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De novo active sites for resurrected Precambrian
enzymes
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Protein engineering studies often suggest the emergence of completely new enzyme

functionalities to be highly improbable. However, enzymes likely catalysed many different

reactions already in the last universal common ancestor. Mechanisms for the emergence of

completely new active sites must therefore either plausibly exist or at least have existed at

the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for

protein engineering and demonstrate that a new active site can be generated through a single

hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with

perturbed physico-chemical properties. We provide experimental and computational

evidence that conformational flexibility can assist the emergence and subsequent evolution of

new active sites by improving substrate and transition-state binding, through the sampling of

many potentially productive conformations. Our results suggest a mechanism for the

emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a

tool for protein engineering.
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T
he generation of completely new active sites capable of
enzyme catalysis is, arguably, one of the most fundamental
unsolved problems in protein science. Rational design

approaches to this problem have often used complex computa-
tional methods, have targeted simple model reactions and have
typically led to low levels of catalysis1. These studies would seem
to suggest, therefore, the unlikelihood of the emergence of
completely new active sites in non-catalytic scaffolds. Certainly,
most modern enzyme functions likely evolved from previously
existing functionalities. On the other hand, most biochemical
processes are extremely slow in the absence of enzymes2 and
specialized enzymes are likely to have catalysed many different
reactions already in the last universal common ancestor3,4. It
could be inferred from this that efficient mechanisms for the
emergence and subsequent evolution of completely new enzyme
functionalities must exist or, at least, that they must have existed
at the primordial protein stage. However, little is known about
such mechanisms.

Buried and partially buried ionizable groups with perturbed
properties often play essential catalytic roles in modern enzymes.
Single hydrophobic-to-ionizable residue mutations that generate
partially buried groups with perturbed properties may have
plausibly provided a feasible route to the generation of completely
new active sites. This notion has been previously proposed5,6 but
never tested in practice. Conformational flexibility could have
assisted the emergence of the new enzyme functionalities and its
subsequent evolution by facilitating substrate and transition-state
binding, through sampling a greater number of potentially
productive conformations. Many years ago, Jensen proposed in
a highly influential article7 that primordial enzymes were capable
of catalysing a diversity of reactions. It is conceivable that the
conformational flexibility that is likely linked to such a broad
generalist nature8–10 may have facilitated the emergence of new
enzyme functionalities in the first place.

Here, we explore and test these notions using resurrected
Precambrian b-lactamases11,12 as scaffolds for the engineering of
completely new active sites. To date, only a handful of systems
have been studied using ancestral resurrection, and only a few of
these resurrection efforts targeted ‘old’ (B3 billion years)
phylogenetic nodes (Fig. 2 of ref. 13). Of these systems,
resurrected Precambrian b-lactamases have been thoroughly
characterized in terms of their structure, function and
stability11. These putative ancestral proteins have been shown
to be highly stable and able to efficiently degrade several
antibiotics11. Previous9 and current computational analyses, as
well as new NMR relaxation studies reported here, support that
this substrate promiscuity is linked to enhanced conformational
flexibility. The broad substrate scope of resurrected Precambrian
b-lactamases may reflect the wide variety of substances these
enzymes had to hydrolyse11,12. We do not claim, therefore, that
they are necessarily at Jensen’s ancestral generalist stage,
although, strictly speaking, this possibility should not be ruled
out. In any case, the available resurrected Precambrian
b-lactamases11 should provide an adequate model with which
to address the role of ancestral conformational flexibility in the
emergence of new enzyme functionalities. More generally, we
have recently reviewed14 several arguments and recent
publications that support that promiscuity may be a common
outcome of ancestral protein resurrection.

Here, we use carefully selected systems that span a vast region
of the sequence space of both ancestral and modern b-lactamases,
and probe the enzymatic features that allow for the emergence of
a non-natural activity in these enzymes, as well as why it only
appears in a specific snapshot of evolutionary time. We
demonstrate the role of conformational flexibility in allowing
for the emergence of new enzymatic functions, as well as its

importance in the subsequent evolvability of the enzyme. Finally,
our data highlights the potential of ancestral reconstruction as a
tool for protein engineering by providing far more powerful
evolutionary starting points than can be obtained from modern
enzymes.

Results
Selected model systems. In the present study, we have used the
proteins encoded by the most probabilistic sequences at six
Precambrian phylogenetic nodes in the evolution of class A
b-lactamases (Fig. 1). The reconstructed sequences and the pro-
cedure used to obtain them have been described in detail in
Supporting Information of ref. 11. These proteins display large
sequence differences between themselves (Supplementary
Table 1) and they are properly folded, highly stable, active and
share the b-lactamase fold11. In addition, we have also used here
proteins encoded by alternative sequences at the GNCA node
(common ancestor of Gram-negative bacteria). As is custormary
in the field, these alternative sequences were derived11,13 from a
random weighted sampling of the posterior probability
distribution. They differ from the most probabilistic sequence
at 8–20 positions (Supplementary Tables 2 and 3). Finally, for
comparison, we have also used 10 modern b-lactamases (Fig. 1)
that have been considered in the literature to be archetypical
examples of b-lactamases and are well characterized in terms of
their structure and function15. These modern proteins provide a
fair representation of the b-lactamases from the several bacterial
taxa (Fig. 1) and they span modern b-lactamase sequence space to
a substantial extent, as they show limited sequence identity
between themselves (Supplementary Table 4). Note also their
limited sequence identity with the putative ancestral b-lactamases
studied here (Supplementary Table 5). Overall, we explore in this
work a vast region of the sequence space of both ancestral and
modern b-lactamases.

