of Connected and 
Autonomous Vehicles (CAVs) could widely change 
traffic streams and transportation in general. The most 
prevalent benefits reported in the literature as a result 

of introducing CAVs are the reductions in congestion, delay 
time, and emissions [1]–[7]. Similarly, CAVs are expected to 
improve traffic safety. Singh [8] claimed that, because they are 
designed to eliminate all human driving errors, CAVs could 
reduce traffic crashes by 94%.  

To unify the visions of industry and research, the 
Society of Automotive Engineers [9] developed a scale for 
classifying manufactured CAVs into six levels, from zero to 
five, based on their automation progression. Level 0 (L0) 
indicates no driving automation. Level 1 (L1) vehicles are 
equipped with lateral or longitudinal systems for driver 
assistance. Level 2 (L2) vehicles use partial driving 
automation upon driver request. Level 3 (L3) vehicles 
incorporate conditional driving automation (i.e., the vehicle 
transfers control to the driver and the driver should respond to 
the vehicle request). Level 4 (L4) vehicles have high driving 
automation and are fully responsible for driving tasks under 
certain circumstances. Finally, Level 5 (L5) vehicles boast full 
driving automation and can operate the vehicle everywhere. In 
addition, connectivity adds other capabilities to autonomous 
vehicles when transmitting their locations and other useful 
information to the surrounding vehicles or infrastructure. 

Many research projects regarding the introduction of 
CAVs are being conducted worldwide. In some of them, 
different stakeholders are testing recent advances in the CAV 
industry within small networks, while other researches are 
more oriented toward improving all CAVs introduction 
processes, including technology efficiency, infrastructure, and 
social acceptance. In Europe, a new partnership called 
Cooperative, Connected, and Automated Mobility was formed 
within the Horizon Europe framework program (2021-2027) 
to organize and concatenate the efforts on CAVs and address 
their future challenges (e.g., AutoMate, AVENUE, 
Drive2TheFuture, ENSEMPLE, INFRAMIX, interACT, 
Levitate, SUaaVE, etc.) [10]. 

As a consequence of the rapid evolution in 
manufacturing, the interest in research on the impact of CAVs 
on traffic safety has increased in recent years (e.g., [1], [6], 
[11]–[17]). However, the lack of real CAV performance data 
(both driving behavior and crash data) has led researchers to 
use stochastic modeling and traffic simulation to investigate 
traffic safety problems. Consequently, potential traffic 
conflicts resulting from mixing streams of CAVs and human-
driven vehicles (HDVs) are the main measure to assess traffic 
safety in the literature. Vehicle trajectories resulting from 
simulation were analyzed using surrogate safety measures 
(e.g., time-to-collision (TTC) and post-encroachment time 
(PET)) to identify these risky circumstances such as traffic 
conflicts. Most of these studies determined traffic safety based 
on the market penetration rate of only L4 vehicles in the 
analyzed networks. Moreover, although some studies have 
attempted to include the effect of introducing different CAV 
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levels (e.g., [11], [19]), they neither involve all CAV levels 
nor discuss their effect separately (e.g., the involvement of 
each CAV level in conflicts or in inducing conflicts). Thus, a 
comprehensive study that can extensively present the effect of 
introducing all CAV levels is essential to understand the 
transition period between human and autonomous driving.  

The novelty of this study is twofold: first, it considers 
all CAV levels (rather than only one or two) within several 
mixed traffic streams to reflect the reality of CAV traffic 
safety during the transition period; and second, it discusses the 
most frequent vehicle interactions and the involvement of 
different CAV levels in potential traffic conflicts derived from 
several mixed modeled streams.  

To address these objectives, this study examined 
traffic safety using a microsimulation platform and 
subsequently applied surrogate safety measures to identify 
potential traffic conflicts. The evaluation of safety was carried 
out on the proposed study network as follows: (i) the traffic 
dynamics obtained from stream trajectories in different 
scenarios were examined; (ii) the potential conflicts arising 
across a spectrum of penetration rates of CAV levels were 
identified; (iii) the involvement of CAVs in conflicts was 
determined by individually calculating the involvement ratio 
of each CAV level and by computing the involvement ratio of 
the two-by-two interactions of the specific vehicle types; and 
after all (iv) the amount of responsibility related to each CAV 
level was underlined to generate conflicts based on the 
follower vehicle. 

The remainder of this paper is organized as follows. 
Section II presents a literature review of research works that 
evaluate the effect of the introduction and interaction of CAVs 
on traffic safety. Section III introduces the study network and 
the methodology used for both traffic simulation and conflict 
identification. Section IV presents the results obtained from 
the simulation-based surrogate safety measures and compares 
them with those of previous literature. Finally, Section V 
concludes with summary remarks and recommendations for 
future research. 

II. A REVIEW OF RELATED WORK 
This section presents several studies on the traffic 

safety of CAVs, highlighting the approaches used, the traffic 
safety aspects discussed, and the extent to which the different 
levels of CAV were studied in the literature.   

A. Simulation-based Approach 
Over the last decade, researchers have focused on the 

impact of CAVs on traffic safety. By analyzing open-source 
historical HDVs crash datasets, researchers have employed 
different approaches to derive the extent of the effect of CAVs 
on traffic safety. The first approach was to try to eliminate the 
effect of human errors by reanalyzing past recorded crash data 
without this factor [5]. The second was by assuming that the 
safety benefit of autonomous driving on roads would be 
similar to that of rail or aviation driving environments [20], 
[21]. After using these simple approaches to determine the 
preliminary extent of the safety benefits, the focus has been on 
CAV modeling and simulation to attain a deeper 
understanding.  

Previous researchers have used customized 
simulation frameworks or multilevel simulation platforms to 
simulate CAVs ([2], [22], [23]). Alternatively, other studies 
have used traffic microsimulation software built with widely 
known and validated traffic flow models and its extensions 
[7], [11], [12], [24], [25]. This has become the most widely 
used approach because of its feasibility and the advantage of 
operating several future scenarios within short periods. 
Finally, a few studies have analyzed real data gathered from 
CAVs driving operations along test beds (e.g., [28], [29]). 
Although the last approach could seem to be the best one, the 
question is how reliable it could be, while CAVs deployment 
is still at an early stage and tested on limited scenarios. 

Accordingly, thanks to its robust modeling quality 
and ability to build several operational evaluation scenarios, 
the microsimulation-modeling approach has been extensively 
used in CAV traffic safety studies [16]. Table I summarizes 
previous studies that have employed simulations to test the 
impact of CAVs on traffic safety. The table provides the 
following information: software interface used for simulation, 
calibrated network, type of vehicle considered, penetration 
rates defined during the simulation, thresholds of surrogate 
safety measures used to identify potential conflicts, safety 
evaluation indicators, and CAV types analyzed. 

As shown in Table I, various microsimulation 
platforms have been employed for modeling CAVs in traffic 
safety studies. The VISSIM interface is commonly used with 
different external car-following algorithms (e.g., Intelligent 
Driver Model and Newell’s car-following model) in addition 
to its internal Wiedemann 99 model calibration. However, 
several studies have run simulations on other platforms (e.g., 
Aimsun, PARAMICS, SMART, and SUMO). Recently, 
Aimsun added more capabilities for modeling CAVs with its 
internal interface algorithms (both car-following and lane-
change Gipps’ models) and for modeling the connectivity with 
well-structured external interfaces (V2X extension, the 
External Agent Interface and the Driving Simulation 
Interface). All these platforms are adequate for CAV 
simulation. For more details about comparisons between 
different results from these platforms, see [31]. 

Besides, CAVs traffic safety has been simulated on 
different types of networks and vehicles. While many 
researchers have applied their studies to freeways, two-lane 
highways, or intersections (e.g., roundabouts, signalized, 
unsignalized) [12], [13], [15], [26], [27], others have modeled 
urban arterials and intersections [19], [25]. However, they 
have all found that higher CAVs penetration rates enhance 
traffic safety. Likewise, some studies simulated only 
passenger cars, whereas others included a percentage of heavy 
vehicles in their simulated traffic stream to simulate the real 
traffic composition [7], [12], [14], [19]–[25]. 

On the other hand, simulating the pattern of CAVs 
introduction plays an important role in reflecting the 
implementation process. Although most studies increased the 
L2 or L4 vehicle penetration rates, the approach by 
Weijermars et al. [7], Guériau and Dusparic [19], and Sharma 
et al. [30], where a mixed fleet comprising vehicles of 
different automation levels in the same scenario, could better 
represent the real-world problem. 
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Considering the above, this study uses the 
microsimulation approach to model the introduction of 
different CAV levels, employing the Aimsun API internal 
algorithms and the external V2X extension. In addition, a 
motorway network is used to test various mixed fleet 
operations (i.e., passenger cars and heavy vehicles with 
varying levels of CAV) to achieve a simulation that is 
sufficiently close to the actual deployment of CAVs on real 
roads. 

B. CAV Safety Evaluation Criterion  
The criteria used for safety evaluation in the 

simulation-based method are the Surrogate Safety Measures 
(SSM) [16]. SSM were initially developed and validated using 
human-driven field safety studies manually or computer vision 
and sensors for motion tracking (e.g., [32], [33]). After 
verifying the advantages of simulation over field studies on 
traffic operations (e.g., simulation is easier and quicker in 
applying traffic scenarios and different strategies under the 
same traffic input), researchers began conducting traffic safety 
studies using SSM based on simulations. In the case of CAVs, 
where it is not currently possible to collect field data for 
mixed-fleet scenarios, traffic simulation is the only tool to 
conduct both traffic efficiency and safety studies. 

The available research on simulation-based CAV 
safety modeling using SSM can be classified into two 
categories [16]: (1) trajectory optimization, to optimize 
merging and crossing maneuver safety and provide proper safe 
space between vehicles, using distance and time gap 
constraints (which contain SSM, such as TTC) in maneuver 

decisions (e.g., [34]–[38]); and (2) safety evaluation using 
time-based and deceleration-based SSM, similar to the studies 
presented in Table I. TTC is the most commonly used SSM in 
the literature about CAV safety modeling, followed by PET 
[16]. Time-exposed time-to-collision (TET) and time-
integrated time-to-collision (TIT) have been frequently used as 
well (e.g., [12], [25], [39]). Often, the Surrogate Safety 
Assessment Model (SSAM), developed by the Federal 
Highway Administration (FHWA), or other customized tools, 
are used in safety evaluation by analyzing traffic trajectories 
and extracting the SSM values [31]. 

The TTC and PET thresholds in SSAM are the basis 
for determining risky interactions and the resulting SSM 
indicators. The default values for these SSM are 1.50 s and 
5.00 s, respectively. However, these values were assigned 
considering HDV crash validation. Table I shows that some 
researchers have used default values after performing a 
sensitivity analysis with different values [12], [13]. However, 
others suggest that it is important to reduce the default TTC 
threshold when dealing with CAVs because of their shorter 
reaction times and shorter headways. Morando et al. [14] 
applied three TTC thresholds when they tested the resulting 
conflicts of L4 vehicle penetration: 1.50 s for any conflict 
involving HDV, and 1.00 s or 0.75 s for L4-L4 interactions, 
which showed statistically significant differences. Similarly, 
Guériau & Dusparic [19] used a value of 0.75 s for conflicts 
involving CAVs, whereas Virdi et al. [26] adopted a value of 
0.50s.   

