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ABSTRACT	

One	of	 the	main	 limitations	of	Artificial	Neural	Networks	(ANN)	 is	 their	high	 inability	 to	
know	in	an	explicit	way	the	relations	established	between	explanatory	variables	(input)	and	
dependent	 variables	 (output).	This	 is	 a	major	 reason	why	 they	are	usually	 called	 “black	
boxes”.	 In	 the	 last	 few	years	 several	methods	have	been	proposed	 to	assess	 the	 relative	
importance	of	each	explanatory	variable.	Nevertheless,	it	has	not	been	possible	to	reach	a	
consensus	 on	which	 is	 the	 best-performing	method.	 This	 is	 largely	 due	 to	 the	 different	
relative	 importance	 obtained	 for	 each	 variable	 depending	 on	 the	 method	 used.	 This	
importance	 also	 varies	 with	 the	 designed	 network	 architecture	 and/or	 with	 the	 initial	
random	weights	 used	 to	 train	 the	 ANN.	 This	 paper	 proposes	 a	 procedure	 that	 seeks	 to	
minimize	these	problems	and	provides	consistency	in	the	results	obtained	from	different	
methods.	Essentially,	the	idea	is	to	work	with	a	set	of	neural	networks	instead	of	a	single	
one.	 The	 proposed	 procedure	 is	 validated	 using	 a	 database	 collected	 from	 a	 customer	
satisfaction	survey	which	was	conducted	on	the	public	transport	system	of	Granada	(Spain)	
in	2007.	The	results	show	that,	when	each	method	is	applied	independently,	the	variable’s	
importance	rankings	are	similar	and,	in	addition,	coincide	with	the	hierarchy	established	by	
researchers	who	have	applied	other	techniques.	
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1.	INTRODUCTION	

ANN	are	 information	processing	systems	based	on	 the	biological	behavior	of	 the	human	
brain	 and	 used	 in	 a	 growing	 number	 of	 multiple	 research	 fields.	 The	 strength	 of	 ANN	
compared	to	other	techniques	is	their	high	capacity	for	classification,	prediction	and	failure	
tolerance	(Martín	del	Brío	and	Sanz,	2006).	
ANN	are	not	based	on	a	predefined	equation	or	formula,	but	on	their	capacity	to	capture	the	
information	 inherent	 to	 the	 data	 submitted	 during	 the	 training	 process.	 They	 create	 an	
architecture	whose	parameters	are	able	to	provide	correct	answers	when	some	new	cases	
are	 presented.	 These	 parameters	 are	 the	 key	 to	 their	 knowledge	 (Palmer	 and	Montaño,	
2002a).	This	singular	way	of	learning	allows	them	to	capture	highly	non-linear	(Watts	and	
Worner,	2008)	and	complex	(Mohammadipour	and	Alavi,	2009)	relations,	but	prevents	an	
explicit	explanation	of	how	explanatory	variables	(input)	and	dependent	variables	(output)	
are	related.	However,	it	is	possible	to	achieve	this	goal	with	classical	statistical	techniques	
(Azadeh	et	al.,	2011).	Therefore	ANN	are	included	in	the	group	of	data	mining	techniques	
called	 “black	 boxes”	 (Cortez	 and	 Embrechts,	 2013),	 because	 for	 a	 given	 phenomenon	
(output),	it	is	very	difficult	to	know	the	relative	importance	of	each	variable	(input).	
Considering	 this	 problem,	 several	 methods	 have	 been	 proposed	 to	 determine	 the	
contribution	of	each	independent	variable	in	ANN	models;	many	methods	from	the	family	
of	sensitivity	analyses	(SA),	which	basically	changes	input	values	and	checks	what	happens	
in	the	output,	and	others	specific	NN	methods	have	been	developed	by	the	researchers.	SA	
methods	perform	a	pure	black-box	approach	over	a	data-driven	model,	which	can	be	NN	or	
other	method,	such	as	SVM.	 In	contrast,	 specific	NN	methods	can	only	be	applied	to	one	
typology	of	NN	(the	multilayer	perceptron),	so	that	they	are	not	universal	input	relevance	
methods.	 Sung	 (1998)	 applied	 three	methods	 (sensitivity	 analysis	 (Zurada	 et	 al.,	 1994;	
Engelbrecht	et	al.,	1995),	 fuzzy	curves	(Lin	and	Cunningham,	1995)	and	change	of	Mean	
Square	Error	(MSE)	(He	et	al.,	1997))	to	a	database	related	to	petroleum	engineering	and	
compared	the	results	obtained.	 It	was	concluded	that	 the	 fuzzy	curves	method	performs	
better	than	the	other	two.	Olden	and	Jackson	(2002)	described	the	neural	 interpretation	
diagram	(Özesmi	and	Özesmi,	1999),	Garson´s	algorithm	(Garson,	1991;	Goh,	1995)	and	
sensitivity	analysis	(Lek	et	al,	1995;	1996a,	1996b)	methods,	and	proposed	a	new	one	called	
randomization	approach.	After	applying	these	methods	to	a	database	related	to	ecology,	it	
was	observed	that	the	results	were	different	depending	on	the	method	used.	Palmer	and	
Montaño	(2002b)	highlighted	the	problems	of	the	methods	studied	so	far,	both	those	based	
on	 the	weights	of	 connections	and	 those	based	on	sensitivity	analysis.	They	argued	 that	
several	previous	studies	had	demonstrated	that	the	former	group	of	methods	is	not	effective	
(Garson,	1991;	Rzempoluk,	1998;	Hunter	et	al.,	2000),	and	that	 the	 latter	presents	some	
problems	depending	on	the	qualitative	or	quantitative	nature	of	the	variables.	Therefore,	
they	 suggested	 a	 new	 approach	 called	 numeric	 sensitivity	 analysis	 (NSA)	 (Palmer	 and	
Montaño,	2003),	which	determines	 the	 relation	between	each	 input	and	output	variable	
through	the	slope,	and	without	taking	into	account	the	qualitative	or	quantitative	nature	of	
the	 variables.	 Gevrey	 et	 al.	 (2003)	 analyzed	 and	 compared	 seven	 methods:	 partial	
derivatives	(Dimopoulos	et	al.,	1995),	Garson	(Garson,	1991;	Goh,	1995),	perturb	(Yao	et	al.,	
1998;	Scardy	and	Harding,	1999),	profile	(Lek	et	al.	1995;	1996a;	1996b),	and	stepwise	with	
some	of	its	variants	(Sung,	1998).	They	used	an	empirical	ecological	database	and	concluded	
that	the	partial	derivatives	method	was	the	best,	while	the	classical	stepwise	performed	the	
worst.	Olden	et	al.	(2004)	continued	the	work	of	Gevrey	et	al.	(2003)	and	applied	the	same	
seven	methods	plus	a	new	approach	called	connection	weights	(Olden	and	Jackson,	2002)	
to	a	simulated	database.	The	connection	weights	method	provided	the	best	results.	
Gevrey	et	al.	 (2006)	 introduced	a	new	variation	of	 the	partial	derivatives	method	(PaD),	
called	PaD2,	with	 the	 aim	of	 analyzing	 the	 joint	 contribution	 of	 every	possible	 pairwise	
combination	of	variables.	They	argued	that	in	nature	variables	normally	interact	with	each	
other,	 so	when	 a	 variable	 is	modified	 the	 remaining	 variables	 also	 change.	 Kemp	 et	 al.	
(2007)	 implemented	 the	 Holdback	 Input	 Randomization	 (HIPR)	 method,	 based	 on	 the	
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random	alteration	of	NN	input	parameters.	They	applied	this	method	to	ecological	complex	
systems	 and	 the	 results	 obtained	were	 as	 good	 as	 those	 extracted	 from	 the	 connection	
weights	method.	Yeh	and	Cheng	(2010)	provided	a	new	point	of	view	to	the	contribution	of	
variables	in	NN	by	introducing	a	method	that	considers	not	only	linear	effects	(first	order	
derivatives)	 between	 the	 studied	 variables	 but	 also	 curvature	 effects	 (second	 order	
derivatives).	Cortez	and	Embrechts	(2013)	introduced	three	new	sensitivity	analysis	(SA)	
methods:	data-based	SA	(DSA),	Monte-Carlo	SA	(MSA)	and	cluster-based	SA	(CSA),	and	they	
compared	them	with	two	other	existing	methods:	one-dimensional	SA	(1D-SA)	(Kewley	et	
al.,	2000)	and	global	SA	(GSA)	(Cortez	and	Embrechts,	2011).	In	addition,	they	developed	
some	new	approaches	to	determine	the	relative	importance	of	variables	and	also	pairs	of	
input	variables	with	sensitivity	analysis	methods.		