We have selected the Kemp elimination reaction (Fig. 2) as our
primary target for the reaction to be catalysed by the generated
new active site, for several reasons. First, it provides a simple
activated model for proton abstraction from carbon, which is a
fundamental chemical process that underlies many biochemical
reactions. Completely new active sites are expected to display low
catalysis levels (high catalysis levels would be the outcome of
subsequent evolution) and their emergence is best probed by
activated substrates. Second, Kemp elimination is a non-natural
reaction (unknown in biological organisms). No natural enzyme
has evolved, therefore, to catalyse this reaction16 and studies on
engineered Kemp eliminases are unlikely to be compromised by
contamination from natural enzymes. Following from this, Kemp
elimination has been often used as a benchmark for rational
enzyme design1. Therefore, use of the same system allows for a
quantitative comparison of the catalytic efficiencies of the
designed constructs presented in this work to those generated
in previous enzyme design studies.

Generation of a new active site for Kemp elimination. The
possibility that slow conformational changes (on the micro-
seconds to seconds timescale) play roles in enzyme catalytic cycles
has been proposed and explored17. Consequently, we used NMR
relaxation determinations (see Methods section and
Supplementary Methods) on the b-lactamase encoded by the
most probabilistic sequence at the GNCA node (GNCAMP

b-lactamase) to guide our design of a new active site. This
putative ancestral protein displays a large number of residues
with conformational contribution to the relaxation rates
determined by NMR (see the comparison with the modern
TEM-1 b-lactamase shown in Fig. 3). A large accumulation of
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such residues is visually apparent in the region encompassing
helix h1 (residues 26–41), helix h11 (residues 271–290) and the
loops 225–229 and 252–257. Residue 229 within this region
appears as a suitable target for the generation of a new active site
through a hydrophobic-to-ionizable residue replacement.
A substantially buried and highly conserved tryptophan residue
is present at position 229 in both modern and reconstructed
Precambrian b-lactamases. The indole side chain of tryptophan
has a shape similar to that of the Kemp substrate. Precisely
because of this shape congruence, replacement of W229 to a new
residue with basic properties will not generate a new active site

capable of catalysing the Kemp elimination unless, of course,
conformational rearrangements occur in the enzyme to be able to
avoid steric clashes between the substrate and the new residue.

We found that a simple W229D replacement leads to
substantial levels of Kemp elimination activity in the b-lactamases
at all ancestral nodes studied here (Supplementary Table 6), with
the only exception of the evolutionary recent ENCA node (Fig. 1).
By substantial activity, we mean that the observed levels of Kemp
elimination activity were clearly distinguishable (and much
higher in most cases) than the background (enzyme-free) levels
(Supplementary Fig. 1). In contrast, the W229D variants of all 10
modern b-lactamases studied led to levels of Kemp elimination
activity that, even at protein concentrations of about 20 mM, could
be barely distinguished from the background levels
(Supplementary Fig. 1). It is important to note that the W229D
variants of all 10 modern b-lactamases studied did show
antibiotic degradation activity (linked to the natural active site)
at nM concentrations (Supplementary Fig. 2). Therefore, their
lack of Kemp elimination activity cannot be attributed to the
‘disruptive’ W229D mutation preventing their folding, which is
anyhow a problem that is less likely to arise with the highly stable
ancestral b-lactamases. It is worth noting here that enhanced
stability is a common outcome of Precambrian protein resurrec-
tion11,18–20, likely linked to the thermophilic nature of early life.

A wide diversity of experimental results confirm (or are
consistent with) the main features of the designed approach used.
Specifically, X-ray crystallography in the presence of 5(6)-
nitrobenzotriazole, a known transition-state analogue of the Kemp
elimination reaction (Fig. 4) and inhibition by this analogue
(Supplementary Fig. 3) support that Kemp elimination does occur
at the site generated by the W229D replacement. The catalytic role
of the aspartate at position 229 is further confirmed by mutational
studies: the W229G variant shows negligible activity and the nearby
aspartate at position 228 does not have a catalytic role, as the
replacement of D228 with A does not substantially impair the
activity (Supplementary Table 6). The catalytic role of the aspartate
at position 229 is also confirmed by the pH dependence of the
catalysis, which is consistent with the raised pK value expected for
an aspartate residue in a hydrophobic environment (Fig. 5).
Following from this, 3D-structure determination in the presence of
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the transition-state analogue (Fig. 4) confirms the role of conforma-
tional flexibility in the generation of a new function, as transition-
state binding is shown to rely on conformational rearrangements.
Specifically, the bound transition-state analogue is displaced with
respect to the position originally occupied by the tryptophan 229, as
required by the presence of an aspartate residue at position 229 in the
active variants. Such a displacement is made possible by a shift of the
h11 a-helix (and the concomitant shift of the substantially solvent-
exposed h1 a-helix). We note also that the catalytic efficiency for the
Kemp elimination in the engineered ancestral proteins correlates
with the transition-state analogue binding constants derived from

inhibition experiments (Supplementary Fig. 4), supporting that
catalysis is linked to transition-state stabilization. Finally, catalysis of
Kemp elimination is enhanced by an additional F290W amino
replacement in the neighbourhood of position 229, which likely
stabilizes the transition state through a face-to-edge interaction with
the new tryptophan residue (Fig. 4).

Comparison with previous rational designs. Kemp elimination
is a non-natural reaction that is unknown to biological organisms.
No enzyme is, therefore, expected to have evolved to catalyse this
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reaction and, consequently, Kemp elimination activity is not
expected among natural proteins. Indeed, Hilvert and cow-
orkers21 found no detectable Kemp eliminase activity in
calmodulin, barnase, lysozyme, trypsin, chymotrypsinogen and
chymotrypsin. Furthermore, Tawfik and coworkers16 screened
the ASKA library (B4,300 clones) for natural and non-natural
activities and found only two enzymes that could catalyze Kemp
elimination, although these appeared to be promiscuous activities.
On the other hand, serum albumins can catalyse Kemp
elimination22 with a turnover number that is about 10� 2 s� 1

at neutral pH, but that approaches 10 s� 1 at pH B10. However,
serum albumins, even in the absence of bound metals, can
catalyse a remarkable diversity of non-natural reactions23, due to
hydrophobic pockets, which can bind different substrates and to
the presence of lysine residues with catalytic properties within
those pockets.