TABLE I 
SUMMARY OF PREVIOUS SIMULATION-BASED STUDIES FOR CAV EFFECT ON TRAFFIC SAFETY 

Reference Simulation 
platform 

Studied network Vehicle type Penetration rates SSM thresholds Evaluation indicators Level of 
CAV 

[24] PARAMICS Network with work zone  PC 0,20,40,60,80,100 1.5s TTC Conflict frequency L2 
[14] PTV-VISSIM Signalized intersection, 

roundabout 
PC, HV(5%) 0,25,50,75,100 1.5s TTC (HDV-HDV, AV-HDV) 

1.0s 0.75s TTC (AV-AV)  
5.0s PET 

Conflict frequency, 
Involved vehicles 

L4 (2 
models) 

[6] Costumized 
modeling 

2-lane road (10 km) PC 0,25,50,75,100 - Distripution of TTC, 
acceleration, and velocity 

difference 

L2 

[13] PTV-VISSIM 3-lane motorway (44.27 
km) 

PC 0,25,50,75,100 1.5s TTC 
5.0s PET 

Conflict frequency, 
Involved vehicles 

L4  

[25] PTV-VISSIM Arterial (61.15 km) PC, HV 
(%real data) 

30,40,60,80,100 
(CV and L2 tested 

apartly) 

1.5s TTC 
5.0s PET 

Conflict frequency, 
Severity (TET, TIT, TERCRI, 

LCC, and NCJ) 

 
L1, L2  

[11] SMARTS Freeway, CBD, 
Campus 

PC 0,20,40,60,80,100 1.5s TTC Conflict frequency 
(sensitivity analysis) 

L1,L2, 
L3, L4  

[26] PTV-VISSIM Urban intersections PC 0,10,20,…,90,100 1.5s TTC (?-HDV)* 
0.5s TTC (?-CAV) 
5.0s PET (?-HDV) 
1.65s PET (?-CAV) 

Conflict frequency, 
Involved vehicles 

L4  

[12] PTV-VISSIM 4-lane freeway (7km) PC, HV  
(0%-30%) 

0,10,20,30 2.0s TTC 
 

Severity (TET, TIT, TERCRI, 
and LCC) 

L4 

[19] SUMO Motorway (7 km), 
National (5.3 km),  
Urban (3x3 km) 

PC, HV 
(%real data) 

0,2.5,7,20,40,70 
(mix of L2 & L4) 

1.5s TTC (?-HDV) 
0.75s TTC (?-CAV) 

5.0s PET (motorway & national) 
0.75s PET (urban) 

Conflict frequency, 
Involved vehicles 

L2, L4  

[15] PTV-VISSIM 2-lane motorway PC 0,10,20,…,90,100 1.5s TTC 
5.0s PET (?-HDV only) 

Crash rate (if PET=0), 
Severity (TTC, PET, Delta S) 

L4 

[27] PTV-VISSIM 6-lane freeway  PC 100 1.5s TTC 
5.0s PET 

Conflict frequency, Severity 
(MaxS, MaxD, MaxDeltaV) 

L4 

[30] Costumized 
modeling 

- PC Mixed fleet of CV 
levels 

- MTTC, DRAC L2 

[7] 
 

Aimsun 3 tested Networks PC, HV Mixed fleet 1.5s TTC (?-HDV) 
1.0s (1st generation) 
0.5s (2nd generation) 

5.0s PET 

Crash frequency L4 (2 
driving 
styles) 

Where; PC: passenger car, HV: heavy vehicle, HDV:human driven vehicle, CAV: connected and autonomous  
TTC: time-to-collision, PET: post encroachment time, TET: time-exposed-time-to-collision, TIT: time-integrated-time-to-collision, TERCRI: time exposed rear-end crash risk index, LCC: lane 
changing conflict, NCJ: number of critical jerks, DeltaS: difference in vehicle speeds as observed at tMinTTC, MaxS: maximum speed of either vehicle throughout the conflict, MaxD: maximum 
deceleration of the follower vehicle, MaxDeltaV: maximum DeltaV value of either vehicle in the conflict, MTTC: modified time-to-collision, DRAC: lower deceleration rate to avoid accident.  
*(?-HDV) means the follower vehicle is HDV whatever the first vehicle; (?-CAV) means the follower vehicle is CAV whatever the first vehicle 
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C. CAV Levels  
Table I also shows that a significant portion of 

previous studies have investigated the effect of the penetration 
of L4 vehicles alone [7], [12]–[15], [26], as this is the most 
awaited stage. Nonetheless, many studies have focused on 
only low levels of automation and connectivity (L1 and L2 
vehicles) (i.e., vehicles with one or two advanced systems) 
[24], [25], [30] to reflect traffic safety expectations for the 
near future.  

Among those who investigated the safety impact of 
L1 and/or L2 vehicles, Genders & Razavi [24] calibrated L2 
vehicles with connectivity between them (Vehicle-to-Vehicle, 
V2V). Afterward, they tested three behavioral models 
considering different degrees of driver compliance (high, 
moderate, and low) with different penetration rates. They 
found that the change in traffic safety is correlated with driver 
compliance in terms of how much the driver will follow the 
data gathered by V2V in the work zone (warnings and 
information): moderate and low driver compliance are 
correlated with considerable traffic safety drawbacks, whereas 
conservative changes in behavior (high driver compliance in 
interacting with linked data) were correlated with low changes 
in traffic safety. In addition, this study suggested that L2 
penetration rates below 40% contribute to fewer traffic 
conflicts, whereas high penetration rates decrease network 
safety. Similarly, Sharma et al. [30] implemented a model to 
test the safety of fleets mixing HDVs and L2 vehicles with 
high/low-compliant drivers, considering the effect of platoon 
spatial arrangement. First, by investigating homogenous 
scenarios (scenarios with only one type of behavior), they 
found that L2 vehicle platoons with highly compliant drivers 
achieve a higher level of safety (higher modified time-to-
collision (MTTC) and lower deceleration rate to avoid crash 
(DRAC)) than L2 vehicle platoons with low-compliant 
drivers, and that L2 platoons with low-compliant drivers still 
have more safety benefits than HDVs. Second, by considering 
heterogeneous scenarios, they concluded that the platooning of 
vehicles, rather than their penetration rates, was the key factor 
in obtaining safety benefits. Furthermore, their results 
indicated that the best type of vehicle platoon arrangement 
consisted of L2 vehicles with high compliance, followed by 
L2 vehicles with low compliance, followed, in turn, by HDVs. 
Rahman et al. [25] also suggested that the penetration of L1 
and L2 vehicles could more significantly reduce traffic 
conflicts than that of HDVs.  

On the other hand, researchers that have assessed the 
effect of the penetration of L4 vehicles using the SSAM 
unanimously agree that high penetration rates of L4 vehicles 
will significantly enhance traffic safety on different roadway 
sections [12], [13], [15], [27] and at intersections [14], [26], 
regardless of the network type.  

In the case of roadway sections, Papadoulis et al. [13] 
tested motorway safety and examined the number of conflicts 
resulting from the introduction of L4 vehicles calibrated via 
the external VISSIM interface. The generated conflicts on 
different days of the week reduced by 12–47%, 50–80%, 82–
92%, and 90–94% for CAV penetration rates of 25%, 50%, 
75%, and 100%, respectively. Similarly, El-Hansali et al. [27] 
compared the traffic safety on a 6-lane freeway section fully 

operated with either HDVs or L4 vehicles (i.e., 100% HDVs 
vs. 100% L4 vehicles). Their results showed a reduction of 
only 8.6% in the number of conflicts between autonomous and 
conventional traffic. Although these results showed higher 
severity values for L4 vehicles (e.g., a higher maximum speed 
of either vehicle throughout the conflict (MaxS) and higher 
maximum deceleration of the follower vehicle (MaxD)), they 
do not necessarily reflect the reality as these severity terms 
were measured for the conflicts and not for crashes. Sinha et 
al. [15] also considered a motorway section as a case study to 
apply a traffic safety analysis. They studied traffic flow 
efficiency and potential conflicts, and estimated potential 
crash rates from potential conflicts to discuss the severity of 
L4 vehicle introduction. In general, the results indicated the 
safety benefit of CAV-HDV interaction over HDV-HDV 
interaction. Finally, Zhang et al. [12] conducted a study on 
roadway sections. They examined the safety of exclusive lanes 
for L4 vehicles under different penetration rates. They 
underlined that setting even one exclusive lane improved 
safety by decreasing risky situations for both longitudinal and 
lateral movements. They also highlighted that setting two 
exclusive lanes was more suitable for high-demand scenarios. 

Other researchers analyzed L4 traffic safety at 
intersections. For example, the reduction in conflicts generated 
by L4 vehicles for penetration rates between 50% and 100% 
was estimated in [14] to be between 20% and 65% for 
signalized intersections and from 29% to 64% for 
roundabouts. Virdi et al. [26] also suggested that the benefits 
of L4 vehicles will be observed at high penetration rates 
(particularly for signalized and diverging diamond 
intersections). Under a L4 vehicle penetration rate of 90%, the 
reductions in conflicts were estimated to be 48%, 100%, 98%, 
and 81% for signalized, priority, roundabout, and diverging 
diamond intersections, respectively. 

Nevertheless, L4 vehicles will not operate 
immediately on the road, and once they do, they will be 
sharing traffic flow with vehicles with lower automation 
levels. Thus, to represent reality more closely, scenarios 
incorporating lower levels should be analyzed. However, very 
few previous studies have simultaneously modeled more than 
one CAV level. For instance, Xie et al. [11] employed 
SMARTS to analyze the sensitivity of traffic safety to 
different levels of automation (L1, L2, L3, and L4 vehicles) by 
varying the driving parameters (e.g., maximum 
acceleration/deceleration, space/time headway, reaction time), 
traffic flow (1 000, 3 000, and 5 000 veh/h), and studied area 
(e.g., urban area, interurban freeway). They found that an 
increase in the automation level may enhance traffic efficiency 
but could lead to more potential conflicts. However, this 
conclusion might be related to some of the limitations that we 
try to address in this study: first, they did not include the effect 
of connectivity, which may lead to more adaptation and 
harmony between vehicles and consequently improve traffic 
safety; second, they considered the same TTC threshold for 
HDVs and vehicles with any level of automation, despite the 
higher capabilities of CAVs; and finally, they considered 
scenarios that are not very realistic (such as penetration rates 
of 100% for L1 or L2 vehicles) and which drivers will not see 
during the transition to fully CAV operation. As a result, these 
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points are highlighted as aspects to be incorporated in the 
current study to improve the level of reliability. 

Guériau and Dusparic [19] tried to include mixed 
fleets with more than one CAV level (L2 and L4 vehicles) and 
HDVs. They conducted an extensive study that calibrated real-
world traffic (with passenger cars and heavy vehicles) within 
various types of networks (motorways, national, and urban). 
They also applied two types of connectivity (V2V and vehicle-
to-infrastructure (V2I)). They found that, at low CAV 
penetration rates, traffic safety was adversely affected and 
traffic conflicts increased by 30% compared to a human-
driven scenario, whereas a high CAV penetration led to 
improved traffic safety with a 50%-80% conflict reduction. 
They emphasized that traffic congestion contributes more to 
potential conflicts than the penetration rates of L2 and L4 
vehicles. Therefore, they highlighted the importance of 
simultaneously ensuring traffic efficiency and safety.  

On the other hand, Weijermars et al. [7] simulated 
two styles of CAV driving (i.e., cautious and assertive) with 
traffic data calibrated from three city networks and eight 
mixed fleets. However, the main shortcoming of studies [7] 
and [19] is that the CAV driving styles were not shown or 
discussed in their results. They only presented the total 
reduction of conflicts by CAV as one unit rather than showing 
the involvement of each vehicle type (HDVs, cautious CAVs, 
and assertive CAVs) in the resulting conflicts among the 
analyzed scenarios. Indeed, CAV will be introduced during a 
transition period with several mixed fleets and levels. As a 
result, it is important to discuss these two aspects 
simultaneously by presenting the impact of increasing the 
penetration rates of different CAV levels on traffic safety 
among multiple scenarios and addressing the participation of 
each level as involved vehicles in the total resulting conflicts, 
as well as their contribution as fault vehicles in the resulting 
potential conflicts or crashes. All the limitations mentioned in 
this subsection are considered in the current study. 

III. METHODOLOGY  
This study presents a safety evaluation of the 

progressive introduction of CAVs into the traffic flow of a 
freeway segment modeled in Aimsun Next 20 API [40]. This 
section provides information about the case study freeway 
segment, calibration of CAV levels, simulation scenarios, and 
traffic conflict identification procedure to obtain a safety 
assessment. 

A. Case Study  
A three-lane 20.27 km road segment of the Spanish 

GR-30 motorway was considered as a case study. The selected 
motorway includes two major entrances to the city of Granada 
and represents a strategic location aligning the city and 
reaching the main vital points (i.e., city center, hospitals, 
schools, university, etc.). The motorway segment has 16 
access points (see Fig. 1): two major points, one in the north 
and the other in the south, and 14 weaving segments. An 
imported Open Street Map was used in the Aimsun platform 
as a guide to generate the geometry of the segment (i.e., 
curves of the road segment, lane width, length of sections, and 

merging and diverging areas) using drawing tools and 
overlapping the sections created with the imported map.  

After including the segment geometry, other network 
information was defined based on data gathered from several 
detectors installed by the General Traffic Direction (Dirección 
General de Tráfico, DGT) along the segment. The DGT data 
include the speed limit, average instantaneous speed of 
vehicles passing through a section within 15-min intervals, 
traffic volume per lane (veh/h/ln), and traffic distribution 
(passenger cars vs. heavy vehicles). The segment had different 
speed limits (80, 90, 100, and 120 km/h). Consequently, the 
reported average instantaneous speed within 15-min intervals 
varied from 83 to 118 km/h. The traffic flow data used for the 
calibration of the modeled network correspond to an off-peak 
hour (10:00-11:00 am) on a regular day (Tuesday), 
representing free-flow conditions. The traffic counts registered 
every 15 min by the six detectors in the northbound direction 
were between 547-3570 pc/h and 89-260 hv/h, whereas those 
recorded by the four detectors in the southbound direction 
were between 809-3281 pc/h and 93-499 hv/h. These detectors 
were used with their anticipated directional hourly volumes to 
validate the traffic simulations. 

