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Abstract

In this paper we study the problem of color comparison in computers in the
setting of fuzzy color spaces. First, we study resemblance relations between pre-
cise colors induced by fuzzy colors and fuzzy color spaces. Such resemblance
relations are equivalent to fuzzy categorizations of color spaces, that are crucial in
order to capture the human’s perception of color. Second, we consider the case of
color information expressed by means of fuzzy colors used either in a conjunctive
or disjunctive way. In order to match pieces of color information we use con-
cepts of resemblance, inclusion, compatibility, and possibility/necessity between
the fuzzy colors involved in the definition of different pieces of color informa-
tion, using well known results from the fuzzy set and possibility theories. Finally,
we define inclusion/similarity indexes for comparison of fuzzy colors, including
a novel approach to calculate inclusion and overlapping between fuzzy colors on
the basis of quantification techniques.
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∗Corresponding author. José Manuel Soto-Hidalgo. Phone: +34 957 212039
Email addresses: jmsoto@uco.es (José Manuel Soto-Hidalgo),
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1. Introduction

Fuzzy colors and fuzzy color spaces [1] have been proposed as a suitable way
for modelling human color categories. The computational representation of colors
by using ordinary color spaces (a triplet represented as a vector in some three-
dimensional space), designed to efficiently solve the problem of representing a
large amount of very precise colors, is not well suited to capture the human’s per-
ception of color categorization and color resemblance, the latter being two sides
of the same coin [2, 3]. Whilst, for computers, each vector in a color space is a
distinguishable color (a crisp color), the human perception of color is completely
different in at least three important respects. First, humans are able to distin-
guish and name color categories, corresponding to sets of crisp colors that are
resemblant; hence, color categories can be obtained from a definition of color re-
semblance (and vice versa) [4, 5]. Second, such categories have fuzzy boundaries,
resemblance between precise colors being fuzzy [6, 7]. Third, the categories are
subjective and context-dependent [8, 9], that is, the criteria under which we assess
color resemblance are not only perceptual and cultural, but also depends on the
person and the particular context. In order to cope with these issues, the notion
of fuzzy color is introduced as a normal fuzzy subset of colors modeling a distin-
guishable color category. Also, the notion of fuzzy color space is introduced to be
a collection of fuzzy colors representing the relevant color categories in a certain
context [1].

In the setting of fuzzy color spaces, while some computational approaches to
model color categories by means of fuzzy sets [1, 10] can be found, the present
work focuses on the issue of color comparison, which is a key aspect in the
computational treatment of color [11, 8, 12, 13]. Color comparison has been
widely studied for ordinary (crisp) color spaces, using two main approaches: i)
by defining new perceptually uniform color spaces, in the sense that the percep-
tual dissimilarity between colors is proportional to the Euclidean distance in the
space [14, 15, 16], and ii) using an existing color space but modifying the metric
employed, usually by introducing weights associated to the color space compo-
nents [17, 18, 19].

However, to the best of our knowledge, color comparison in terms of fuzzy
colors have been mostly neglected in the literature. Some fuzzy color comparison
proposals based on histograms in images can be found [20, 21, 22], which are
calculated on the basis of the frequency of appearance of certain colors in specific
images, with several applications [23, 24, 25, 26, 27, 28, 29, 30, 31]. Nevertheless,
in this paper we focus on comparing fuzzy colors not necessarily calculated on
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the basis of concrete images and/or frequencies. More specifically, we address the
following problems:

• Crisp color comparison induced by fuzzy color spaces. Fuzzy colors in
fuzzy color spaces define color categories. As in the crisp case, categories
and similarity relations are equivalent. Hence, fuzzy colors and fuzzy color
spaces induce the corresponding fuzzy resemblance relations, as it is well
known in fuzzy set theory. We study these relations and we show how they
can be used in crisp color comparison, as well as the conceptual differences
with respect to using metrics in crisp color spaces for the same purpose.

• Comparison of color information expressed by means of fuzzy colors. Af-
ter color categories are defined, they may be employed for many purposes
in computer systems. Particularly, color categories (corresponding to fuzzy
colors) are frequently used for representing information about color features
of objects in information systems. As it is the case in general with crisp and
fuzzy sets [32, 33, 34, 35], fuzzy colors can be used either conjunctively or
disjunctively. An example of a conjunctive use is to express the information
“I like red colors”. In this case, each crisp color c in the support of the
fuzzy color red is a color I like to a degree given by the membership degree
of c to red. On the other hand, an example of disjunctive use is to express
the information “My car is red”. In this second case, the actual color of
my car is a single crisp color, but we are not pointing out exactly which
one. Instead, the (uncertain) information about the car’s color is provided
by means of a restriction on the set of crisp colors given by the fuzzy color
red, defining a possibility distribution. In this case, the possibility that a
certain crisp color c is the color of the car is again the membership degree
of c to red. Hence, a disjunctively-used fuzzy color is a possibility distri-
bution on the set of crisp colors. We provide measures of compatibility and
possibility/necessity between the fuzzy colors involved in the definition of
different pieces of color information, using well known results from fuzzy
set and possibility theories. From now on we shall denote the conjunctive
(resp. disjunctive) use of fuzzy colors as Cu (resp. Du), i.e., we shall say
that a fuzzy color is conjunctively used (Cu) or disjunctively used (Du).

• Fuzzy color comparison. The problem here is to compare different fuzzy
sets modeling fuzzy colors. A particular case is that of comparing diffe-
rent models of the same color category. These different models may arise
because of the subjectivity or context, or even because of the modeling
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procedure employed. For the general case, we provide fuzzy extensions
of the set inclusion and equality predicates following the Sinha-Dougherty
axioms [36, 37]. We also provide extensions of inclusion and similarity in-
dexes based on overlapping degrees, particularly an extension of the Jaccard
index for crisp sets based on fuzzy quantification.