The capability of albumins to catalyse the Kemp elimination
reaction (among several other non-natural reactions) suggests that
the scarcity of natural enzyme catalysts for such a simple reaction is
simply due to the lack of a selective pressure to generate Kemp
elimination activity during evolution. On the other hand, rational
design efforts to engineer artificial Kemp eliminases have resulted in
limited success1, despite the simplicity of the targeted reaction.
Indeed, comparison with these previous Kemp eliminase designs
(Fig. 6) provides further evidence that the catalytic efficiencies (kcat/
KM values) we have generated in the ancestral b-lactamases are
indeed substantial and consequential. The lower end of the
variation range spanned by the W229D and W229D/F290W
variants of the 12 successful ancestral backgrounds used is actually
similar or clearly above the results previously reported using

minimalist design24,25. The upper end of the range is above the
results previously reported using more complex design
approaches26,27 (iterative design and design based on Rosetta),
which also involved large numbers of mutations to reach those
efficiencies, and it is less than two orders of magnitude below the
catalytic efficiency for the best Kemp eliminase reported for to
date28 (which is the outcome of 17 rounds of directed evolution
from an iterative design background).

Regarding the turnover numbers, the kcat values obtained for
the W229D/F290W variants of the ancestral b-lactamase
scaffolds are up to approximately seven orders of magnitude
above the rate of the uncatalysed reaction (Fig. 6). For
comparison, the best artificial Kemp eliminase reported to
date28 displayed a approximately nine orders of magnitude
enhancement, but, as noted above, this was obtained as a result of
17 rounds of directed evolution on a designed background with
already substantial activity. Furthermore, the upper end of the
range spanned by our kcat values is clearly above the reported kcat

values for complex designs that required much larger numbers of
mutations (Fig. 6). Michaelis plots for the single W229D variants
are linear and do not allow kcat values to be calculated. However,
lower limit estimates of kcat can indeed be derived from suitable
analysis of linear Michaelis plots (see Supplementary Fig. 5 for
details). These estimated lower limit values for the single W229D
variants are shown with open circles in Fig. 6. Remarkably, they
are similar to the actual kcat determined for the double W229D/
F290W variants. Therefore, the kcat enhancement of up to seven
orders of magnitude over the uncatalysed reaction is actually
produced by the single W229D mutation, while F290W mostly
favors substrate and transition-state binding.
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Finally, it must be noted that catalysis of Kemp elimination by
carboxylic acids is strongly accelerated in aprotic solvents. The
acetate ion in acetonitrile is in fact an excellent catalyst of the
Kemp elimination with a reported second order rate constant of
2,800 M� 1 s� 1, a value that has been used as a metric to
judge the catalytic efficiency of artificial Kemp eliminases1.
Unlike previous rationally designed Kemp eliminases (Fig. 6a),
our best eliminase displays a maximum catalytic efficiency
(B5,500 M� 1 s� 1, Fig. 5a) that exceeds the acetate in
acetonitrile level.

Additional activities of the engineered ancestral enzymes. We
used our best eliminase (the W229D/F290W variant of the
alternative GNCA4 reconstruction at the GNCA node), to test
whether the introduction of the new active site affects the cata-
lysis at the ‘old’ natural active site (catalytic residue S70, located at
about 23 Å from position 229). b-Lactamases encoded by
reconstructed sequences corresponding to the GNCA node have
been previously shown11 to be able to degrade a variety of
antibiotics, including penicillin and third-generation antibiotics
with efficiencies similar to that of a modern average enzyme (by
contrast, the modern TEM-1 b-lactamase is a specialist enzyme
that displays high catalytic efficiency with penicillin and a
substantially lower efficiency with third-generation antibiotics).
We therefore determined the Michaelis–Menten parameters for
the degradation of a penicillin antibiotic (benzylpenicillin) and
one third-generation antibiotic (cefotaxime) catalysed by
GNCA4-W229D/F290W (Fig. 7). We found levels of catalysis

for antibiotic degradation similar to those previously reported for
the GNCAMP b-lactamase (Supplementary Table 7).

We also used our best eliminase to explore the potential
promiscuity at the generated new active site. Our results show
that the GNCA4-W229D/F290W b-lactamase does in fact also
catalyse the hydrolysis of p-nitrophenyl acetate (Figs 2 and 7 and
Supplementary Fig. 6), a substrate commonly used to assess
esterase activity16. However, lactam hydrolysis and ester
hydrolysis are chemically similar and the natural (antibiotic
degradation) active site could therefore in principle contribute to
the observed esterase activity. Nevertheless, our results (Fig. 7)
indicate a minor natural-site contribution that only becomes
apparent when the de novo active site is saturated at the higher
substrate concentrations. This is specifically shown by the fact
that the esterase activity of GNCA4-W229D/F290W is inhibited
by 5(6)-nitrobenzotriazole, a transition-state analogue of the
Kemp elimination reaction (Supplementary Fig. 3). In addition,
replacing the catalytic serine at the antibiotic degradation active
site with alanine does not significantly impair the rate of
p-nitrophenyl acetate hydrolysis (Fig. 7), except at the higher
substrate concentrations at which the de novo active site is
saturated. Similarly, blocking the antibiotic degradation active site
through the irreversible reaction with clavulanic acid does not
significantly impair the rate of p-nitrophenyl acetate hydrolysis
(Fig. 7), except at the higher substrate concentrations at which the
de novo active site is saturated. Finally, saturating concentrations
of benzylpenicillin do not significantly impair the rate of
p-nitrophenyl acetate hydrolysis (Supplementary Fig. 7), except
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for the eight designs that led to substantial Kemp eliminase activity are shown (59 designs were actually tested by Röthlisberger et al.26). Iterative design
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at the higher substrate concentrations at which the de novo active
site is saturated.