B. Simulation 
Based on a critical review of several microsimulation 

platforms used for CAV simulations in both the longitudinal 
and lateral directions [22], the following conclusions can be 
drawn: (i) although PTV VISSIM has been widely used for 
this type of analysis, Aimsun has improved its recent versions 
(Aimsun Next versions 8.4.3 to 20) providing more specific 
tools to calibrate CAV behavior as a vehicle type; (ii) Aimsun 
is considered a user-friendly platform, and it has designed 
many external API extensions, including the V2X connectivity 
extension, to correctly represent CAVs.  

Accordingly, this study uses Aimsun Next 20 with 
the V2X extension to calibrate CAV levels. The fleet mixes 
proposed in this study were simulated for one hour with a 0.1 s 
time step, following previous studies [13], [14], [41], and an 
18-min warming-up period calculated as in [42], considering 
the length and average speeds of the freeway segment. Based 
on previous studies (e.g., [43], [44]) each scenario was 
assigned a total of 15 simulated replications. To achieve a 
90% confidence interval level, Shahdah et al. [43] defined the 
number of simulation runs (N) as follows: 

          N = !
		"("#$/&),)#"∗$

%
"
&
                                     (1) 

 
where σ is the standard deviation of the simulation output 
sample, t is the Student’s t-statistic for the two-sided error α/2 
with N−1 degrees of freedom, E is the allowed error range, 
E=ε*μ, μ is the mean of the number of simulated conflicts 
based on the initial set of simulation runs, and ε is the 
allowable error specified as a fraction of the mean. For 
example, in Scenario I, we performed 15 runs with σ=19.54, 
t=2.14 α=0.05, 14 degrees of freedom, and E=0.10×192, 
which was a sufficient sample. In addition, in a previous study 
[44], 30 and 50 runs were tested for each scenario, and the 
results did not change significantly, indicating that 15 runs 
were a representative sample. 
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Fig. 1. Modeled study area (GR-30 motorway section) 

As a step prior to the traffic microsimulation, a check 
of the modeled network validity was applied to verify if traffic 
operations (exposure and arrival) of the network matched the 
observed traffic operations in the case study. Following 
previous studies [25]-[27], and applying the modeling 
guidelines of the Roads and Maritime Services [45], this study 
applied the following criteria: (1) the Geoffrey E. Havers 
(GEH) statistic function; which measures traffic volume 
deviation between networks, 85% and 100% of traffic 
volumes should render GEH statistics of less than 5 and 10, 
respectively, (2) R² of the observed vs. modeled volumes plot 
should be over 0.9, and (3) the cumulative average modeled 
travel times by section (between detectors) should be within 
15% or one minute (whichever greater) of the observed travel 
time. Appendix A exhibits the results of the mentioned 
criteria, where GEH is less than 5 for 85% and less than 10 for 
the 100% of traffic volumes (Appendix A, Table A.1).  In 
addition, R² of the northbound observed vs. modeled volumes 
plot was found to be 0.98, and for the southbound was 0.99 
(Appendix A, Fig. A.1, A.2). Regarding the average travel 
times, they were found to be within 15% of the observed 
cumulative plot for both directions (Appendix A, Fig. A.3, 
A.4). These results confirm the validity of the modeled 
network.  

In addition, following previous studies [25]–[27], the 
modeled average travel speed was validated. It was ranging 
between 86.44% and 90.36% of the speeds registered by the 
DGT. The mentioned variations in speed (-9.64% and -
13.56%) are considered acceptable, because they are below 
the 15% variation threshold recommended by the Roads and 
Maritime Services modeling guidelines [45]. The speed per 

vehicle type was not considered for validation because of the 
absence of split data. 

Table II presents the nine different fleet mixes 
considered as scenarios for the traffic microsimulation to 
reflect a closer picture of the introduction of CAV levels. As 
getting the exact scenarios of CAVs’ market penetration rates 
is unfeasible, this study tried to cover a progressively 
introduction of CAVs with different fleet mixes that the real 
world might face. Specifically, Scenario A reflects the base 
condition in which all vehicles are HDVs; Scenario B 
represents the first introduction of CAVs, where the road is 
shared with a low percentage (25%) of mainly L1 and L2 
vehicles; in Scenarios C and D the presence of CAVs of 
various automation levels increases; Scenario E implements a 
completely mixed fleet with an approximately equal 
penetration of all vehicle types; scenarios F, G, and H picture 
fleet mixes of high automation levels; and finally, Scenario I 
models a situation where all vehicles are L4. 
 

TABLE II 
FLEET MIX SCENARIOS CONSIDERED 

Scenario HDV L1 L2 L3 L4 
A 100% 0% 0% 0% 0% 
B 75% 10% 10% 5% 0% 
C 50% 10% 25% 10% 5% 
D 40% 15% 20% 15% 10% 
E 20% 20% 25% 20% 15% 
F 5% 10% 30% 30% 25% 
G 0% 0% 10% 40% 50% 
H 0% 0% 0% 25% 75% 
I 0% 0% 0% 0% 100% 

 

C. CAV Calibration 
The purpose of this part of the study is to calibrate all 

CAV levels standardized by the Society of Automotive 
Engineers [9] as distinct vehicle types operated in the 
microsimulation. L5 vehicles were not considered in this study 
given that a particular motorway section was analyzed under 
specific circumstances. Therefore, in the tested context, fully 
automated vehicles corresponded to level L4. This study aims 
to model the differences in driving behavior among different 
CAV levels (i.e., how these vehicles will flow and interact 
with each other during the transition period) based on 
literature and manufactural interpretations [1], [11], [19], [41]. 
These behavioral differences were introduced in Aimsun, 
considering specific parameters for both car-following and 
lane-change traffic models.  

In particular, the default parameter values in Gipps’ 
model represent HDV behavior. However, they are supposed 
to have different values for different CAV levels. In addition, 
according to the viewpoints of both literature and 
manufacturers [1], [9], [46], CAVs are expected to maintain 
different standstill distances, accelerate and decelerate faster 
and more smoothly, maintain constant speed with lower 
oscillations at free flow, form platoons of vehicles that follow 
the leader, and change lanes more cooperatively and at a 
higher speed. Nevertheless, according to the Levitate research 
project [7], [41], it is expected that the first CAVs introduced 
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into traffic streams will exhibit a cautious driving style, as 
they will be interacting with HDVs, whereas the second 
generation will be more assertive [7], [41]. Thus, to achieve a 
more realistic representation of CAV introduction, this study 
considered a cautious driving style.  

To generate the behavior of each level of automation, 
the data analysis strategy considered was a type of data 
mining. First, a previous investigation and analysis of all the 
parameters used in the empirical and simulation studies were 
performed to extract the key parameters needing calibration in 
our models. The key parameters are those that researchers 
extensively use as the most connected to the behavior of 
CAVs. Afterwards, the following strategy was used regarding 
the values of the key parameters for different levels of 
automation: 

- If the parameter was tested within empirical studies 
(for L1, L2), the value was extracted from these 
studies (e.g., normal deceleration and maximum 
acceleration [21]. Sometimes the empirical data were 
used to obtain the direction of parameter values for 
different automation levels [47]). 

- If the parameter was extensively calibrated in 
simulations and researchers agreed on its value, then 
the calibrated value was used. Even though the 
parameters were not the same in different simulation 
platforms, an equivalent value for the Aimsun 
parameters was assigned depending on the scientific 
definition of each parameter.  

- If we assigned values for parameters at specific levels 
(s) (L2 and L4, for example) based on the previous 
two conditions, the decision regarding the in-between 
values (i.e., values related to L1, L3) was based on 
the interpretation of technology advances for that 
parameter (e.g., reaction time is kept the same in L1 
and L2 as the driver is still reacting in both vehicles, 
whereas speed limit acceptance is represented with 
some improvement in L2 than L1). 

- If the parameter was not extensively calibrated, a 
sensitivity analysis was performed to determine an 
appropriate value (e.g., sensitivity factor and 
aggressiveness level). 
 
In general, as L1 vehicles are defined as those with a 

driver assistance system, limited changes were expected to 
model their behavior compared to HDVs’ behavior, 
represented by better speed limit acceptance and more 
guidance acceptance under the monitoring of a human driver 
all the time. L2 vehicles, on the other hand, provide more 
advanced systems (e.g., Cooperative Adaptive Cruise Control, 
CACC), more regulated acceleration/deceleration, and less 
aggressive lane changing. Although CACC can control driving 
sometimes, the driver is the one reacting, and the CACC 
algorithm can provide control to the human at any time. The 
behavior of L3 vehicles, which reflect higher automation 
advances, is characterized by a lower reaction time and a more 
cautious driving in both car-following 
(acceleration/deceleration) and lane changing (e.g., 
cooperating in creating gaps to avoid imprudent lane change). 
However, CACC still provides control to human drivers to 
interact with small gaps. Finally, L4 vehicles are totally 

autonomous vehicles with a very low reaction time, very low 
aggressiveness, and highly regulated behavior in both the 
longitudinal and lateral directions. 

Appendix B (section I) presents a detailed description 
of the parameters considered in Gipps’ car-following and lane-
change models for each level of automation, as well as a 
justification of the values proposed for different automation 
levels. These values are based on previous literature and 
depend on the expected advantages of adding advanced 
technologies. The parameter distribution for both passenger 
cars and trucks is defined by the mean, standard deviation, and 
minimum and maximum values. In general, the standard 
deviation values decrease as the level of automation increases 
because of its high dependency on technology [46]. The 
distribution used was the default distribution in the Gipps 
modeling (normal distribution). Appendix B (section I) also 
shows the definition of each parameter as provided in the 
Aimsun user manual, as well as previous literature that guided 
the parameter calibration applied in the current study.  

Lastly, connectivity is introduced into the simulated 
vehicle types as follows: we assumed that HDVs and L1 
vehicles are modeled without connectivity; L2 vehicles are 
connected only with the CACC assistance system; L3 vehicles 
are connected with both CACC (the whole L3 vehicles) and 
V2V connectivity (the majority of L3 vehicles, 65% equipped 
vehicles); and L4 vehicles are entirely connected with V2V 
connectivity. 

More details regarding Gipps’ traffic flow theory 
[48], [49] and connectivity calibration are presented in the 
Appendix B: sections II, III, and IV. 

D. Safety Evaluation 
Microsimulations do not provide direct measures to 

evaluate traffic safety. The procedure that tends to be used for 
CAV safety evaluation is based on two approaches: (1) to 
determine traffic dynamics and behavior by analyzing 
aggressiveness and jerk interactions in trajectories under 
different studied scenarios, and (2) to analyze the 
microsimulation outputs (vehicle trajectories) with the SSAM 
to identify potential traffic conflicts. The SSAM tracks vehicle 
positions within sequential time steps while treating a 
trajectory file. If two vehicles maintain the same speed and 
projection up to the TTC threshold, they are registered as an 
overlapping (conflict) [31].  

This study uses both approaches: (1) the analysis of 
trajectory dynamics by drawing their acceleration and 
velocity-difference distributions among the studied fleet mixes 
(scenarios A to I), and (2) the analysis of vehicle trajectories 
using SSAM to first identify potential conflicts registered in 
each scenario to determine the macroscopic safety effect of the 
gradual introduction of CAVs, and then to picture the potential 
conflicts registered by each CAV level.  

A two-step process was used to identify conflicts 
based on TTC thresholds and vehicle type: (1) the vehicle 
trajectory file was obtained from Aimsun Next 20 (with 
GetAllInfVeh API extension), and processed by a Python code 
to extract vehicle type information that is not regularly output; 
and (2) the trajectory file, containing proper vehicle 
information, was concatenated with the SSAM output to create 
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a file that contains both conflict data (i.e., SSM, conflict type, 
the leader and the follower vehicle involved in a conflict) and 
vehicle data (i.e., vehicle type, speed, acceleration, and 
position). StataMP 16 was used first for concatenation, and 
then, to pre-filter and identify the conflicts, setting different 
TTC thresholds depending on the vehicles involved.  

The default TTC and PET values were 1.50 s and 
5.00 s, respectively. Table I and Section 2 show that TTC is 
the most commonly used measure in the literature. In 
particular, following the concept in literature, which indicates 
that the shorter reaction times of CAVs could make these 
vehicles more capable of significantly decreasing the TTC 
threshold [15], [19], [26], and considering a previously 
conducted sensitivity analysis [44] that showed a statistically 
significant difference when examining the change in the 
frequency of conflicts involving L4 vehicles under several 
TTC values (0.50, 1.00, 1.50, 2.00, and 2.50 s), this study used 
two different TTC thresholds: 

- TTC=1.50 s to identify HDV-HDV  or  CAV-HDV 
conflicts where the follower is an HDV [15]. 

- TTC=0.75 s to identify CAV-CAV or HDV-CAV 
conflicts where the follower is the autonomous 
vehicle. 