Commonly,	 the	 first	 step	 is	 to	 select	 an	 optimal	 NN	 architecture,	 and	 the	 second	 step	
consists	in	applying	several	variable	contribution	methods.	But	it	is	very	difficult	to	choose	
the	optimal	NN	model	due	to	various	factors	such	as	random	initialization	of	connection	
weights,	multiple	 possible	 network	 architectures	 and	 learning	 algorithms	 that	 converge	
towards	local	minimums	in	a	complex	error	surface.	Cao	and	Qiao	(2008)	underlined	this	
issue	and	suggested	that	sensitivity	analysis	methods	should	be	applied	not	to	a	single	NN,	
but	to	a	set	of	good-performing	NN.	The	authors	proposed	a	new	application	called	neural	
network	committee	(NNC).	Paliwal	and	Kumar	(2011)	also	referred	to	the	high	variability	
of	 weights	 before	 starting	 the	 training	 and	 proposed	 an	 approach	 named	 interquartile	
range,	in	which	the	network	is	trained	a	number	of	times,	and	the	first	and	third	quartiles	
of	the	weight	distribution	are	used	to	determine	the	relative	importance	of	each	variable.		

However,	despite	the	variety	of	methods	studied,	there	is	no	general	consensus	on	which	
model	 is	 the	 best	 for	 determining	 the	 contribution	 of	 variables.	When	 applying	 several	
methods	to	optimal	or	sub-optimal	NN	architecture,	 the	 importance	ranking	of	variables	
differs	from	method	to	method,	indicating	their	inherent	instability.	

This	 paper	 intends	 to	 handle	 the	 instability	 problems	 derived	 from	 these	methods,	 and	
suggests	a	new	systematic	application	of	 the	existing	methods	 in	order	 to	obtain	similar	
results	of	the	importance	ranking	of	variables,	independently	of	the	method	applied.	