The catalytic efficiency for the hydrolysis of p-nitrophenyl
acetate at the new active site, kcat/KM¼ 11.7±1.1 M� 1 s� 1, is
similar to the best values reported in the literature for rationally
designed esterases29. Furthermore, the turnover number at the
new active site, kcat¼ 7.6� 10� 3±2� 10� 4 s� 1, indicates a
three orders of magnitude enhancement over the rate of the non-
enzymatic reaction30 (kuncat¼ 2.5� 10� 6 s� 1; Supplementary
Fig. 6). These are remarkable results, in particular since, we are
dealing here with a new active site generated on the basis of a
minimalist approach that did not target esterase activity.

Computational modelling of engineered ancestral enzymes. To
further explore and confirm the role of conformational flexibility
in the emergence of new enzyme functions, we have com-
plemented our experimental work with molecular dynamics
(MD) simulations of the wild-type and mutant forms of the
modern TEM-1 and Bacillus licheniformis (BL) b-lactamases, as
well as the ancestral ENCA, GNCAMP, GNCA4 and PNCA
b-lactamases (Fig. 1). We chose these particular proteins both due
to the availability of X-ray structures (see the Methods section)
and because they span the range of Kemp elimination activities
obtained in this work upon new active site generation. In

particular, the modern TEM-1 and BL b-lactamases, as well as the
comparatively recent ENCA b-lactamase (Fig. 1), display negli-
gible activity upon the W229 mutation, while this mutation
confers substantial Kemp elimination activity to the PNCA,
GNCAMP and GNCA backgrounds following the order
PNCAoGNCAMPoGNCA4. Furthermore, the double W229/
F290W variant of the GNCA4 scaffold is the most active Kemp
eliminase reported in this work with a rate enhancement of about
seven orders of magnitude over the rate of the uncatalysed
reaction. As described below, our MD simulations support that
conformational flexibility contributes substantially to these
activity trends.

We have used the root mean square fluctuation (RMSF) of
each amino acid in our simulations as a measure of the overall
flexibility of the system. We examined first the GNCAMP and
TEM-1 b-lactamases, that is, the two proteins for which NMR
relaxation data are available (Fig. 3) from this and previous31

work, respectively. As explained in the second section of the
Results, the region of the ancestral scaffold structure targeted for
new active site generation is characterized by a large number of
residues with conformational exchange contributions to the
relaxation rates. Clearly, complete agreement between the results
of the MD simulations and the conformational exchange
contributions to the NMR relaxation rates is not to be
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expected, mainly because of the different timescales involved.
That is, inclusion of exchange terms to explain relaxation rates
reveals dynamic processes in the micro to milliseconds range32,
while shorter timescales are typically probed by MD
simulations33. Nevertheless, we find a clear correspondence
between the calculated Ca RMSF values and the number of
residues with conformational exchange contribution to NMR
relaxation at the region of the new active site (Supplementary
Fig. 8). It is therefore likely that the approximately microsecond
conformational transitions at the region of the new active site in
the ancestral scaffold are reflected in our 200 ns (¼ 0.2 ms) MD
simulations, which actually approach the lower end of the
conformational exchange timescale range.

The capability of our MD simulations to capture flexibility
features that are relevant for new active site generation is further
supported by the general congruence with the catalytic properties
of several modern and ancestral scaffolds. In the case of the wild-
type enzymes, a clear increase can be seen in the flexibility of
residues 252 through to the h11 helix upon moving from TEM-1
and BL to the GNCAMP to GNCA4 b-lactamases, which are the
residues that are primarily involved in forming the cavity creating
the de novo active site (Fig. 8). The flexibility of this region
appears indeed to follow the general activity trend described
above. Also, the largest overall changes in flexibility can be seen in
helices h1 and h11, as well as the loops covering the de novo
active site, in agreement with both the crystallographic data
(Fig. 4) as well as with the NMR relaxation data shown in Fig. 3.
The mobility of different regions of these enzymes has also been
highlighted in Fig. 9. The function-generating mutation W229D
appears to increase the flexibility, which is the likely outcome of
the introduction of a charged residue in a hydrophobic
environment6. Still, the effect is much more pronounced in the
ancestral b-lactamases, while the modern b-lactamases show only
a comparatively small increase in flexibility (Fig. 8).

We subsequently performed MD simulations in the presence of
the transition-state analogue 5(6)-nitrobenzotriazole (TSA) to
explore the impact of transition-state binding on the conforma-
tional dynamics, as well as how well each system could
accommodate the transition state in its new active site. The
observed TSA binding features do correlate with the activity

trends and with the flexibility trends defined by the RMSF data.
The W229D variants of the ancestral scaffolds that give rise to
substantial Kemp elimination activity (PNCA, GNCAMP and
GNCA4) can accept the TSA in the MD simulations, although the
TSA dissociates from the less active W229D variant of the PNCA
scaffold after about 50 ns (Fig. 10). By contrast, efficient TSA
binding is not observed with the W229D variants that show very
low Kemp elimination activity. Specifically, we could not obtain a
stable TSA complex with the W229D variant of ENCA
b-lactamase, while the TSA flies out of the cavity in the
W229D variants of the modern TEM-1 and BL b-lactamases
within about 20 ns (Fig. 10). We have also observed the same
pattern (low flexibility in the region of the de novo active site and
inability to retain the TSA bound) for the b-lactamases from
Enterobacter cloacae (Nmc-A) and Proteus vulgaris (Bla-B)
(Supplementary Fig. 9). This pattern, therefore, is likely to be a
general feature of modern b-lactamases from Enterobacteria
(Fig. 1).