As L1 and L2 vehicles correspond to low levels of automation 
and both require human intervention during the driving 
process, they are included in the first group (TTC=1.50 s), 
whereas CAVs are related to higher levels of automation (L3 
and L4 vehicles). The suggested value of 0.75 s is in line with 
two previous studies [14], [19]. Although Morando et al. [14] 
tested two TTC thresholds for the identification of CAV 
conflicts (1.00 s and 0.75 s), the results with 0.75 s showed a 
better consistency. Virdi et al. [26] used a lower value (0.50 s) 
and found a significant conflict reduction even when the CAV 
penetration into traffic was very low (only 10%). Moreover, 
the Levitate project [41] considered two values: 1.00 s for the 
first generation (cautious driving) and 0.50 s for the second 
generation (assertive driving), which are convenient for the 
extreme driving styles modeled. As a result, 0.75 s could 
represent an average value of all previously proposed values in 
the literature. 
 The potential conflicts reported in this study under 
different scenarios are described in terms of conflict reduction 
with respect to the base scenario (scenario A) and conflict type 
(rear-end, lane-change). Moreover, an analysis of variance 
was conducted between the number of conflicts under 
different scenarios to measure possible significant changes in 
safety.  

Afterwards, as the pre-filtered conflict file contains 
the details of the vehicle type (HDV or L1-L4) involved in the 
conflicts, as well as data regarding which vehicle is the 
follower in a conflict, this information was used to analyze the 
vehicles and vehicle interactions involved in the conflicts to 
further understand the impact of the introduction of different 
CAV levels on safety. The evaluation was represented by 
three measures: 

 
1. Vehicle involving ratio was first presented by a ratio 

computed for each vehicle type among the scenarios as 
follows:  

Involving ratio vt (i) = !!".$"%&'($)*	(%$',-(%.	/)	(()
!".$"%&'($)*	(()

".	 2
%	45%5)67)("%	/)(()             (2) 

 
where vt is the vehicle type (HDV, L1-L4), and i is the 
scenario (from A to I). Therefore, the involvement ratio of vt 
in i is calculated by dividing the number of conflicts that 
include vt, whether as a first or second vehicle, by the total 
number of conflicts in that scenario; then, the ratio is divided 
by the penetration rate of vt into the scenario. This measure 
determines the frequency in which a specific vehicle type is 
involved in a conflict, normalized for the number of vehicles 
of that type in the fleet. A value higher than one indicates that 
the corresponding vehicle type participates in a higher number 
of conflicts than those corresponding to its penetration rate in 
that scenario. On the contrary, a ratio lower than one implies 
that the participation of this type of vehicle in potential 
conflicts is lower than its presence in the traffic fleet. 
 
2. Interaction involvement ratio. Picturing the most repeated 

interactions of the vehicles involved in the potential 
conflicts under each scenario (the leader and follower 
vehicle of each conflict) is key in illustrating the effect of 
CAV level penetration on traffic safety during the 
transition period. It is represented in Eq. 3:  
 

Interaction involving ratio vc (i) = 
!!".$"%&'($)*	(%$',-(%.	/$	(()

!".$"%&'($)*	(()
" 2
%	45%5)67)("%	/)2(()	.		%	45%5)67)("%	/)8(()	                (3) 

 
where vc is the vehicle interaction (e.g., HDV-HDV, HDV-L1, 
etc.) in a conflict, and i is the scenario (from A to I). The 
conflict proportion by vehicle interaction (vc) in i is calculated 
by dividing the number of conflicts, including vc, by the total 
number of conflicts in that scenario. The interaction 
proportion is normalized then by dividing it on the sharing 
percentages of both vehicle types in that interaction. 
 
3. Finally, as the follower vehicle in a conflict is considered 

to be the decision-maker vehicle that can either avoid 
conflicts or induce them by its errors, the involvement 
ratio for the follower vehicle at potential conflicts was 
calculated (Eq. 2) to highlight vehicle types that most 
frequently induce conflicts. The involvement ratio of the 
follower in a scenario is calculated by dividing the 
number of conflicts where the corresponding vehicle type 
is a follower by the total number of conflicts in that 
scenario. Then, the ratio is divided by the penetration rate 
of the follower vehicle type in the scenario for 
standardization to consider its presence in the studied fleet 
mix. 

IV. FINDINGS AND DISCUSSION 
Within the framework of investigating the CAV 

effect on traffic safety, this section presents the 
microsimulation results for different scenarios of CAV level 
penetration. These results provide firstly traffic flow dynamics 
that reflect an indirect traffic safety measure. Later, it 
presented a direct traffic safety measure represented by 
potential traffic conflicts depending on the SSAM and 
analyzed these conflicts. 
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A. Traffic flow dynamics 
One of the main traffic safety indicators is to draw 

clear insight into traffic flow dynamics [1], [2], [46]. This 
study follows Ye and Yamamoto’s [6] approach in analyzing 
traffic trajectories by their exposure to risky situations, 
including high acceleration/deceleration or velocity 
differences between the leader and follower among different 
fleet mixes. Fig. 2 shows the acceleration distributions of the 
different scenarios (from A to I).  

 

 
Note: acceleration values outside the range -3 m/s² to 3 m/s² are negligable 
and were not represented in these plots 
Fig. 2. Acceleration distribution under the proposed scenarios 

Even though the distribution patterns exposed for 
these scenarios are very similar, it is possible to identify two 
different patterns: one for scenarios A to E, and another one 
for scenarios F to I. Focusing on the second pattern, when the 
penetration rate of L3 and L4 vehicles is over 50% (from 

scenario F onward), the ratio of the acceleration values around 
0.00 m/s² increased, diminishing the ratio of acceleration 
values higher than 1.00 m/s2 or lower than -1.00 m/s2. This 
indicates smoother and harmonized driving patterns. This 
result is expected given the behavior parameters used for L3 
and L4 vehicles design. For example, as imprudent lane 
changing is banned for them, less extreme acceleration values 
might be shown. Moreover, as L3 and L4 vehicles are 
modeled for cooperation in creating gaps, acceleration rates 
closer to 0 m/s2 are also expected. Ye & Yamamoto  [6] also 
found that the increase of CAV penetration rate leads to 
gradual increase of the ratio of 0.00 m/s² acceleration rate. In 
addition, they pointed out that the aforementioned behavior is 
expressed by more traffic safety on the road. Sinha et al. [15] 
marked similar results by finding that high variation of 
acceleration records are decreasing with more CAV in traffic 
flow. 

Regarding the difference in velocity between the 
leader and the follower vehicles, Fig. 3 shows that for all 
scenarios, it follows a bell-shaped distribution. However, a 
closer look to each scenario reveals the gradual change in this 
shape. The first five scenarios (A-E), where the greatest 
number of vehicles are HDV, L1 and L2 vehicles, presented a 
bell shape with a low peak and a wide velocity range. The bell 
peak starts to increase at high sharing percentages of L3 and 
L4 vehicles (above 50%), which are scenarios from F to I. At 
these scenarios, the difference in velocity between vehicles is 
reduced and tends to cluster around low values. This 
phenomenon shows that traffic flow homogenizes with high 
L3 and L4 vehicles penetration rates. According to previous 
studies [2], [6], velocity difference had a propensity to cluster 
around 0.00 m/s at high L4 and L2 penetration rates 
(respectively). 

In particular, Ye and Yamamoto [6] emphasized that 
the anticipated reduction in the frequency of these risky 
situations, namely, situations with a high velocity difference, 
would improve traffic safety.  

Finally, it should be highlighted, that these more 
harmonized driving patterns (related to acceleration and 
velocity-difference distributions) found at scenarios with high 
proportions of L3 and L4 vehicles, are partly a consequence of 
a safer and more cooperative behavior of L3 and L4 vehicles. 

B. Traffic Conflicts among Different Scenarios 
Traffic conflict analysis leads us to a better 

understanding of the safety impact of penetration rates of 
different levels of CAV at traffic flow. First, using TTC (1.50 
and 0.75 s) and PET (5.00 s) thresholds (as discussed in 
Section III.D), Table III shows the average results of the 
number of conflicts resulting from our study for each scenario, 
differentiated by the total number of conflicts and conflict 
type. In addition, Table III shows the percentage of reduction 
in the number of total conflicts considering scenario A (where 
all the vehicles are HDV) as a reference. Moreover, analysis 
of variance (ANOVA) identifies whether the differences in the 
number of conflicts between scenarios are statistically 
significant. 

In general, as the CAV penetration rates increase, 
from B to I scenarios, the number of conflicts decreases. This 
reduction is higher for higher penetration rates of CAV and for 
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higher automation levels, reaching reductions from 18.9% up 
to 94.1% from scenario B to scenario I respectively. 
Moreover, the ANOVA statistical analysis shows statistically 
significant differences with a 95% confidence level for the 
average number of conflicts between most of the scenarios. 

 

 
Fig. 3. Velocity-difference distribution under the proposed 
scenarios 

 
In Table III, from Scenario B to Scenario D, where 

CAV volume has been progressively increased across the 
scenarios (from 0% in Scenario A to 25%, 50%, and 60%, 
respectively), the reduction in the number of conflicts is 
statistically significant, close to 20 percentage points between 
them (18.9%, 48.5%, and 65.0%, respectively).  

In contrast, when the percentage of vehicles with a 

high level of automation (L3 and L4 vehicles) is over 35% 
(i.e., scenario E) and the presence of HDV is low or non-
existent, the differences in the number of conflicts are not 
statistically significant between all these scenarios (scenarios 
E, F, G, H, and I), but homogenous groups of scenarios are 
identified with statistical inter-group differences. This 
indicates that scenario E (with 20% HDV, 20% L1, 25% L2, 
20% L3, 15% L4) represents again (as in traffic flow 
dynamics) the beginning of the saturation level of CAVs 
penetration gained safety benefits. The results from scenarios 
D and E (see Table III) shape subgroup d, where the 
composition of vehicles is highly mixed, differ from those of 
the last three scenarios G, H, and I that conform to subgroup g, 
where the penetration rates of vehicles with a high level of 
automation (L3 and L4 vehicles) are either 90% or 100%. This 
suggests that the most significant reductions in the number of 
conflicts are going to be reached in the first stages of CAV 
penetration during the transition period, while during later 
stages, even though the number of potential conflicts 
continues to decrease, these reductions will not be significant. 
In the literature, although there was no statistically significant 
comparison for the safety saturation CAVs penetration level, it 
can be noted that it was presented at different rates. Papadoulis 
et al. [13] and Morando et al. [14], for example, stated that 
75% of L4 vehicles should operate the road to obtain the 
saturation level. In contrast, Virdi et al. [26] confirmed the 
results of the current study, with saturation penetration at 30% 
of L4 vehicles, particularly at roundabouts and priority 
intersections (unsignalized intersections). This change in 
results is related to the different calibrations of L4 behavior. 

 
TABLE III 

NUMBER OF CONFLICTS BY SCENARIO AND TYPE OF 
CONFLICT 

Scena
rio 

Total conflicts Rear-end conflicts Lane-change 
conflicts 

Avg. (St. 
dev.) 

% 
Reducti

on 

Avg. (St. 
dev.) % Avg. (St. 

dev.) % 

A 3251 a* 
(647.26) 

 
3072  

(620.72) 
94.5  179 

(30.35) 
5.5 

B 2637 b 
(503.62) 

18.9 2473 
(482.84) 

93.8  164 
(25.98) 

6.2 

C 1675 c 
(247.79) 

48.5 1542 
(22.32) 

92.1  133 
(23.29) 

7.9 

D 1137 d 
(135.15) 

65.0 1039 
(125.93) 

91.4  98 
(15.42) 

8.6 

E 899 d, e 
(103.93) 

72.3 818 
(96.17) 

90.9  81 
(12.16) 

9.0 

F 648 e, f 
(75.21) 

80.1 591 
(70.17) 

91.2  57 (8.86) 8.8 

G 398 f, g 
(38.43) 

87.7 369 
(35.94) 

92.7 29 (5.33) 7.3 

H 199 g 
(22.92) 

93.9 179 
(20.89) 

89.9  20 (4.73) 10.1 

I 192 g 
(19.54) 

94.1 175 
(16.04) 

91.1 17(4.82) 8.9 

*For each value contains a, b…letter, it denotes values of statistically 
significant differences (p < 0.05). Two or more values with the same letter 
denote a homogeneous subgroup. 

 
In particular, in scenario B, where the operating 

levels of the CAV (almost L1 and L2) represent 25% of the 
traffic flow, a reduction of less than 20% is obtained for the 
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resulting conflicts with respect to the total human driving 
scenario (A). This is in agreement with previous studies [13], 
[19], [25]. However, many of the mentioned studies studied 
the first introduction of CAV as L4; thus, our results add to the 
literature that the first introduction of CAV will even provide 
significant safety improvement even if they have low levels of 
automation (L1 and L2). 