The	database	used	in	this	paper	is	based	on	a	customer	satisfaction	survey	developed	by	the	
Transport	 Consortium	 of	 the	 Granada	Metropolitan	 Area	 (Spain)	 in	 2007.	 De	 Oña	 et	 al.	
(2012;	 2013)	 have	 analyzed	 this	 database	 with	 other	 methodological	 approaches	 (e.g.,	
decision	trees	and	structural	equation	approaches)	in	order	to	identify	the	most	important	
variables	 that	 contribute	 to	 the	 perception	 of	 service	 quality	 in	 a	 public	 transportation	
service.		

The	paper	is	structured	in	five	sections.	Section	2	describes	artificial	neural	networks,	the	
methods	used	to	determine	the	contribution	of	variables,	the	methodology	followed	and	the	
database	used	in	this	study.	Sections	3	and	4	continue	with	the	results	and	discussion.	The	
paper	concludes	with	a	summary	and	directions	for	future	research.	

	

2.	NEURAL	NETWORKS	AND	METHODS	

2.1.	Neural	Networks	(NNs)	

The	multilayer	 perceptron	 (MLP)	 is	 a	 widely	 used	 NN	 typology,	 introduced	 by	Werbos	
(1974)	and	further	developed	and	popularized	by	Rumelhart	and	McClelland	(1986).	The	
multilayer	 feed-forward	 NN	 has	 been	 used	 in	 approximately	 70%	 of	 all	 ANN	 studies	
(Gedeon	et	al.,	1995).	They	are	so	successful	because	several	research	groups	(Funahashi	
1989;	Hornik	et	al.,	1989)	have	mathematically	demonstrated	that	a	MLP	neural	network	
with	a	single	hidden	layer	is	a	universal	function	approximator.		
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A	 gradient-descent	 supervised	 learning	 algorithm	 with	 a	 learning	 rate	 of	 0.1	 and	 a	
momentum	of	0.9	were	used	to	train	the	NN.	This	algorithm	trains	the	NN	by	iteratively	
updating	the	synaptic	weight	values	until	the	error	function	reaches	a	local	minimum.	The	
learning	rate	and	momentum	values	help	to	accelerate	the	convergence	(Rumelhart	et	al.,	
1986;	 Hagan	 et	 al.,	 1996).	 The	weights	were	 initialized	 before	 each	 training	with	 small	
random	values	and	a	number	of	20,000	epochs	was	considered.		

The	database	was	randomly	divided	 into	 training,	validation	and	 test	sets,	 in	a	70:15:15	
ratio.	

A	wide	range	of	NNs	was	trained,	all	of	them	characterized	by	a	three-layer	architecture:	an	
input	layer	with	I	neurons	(one	neuron	per	input	variable),	a	hidden	layer	with	H	neurons	
(H	 Є	 [1,	 N])	 and	 an	 output	 layer	with	 J	 neurons	 (one	 neuron	 per	 output	 variable).	 The	
neurons	were	activated	using	logarithmic	sigmoidal	transfer	functions	in	all	layers.		

2.2.	Methods	for	determining	the	contribution	of	variables	

The	methods	selected	in	this	study	to	determine	the	relative	importance	of	variables	in	a	
NN	model	have	been	proposed	and	applied	by	numerous	authors	in	several	research	fields	
(Olden	and	 Jackson,	2002;	Gevrey	et	 al.,	 2003):	perturb,	profile,	 connection	weights	and	
partial	derivatives.	The	first	two	(perturb	and	profile)	are	pure	SA	methods,	while	the	other	
two	(connection	weights	and	partial	derivatives)	are	not.	

2.2.1.	Perturb	method	

This	method	is	based	on	the	principle	of	disturbing	or	introducing	noise	to	one	of	the	inputs	
while	the	remaining	variables	keep	their	original	values.	Afterwards,	the	mean	square	error	
(MSE)	between	the	outputs	obtained	before	and	after	the	perturbation	are	compared	(Yao	
et	al.,	1998;	Scardy	and	Harding,	1999).	

A	noise	δ	was	progressively	applied	to	each	variable	in	five	steps:	10%,	20%,	30%,	40%	and	
50%	of	 its	original	value.	Thus,	 the	variable	xi	changes	 its	values	to	xi	=	xi	+	δ	due	to	the	
perturbation.	

2.2.2.	Profile	method	

This	method	analyses	the	evolution	of	each	input	along	a	scale	or	range	of	values,	while	the	
remaining	variables	keep	their	values	fixed	(Lek	et	al.,	1995;	1996a;	1996b).	

Each	predictor	variable	xi	takes	11	different	values	resulting	from	the	division	of	the	range,	
between	 its	 minimum	 and	 maximum	 value,	 into	 10	 equal	 intervals.	 Furthermore,	 all	
variables	except	one	are	initially	fixed	at	their	minimum	value,	and	then	successively	at	their	
first	quartile,	median,	 third	quartile	and	maximum	value.	Thus,	5	values	of	 the	response	
variable	are	obtained	for	each	of	 the	11	values	adopted	by	xi,	and	the	median	of	 those	5	
values	 is	 calculated.	 Finally,	 a	 curve	 with	 the	 profile	 of	 variation	 is	 obtained	 for	 every	
variable.		