Finally, there are two apparent exceptions to the flexibility/
activity trend discussed above. First, ENCA b-lactamase develops
substantial flexibility in the new active site region upon the
W229D mutation, even though this protein shows negligible
Kemp elimination activity. However, D229 is partially deproto-
nated at neutral pH and flexibility upon introduction of a charged
group in a hydrophobic environment reflects, to some extent, the
conformational fluctuations required to allow some water
penetration and the consequent stabilization of the partially
buried charge6. Such a specific kind of flexibility might not be
relevant to the understanding of transition-state binding. Indeed,
there should not be significant water penetration when the
transition state is bound to the new active site, and the negative
charge of the catalytic aspartate is actually stabilized by the
interaction with the proton being abstracted. Second, the GNCA4
scaffold appears to be more rigid (in the new active site region)
than the GNCAMP scaffold, despite the fact that GNCA4 leads to
higher levels of Kemp elimination activity upon the W229D
mutation. However, 3D-structure determination shows that the
GNCA4 is actually more preorganized for transition-state
binding than the GNCAMP scaffold (Fig. 4). This can again
ultimately be viewed as a reflection of flexibility at the GNCA
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All values shown here are averages over the last 60 ns of three independent trajectories (180 ns total simulation time), which were obtained as described in

the Methods section.
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node, as mutations removed from the active site can easily shift
the conformational equilibria at this node. Clearly, the specific
mutations present in the GNCA4 scaffold have led to the
population of a conformation in the W229D variant with a cavity

where the substrate can easily form a reactive conformation, and
with better architecture for effective transition-state stabilization.

Discussion
Modern proteins can perform an enormous diversity of molecular
tasks, often with high efficiency and specificity. Most of these
modern functions evolved from previously existing functional-
ities. Yet, it is inescapable to assume that the emergence of
completely new functions has also occurred, at least at some early
stages in protein evolution. For instance, it has been recently
estimated from the number of unique enzymes and the number
of domain superfamilies34 that at least 87% of all enzyme
functions have evolved from another function or from ancestors
with generic functionalities. This would leave a fraction of 13% of
enzyme functions as plausible candidates for having emerged
through the generation of new active sites. While the 13% figure
may be an overestimation, as some cases of homology between
superfamilies may be missed by sequence comparison35, it does
however suggest that the generation of new active sites may not
actually be an exceedingly rare event and thus should garner
more serious consideration. This is supported by reports of
alternate-site promiscuous enzymes that display catalysis of a
secondary reaction at a site other than the active site of the
natural catalytic process36. Furthermore, most fundamental
biochemical processes are extremely slow in the absence of
enzymes2 and seemingly specialized enzymes are likely to have
catalysed many different reactions already in the last universal
common ancestor3,4. It may be reasonably inferred that efficient
mechanisms for the emergence and subsequent evolution of new
enzyme functionalities must exist or, at least, that they must have
existed at the primordial protein stage. Little is known, however
about these mechanisms. Recent work29 has shown that
introducing a catalytic group in the hydrophobic cavity of the
C-terminal domain of calmodulin can generate significant levels
of catalysis for simple reactions. The simple mechanism for the
emergence of new enzyme functions demonstrated here does not
require the recruitment of a preexisting hydrophobic cavity. A
hydrophobic-to-ionizable amino acid replacement generates a
buried (or partially buried) residue with the perturbed properties
that are useful in catalysis and conformational flexibility assists
the generation of a completely new active site by facilitating
substrate and transition-state binding. We have shown that, when
using resurrected Precambrian b-lactamases as scaffolds for
protein engineering, a minimalist design approach based on this
mechanism leads to levels of catalysis for the Kemp elimination
reaction of up to approximately seven orders of magnitude above
the rate of the uncatalysed reaction, as well as to significant ester
hydrolysis activity. The role played by conformational flexibility
in the generation of the new function is clearly apparent in the
X-ray crystallographic structures of our designed enzymes and
supported by the extensive computational simulations reported,
as well as by experimental binding studies (Supplementary
Fig. 10).

The process of inferring ancestral sequences inherently
generates uncertainly. It is therefore customary in the field to
test phenotypic robustness by studying not only the protein
encoded by the most probabilistic sequence at a given node, but
also the proteins encoded by alternative reconstructions derived
from random sampling from the posterior probability distribu-
tion at the node. We have previously used this approach to
demonstrate phenotypic robustness for the antibiotic degradation
activity at the natural active site of the GNCA b-lactamase11.
Remarkably, however, the new active site behaves differently and
engineered b-lactamases encoded by several alternative
reconstructions at the GNCA node (common ancestor of
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Figure 9 | Tertiary structures of key b-lactamases coloured by RMSF.
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described in the Methods section.
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Gram-negative bacteria) display Kemp elimination activities that
span a B30-fold range. The several GNCA sequences studied
differ among themselves at 8–20 positions, which are, in
essentially all cases, distal from the neighbourhood of the Kemp
elimination active site (Supplementary Table 3). Therefore, the
B30-fold range of catalytic efficiency observed suggests long-
range communication between residues, a feature that is often
linked to conformational dynamics37–39. It emerges that function
at new active sites may be more sensitive to long-range effects
than function at ‘old’ highly evolved active sites. In any case, the
existence of such long-range effects makes it difficult to make a
meaningful comparison between the different ancestral scaffolds
in terms of their capability to generate a new function and no
such detailed comparison is attempted here. From a more general
viewpoint, however, it is clear that long-range effects could
contribute to the immediate evolvability of newly emerged
functions as they imply that many mutations are able to
modulate the new activities. Accordingly, conformational
dynamics/flexibility may contribute to the emergence of new
functions as well as to their subsequent evolution. Certainly,
reaching high levels of catalysis for increasingly complex
reactions will likely require the concomitant evolution,
sophistication and specialization of the catalytic machinery at
the active site. Still, conformational flexibility may have played a
key role even at the early specialization stages, as the concomitant

long-range mutational effects may have helped avoid stasis
between the improvements in the catalytic machinery caused by
rare mutations at the active site.