For example, Virdi et al. [26] suggested a significant 
reduction even with a 10% CAV penetration rate. They 
justified that such a significant reduction was due to a full-
scale CAV cooperation that was adopted in their simulation, 
while other studies adopted low autonomous features, 
including adaptive cruise control and lane guidance, to 
simulate the highly promising features of CAV. In addition, 
they used a TTC threshold of 0.5 s to identify conflicts that 
involve a CAV, which is a very low value that can identify a 
low number of conflicts.  

In the two suggested scenarios for various automation 
levels operating almost as the medium of the traffic fleet 
(scenarios C and D, 50% and 60%, respectively), the results 
show a significant reduction of 50%-65% with respect to 
scenario A. This reduction was below the values reported by 
Papadoulis et al. [13] and Virdi et al. [26] (93.8% reduction). 
The corresponding difference in reduction could be justified as 
both previous studies considered only L4 vehicles, whereas 
the 50% CAV in the current study is related to L1, L2, L3, and 
L4 vehicles. This indicates that using mixed levels of 
automation (closer to reality) does not significantly improve 
traffic safety, as has been acknowledged in previous studies. 
In contrast, our value is higher than those in [14] and [25], 
who analyzed either without connectivity or low levels of 
automation (L1 and L2 vehicles) alone. Furthermore, several 
considerations in the model calibration may lead to differences 
in the results of these research studies, such as the parameters 
included in the calibration, the magnitude and direction in 
modifying the default model parameters 
(increasing/decreasing), and whether the calibration follows 
the conception of cautious or assertive CAV behavior.  

In scenario I, where the traffic flow is composed only 
of L4 vehicles, the reductions at this level of CAV penetration 
rate agree with [13] (above 90% of reduction analyzing L4 
vehicles) and [26], which upholds a complete removal of 
conflicts. Indeed, it is the projected benefit of high 
technological advancement, which all acknowledged studies 
have highlighted. Nevertheless, these reductions are higher 
than those identified in previous studies (e.g., [11], [14], [19]). 
This variation in the results is expected due to the distinct 
calibration of CAV and the different levels of CAV mixed in 
traffic within each study.  

Table III also shows the effect of the CAV 
penetration rates on the type of conflict. The resulting 
conflicts at this motorway are mostly rear-end conflicts in all 
scenarios (89.9%-94.5%), in accordance with previous studies 
that have considered different types of conflicts (e.g., [27]). 
Rear-end conflicts show a slight reduction with respect to 
scenarios A and B, which are mostly operated by HDV.  

Therefore, once the number of HDV is reduced (with 
a penetration rate equal to or lower than 50%), the percentage 
of rear-end conflicts diminishes from 1 to 4 percentage points. 
On the other hand, the opposite effect was observed in the 

case of lane-change conflicts. When the CAV levels share the 
road, the percentage of lane-change conflicts may increase, 
which agrees with El-Hansali et al. [27]. In general, the 
corresponding change in the results within scenarios is related 
to the distinct behavior of HDV and CAV levels in the car-
following and lane-change processes (i.e., imprudent lane 
change, cooperation in creating gaps, and aggressiveness 
level) [1], [46].  

C. Vehicles Involved in Traffic Conflicts 
Furthermore, this study analyzes traffic conflicts to 

examine how often CAV levels or HDV are involved in the 
conflicts resulting in each scenario by defining an involving 
ratio (Eq. 2). Conflicts involving ratios for HDV and CAV 
levels are displayed in Fig. 4. For example, in scenario B, the 
involving ratios of HDV and L1 vehicles (1.03, 1.04) indicate 
that these types of vehicles are involved in conflicts 3% and 
4% more than the expected values regarding their sharing 
percentages in the fleet. Alternatively, L2 and L3 vehicles’ 
involving ratios (0.87, 0.66) demonstrate that these types of 
vehicles are involved in conflicts 13% and 34% less than the 
expected values regarding their sharing percentages in the 
fleet. 

  
Fig. 4. Conflict involving ratios for CAV levels  

 
Fig. 4 shows that the conflict involving ratios related 

to HDV, L1, or L2 vehicles are steadily increasing in the 
totally mixed scenarios (i.e., scenarios C, D, E, and F, that 
include all types of vehicles) and by increasing CAV 
penetration rates in general. On the whole, L2 vehicles showed 
lower involving ratios than HDV and L1 vehicles. However, 
its involving ratio was below one if the majority of the shared 
vehicles are HDV and L1 (at scenarios B, C, or D), and started 
to be over one in scenarios including L3 and L4 vehicles (E 
and F). Whereas, its involving ratio is suddenly increased in 
scenario G where they are sharing the road only with L3 and 
L4 vehicles. In contrary, the involving ratio of L3 vehicles 
was in the most of cases below one except in G and H 
scenarios. This could be explained because L3 vehicles in 
scenarios G and H are sharing the road only with L4 vehicles 
(which have a more cautious behavior), therefore, it could 
reveal that L3 vehicles would expose more traffic conflicts 
than L4 vehicles. This finding agrees with the involving ratio 
of L4 vehicles that always settles below the value one. Xie et 
al. [11] obtained convergent results as they found that traffic 
mixed of HDV with L1 or L2 vehicles exposed a higher 
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number of conflicts, while safety benefits come out by high 
penetration rates of L3 and L4 vehicles.  

The distribution of two-vehicle interactions at 
conflicts was also analyzed (see Eq. 3). Considering that all 
possible interactions would be difficult to handle, and because 
of the high similarities identified in conflict involving ratio 
between L1 and L2 vehicles as well as between L3 and L4 
vehicles, the four levels of CAV were merged into two groups: 
L1 and L2 vehicles as low CAV levels (LCAV), and L3 and 
L4 vehicles as high CAV levels (HCAV) (see Table IV). 

 
TABLE IV 

CONFLICT DISTRIBUTION & INVOLVING RATIO BY TYPE OF 
INTERACTION  

INTERACTION Scenario 
B C D E F G 

HDV-HDV* 
0.60** 
(0.56) 
1.07 

0.29 
(0.25) 
1.19 

0.20 
(0.16) 
1.28 

0.06 
(0.04) 
1.52 

0.01 
(0.00) 
1.85 

0 

LCAV-HDV 
0.16 
(0.15) 
1.09 

0.21 
(0.18) 
1.17 

0.18 
(0.14) 
1.29 

0.13 
(0.09) 
1.49 

0.04 
(0.02) 
2.16 

0 

HCAV-HDV 
0.05 
(0.04) 
1.30 

0.12 
(0.07) 
1.58 

0.17 
(0.10) 
1.67 

0.13 
(0.07) 
1.83 

0.06 
(0.03) 
2.36 

0 

Sum –HDV***  
0.81 
(0.75) 
1.08 

0.62 
(0.50) 
1.24 

0.55 
(0.40) 
1.38 

0.32 
(0.20) 
1.62 

0.11 
(0.05) 
2.22 

0 

HDV-LCAV 
0.13 
(0.15) 
0.87 

0.16 
(0.18) 
0.91 

0.14 
(0.14) 
1.00 

0.10 
(0.09) 
1.13 

0.03 
(0.02) 
1.39 

0 

LCAV-LCAV 
0.04 
(0.04) 
0.93 

0.12 
(0.12) 
1.01 

0.13 
(0.12) 
1.05 

0.24 
(0.20) 
1.20 

0.25 
(0.16) 
1.55 

0.02 
(0.01) 
2.25 

HCAV-LCAV 
0.01 
(0.01) 
1.29 

0.07 
(0.05) 
1.32 

0.12 
(0.09) 
1.38 

0.24 
(0.16) 
1.52 

0.40 
(0.22) 
1.80 

0.23 
(0.09) 
2.56 

Sum  –LCAV 
0.18 
(0.20) 
0.90 

0.35 
(0.35) 
1.00 

0.39 
(0.35) 
1.11 

0.58 
(0.45) 
1.29 

0.68 
(0.40) 
1.70 

0.25 
(0.10) 
2.50 

HDV-HCAV 
0.00 
(0.04) 
0.09 

0.01 
(0.08) 
0.16 

0.02 
(0.10) 
0.21 

0.02 
(0.07) 
0.23 

0.01 
(0.03) 
0.34 

0 

LCAV-HCAV 
0.00 
(0.01) 
0.08 

0.01 
(0.05) 
0.15 

0.02 
(0.09) 
0.21 

0.03 
(0.16) 
0.22 

0.06 
(0.22) 
0.30 

0.05 
(0.09) 
0.61 

HCAV-HCAV 
0.00 
(0.00) 
0.00 

0.01 
(0.02) 
0.23 

0.02 
(0.06) 
0.26 

0.04 
(0.12) 
0.34 

0.14 
(0.30) 
0.46 

0.69 
(0.81) 
0.85 

Sum –HCAV 
0.00 
(0.05) 
0.00 

0.03 
(0.15) 
0.20 

0.06 
(0.25) 
0.24 

0.09 
(0.35) 
0.26 

0.21 
(0.55) 
0.38 

0.74 
(0.90) 
0.82 

*The second vehicle in the interaction column represents the follower vehicle. 
E.g., in LCAV-HDV, HDV is the follower. 
**The first value is the conflict distribution by type of interaction, the value in 
brackets is the probability of that interaction in the fleet, the bolded value is 
the involving ratio of the vehicle interaction  (see Eq. 3) 
***The gray shaded rows represent the sum of all interactions where the 
follower vehicle is indicated after Sum-. 
 

Table IV exhibits the conflict distribution by vehicle 
interaction as a conflict proportion to the total number of 
conflicts in the scenario, normalized by the sharing 
percentages of the vehicle types, obtaining an involving ratio 
of that interaction (the values in bold). Table IV includes the 
results along the scenarios B to G (A and I scenarios were 
excluded because all the vehicles were HDV and L4 vehicles 
respectively). In general, Table IV shows that when HDV is 

the follower vehicle (-HDV), the involvement ratio is always 
larger than one. Moreover, the involvement ratio increases 
with increasing the penetration rates of CAV (scenarios E, F, 
G), indicating the higher probabilities of HDV’s responsibility 
in such scenarios. Specifically, it ranges from 1.26 to 2.2 (as 
shown in the first gray shaded row), indicating that HDV are 
involved in conflicts as followers between 8% and 122% more 
than its sharing percentage on fleets. Previous studies have 
shown similar results. Morando et al. [14] found that if the 
penetration rate of L4 vehicles is 50%, the ratio of HDV-HDV 
and L4-HDV conflicts by the total conflicts equals to 0.88. In 
parallel, Sinha et al. [15] demonstrated that crash rate of 
HDV-HDV is much higher than L4-HDV while L4 vehicles 
penetration rate is up to 50%. A similar pattern is shown in 
scenarios E, F, and G related to conflicts involving LCAV as a 
follower (HDV-LCAV, LCAV-LCAV, and HCAV-LCAV). It 
fact, the highest involving ratio is reached on scenario G for 
the interaction HCAV-LCAV (2.56). Therefore, when LCAV 
and HCAV are the unique types of vehicles on the fleet, the 
LCAV are responsible for most of the conflicts. Additionally, 
in scenario G, the high penetration rate of HCAV (90%) leads 
to highly involving them in conflicts (a 74 % of conflicts 
HCAV is the follower vehicle). This result agrees somehow 
with Morando et al. [14]. When L4 vehicles presented a 75% 
penetration rate L4-L4 and L4-HDV represented 95% of total 
conflicts. However, whenever a HCAV in a conflict 
(interaction) is the follower, the results indicate a considerably 
low involvement ratio. It ranges from 0.20 to 0.82 (as shown 
in the last gray shaded row in Table IV), indicating that 
HCAV are involved in conflicts as followers from 80% to 
18% less than its sharing percentage on fleets. The highest 
involving ratio for HCAV as a follower (0.85) is reached for 
the interaction HCAV-HCAV in scenario G 

D. The Follower Vehicle As A Decision-maker  
After looking at vehicles involved in traffic conflicts, 

the follower (i.e., the second vehicle in a conflict) was 
considered as the vehicle mostly carrying the load in decision 
making and presenting proper behavior. Table V presents the 
follower conflict-involving ratio for each vehicle type in each 
scenario (see Eq. 2).  

The conflicts where HDV is the follower vehicle is 
higher than the expected ones in all scenarios, and it increases 
as the penetration rate of CAV levels increases (i.e., its ratio is 
always over one and its value increases across the scenarios, 
ranging from 1.08 to 2.22). This result shows that HDV, that is 
fully reliant on human’s behavior, contributes more in 
increasing traffic conflicts. L1 vehicles, with limited assistant 
systems, also present a similar effect on safety and they could 
be a major inductor to generate conflicts in all scenarios.  