2.2.3.	Connection	weights	method	

This	method	determines	the	relative	importance	of	the	predictor	variables	of	the	model	as	
a	function	of	the	NN	synaptic	weights,	according	to	the	mathematical	expression	(Olden	and	
Jackson,	2002):	

	
R!" = ∑ W!# · W#"

#
$%& 																																																																		(1)	

where	Rij	is	the	relative	importance	of	the	variable	xi	with	respect	to	the	output	neuron	j,	H	
is	the	number	of	neurons	in	the	hidden	layer,	Wik	is	the	synaptic	connection	weight	between	
the	 input	neuron	 i	and	the	hidden	neuron	k,	and	Wkj	 is	 the	synaptic	weight	between	the	
hidden	neuron	k	and	the	output	neuron	j.		
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2.2.4.	Partial	derivatives	method	

This	method	analyses	 the	 first	order	effects	of	 the	predictor	variables	of	 the	model	with	
respect	to	the	output	variable,	using	all	available	training	data	(Dimopoulos	et	al.,	1995).			

The	 output	 provided	 by	 a	 neuron	 of	 the	 hidden	 layer	 of	 a	 MLP	 neural	 network	 with	
sigmoidal	activation	functions	is	given	by	the	following	equations:	

		h' =
&

(&)*!"#$%)
		 	 	 	 	 (2)	

	net' = ∑ W,' · 𝑥! − θ'! 		 	 	 	 (3)	

where	hk	is	the	output	of	the	neuron	k	of	the	hidden	layer,	xi	is	the	value	of	the	predictor	
variable	of	the	considered	input	layer,	Wik	is	the	connection	weight	between	the	predictor	
variable	xi	and	the	neuron	k	of	the	hidden	layer,	and	θk	 is	the	bias	of	the	neuron	k	of	the	
hidden	layer.	

The	output	of	a	neuron	of	the	output	layer	is	given	by	the	following	expressions:	

	y- =
&

(&)*!"#$&)
			 	 	 	 	 (4)	

	net- = ∑ W'- · h' − θ-" 		 	 	 	 (5)	

where	Wkj	is	the	connection	weight	between	the	neuron	k	of	the	hidden	layer	and	the	neuron	
j	of	the	output	layer,	θj	is	the	bias	of	the	output	neuron	j	and	yj	is	the	output	of	the	neuron	j	
of	the	output	layer.	

The	expression	that	relates	the	variation	of	the	output	values	yj	with	respect	to	the	variation	
of	the	predictor	variable	xi	is	obtained	through	application	of	the	chain	rule:	

	./&
.0'

= ∑ ./&
.1*2&# · .1*2&

.3%
· .3%
.1*2%

· .1*2%
.0'

= ∑ f -́ · W'- · f´' · W,'# 		 	 (6)	

	f -́ = y- · (1 − y-)		 	 	 	 	 (7)	

	f´' = h' · (1 − h')		 	 	 	 	 (8)	

The	sensitivity	value	of	every	variable	xi	is	given	by	the	expression:	

	L! =
∑

!"#
!$%

&

#
		 	 	 	 	 				(9)	

where	P	is	the	total	number	of	training	examples.	

	

2.3.	Methodology	

The	methodology	proposed	in	this	paper	focuses	on	working	with	sets	of	NNs	instead	of	a	
single	NN.	Every	set	is	composed	of	a	series	of	NNs	with	the	same	architecture,	which	are	
trained	using	an	 identical	 learning	algorithm,	activation	 functions,	momentum	value	and	
learning	ratio.	NNs	of	the	same	set	only	differ	in	the	initial	random	weight	values	considered	
in	 each	 training	 process.	 Once	 the	 NNs	 have	 been	 trained,	 the	 above	 four	methods	 are	
applied	to	every	one	of	them,	and	therefore	a	ranking	of	relative	importance	is	obtained	for	
each	NN	and	for	each	method.	Due	to	the	instability	of	the	results	when	a	single	method	is	
used,	this	methodology	proposes	an	approach	based	on	calculating	the	ranking	of	relative	
importance	for	each	method	as	a	function	of	the	average	importance	values	obtained	from	
every	NN	in	the	set.	

MATLAB	software	was	used	to	develop	the	NNs	(Beale	et	al.,	2007).		

The	sequence	of	steps	followed	to	develop	this	methodology	was:	
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Step	1.	Train	every	one	of	the	H	NN	architectures,	with	H	Є	[1,	N]	neurons	in	the	hidden	
layer,	M	number	of	times,	and	using	different	random	initial	weights	for	each	training.	Thus,	
NxM	trained	ANNs	are	obtained..	

Step	2.	Determine	the	performance	or	capacity	of	generalization	of	the	NxM	trained	NNs	
through	the	E	error	metric.		

Step	 3.	 Calculate	 the	mean	 E	 and	 its	 standard	 deviation	 values	 for	 each	 one	 of	 the	 NN	
architectures,	and	select	the	NN	architecture	that	reaches	the	global	minimum	mean	E	value.	

Step	4.	Apply	the	methods	of	variable	contribution	to	every	one	of	the	M	NNs	of	the	selected	
architecture.	

Step	5.	For	every	method	applied,	calculate	the	average	value	of	the	M	NNs	for	every	one	of	
I	predictor	variables.			

Step	6.	Determine	the	ranking	of	importance	of	I	variables	considered	in	the	study	based	on	
the	values	obtained	in	Step	5	for	every	applied	method.	