Finally, it is remarkable that the minimalist approach that
generates substantial levels of a new function in most of the
ancestral b-lactamases tested here only leads to catalysis levels
barely distinguishable from the background when performed on
10 modern b-lactamases (Supplementary Fig. 1). This different
behaviour is plausibly linked to differences in conformational
flexibility between the ancestral and the modern proteins, as our
attempts to generate a substantial Kemp elimination activity in
the modern b-lactamases by removing potential steric interfer-
ences to transition-state binding were unsuccessful
(Supplementary Note). Therefore, the distinct ancestral versus
modern pattern of new function generation found appears to
provide direct evidence in support of recent proposals about the
potential of resurrected ancestral proteins as scaffolds for protein
engineering11,40.

Methods
Protein expression and purification. Purification of the different b-lactamases
studied in this work followed the procedures we have previously described11 with
minor modifications. Briefly, the genes were cloned into a pET24 vector with
kanamycin resistance and transformed into Escherichia coli BL21(DE3) cells. Ni-
NTA affinity chromatography was used to purify the His-tagged proteins used in
most of the experiments reported in this work. We checked that the presence of a
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His-tag does not substantially impair catalysis (Supplementary Table 6 and
Supplementary Fig. 11).

15N-labelled and 13C,15N-labelled proteins for NMR experiments were purified
(without His-tag) from cells grown in M9 minimal medium containing either
15NH4Cl or 15NH4Cl and (13C6)D-glucose (Cambridge Isotopes Laboratories) as
the sole sources of nitrogen and carbon, respectively. Mutations were introduced
using the quickchange lighting system site-directed mutagenesis kit (Agilent) and
were checked by DNA sequencing.

Activity assays. Kemp elimination activity assays were performed at 25 �C in
HEPES 10 mM, 10 mM sodium phosphate or 10 mM borate (in all cases with
100 mM NaCl), depending on the pH range. We found no significant difference
between the rates determined in these buffer systems at overlapping pH values.
Product formation was followed spectrophotometrically at 380 nm and rates were
calculated using an extinction coefficient of 15,800 M� 1 cm� 1. All activity mea-
surements were corrected by a blank performed under the same conditions. Our
experimental protocols for the determination of Kemp elimination activity
reproduce literature data on the catalysis of this reaction by serum albumins and
acetate ion in acetonitrile/water (Supplementary Figs 12 and 13). The pH depen-
dence of the catalysis was fitted using the following equation:

rate ¼ A � 10 pH� pKð Þ

1þ 10 pH� pKð Þ ð1Þ

where ‘rate’ stands for the catalytic efficiency or for the rate at a given substrate
concentration. A and pK are fitting parameters. Equation (1) assumes that the pH
dependence of catalysis is determined by a single pK. A simple analysis based on
the Michaelis–Menten mechanism shows that the pK in the free enzyme is probed
by the catalytic efficiency versus pH profile, while the pK in the Michaelis–Menten
complex is probed by the catalytic efficiency versus pH profile.

Degradation of the antibiotic nitrocefin was assayed at 25 �C in HEPES buffer
10 mM, 100 mM NaCl, pH 7.0 and followed spectrophotometrically at 486 nm. A
change of extinction coefficient of 17,400 M� 1 cm� 1 was used to calculate
degradation rates from the time dependence of the absorbance. Degradation of
benzylpenicillin and cefotaxime was assayed as we have previously described in
detail11.

Inhibition of the antibitotic degradation activity by clavulanic acid, sulbactam
and tazobactam was tested by incubation with 1 mM inhibitor at 4 �C in HEPES
buffer 25 mM, pH 7.0. We found the complex of the W229D/F290W variant of
GNCA4 b-lactamase with clavulanic acid to be very stable (but not the complexes
with sulbactam and tazobactam), as shown by the fact that the nictrocefin
degradation activity was essentially eliminated even after overnight incubation.
Specifically, nitrocefin degradation levels after overnight incubation at 4 �C were
less than 0.5% those of a non-inhibited sample. For this reason, clavulanic acid was
used (after overnight incubation) in the experiment aimed at eliminating the
esterase activity linked to the natural/ancestral active site (Fig. 7a).

p-Nitrophenyl acetate hydrolysis was followed spectrophotometrically,
essentially as described by Moroz et al.29. We did not observe, however, the burst
phase linked to the formation of an acyl intermediate.

Protein crystallization and structure determination. Crystals of GNCAMP (‘WT’
and W229D mutant, 28 mg ml–1) and GNCA4 (‘WT’ and the W229D/F290W
mutant, 25 mg ml–1) b-lactamases were grown in capillaries by the counter-diffu-
sion technique41 using 5 M sodium formate, 0.1 M sodium acetate pH 4.0
(GNCAMP-W229D), 2 M NH4SO4 0.1 M Tris-HCl pH 8.0 (GNCAMP) or a PEG
(polyethylene glycol) mixture (PEG 400/4000/8000; 20, 10 and 15%, respectively),
Tris-HCl 0.1M pH 7.0 (GNCA4 and GNCA4-W229D/F290W) as precipitating
agents. In the case of the unliganded forms, crystals were extracted from the
capillary and equilibrated with the mother liquid supplemented with 15% (v/v)
glycerol before flash-cooling them in liquid nitrogen. Co-crystallization of the TS-
analogue-liganded forms was unsuccessful. Therefore, the liganded forms were
obtained by immersion of a portion of capillary containing crystals of GNCAMP-
W229D or GNCA4-W229D/F290W into a solution containing the original
precipitant composition but at pH 9.0, supplemented with 1 mM of the transition-
state analogue (5)6-nitrobenzotriazole and 15% (v/v) glycerol. The crystals were
equilibrated for 48 h before being extracted from the capillaries and flash-cooled.
Data were collected at beam lines ID30A, ID29 and ID23-1 (ESRF) and XALOC
(ALBA). The procedures used for 3D-structure determination, as well as the data
collection and refinement statistics, are summarized in Supplementary Table 8 see
also Supplementary Figs 14–19 for stereo plots of relevant portions of the electronic
density maps and Supplementary Fig. 20 for a structural comparison between the
modern and ancestral b-lactamases in the region of the de novo active site. The
resulting coordinates and structure factors have been deposited at the PDB with the
accession codes 5FQI, 5FQQ, 4UHU, 5FQJ, 5FQK and 5FQM.