On the other hand, L2 vehicles with more driving 
control in both the longitudinal and lateral directions have a 
lower propensity to participate as followers at potential 
conflicts than HDV and L1 vehicles in scenarios B, C, and D, 
where L2 vehicles are considered more advanced CAV. 
However, they reach larger values (1.14, 1.59, and 2.56) when 
they share traffic flow with more advanced CAV (L3 and L4 
vehicles) in scenarios E, F, and G, respectively. L3 vehicles 
show the same pattern as L2, but with much lower conflict 
ratios, indicating the safety benefit of increasing driving 
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assistance technologies. Lastly, L4 vehicles present ratios 
below 1 in all scenarios, and they could be considered as the 
safest vehicles, as they hardly contribute as followers towards 
causing either rear-end or lane change conflicts. 

 
TABLE V 

THE FOLLOWER CONFLICT INVOLVING RATIO FOR SEVERAL 
VEHICLE TYPES 

Vehicle type 

Scenario  HDV L1 L2 L3 L4 

A 1 (100%)* - - - - 

B 1.08 (75%) 1.05 (10%) 0.75 (10%) 0.09 (5%) - 

C 1.24 (50%) 1.20 (10%) 0.92 (25%) 0.16 (10%) 0.16 (5%) 

D 1.38 (40%) 1.32 (15%) 0.95 (20%) 0.21 (15%) 0.23 (10%) 

E 1.62 (20%) 1.48 (20%) 1.14 (25%) 0.25 (20%) 0.27 (15%) 

F 2.22 (5%) 1.95 (10%) 1.59 (30%) 0.34 (30%) 0.43 (25%) 

G - - 2.56 (10%) 1.17 (40%) 0.54 (50%) 

H - - - 1.11 (25%) 0.96 (75%) 

I - - - - 1 (100%) 

* between ( ) value is the penetration rate of vehicle in that scenario 

These results present evidence about the concept in 
literature that CAV may increase the safety benefit and 
enhance driving performance as the level of connection and 
automation of the vehicles increases. Nevertheless, previous 
research that examined vehicle engagement in conflicts did 
not analyze the participation of the follower vehicle as a 
tentative inductor of traffic conflicts; moreover, they only 
analyzed L2, L4, or both types of vehicles as a unique type of 
CAV when they presented results and did not perform a 
systematic and complete exploration of the outcomes [11]–
[15], [19], [26],[30]. 
 

V. CONCLUSION 
This study examined the impact of the gradual 

introduction of CAVs on the traffic safety of a motorway 
using Aimsun Next 20 microsimulation software. Fifteen 
parameters related to Gipps’ traffic model were considered for 
each CAV level, including the distinct behavior of passenger 
cars and trucks. In addition, the V2V connectivity network 
was modeled using the V2X Aimsun API extension. 
Subsequently, an SSAM was used to compute the potential 
traffic conflicts generated under nine simulated heterogeneous 
scenarios combining various vehicle types in different 
percentages. The TTC threshold for conflict identification in 
the SSAM was maintained at its default value (1.50 s) for 
human behavior and low levels of automation (L1 and L2 
vehicles), and lowered (0.75 s) for high levels of automation 
(L3 and L4 vehicles), owing to the higher capabilities 
expected from these vehicles. 

This study resulted in several interesting findings. 
The traffic flow dynamics obtained by studying the 
distribution rate of vehicle acceleration/deceleration and 
velocity difference showed that fleets with high penetration 
rates of high-level CAVs are, in general, more harmonic. The 
resulting traffic conflicts tended to decrease as the penetration 

of CAVs into the road increased. However, this study found 
that significant conflict reduction could be achieved in the 
early stages of CAV introduction (up to 60% of CAV 
participation). Scenarios with further penetration of CAVs on 
the roads improve safety, but not to the same extent as in 
scenarios with lower penetration rates. In addition, the vehicle 
involvement ratio decreases with increasing levels of 
automation and connectivity. However, this is mainly related 
to the vehicles shared in the traffic fleet. For instance, L2 
vehicles were less involved in conflicts when human control 
was prevalent, whereas their involvement in conflicts was 
greater in scenarios where they shared the road with L3 and 
L4 vehicles only. Likewise, considering the follower vehicle 
to be regularly responsible for decision-making in a conflict, 
the main finding was that the involvement ratio of follower 
vehicles decreases as connectivity and automation levels 
increase. Moreover, L3 and L4 vehicles exhibited less than the 
expected responsibility (conflict ratio below 1) in almost all 
scenarios.  

The main contributions of this research as a 
simulation-based study on the traffic safety of CAV 
implementation are as follows: (1) a wide range of parameters 
were calibrated to robustly cover CAV behavior; (2) all CAV 
levels were modeled, analyzed, and discussed; (3) nine 
different scenarios with fleets mixing different CAV levels, 
penetration rates, and vehicle types (passenger cars and heavy 
vehicles) were considered to present a comprehensive and 
realistic scheme of CAV introduction; and (4) traffic safety 
was studied from various perspectives, namely, through traffic 
flow dynamics, conflict reduction, vehicle involvement, and 
conflict ratio of the follower vehicle as a decision-maker). 

Despite these contributions, the study is limited to 
one type of road section (motorway) and traffic conditions 
(free-flow). A similar study but focused on urban roads and/or 
intersections with different traffic conditions (congestion) 
could provide complementary results. In addition, although the 
transition from human to autonomous driving systems is 
expressed by the CCAV FHWA algorithm parameters, it has 
not been applied comprehensively for car-following and lane-
changing models. Hence, future work could emphasize driving 
transitions. In any case, more studies are still needed to 
confirm the CAV traffic flow model calibration. In fact, the 
parameters used for CAV calibration have a direct influence 
on the safety analysis herein reported, thus, if other values are 
assigned to these parameters, the outcomes may change. 
Future research should focus on a sensitivity and optimization 
analysis of the parameters used in CAV calibration to achieve 
the best model performance. Lastly, real CAV data could be 
employed to explore other traffic safety aspects, such as 
determining more accurate TTC thresholds and other surrogate 
measures for different CAV levels. 

 
APPENDIX A 

MICROSIMULATION MODEL VALIDATION 
This appendix illustrates the results of the followed criteria in 
this study in traffic volumes and travel time validation of the 
microsimulation model, following the Roads and Maritime 
Services modeling guidelines [45]: 
1. Geoffrey E. Havers (GEH) results: 



15 
T-ITS-22-05-1343 

                           GEH = #&	(()*)²
(-*

                                    (A.1) 
where M is the hourly traffic volume from a link or point of 
the modeled network and C is the real-world hourly traffic. 
Traffic volumes were validated using Eq. A.1 at 15 min 
intervals and per vehicle type. The lowest and highest values 
of observed (veh/15 min), modeled (veh/15 min), and GEH 
volumes during the one-hour simulation period at 15-min 
intervals are shown in Table A.1 for each traffic count location 
(Fig. 1). 
 
TABLE A.1.Traffic 15 minutes volume validation using GEH 
statistic 

Northbound direction 

Detector Observed 
(veh/15minutes) 

Modeled 
(veh/15minutes) GEH 

 PC HV PC HV PC HV 

PK-131 577 - 671 21 - 37 494 - 552 19 - 36 3.59 – 
5.42 

0.17 – 
0.86 

PK-129 872 - 941 59 - 68 834 - 890 54 - 62 0.03 – 
1.69 

0.67 – 
1.00 

PK-123 566 - 675 17 - 29 523 - 606 18 - 31 0.53 – 
2.73 

0.22 – 
0.37 

PK-119 250 - 285 21 - 29 195 - 261 19 - 28 1.09 – 
4.49 

0.40 – 
0.80 

PK-117 164 - 212 18 - 27 165 - 209 17 - 27 0.07 – 
0.22 

0.00 – 
0.39 

PK-111 117 - 151 18 - 28 112 - 159 15 - 30 0.47 – 
0.79 

0.20 – 
0.74 

Southbound direction 

Detector Observed 
(veh/15minutes) 

Modeled 
(veh/15minutes) GEH 

 PC HV PC HV PC HV 

PK-117 176 - 231 20 - 28 168 – 
227 21 - 29 0.26 – 

0.77 
0.19 – 
0.58 

PK-119 339 - 386 26 - 32 326 – 
390 26 - 30 0.11 – 

0.71 
0.19 – 
0.57 

PK-125 759 - 874 112 - 
132 

756 – 
869 90 - 121 0.11 – 

0.44 
0.98 – 
2.19 

PK-132 262 - 371 83 - 116 271 – 
376 86 - 119 0.22 – 

0.55 
0.28 – 
0.88 

 
The Roads and Maritime Services modeling guidelines [45] 
suggest that 85% and 100% of traffic volumes should render 
GEH statistics of less than 5 and 10, respectively. Results in 
Table A.1 satisfy both conditions, which suggests that the 
modeled network adequately reflects the real network and it is 
ready to perform the microsimulation. 
 
2. R² of the observed vs modeled volumes plot: 

 
Fig.A.1: Observed volumes vs modeled volumes in northbound route  

 
Fig.A.2: Observed volumes vs modeled volumes in southbound route 
 
3. Average travel times for each route: 
 
The cumulative graphing of average travel time by section: 
 

 
Fig.A.3: Travel time comparison for the northbound route 
 

 
Fig. A.4: Travel time comparison for the southbound route 
 

APPENDIX B 
CALIBRATION OF CAV LEVELS (DRIVING PARAMETERS 

MODELED IN AIMSUN NEXT, GIPPS’ MODELS) 

I. Calibration of CAV levels 

I.A. Calibration of car-following model’ parameters: 
Table B.1 shows the parameters used for calibration of car-
following model. 
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Speed acceptance: CAVs are predicted to achieve more speed 
uniformity and speed acceptance of speed limits with 
increasing CAV levels [1], [6], [46]. The default values for the 
HDV are 1.1 for PC and 1.05 for HV (both operate at speeds 
greater than the speed limit), whereas Mesionis et al. [50] used 
a value of 1.0 for L4 vehicles, whereas Guériau and Dusparic 
[19] used 1.05 for L2 vehicles and 1.0 for L4 vehicles, 
respectively. Therefore, the same values were used, while in 
the cases of L1 and L3 vehicles, we kept the HDV’s value 
with lower deviation for L1 vehicles, and we kept the same 
values of L4 vehicles for L3 vehicles, as they operate 
approximately with the same advanced systems. 

Clearance (m): The clearance that a vehicle maintains with the 
preceding vehicle in the traffic stream is adopted mainly from 
the ATKINS [1] report and other studies (e.g., [7], [11], [14], 
[19], [46]) based on minimum space headway values. In 
addition, following cautious driving behavior, the clearance 
increases with increasing automation level. 

Guidance acceptance (%): increases as the CAV level 
increases from 70% for HDV to 100% for L4 vehicles 
following Stanek et al. [46] assumption that L4 vehicles could 
have about 25% better detection system. In the case of trucks, 
driving operations are generally more homogenous and follow 
the leaders, as they must adhere to other restrictions (other 
laws and speed limits) [51]. Therefore, 100% guidance 
acceptance was maintained at all the levels.  

Reaction time (s): The default value for HDV is 0.8 s. Most 
previous studies that used other software in calibration did not 
consider this parameter. However, Zhang et al. [12] addressed 
the value extracted from adaptive cruise control real data (i.e., 
L1 or L2) to be 0.50 s. Other authors [11], [50] suggested that 
this value should be lower in L2 and L3 vehicles and 
approximately zero for L4 vehicles to reflect the effect of 
connection-automation technologies. However, as L1 and L2 
vehicles operate under human driver control, they maintained 
the same value as for HDV in their study. The same behavior 
will occur on unexpected stops, which require highly 
connected technology or referring to the driver.  

Acceleration and deceleration (m/s²): Their values are 
discussed in abundance in CAV calibration [1], [41], [46]. For 
acceleration, some of these studies proposed to maintain the 
same values [3], [4], [46], and represent the change between 
vehicles only with headway values. However, the others either 
increased or decreased the acceleration of L4 vehicles. [1], 
[11], [14] followed an increasing argument for CAV. Stanek et 
al. [46] mentioned this scenario if the driving behavior is 
suggested to be assertive. Other studies [19], [41], [52] 
considered a lower value for L4 vehicles than for HDV, with 
lower deviations. As this study considers the cautious CAV 
driving hypothesis, it follows [12], [19] values in decreasing 
both maximum acceleration and normal deceleration with 
increasing CAV levels. However, it also follows these studies 
[12], [19], [46] in keeping the same value of maximum 
deceleration for all levels, indicating that this parameter is 
used in emergence situations and it could be reflected by the 

same magnitude regardless of the driving style, as it is related 
more to the vehicle motor capacity, not to driving behavior. 