Step	7.	Compare	the	results	obtained	for	each	method.	

2.4.	Data	

The	database	used	in	this	study	was	obtained	through	a	customer	service	quality	survey	
performed	on	public	bus	users	by	the	Granada	Area	Transport	Consortium	in	2007.	This	
Consortium	 was	 created	 to	 coordinate	 and	 organize	 the	 transit	 bus	 service	 of	 the	
Metropolitan	Area	of	Granada	(Spain).	

858	surveys	were	conducted	at	the	bus	stops	of	different	lines,	with	the	aim	of	measuring	
the	user	satisfaction	level	regarding	the	service	quality	provided	through	12	variables.	The	
answers	to	these	variables	were	scored	from	0	to	10,	as	shown	in	Table	1.	

(Table	1	here)	

In	 this	 case	of	 study,	 the	unitary	value	of	 the	 score	obtained	 for	 each	variable	has	been	
considered.	That	is,	a	range	of	values	in	the	interval	[0,1]	has	been	used	as	input	values	for	
every	variable,	instead	of	using	the	original	interval	[0,10].	This	translation	allows	to	adapt	
them	for	subsequent	treatment	in	the	NN	(Masters,	1993;	Martín	del	Brío	and	Sanz,	2006),	
since	the	limits	of	the	value	range	of	every	variable	directly	coincide	with	the	upper	and	
lower	limits	of	the	sigmoidal	activation	functions	used	in	NN	models.	

	

3.	RESULTS	

In	this	study,	it	has	been	considered	that	N=30	and	M=50,	which	came	to	a	total	of	1,500	
networks,	 and	 the	 E	 error	 has	 been	 determined	 through	 the	 MAPE	 value,	 calculated	
according	to	the	expression	(Delen	et	al.,	2006):	

𝑀𝐴𝑃𝐸 =	 $
%
· ∑ 𝑎𝑏𝑠(&'()*+	-*+).	!/0.(	12!3(	-*+).	!

0.(	12!3(	-*+).	!
)%

!4$ 			 	 (10)	

where	T	is	the	total	number	of	considered	cases	in	the	test	stage.	

Figure	1	shows	the	mean	and	the	standard	deviation	values	of	MAPE	obtained	for	every	NN	
architecture.	 The	 MLP	 neural	 network	 with	 6	 neurons	 in	 the	 hidden	 layer	 reaches	 the	
minimum	mean	MAPE	value	among	all	trained	networks.	This	network	architecture,	along	
with	its	50	MLP	trained	networks,	is	selected	to	analyse	the	outcomes	of	the	four	methods	
considered	in	this	paper.			

(Figure	1	here)	
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Figures	 2	 to	 5	 show	 the	 relative	 importance	 of	 the	 12	 independent	 variables	 of	 the	 50	
networks	 used,	 obtained	 after	 applying	 the	 four	 methods.	 A	 wide	 variability	 of	 the	
importance	 values	 has	 been	 observed;	 hence	 every	 variable	 ranking	 varies	 greatly,	
depending	not	only	on	the	method	applied,	but	also	on	the	different	random	initial	values	
used	for	a	same	method.	Some	other	researchers	(Zhou	et	al.,	2002;	Cao	and	Qiao,	2008)	
have	already	set	out	this	problem	and	suggested	the	possibility	of	working	with	NN	sets	to	
control	the	instability	problems	derived	from	sensitivity	analysis.	This	supports	the	idea	of	
working	not	with	a	single	NN	but	with	a	set	of	them,	as	we	are	proposing	in	this	paper.	

The	 profile	 and	 perturb	methods	 are	 able	 to	 enclose	 the	 relative	 importance	 of	 certain	
variables	in	a	narrower	range,	as	in	the	case	of	the	variable	Frequency,	which	always	has	a	
relative	importance	above	70%	according	to	the	profile	method,	and	above	55%	according	
to	the	perturb	method,	or	the	variable	Cleanliness,	whose	importance	is	always	under	50%	
according	 to	 the	 profile	method,	 and	 under	 20%	 according	 to	 the	 perturb	method.	 The	
results	of	the	other	two	methods,	specially	the	partial	derivatives	method,	show	that	any	
variable	can	reach	any	relative	importance	value	between	0%	and	100%.	In	either	case,	the	
ranking	of	importance	of	these	variables	is	too	unpredictable	for	the	four	methods.	This	is	a	
major	 limitation	 for	 adequately	 determining	 the	 relative	 importance	 of	 the	 variables.	
However,	 if	 the	 values	 obtained	 individually	 for	 every	 variable	 are	 averaged	 for	 every	
method,	results	are	more	homogeneous.	

(Figure	2	here)	

(Figure	3	here)	

(Figure	4	here)	

(Figure	5	here)	

In	 the	 profile	 method,	 a	 range	 of	 50	 profiles	 of	 variation	 within	 the	 interval	 [0,1]	 was	
generated	 (Figure	 6).	 The	 relative	 importance	 of	 a	 variable	 is	 given	 by	 the	 difference	
between	the	maximum	and	minimum	values	(difference	in	the	axis	of	ordinates)	of	the	line	
representing	the	average	of	the	profile	of	variation.	Table	2	lists	the	results	obtained,	which	
indicate	 that	 the	 variable	 Frequency	 reaches	 the	 highest	 relative	 importance	 (100%),	
followed	 by	 Speed	 (77.72%),	 Information	 (64.15%)	 and	 Proximity	 (60.24%);	 so	 these	
variables	have	a	very	high	global	importance.	A	second	level	of	importance,	considered	as	
high,	includes	the	variables	Punctuality	(54.45%),	Safety	(53.28%)	and	Courtesy	(48.59%),	
followed	 by	 a	 third	 medium-importance	 level	 containing	 the	 variables	 Temperature	
(38.44%),	Fare	(36.40%)	and	Space	(27.22%).	In	the	last	place	of	relative	importance	are	
the	variables	Accesibility	(17.34%)	and	Cleanliness	(3.36%).	