NMR spectroscopy. We provide here a brief summary of the NMR studies on the
GNCAMP b-lactamase. For a more detailed account, Supplementary Methods,
Supplementary Figs 21 and 22 and Supplementary Tables 9–11. NMR experiments
were performed at 31.5 �C on a Bruker AV 800 spectrometer equipped with a
cryoprobe on a 0.6 mM uniformly 13C,15N-labelled sample. Sequence-specific

assignments were made using standard procedures with the following experiments:
2D 1H–15N HSQC and 3D HNCO, HN(CA)CO, HN(CO)CA, HNCAi,
CBCA(CO)NH and HNCACB. Data obtained with these experiments were com-
plemented with those of specific amino acid type discrimination. The only unas-
signed residues in GNCAMP b-lactamase were Ala26, Ala27, Ser70 and Thr237.

15N relaxation parameters T1, T1r, T2 and {1H}-15N NOE were acquired on a
Bruker AV 600 spectrometer equipped with a cryoprobe, at 31.5 �C on a 0.6 mM,
buffered pH 6.7, uniformly 15N-labelled sample, following standard procedures.
Relaxation times were calculated by least-squares fitting of peak intensities to a
two-parameter exponential function. Heteronuclear NOEs were calculated from
the ratio of cross-peak intensities in spectra collected with and without amide
proton saturation during the recycle delay. Uncertainties in peak heights were
determined from the standard deviation of the distribution of intensities in the
region of the HSQC spectra where no signal was present and only noise was
observed.

The principal components of the inertia tensor were calculated with the
PDBinertia program42 using the X-ray structure of the GNCAMP b-lactamase (PDB
ID: 4B88). We estimated the overall correlation time from the ratio of the mean T1

and T2 values. These mean values of T1, T1r and T2 were calculated from a subset
of residues with little internal motion and no significant exchange broadening. The
diffusion tensor, which describes rotational diffusion anisotropy, was determined
by standard approaches and the 15N relaxation was analysed assuming dipolar
coupling with the directly attached proton (with a bond length of 1.02 Å), and a
contribution from the 15N chemical shift anisotropy evaluated as � 172 p.p.m.
Residues with conformational exchange contribution were determined from the fits
of several extensions of the Lipari and Szabo model to the experimental relaxation
data43,44. We ascertained that application of the analysis approach described above
reproduced the NMR relaxation parameters published for TEM-1 b-lactamase31.
This allows us to make meaningful comparisons between the dynamic features of
the ancestral protein (reported here) and those for the modern protein31. Both
proteins appear very rigid on the ps-ns timescale with an order parameter of
S2B0.9 for all residues in both cases. There is, however, a clear difference on the
timescale (ms-ms) commonly associated with biological processes such as substrate
binding, allosteric regulation and catalytic cycle17. Specifically, the number of
residues for which the relaxation rates cannot be explained without including a
conformational exchange contribution (Rex) is 26 for GNCAMP b-lactamase versus
12 for TEM-1 b-lactamase (Fig. 3).

Synthesis of 5(6)-nitrobenzotriazole. This compound was obtained following
the reaction conditions reported by Wasik et al.45. Briefly, a solution of NaNO2

(230 mg, 3.3 mmol) in 1.5 ml of water was added to a mixture of 4-nitro-o-
phenylenediamine (306 mg, 2 mmol) in 4 ml of AcOH and 1.5 ml of water at 0�C.
The solid was collected by filtration and washed with H2O to afford 300 mg
(91% yield) of pure light yellow solid that was dried under vacuum over P2O5; mp
213–214 �C (lit. 215–216 �C). 1D-NMR spectrum of the compound is given in
Supplementary Fig. 23.

Spectrophotometric monitoring of ligand binding. Binding of the transition-
state analogue to variant b-lactamases was followed on the basis of the inhibition of
the Kemp eliminase activity or esterase activity of this protein. Briefly, stock
solutions of the transition-state analogue and indole in acetonitrile (approximate
concentrations 0.1 M and 5 M, respectively) were prepared and different microliter
amounts were added to 2 ml solutions of the b-lactamase. After 1 h incubation,
activity was determined as described above. Longer incubation times led to
essentially identically results. The final acetonitrile concentration in the assayed
solution was always below 2%.

Dissociation constants for inhibitors were determined from the fitting to the
experimental data of an equation based on the Michaelis–Menten mechanism with
reversible competitive inhibition:

rate ¼ A
1þ ½S�=KMþ ½I�=KI

ð2Þ

where [S] and [I] are the substrate and inhibitor concentrations, A is a constant and
KI is the inhibitor dissociation constant. For W229D variants of the GNCA
scaffolds, plots of rate versus substrate concentration are linear (Supplementary
Fig. 24), implying that [S]/KM is much smaller than unity and can be neglected in
the denominator of equation (2). For the W229D/F290W variants, the KM in
equation (2) was fixed in the value obtained from the Michaelis–Menten analysis of
the rate versus substrate concentration profiles (Supplementary Fig. 25).