Sensitivity factor: In cautious driving, CAV are supposed to be 
more sensitive to leader deceleration to maintain a safe 
distance (clearance higher than that kept in HDV-HDV 
interaction). Thus, the value of the sensitivity factor is 
expected to be higher than 1.00 (the vehicle overestimates the 
leader deceleration) for high levels of automation (L3 and L4 
vehicles) and 1.0 for levels that are still under human control 
all the time (L1 and L2 vehicles). Practically, a sensitivity 
analysis for the potential conflicts resulting from applying the 
values 0.5, 0.75, 1.0, 1.25, 1.5 in L4 vehicles was used to 
analyze this factor. The values 0.5 and 0.75 (if the follower 
underestimated the leader deceleration) have shown 31.5% 
and 33.7% more potential conflicts than the default value (1.0) 
without significant difference between them but with 
significant differences with the other values (1.0, 1.25, and 
1.5). The values 1.25 and 1.5 (if the follower overestimated 
the leader deceleration) showed a decrease in the potential 
conflicts by about 21.2% and 24.1% respectively, indicating 
the safety benefit of CAV. Again, these values (1.25 and 1.5) 
did not show significant differences. Our decision for this 
value was to increase the value above 1.0 for high automation 
CAV levels, as the considered driving style is cautious. 

Gap (s): Previous studies [4], [19], [50] have used the values 
of 1.2 and 1.5 s for HDV (for PC and HV, respectively), 0.8 s 
for L2 vehicles, and 0.6 s for L4 vehicles. These values were 
used, and in-between values were adopted for the L1 and L3 
vehicles. 

I.B. Lane-change model parameters: 
Table B.1 shows the parameters used for calibration of lane-
change model. 
Overtake speed threshold (%) is the percentage of the desired 
speed of a vehicle below which the vehicle may decide to 
overtake. This means that whenever the leading vehicle drives 
slower than the overtake speed threshold (in percentage) of its 
desired speed, the vehicle will try to overtake [50]. Papazikou 
et al. [41], Mesionis et al. [50], and Weijermars et al. [7] 
(conducted within the Aimsun API) proposed lower values for 
L4 vehicles (80% or 85%) than for HDV. In this study, we 
used the proposed value of 85% for  L3 and L4 vehicles and 
maintained 90% for all levels of automation that are still under 
human control (HDV, L1, and L2 vehicles) because this 
parameter is related to driver decision. 

Imprudent lane changing: This study followed [41] argument 
in that HDV could still change lanes even after assessing an 
unsafe gap (the same for L1 and L2 vehicles that are still 
under human control), while high automation levels (L3 and 
L4 vehicles) will not show this imprudent behavior, especially 
in the cautious mode.  

Cooperate in creating a gap: Multiple assumptions have been 
made for this parameter. Stanek et al. [46] ticked the choice 
just for AV, indicating that vehicles of this type can cooperate 
in creating a gap for lane changing. Guériau and Dusparic [19] 
modeled a value of 0.5 (50% cooperation) for HDV and L2 
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vehicles and a value of 1.0 (always cooperate) for L4 vehicles 
(for both PC and HV). On the other hand, for the studies that 
used Aimsun API, Mesionis et al. [50] ticked the parameter 
for HDV and both L4 vehicle driving styles, whereas 
Papazikou et al. [41] supposed that cooperation will be present 
in HDV but not in L4 vehicle driving styles. In this study, we 
believe that one of the technological benefits could be the 
ability of CAV to be more cooperative in creating gaps [19], 
[52]. Thus, we followed the logic of ticking cooperation 
behavior for vehicles L3 and L4. 

Aggressiveness level: in-gap acceptance to make a lane 
change. Papazikou et al. [41] proposed values of 0-0.25 for L4 
assertive driving and the value 0.0 (without any 
aggressiveness level) for cautious driving. Mesionis et al. [50] 
assumed that L4 vehicles should show 0.0 aggressiveness 
whatever the driving style. This study assumed that the 
aggressiveness level would still be 0-1 for L1 vehicles, and it 
would decrease with more assistance advance systems (L2 
vehicles) to 0-0.5. Afterward, it should show 0.0 
aggressiveness for high technologies in L3 and L4 vehicles, 
particularly as we modeled the cautious driving style. 

Distance zone factor (Look ahead distance factor): As CAV 
are supposed to cooperate in creating gaps, it leads to 
improvements in their maneuvers [41], [50]. Therefore, the 
zones that are considered as lane-change distances are 
modified to larger zones following [41] values for L4 cautious 
driving and in-between values for L3 vehicles. On the other 
hand, for HDV, L1, and L2 vehicles, the value was kept the 
same as that of the main controller in the driving process. 
 
II.  Gipps’ Car-following model 

Vehicle driving behavior related to each CAV level is 
modified using the Aimsun Next API Gipps model. The Gipps 
[48] model is used to control the parameters of the car-
following algorithm. This control is achieved by calibrating 
various local parameters within the microsimulation, such as 
the type of driver (i.e., speed limit acceptance of the vehicle), 
the geometry of the section (i.e., speed limits on the section, 
speed limits on turns, etc.), or the impact of vehicles on 
adjacent lanes. However, acceleration and deceleration are the 
two main elements in the Gipps model. The first reflects a 
vehicle’s willingness to reach a certain desired speed, whereas 
the second simulates the restrictions imposed by the preceding 
vehicle when attempting to travel at that speed. The maximum 
speed that a vehicle (n) can attain during period (t,t+T) is 
given by: 
      Va (n,t+T) = V(n,t) + 2.5a(n)T $1 −	9(%,))

9∗(%)
' (0.025 + 9(%,))

9∗(%)
           (B.1) 

 
where Va(n,t) is the speed of vehicle n at time t, V*(n) is the 
desired speed for vehicle n in the current section, a(n) is the 
maximum acceleration of vehicle n, and T is the reaction time. 

The maximum speed that vehicle n can reach during 
the interval (t,t+T), according to its own characteristics and the 
limitations imposed by the presence of the lead vehicle 
(vehicle n-1), is given by: 

    Vb (n,t+T) = d(n) T 

+*𝑑(𝑛)!𝑇! − 𝑑(𝑛) /2(𝑥(𝑛 − 1), 𝑡) − 𝑠(𝑛 − 1) − 𝑥(𝑛, 𝑡)) − 𝑉(𝑛, 𝑡)𝑇 −	"($%&,()²
+´($%&)

7            (B.2) 
 

where d(n) (<0) is the maximum desired deceleration for 
vehicle n, x(n,t) is the position of vehicle n at time t, x(n-1,t) is 
the position of the preceding vehicle (n-1) at time t, s(n-1) is 
the effective length of vehicle n-1, and d’(n-1) is an estimation 
of desired deceleration for vehicle n-1. 

The minimum of these two speeds is the speed of 
vehicle n during interval (t, t+dt): 

V(n,t+dt)= min{Va(n,t+dt), Vb(n,t+dt)}               (B.3) 

The integration of speed is then used to update the 
position of vehicle n along the current lane. Different methods 
have been used to integrate acceleration and deceleration 
phases. The rectangular method is used to integrate the 
acceleration phase, which corresponds to the following 
equation: 

x(n,t+dt) = x(n,t) + V(n,t+dt)dt                           (B.4) 
 

The trapezoid method is used for deceleration phase 
integration as follows: 

x(n,t+dt) = x(n,t) +0.5(V(n,t) + V(n,t+dt))×dt   (B.5) 
 

The estimated deceleration of the leader is a function 
of the Sensitivity Factor (α), which is defined per vehicle type: 

d´(n-1) = d(n-1) × α                                            (B.6) 
 
When α < 1, the vehicle underestimates the leader's 
deceleration, becoming more aggressive and shortening the 
distance between itself and the leader. When α > 1, the vehicle 
overestimates the leader's deceleration; as a result, the vehicle 
becomes more cautious, increasing the gap in front of it. As a 
constraint of the deceleration component, the model also 
includes the minimum headway between the leader and 
follower, which is applied before updating position x(n,t+T). 
The minimum headway constraint is expressed as follows: 
If  x(n-1, t+T) – [x(n,t) + V(n, t+T)T] V(n, t+T) . MinHW(n) 
 
Then   
V(n, t+T) = .

(012,456)1.(0,4)
890:;(0)56

                                           (B.7) 

 
where MinHW(n) is the minimum headway between vehicle 
(n) and vehicle (n+1). 
 
III. Gipps’ Lane-changing model 
 On the other hand, lane-changing is incorporated as a 
decision process in Gipps’ model [49], analyzing the necessity 
(e.g., for turn maneuvers determined by the route), desirability 
(to reach the desired speed when the leader vehicle is slower), 
and feasibility (using forward, backward, and adjacent gap 
evaluation) of a lane change depending on the position of the 
vehicle in the road network with respect to the lane geometry 
and adjacent vehicles. 

Consequently, the lane-changing of each vehicle i in 
section s has five aspects to model:  
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 HDV L1 L2 L3 L4 
Parameters Definition Hint work Mean dev Min. Max Mean dev Min. Max Mean dev Min. Max Mean dev Min. Max Mean dev Min. Max 
Speed 
acceptance 

How much vehicles 
could take a speed greater 
than speed limit 

[1], [6], [19], [50]  1.1 
 

(1.05)* 

0.1 
 

(0.1) 

0.9 
 

(0.85) 

1.3 
 

(1.25) 

1.1  
 

(1.05) 

0.05  
 

(0.1) 

1  
 

(0.85) 

1.2  
 

(1.25) 

1.05  
 

(1.05) 

0.05 
 

(0.05) 

0.95 
 

(0.95) 

1.15 
 

(1.15) 

1 
 

(1) 

0.05 
 

(0.05) 

0.9 
 

(0.9) 

1.1 
 

(1.1) 

1 
 

(1) 

0.05 
 

(0.05) 

0.9 
 

(0.9) 

1.1 
 

(1.1) 
Clearance (m) Distance that vehicle 

keeps with the preceding 
one when stopped 

[1], [7], [11], [13], 
[14], [19], [46] 

1  

(1.5) 

0.3 

(0.5) 

0.5 
 

 (1) 

1.5  
 

(2.5) 

1  
 

(1.5) 

0.2 
 

(0.5) 

0.6  
 

(1) 

1.4  
 

(2.5) 

1  
 

(1.2) 

0.2  
 

(0.3) 

0.6 
 

 (1.2) 

1.4  
 

(2.1) 

1.5  
 

(2) 

0.1 
 

(0.1) 

1.3  
 

(1.9) 

1.7  
 

(2.2) 

1.5  
 

(2) 

0.1  
 

(0.05) 

1.3  
 

(1.95) 

1.7  
 

(2.1) 

Guidance 
acceptance (%) 

The probability that a 
vehicle will follow the 
recommendations 

[46]  70 
(100) 

10 
(10) 

50 
(80) 

90 
(100) 

80 
(100) 

10 
(10) 

60 
(80) 

100 
(100) 

80 
(100) 

10 
(10) 

60 
(80) 

100 
(100) 

90 
(100) 

5 
(5) 

80 
(90) 

100 
(100) 

100 
(100) 

0 
(0) 

100 
(100) 

100 
(100) 

Reaction time 
(sec) 

The time to react in 
general 

[41], [50] 0.8 
(0.8) 

- - - 0.8 
(0.8) 

- - - 0.8 
(0.8) 

- - - 0.5 
(0.5) 

- - - 0.1 
(0.1) 

- - - 

Reaction time at 
stop (sec) 

This is the time it takes 
for a stopped vehicle to 
react to the acceleration 
of the vehicle in front. 