	(Figure	6	here)	

A	 range	 of	 50	 profiles	 for	 every	 variable	 was	 also	 generated	 in	 the	 perturb	 method,	
representing	the	profiles	of	variation	of	the	MSE	error,	as	a	function	of	the	noise	percentage	
or	perturbation	 introduced	(Figure	7).	Once	again,	 the	difference	between	the	maximum	
and	minimum	values	of	the	line	representing	the	average	of	the	profile	values	indicates	the	
relative	importance	of	the	variables.	The	higher	the	variation	of	the	MSE,	the	higher	is	the	
relative	 importance	of	a	variable.	Table	2	 shows	 the	 results	obtained	after	applying	 this	
method.	 Frequency	 (100%)	 is	 globally	 the	most	 important	 variable,	 followed	 by	 Speed	
(63.60%).	 The	 variables	 Information	 (42.88%),	 Punctuality	 (32.92%),	 Safety	 (32.92%),	
Courtesy	 (30.33%),	 Proximity	 (23.28%)	 and	 Temperature	 (22.27%)	 belong	 to	 a	 second	
medium	 importance	 level.	 In	 the	 last	 places	 of	 the	 ranking	 appear	 the	 variables	 Fare	
(17.90%),	Space	(14.51%),	Accesibility	(7.58%)	and	Cleanliness	(7.12%).			

(Figure	7	here)	

(Table	2	here)	
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Regarding	 the	 connection	 weights	 and	 partial	 derivatives	 methods,	 the	 corresponding	
formulas	are	applied	to	determine	the	relative	importance	of	every	variable	(Equations	1	
and	9,	respectively),	and	the	average	values	and	ranking	have	been	obtained	and	compiled	
in	Table	2.	

The	 connection	weights	method	 shows	 that	 the	 variable	with	 the	 highest	 importance	 is	
Frequency	 (100%),	 followed	by	Speed	 (75.98%)	and	 Information	 (66.68%).	 In	a	 second	
level	of	high	importance	are	included	the	variables	Proximity	(55.49%),	Safety	(51.38%),	
Punctuality	(51.35%)	and	Courtesy	(47.81%),	followed	by	the	group	of	medium	importance	
variables	 containing	 Temperature	 (36.65%),	 Space	 (36.45%),	 Fare	 (31.98%)	 and	
Cleanliness	(27.39%).	The	variable	with	less	relative	importance	is	Accessibility	(14.56%).	

In	 the	 partial	 derivatives	method,	 the	most	 important	 variables	 are	 Frequency	 (100%),	
Speed	 (72.90%),	 Information	 (71.01%),	 Punctuality	 (64.13%),	 Courtesy	 (60.67%)	 and	
Proximity	(58.30%).	The	relative	importance	of	the	remaining	variables	can	be	considered	
as	medium:	Temperature	(49.05%),	Safety	(48.08%),	Fare	(45.43%),	Cleanliness	(44.01%),	
Space	(43.35%)	and	Accessibility	(37.41%).				

Figure	 8	 shows	 a	 comparison	 of	 relative	 importance	 ranking	 of	 the	 12	 independent	
variables	determined	by	every	method.	This	figure	shows	that	the	relative	importance	are	
very	similar,	and	therefore	the	high	instability	inherent	in	these	methods	when	applied	to	a	
single	NN	 is	 considerably	 eliminated.	 The	 four	methods	 agree	 on	 the	 fact	 that	 the	most	
influencing	variables	are	Frequency,	Speed	and	Information,	and	that	the	least	influencing	
variables	are	Cleanliness,	Accessibility	and	Space,	with	the	sole	exception	of	the	connection	
weights	method,	which	considers	the	variables	Accessibility,	Cleanliness	and	Fare	to	be	the	
least	 important,	 followed	 by	 the	 variable	 Space.	 The	 six	 remaining	 variables	 present	
intermediate	 positions	 in	 the	 ranking.	 The	profile	 and	perturb	methods	provide	 a	more	
similar	 hierarchy	 of	 importance,	 while	 the	 partial	 derivatives	 method	 presents	 more	
discrepancies.		

(Figure	8	here)	

With	regards	to	the	degree	of	relative	importance	assigned	to	every	variable,	expressed	as	
a	relative	percentage,	it	is	noticed	that	in	the	profile	and	perturb	methods,	the	differences	
allow	the	variables	to	be	classified	into	four	levels	of	importance:	very	high,	high,	medium	
and	low.	The	perturb	method	allows	a	clear	distinction	to	be	made	between	three	levels	of	
importance:	high,	medium	and	low.	The	partial	derivatives	method	allocates	percentages	of	
influence	that	can	be	differentiated	into	two	levels	of	importance:	high	and	medium,	since	
the	lowest	value	of	importance	is	above	37%.	