Molecular dynamics simulations. To complement the experimental data, we also
performed MD simulations on the wild-type B. licheniformis, E. cloacea (NMC-A),
P. vulgaris (Bla-B), TEM-1, ENCA, GNCAMP, GNCA4 and PNCA b-lactamases, as
well as the corresponding GNCAMP-W229D, GNCA4-W229D/F290W and PNCA-
W229D variants (PDB IDs: 4BLM, 1BTL, 3ZDJ, 4B88, 5FQQ, 4C6Y, 4UHU, 5FQI
respectively). We also performed simulations on the BL-W2299D, NMC-A-
W229D, BLA-B-W229D, TEM-1-M182T/W229D and PNCA-W229D variants;
however, as crystal structures of three enzymes were unavailable, we manually
inserted these substitutions into the wild-type enzyme using PyMOL’s Mutagenesis
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Wizard46. The specific GNCA variants were selected on the basis of their observed
Kemp eliminase activities (Supplementary Table 6), and the variant simulations
were performed both in complex with the transition-state analogue (TSA) 5(6)-
nitrobenzotriazole (PDB IDs for the b-lactamase-TSA complexes: 5FQJ for
GNCAMP-W229D, 5FQK for GNCA4-W229D/F290W), as well as in the TSA free
form. For all other variants, the TSA was manually placed in the newly created
cavity in agreement with structural alignment of the crystal structures from the
TSA bound ancestral variants. All MD simulations were performed with the GPU
implementation of the AMBER16 simulation package47, and the ff14SB force
field48,49. The Sander module was used for the initial minimization and
equilibration runs, and PMEMD for the production runs in explicit solvent50,51. To
obtain ff14SB compatible parameters for the TSA, we parameterized this
compound using ANTECHAMBER52 and Gaussian09 (ref. 53). Partial charges
were obtained using the standard RESP fitting procedure54,55, and the ligand atoms
were described by the GAFF force field48. All non-standard parameters generated
by the GAFF force field are provided in the Supplementary Table 12.

All model systems were generated with LEaP. Each model system was placed in
an octahedral TIP3P water box56,57, which allowed the box to extend to at least
11 Å from the solute in each direction. The protonation state of all ionizable
residues was determined by empirical pKa calculations using PROPKA 3.1 (ref. 58),
and by visual inspection (in particular in the case of histidine side chains). On the
basis of this, ionizable residues were all kept in their standard protonation state at
physiological pH, and all histidine residues were kept neutral. This led to total
system charges of � 7, � 5, � 7 and � 8 for TEM-1, BL, GNCA4 and GNCAMP

respectively. These systems were then neutralized by addition of the appropriate
number of Naþ counterions depending on the total charge of the system. The
solvated systems were then subjected to a two-step minimization procedure to
remove clashes between the water molecules and the solute. This was comprising of
50 steps of steepest descent and 200 steps of conjugate gradient minimization using
25 kcal mol� 1 Å� 2 harmonic positional restraints on all solute atoms, followed by
50 steps of steepest descent and 200 steps of conjugate gradient minimization with
weaker 5 kcal mol� 1 Å� 2 harmonic positional restraints on all solute atoms. After
this initial minimization, the following four sequential equilibration steps were
performed: a 50 ps NVT simulation to increase the thermostat target temperature
using the Berendsen thermostat and pressure control algorithms59 with 0.5 ps time
constants for both the bath coupling and pressure relaxation; a 50 ps NPT
simulation at a constant isotropic pressure of 1 atm to adjust the density of the
system to 1 g cm� 3; five 50 ps NVT simulations in which remaining the
5 kcal mol� 1 Å� 2 harmonic positional restraints were progressively decreased in
1 kcal mol� 1 Å� 2 increments, allowing us to finally perform a 50 ps NVT
simulation without any restraints on the system.

For each system, we performed three independent equilibrations using different
initial random seeds, the starting points for which were obtained by increasing the
target thermostat temperature from 100 to 299.9 K, 300.0 and 300.1 K, respectively,
to obtain three independent simulations. This was followed by performing 100 ns
production simulations for each of the three replicas. All simulations were
performed using a 2 fs time step, saving snapshots every 20 ps. The SHAKE
algorithm60,61 was used during the dynamics to constrain all bonds involving
hydrogen atoms. Short-range non-bonded interactions were calculated subject to
an 8 Å cut-off radius. Long-range interactions were described using the particle
mesh Ewald method62,63. The temperature was kept constant at 300 K using
Berendsen’s weak coupling algorithm59. All production simulations were
performed using NVT conditions. Subsequent analyses of the MD trajectories were
performed using CPPTRAJ64. The first 40 ns of each simulation was discarded
from the analysis as equilibration time, and all RMSF and clustering data shown in
the paper are obtained as averages over the last 60 ns of three independent
equilibration runs for each system (that is, 180 ns total simulation time per system).
The backbone r.m.s.d. plots shown in Supplementary Fig. 26 demonstrate that all
systems remained stable over the remaining simulation time. In Supplementary
Figs 27 and 28, we compare the average RMSF values per residue with the
corresponding averages of the B-factors derived from X-ray crystallography.
Although B-factors have been often interpreted in dynamical terms65, they are
affected by a large number of other factors, including the resolution limit, radiation
damage, crystal lattice defects, rigid body motions, occupancy levels and refinement
artifacts66,67. For the protein systems studied here, we observe an approximate
congruence between the B-factors and RMSF values that appears comparable to the
congruence reported for other protein systems in the literature68.

Data availability. X-ray crystallographic data for the several 3D-structures
determined in this work have been deposited at the PDB with the accession codes
5FQI, 5FQQ, 4UHU, 5FQJ, 5FQK and 5FQM. Force field files for the transition-
state analogue, as well as sample simulation input files and PDBs have been
uploaded to Dryad, and can be accessed using the following DOI: 10.5061/
dryad.53629. Additional data supporting the findings of this study are available
within the article and its Supplementary Information files, and from the corre-
sponding authors upon reasonable request.
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50. Götz, A. W. et al. Routine microsecond molecular dynamics simulations with

AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 8, 1542–1555
(2012).
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