[41], [50] 1.2 
(1.3) 

- - - 1.2 
(1.3) 

- - - 1.1 
(1.2) 

- - - 1 

(1) 

- - - 0.1 

(0.1) 

- - - 

Max 
acceleration 
(m/s²) 

The highest value that the 
vehicle can achieve under 
any circumstances 

[19],[21] 3  
(1) 

0.2 
(0.5) 

2.6 
(0.6) 

3.4 
(1.8) 

3 
 (1) 

0.2 
(0.5) 

2.6 
(0.6) 

3.4 
(1.8) 

2  
(1) 

0.2 
(0.5) 

1.6 
(0.6) 

2.4 
(1.8) 

1 
(0.8) 

0.1 
(0.3) 

0.8 
(0.6) 

1.2  
(1.2) 

1 
(0.8) 

0.1 
(0.3) 

0.8 
(0.6) 

1.2 
(1.2) 

Normal 
deceleration. 
(m/s²) 

The maximum 
deceleration that the 
vehicle can use under 
normal conditions 

[12],[21] 

 

4  

(3.5) 

0.25 
(1) 

3.5 
(2.5) 

4.5 
(4.8) 

4 
(3.5) 

0.25 
(1) 

3.5 
(2.5) 

4.5 
(4.8) 

3.5 
(3) 

0.2 
(1) 

3.1 
(2) 

3.9 
(4.3) 

3 
(2.5) 

0.2 
(1) 

2.6 
(1.5) 

3.4 
(3.8) 

3 
(2.5) 

0.2 
(1) 

2.6 
(1.5) 

3.4 
(3.8) 

Max 
deceleration 
(m/s²) 

The most severe braking 
can be applied under 
special circumstances 

[12], [19], [46] 6 
(5) 

0.5 
(0.5) 

5 
(4) 

7 
(6) 

6 
(5) 

0.5 
(0.5) 

5 
(4) 

7 
(6) 

6 
(5) 

0.5 
(0.5) 

5 
(4) 

7 
(6) 

6 
(5) 

0.5 
(0.5) 

5 
(4) 

7 
(6) 

6 
(5) 

0.5 
(0.5) 

5 
(4) 

7 
(6) 

Sensitivity factor How much the vehicle 
could be sensitive to the 
deceleration of the leader 

[41]  1 
(1) 

0 
(0) 

1 
(1) 

1 
(1) 

1 
(1) 

0 
(0) 

1 
(1) 

1 
(1) 

1 
(1) 

0.1 
(0.1) 

0.8 
(0.8) 

1.2 
(1.2) 

1.1 
(1.1) 

0.1 
(0.1) 

0.9 
(0.9) 

1.3 
(1.3) 

1.2 
(1.2) 

0.1 
(0.1) 

1 
(1) 

1.4 
(1.4) 

Gap (sec.) How much override the 
headway calculated by 
car following model 

[4], [19], [50]   1.2 
(1.5) 

0.2 

(0.2) 

0.8 
(1.1) 

1.6 
(1.9) 

1 
(1.5) 

0.2 

(0.2) 

0.6 
(1.1) 

1.4 
(1.9) 

0.8 
(1) 

0.1  

(0.1) 

0.6 
(0.8) 

1 
(1.2) 

0.8 
(1) 

0.05 

(0.05) 

0.7 
(0.9) 

0.9 
(1.1) 

0.6 
(0.8) 

0.05 

(0.05) 

0.5 
(0.7) 

0.7 
(0.9) 

Overtake speed 
threshold (%) 

The threshold that 
delaminates an 
overtaking maneuver 

[7], [41], [50]  90 

(90) 

- - - 90 

(90) 

- - - 90 

(90) 

- - - 85 

(85) 

- - - 85 

(85) 

- - - 

Imprudent lane 
change 

Defines whether a 
vehicle will still change 
lane after assessing an 
unsafe gap 

[41]  Yes 

(Yes) 

- - - Yes 

(Yes) 

- - - Yes 

(Yes) 

- - - No 

(No) 

- - - No 
(No) 

- - - 

Cooperate in 
creating a gap 

Vehicles can cooperate in 
creating a gap for a lane 
changing vehicle 

[19], [50] No 
 

(No) 

- - - No 
 

(No) 

- - - No 
 

(No) 

- - - Yes 
 

(Yes) 

- - - Yes 
 

(Yes) 

- - - 

Aggressiveness 
level 

The higher the level, the 
smaller the gap the 
vehicle will accept, being 
a level of 1 is the 
vehicle’s own length 

[41], [50]  0-1 

(0-1) 

- - - 0-1 

(0-1) 

- - - 0-0.5 

(0-
0.5) 

- - - 0 

(0) 

- - - 0 

(0) 

- - - 

Distance zone 
factor (Look 
ahead distance 
factor) 

To modify the distance 
zones used in the Lane 
Changing Model to 
adjust where lane 
changes start to be 
considered and, if a range 
is given, to randomize 
behavior 

[41], [50]  0.8 -
1.2 

(0.8 -
1.2) 

- - - 0.8 -
1.2 

(0.8 -
1.2 

- - - 0.8 -
1.2 

(0.8 -
1.2) 

- - - 1 -
1.25 

(1-
1.25) 

- - - 1.1 -
1.3 

(1.1-
1.3) 

- - - 

 

*values in ( ) are related  to heavy vehicles (HV) calibration 

TABLE B.1. Parameters used for calibration of car-following model and lane-change model. 
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• Lane-changing zone distance calculation  
• Target lanes calculation  
• Vehicle behavior considering the target lanes  
• Gap acceptance for changing lane  
• Target gap and cooperation 

 
Lane-changing zones are restricted by two 

parameters: look-ahead distance and critical look-ahead 
distance. Look-ahead is the upstream distance to the point 
where the vehicle is aware of its target lanes, where it is 
looking for a gap (downstream or adjacent) and trying to adapt 
their speed. The critical look-ahead is the upstream distance to 
the start of lane-changing, where vehicles are urgently trying 
to reach their valid lane, looking for gaps upstream, and 
reducing speed if necessary. The parameters were calculated 
by Liu et al. [53] by multiplying the time required for each 
zone by the speed limit of the section. In the Aimsun API, the 
perception of the look-ahead and critical look-ahead is 
provided as a factor range. For example, if the look-ahead 
distance is defined as 200 m, the minimum look-ahead factor 
is 0.9, and the maximum look-ahead factor is 1.2, the 
perceived distance will range from 180 m (0.9x200) to 240 m 
(1.2 x 200) using a uniform random distribution. 

The microscopic model generates two sets of valid 
lanes considering the “Visibility distance” of all obstacles 
identified within the look-ahead and critical look-ahead 
distances. Then, the behavior of vehicles trying to reach the 
set of target lanes is defined by the following strategy: 

- If the current lane of the vehicle is not within the 
subset of valid lanes determined by the critical look-
ahead zone, the behavior of the vehicle is determined 
by the critical look-ahead zone. 

- If the current lane of the vehicle is within the subset 
of valid lanes determined by the critical look-ahead 
zone but outside that determined by the look-ahead 
distance, the behavior of the vehicle is determined by 
the look-ahead distance zone. 

- If the current lane of the vehicle is within the subsets 
of valid lanes of both zones, the behavior of the 
vehicle is governed by the traffic conditions on that 
lane by applying the “overtaking maneuver model”. 

Afterwards, the gap acceptance model is applied with 
the consistency of the car-following model. Two main 
constraints have been applied by Gipps to avoid artificial 
breakdown situations: (1) the Gipps car-following model is 
stable (i.e., it does not require decelerations above the 
maximum desired deceleration); (2) the gap and speed remain 
positive throughout the deceleration process and at the end of 
it to avoid crashes and to follow a new leader in the target 
lane. According to the Gipps gap acceptance model, the two 
constraints can be achieved by fulfilling the following 
condition for both the upstream and downstream gaps at time 
t:  

Gap Up  ≥ max {0, 9
!	<())
8=	<

+ 0.5	𝑉𝑢𝑝(𝑡)𝑇𝑢𝑝 + max !0, (− 9!,4())
8=	,4

	+

𝛼	𝑢𝑝	(1 − 0.5𝛼	𝑢𝑝)𝑏	𝑢𝑝	𝑇8𝑢𝑝 + (1 − 𝛼	𝑢𝑝)𝑉𝑢𝑝(𝑡)𝑇𝑢𝑝)"}               (B.8)                           

 

And 
Gap Dw  ≥ max {0, 9

!	>?())
8=	>?

+ 0.5	𝑉𝑘(𝑡)𝑇𝑘 + max !0, (− 9!<())
8=	<

	+ 𝛼	𝐷𝑤	(1 −

0.5𝛼	𝐷𝑤)𝑏	𝑘	𝑇8𝑘 + (1 − 𝛼	𝐷𝑤)𝑉𝑘(𝑡)𝑇𝑘)"}                                  (B.9) 

where Gap up is the calculated upstream gap, Gap Dw is the 
calculated downstream gap, vk is the speed of the subject 
vehicle, v Up and v Dw are the speeds of the preceding and 
following vehicles, α is the sensitivity factor, and T is the 
reaction time. The acceptance of the gap in the lane-changing 
model can be modified by defining the following parameters 
in the Aimsun API [40]: aggressiveness (allowing vehicles to 
enter shorter gaps without forcing the rear vehicle to brake) 
and imprudent lane-changing (vehicles can enter gaps that do 
not ensure car-following stability). Finally, the percentage of 
upstream vehicles that cooperate in the lane-changing model is 
defined for each automation level using the lane-changing 
cooperation parameter. An overtaking maneuver can also 
occur when the vehicle is in its set of valid lanes and changes 
lanes to pass another vehicle. The overtake speed threshold 
parameter was evaluated to promote or discourage overtaking. 
This means that whenever a vehicle is constrained to drive 
slower than the overtake speed threshold, which is expressed 
as a percentage of its desired speed, it will attempt to overtake. 
The default value was set to 90%. Appendix A demonstrates 
all the discussed parameters regarding the automation levels. 
 
IV. Vehicles connectivity: CCAC and V2V network 

Vehicle connectivity was modeled by designing a 
Vehicle Ad Hoc Network (VANet) using the V2X Aimsun 
Next extension (V2X Software Development Kit (SDK)) in 
addition to the driving assistance system built in Aimsun API 
(CACC). Only V2V connectivity is considered because V2I is 
predicted to cover the networks in the farthest future, whereas 
this study endeavors to capture a sooner reality. 

The CACC model applies a forward collision 
warning algorithm proposed by the FHWA [53], where the 
simulated vehicles have a dynamic cruise control status using 
the gap regulation mode in platooning 

Specifically, the CACC gap regulation mode works 
by assessing the gap-to-leader ratio at each time step and 
comparing it with lower/upper gap thresholds, which enables 
the vehicles to change between CACC and manual driving 
modes if the algorithm shows a potential collision.  

CACC was applied by defining the percentage of 
vehicles equipped with this assistance system, keeping the 
default gap thresholds defined by the FHWA algorithm [53], 
and setting speed gain = 0.0125, distance gain = 0.45/s, time 
gap for leader = 1.5 s, time gap for follower = 0.6 s, lower gap 
threshold = 1.5 s and upper gap threshold = 2.0 s. 

Regarding V2V connectivity, the V2X framework in 
Aimsun enables the modeler to implement connected VANets 
in the simulation. A VANet is a fleeting network formed by a 
collection of connected vehicles in close proximity to one 
another or a similarly connected roadside unit (RSU) (Fig. 
B.1). Aimsun [40] offers V2X extensions that make vehicles 
more aware of the presence and intentions of other nearby 
vehicles and assess the changes in vehicle behavior in 
response to that information. In addition, connectivity 
simulation can be used to investigate various communication 
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quality and range scenarios, as well as different levels of 
connectivity penetration across the fleet of vehicles [40].  

 

 
Fig. B.1 V2V connectivity network components and process 
[40] 

V2V network consists of: (1) an onboard unit (OBU) 
equipped in CAV, which represents the receiver and 
transmitter of the vehicle; (2) channels that simulate the radio 
hardware and protocols providing communication among 
vehicles; (3) cooperative awareness messages, providing 
information about the presence, activity, and position of 
CAVs; and (4) a traffic management center (TMC), which 
combines the previous protocols and controls the entire 
connectivity process. Fig. 2 illustrates the V2V connectivity 
network components and process. 

Vehicles transfer data within a space using defined 
messages over a communication channel connected to the 
OBUs on the vehicles. The vehicle-oriented communication 
channel issues messages to the TMC dedicated to managing 
communication in its local area. The TMC evaluates the 
information, and its actions are forwarded back to the 
equipped vehicles in the traffic network via channel signals. 
Finally, the vehicle rules engine, i.e., the class of rules used in 
simulation to evaluate and perform actions (before and after 
the time step, respectively), takes the V2X data from other 
vehicles and adds them to the vehicle's existing knowledge of 
the traffic in the space. The rules engine then adjusts vehicle 
behavior and decision-making by changing its longitudinal 
and lateral clearance, speed, acceleration, deceleration, and 
lane change process. 
 Considering the importance of channels in this 
process as a type of communication protocol used to transfer 
data between vehicles, channel design is acknowledged as a 
significant step in modeling V2V connectivity networks [54]-
[57]. This is typically accomplished through the design of 
short-range Wi-Fi channels, such as IEEE 802.11p, or long-
range LTE cell-based transmission channels [54]. In practice, 
there are specific protocols for each type of channel dealing 
with joining and leaving a data network, as well as dealing 
with the channel congestion that a network member (i.e., 
vehicle in a VENet) must follow. 
 The V2X SDK Aimsun extension provides a default 
objected coded channel that simplifies the design of the 
significant characteristics of the channel protocol: the latency, 

which indicates the reliability and range of communication in 
a channel reflected by the delay in packet transmission, the 
range of transmission, and the packet loss, which is the 
percentage of non-received packets. 

According to [54] and [57], the implementation of 
V2V connections requires a short-range connection channel; 
therefore, IEEE 802.11p was chosen in our VaNets design as 
the dedicated short-range communications (DSRC) protocol. 
This type of channel has shown (experimentally [56]) its 
greatest efficiency up to 250-300 m, thus a range of 250 m 
was chosen in this study. Furthermore, many experimental 
studies [54]–[57] have shown that the channel efficiency 
(latency and packet loss) depends on the probable number of 
vehicles connected to the channel range and their speed. The 
range in our case study could accomplish the largest studied 
category of connected vehicles (125 vehicles), and the 
registered speeds were 83-118 km/hr. Thus, the selected 
channel (IEEE 802.11p /250 m) was suggested to allow 2100 
ms latency and 0.75% packet loss following the experimental 
data from the aforementioned studies. 
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