4.	DISCUSSION	

This	paper,	as	demonstrated	by	many	other	previous	studies	(Mussone	et	al.,	1999;	Delen	
et	al.,	2006;	Mohammadipour	and	Alavi,	2009;	Moghaddam	et	al.,	2010;	Akin	y	Akbaç,	2010),	
confirms	the	high	prediction	capacity	in	the	generalization	stage	of	NN,	attaining	MAPE´s	
values	below	0.05,	which	means	more	than	95%	of	right	answers	 in	most	of	 the	 trained	
neural	networks.	

Several	authors	(Gedeon,	1997;	Sung	1998;	Palmer	and	Montaño,	2002b;	Olden	and	Jackson,	
2002;	Gevrey	et	al.,	2003;	Paliwal	and	Kumar,	2.011)	have	analyzed	 the	advantages	and	
disadvantages	 of	 the	 existing	 methods	 to	 determine	 the	 relative	 contribution	 of	 the	
variables	in	the	NN	models	by	comparing	them,	but	it	has	not	been	possible	to	establish	a	
global	consensus	on	which	method	is	the	most	stable,	accurate	or	robust.	This	leaves	it	open	
to	doubt	whether	these	methods,	which	determine	the	cause-effect	relations	between	the	
predictor	and	dependent	variables,	are	indeed	clarifying	approaches	that	explain	the	role	of	
every	variable	in	NN	models,	the	so-called	black	boxes,	and	most	importantly,	if	they	are	
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reliable	enough	to	be	used	in	other	research	fields	where	their	results	can	have	serious	and	
compromising	consequences.			

The	 values	 of	 relative	 importance	 obtained	 by	 applying	 the	 profile,	 perturb,	 connection	
weights	and	partial	derivatives	methods	to	a	single	NN	show	high	variability,	not	only	when	
different	methods	are	applied	to	the	same	NN,	but	also	when	one	of	them	is	applied	several	
times	 to	 a	 certain	 NN	 architecture	 that	 has	 been	 trained	 with	 different	 initial	 random	
weights.	 Therefore,	 working	 this	 way	 does	 not	 guarantee	 the	 validity	 of	 the	 results	 of	
relative	 importance.	 However,	 in	 this	 study	 we	 worked	 with	 NN	 sets	 of	 the	 same	
architecture	on	which	the	above	methods	were	applied.	This	approach	achieved	a	similar	
ranking	 of	 relative	 importance	 regardless	 of	 the	 method	 used,	 and	 the	 results	 are	
particularly	similar	for	the	profile	and	perturb	methods.	Thus,	the	main	goal	was	attained.	

Any	method	can	be	considered	valid,	since	all	of	them	clearly	agree	to	identify	the	most	and	
least	important	variables,	although	the	partial	derivatives	method	is	the	least	recommended	
because	it	shows	a	higher	variability	of	the	relative	importance	values.	

In	addition,	another	argument	that	supports	the	robustness	of	this	new	approach	is	the	fact	
that	the	variables	Frequency,	Speed,	Punctuality	and	Proximity	are	classified	as	the	most	
important	by	all	methods,	and	this	classification	agrees	with	the	results	obtained	by	authors	
(Eboli	and	Mazulla,	2008;	Ebolli	and	Mazulla	2010;	Dell´Olio	et	al.;	2010;	Dell´Olio	et	al.;	
2011;	 De	 Oña	 et	 al.,	 2012)	 who	 have	 used	 other	 techniques,	 such	 as	 multinomial	 logit	
models,	multinomial	discrete	choice	models,	ordered	probit	models	and	decision	trees.	

The	main	weakness	of	this	approach	is	that,	even	though	the	four	methods	provide	similar	
results	in	terms	of	ranking	variable	importance,	the	percentages	of	relative	importance	are	
significantly	different	depending	on	the	method	used,	and	therefore	the	opinion	of	an	expert	
is	necessary	to	decide	which	method	offers	the	most	similar	results	to	those	expected.	Thus,	
while	the	profile	and	perturb	methods	deliver	a	wide	range	of	values	within	the	interval	
[3.36;100.0]	(the	former)	and	[7.1;100.0]	(the	latter),	the	connection	weights	method	limits	
this	 range	 to	 the	 interval	 [14.5;100.0]	and	 the	partial	derivatives	method	 to	 the	 interval	
[37.4;100.0].	 The	 importance	 assigned	 to	 intermediate-positioned	 variables	 also	 differs	
from	method	to	method.	

5.	CONCLUSIONS	

This	paper	presents	 an	 approach	 that	mitigates	 the	 instability	problems	 inherent	 in	 the	
methods	 used	 to	 determine	 the	 contribution	 of	 predictor	 variables	 in	 a	 NN	model.	 The	
principle	 of	 this	 approach	 is	 based,	 not	 on	 the	modification	 of	 existing	methods	 or	 the	
introduction	of	new	ones,	but	on	the	application	of	these	methods	to	a	set	of	NNs	instead	of	
a	single	NN.		

A	 set	 of	 ANNs	 with	 the	 same	 architecture	 was	 selected	 on	 which	 several	 existing	 and	
previously	 used	 methods	 were	 applied	 to	 determine	 the	 contribution	 of	 variables.	
Afterwards,	a	new	treatment	of	the	results	was	carried	out,	based	on	the	calculation	of	the	
average	values	of	the	relative	importance	of	variables.	

The	database	used	comes	from	a	survey	conducted	on	users	of	the	bus	transit	service	to	
know	the	service	quality	as	perceived	by	them	in	the	Metropolitan	Area	of	Granada.	This	
survey	was	carried	out	for	different	purposes	to	those	pursued	in	this	paper,	and	in	addition	
it	has	been	analyzed	with	different	techniques	in	other	studies	(De	Oña	et	al.,	2012;	2013).	
We	would	like	to	point	out	that,	to	the	authors’	knowledge,	this	is	the	first	time	that	ANNs	
are	used	to	analyze	service	quality.		

This	approach	seems	to	be	stable,	since	all	the	methods	used	assign	a	very	similar	hierarchy	
of	 importance	 to	 the	 variables,	 especially	 to	 those	 that	 are	 have	 a	 greater	 impact.	
Additionally,	 these	 results	 concur	 with	 those	 from	 other	 studies	 related	 to	 the	 subject,	
which	support	the	validity	of	the	results.	
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There	 are,	 however,	 some	 differences	 in	 the	 importance	 percentage	 assigned	 to	 the	
variables	depending	on	the	method	applied,	since	there	is	no	single	unique	subset	of	the	
most	important	variables	because	of	the	inter-correlation	of	variables,	and	this	importance	
is	 limited	 by	 the	 individual	 metric.	 Therefore	 the	 opinion	 of	 an	 expert	 is	 necessary	 to	
evaluate	 which	 method	 shows	 importance	 values	 more	 concordant	 with	 the	 expected	
results.	

The	advantages	of	this	approach	overcome	the	drawbacks,	since	it	is	achieved	the	goal	of	
significantly	eliminating	the	high	instability	existing	in	current	methods,	as	they	are	applied	
so	far	in	the	NN	field.			

This	 new	 perspective	 on	 the	 application	 of	 classical	 methods	 to	 NN	 sets	 offers	 great	
possibilities	 for	 future	 research,	 which	 could	 study	 what	 happens	 with	 other	 existing	
methods	 for	 determining	 the	 contribution	 of	 variables,	 such	 as	 the	 recent	 DSA	method	
(Cortez	and	Embrechts,	2013),	with	other	preprocessing	approaches	for	standardizing	the	
input	values,	or	with	other	typologies	and	architectures	of	NNs,	with	the	aim	of	checking	the	
robustness	showed	by	this	approach.	

In	terms	of	future	work,	it	would	be	interesting	to	measure,	after	identifying	most	relevant	
inputs	by	methods,	how	a	particular	input	tends	to	affect	the	NN	output	response.	This	is	
valuable	 in	 real-world	 applications	 and,	 for	 instance,	 it	 has	 been	 applied	 in	 Cortez	 and	
Embrechts	 (2013)	 using	 VEC	 curves,	which	 are	 graphical	 representations	 that	 visualize	
these	changes	in	the	NN	output	response.			
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	 VARIABLE	 SYMBOL VALUES	

	
IMPUT	LAYER	

INFORMATION	 INF	 [0;10]	
PUNCTUALITY	 PUN	 [0;10]	
SAFETY	 SAF	 [0;10]	
COURTESY	 COU	 [0;10]	
CLEANLINESS	 CLE	 [0;10]	
SPACE	 SPA	 [0;10]	
TEMPERATURE	 TEM	 [0;10]	
ACCESSIBILITY	 ACC	 [0;10]	
FARE	 FAR	 [0;10]	
SPEED	 SPE	 [0;10]	
FREQUENCY	 FRE	 [0;10]	
PROXIMITY	 PRO	 [0;10]	

OUTPUT	LAYER	 QUALITY	OF	SERVICE	 QS	 [0;10]	

Table	1.	Customer	Satisfaction	Survey’s	Items	

	
	

VARIABLE	
DERIVED	IMPORTANCE	

PROFILE	 PERTURB	 CONNECTION	
WEIGHTS	

PARTIAL	
DERIVATES	

	 Average Ranking Average Ranking Average Ranking Average Ranking 

INF	 64.15	 3	 42.88	 3	 66.68	 3	 71.01	 3	

PUN	 54.45	 5	 32.92	 4-5	 51.35	 6	 64.13	 4	

SAF	 53.28	 6	 32.92	 4-5	 51.38	 5	 48.08	 8	

COU	 48.59	 7	 30.33	 6	 47.81	 7	 60.67	 5	

CLE	 3.36	 12	 7.12	 12	 27.39	 11	 44.01	 10	

SPA	 27.22	 10	 14.51	 10	 36.45	 9	 43.35	 11	

TEM	 38.44	 8	 22.27	 8	 36.65	 8	 49.05	 7	

ACC	 17.34	 11	 7.58	 11	 14.56	 12	 37.41	 12	

FAR	 36.40	 9	 17.90	 9	 31.98	 10	 45.43	 9	

SPE	 77.72	 2	 63.60	 2	 75.98	 2	 72.90	 2	

FRE	 100.00	 1	 100.00	 1	 100.00	 1	 100.00	 1	

PRO	 60.24	 4	 23.28	 7	 55.49	 4	 58.30	 6	

Table	2.	Variables’	relative	importance	by	methods	

	