In order to a better understanding of the different relations between color in-
formation, Table 1 contains some illustrative questions involving different types
of color information, that we shall address in this paper. Questions 1 and 2 require
to determine the resemblance between crisp colors induced by a fuzzy color or a
fuzzy color space, respectively. Questions 3 and 4 correspond to relations between
crisp colors and fuzzy colors considering the conjunctive and disjunctive use, re-
spectively, while questions 5-11 correspond to relations between fuzzy colors and
different uses. In particular, questions 6 and 7 are solved using possibility and
necessity, questions 8 and 9 by means of inclusion relations, and questions 10 and
11 by using similarity relations.

Let us remark that the objective of the paper is to highlight the importance
of color comparison in the area of fuzzy color modelling and applications, and
to show that there are different possible cases of color comparison with different
applications (comparison of colors themselves, both crisp and/or fuzzy, and com-
parison of information expressed in terms of those colors). Our discussion is not
aimed to be exhaustive, other questions related to comparison of colors and in-
formation expressed using colors can be stated, but we have studied those that
we have considered the most important and useful in general. We also provide
a solution for every case, based on fuzzy set and possibility theories, in order to
show that it is possible to deal with those cases; other solutions might be possible,
and some alternatives are also mentioned. However, providing a comparison of
different solutions for the same case is out of the scope of this paper; each such
comparison would require a whole paper.

The paper is organized as follows. In Section 2 we provide a brief overview
about fuzzy colors and fuzzy color spaces. Section 3 is devoted to crisp color
comparison induced by fuzzy color spaces (questions like 1 and 2 in Table 1).
Section 4 contains our study of matching of color information represented by pre-
cise colors, conjunctively-used fuzzy colors, and disjunctively-used fuzzy colors
(questions 3 to 7 in Table 1). This section extends our preliminar work in [38]
with new formulations of several relations, and also introduces illustrative exam-
ples for each case. In Section 5 we show our approaches to comparison of fuzzy
colors by means of inclusion and similarity (questions 8 to 11 in Table 1), and we
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Question Color 1 Color 2 Relation
1. How similar are two crisp colors c and c′

according to the color red?
c crisp c′ crisp Similarity induced by

red

2. How similar are two crisp colors c and c′

according to a given fuzzy color space Γ̃?
c crisp c′ crisp Similarity induced by Γ̃

3. To what degree the color c of the pixel p is
red?

c crisp red Cu Compatibility

4. Knowing that my car is red, what is the pos-
sibility/necessity that my car is painted in the
RGB color c?

c crisp red Du Possibility / Necessity

5. To what extent is it possible to find a car
whose color is red and orange?

red Cu orange Cu Compatibility

6. She told me she liked red cars. My car is
orange. What is the possibility/necessity that
she likes my car?

red Cu orange Du Possibility / Necessity

7. Jim saw a red car, and Tim saw an orange
car, what is the possibility/necessity that both
cars were painted in the same color?

red Du orange Du Possibility / Necessity

8. To what extent does this picture use all the C̃
colors of this C̃ ′?

C̃ Cu C̃ ′ Cu Inclusion

9. To what extent Jim’s knowledge about my
car’s color C̃ is more specific than Tim’s color
C̃ ′?

C̃ Du C̃ ′ Du Inclusion

10. How similar are fuzzy colors C̃ and C̃ ′ de-
fined by two different users for the same cate-
gory of color?

C̃ Cu C̃ ′ Cu Similarity

11. To what extent Jim’s knowledge about my
car’s color C̃ is similar to Tim’s C̃ ′?

C̃ Du C̃ ′ Du Similarity

Table 1: Several questions involving different types of color information.

provide an experimental comparison. Finally, Section 6 contains our conclusions
and ideas for future research.

2. Fuzzy Color Spaces

Color categories (and the corresponding resemblance relations) are fuzzy in
nature, membership of a precise color (a triplet represented as a vector in some
three-dimensional (color) space) to a color category being a matter of degree. In
addition, color categories are subjective and context-dependent. For example, in a
general context, two crisp colors could be perceived as totally similar with respect
to the “red” color defined by the well-known ISCC-NBS system [39], whereas for
a winemaker they might be totally different because they belong to two disjoint
categories, such as “ruby” and “garnet”, in the specific context of her/his work.
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Consequently, there are many collections of color categories according to the final
user and the context.

In order to account for the fuzziness in color categories, in our previous work
[1] we introduced the concept of fuzzy color for representing the correspondence
between computational representation of colors as vectors in a color space (crisp
colors), and perceptual color categories identified by a color name. Fuzzy colors
are formally defined in [1] as normal fuzzy subsets of colors that represent the
semantics of a certain human color category. The requirement that the fuzzy color
is a normal fuzzy set is because it is requested that at least one crisp color is fully
representative of the color category.

We also formalized in [1] the notion of fuzzy color space as the collection
of fuzzy colors corresponding to the color categories employed in a certain con-
text/application and/or for a specific user. Also, we introduced different typologies
of fuzzy color spaces which are consistent with the characteristics of the collec-
tion of colors we want to model for an specific application or context. Let Γ be a
crisp color space and Γ̃ = {C̃1, . . . , C̃n} be a fuzzy color space defined on Γ, with
C̃i a fuzzy color ∀1 ≤ i ≤ n. Then:

• Γ̃ is a covering space iff for some t-conorm
⋃
C̃i∈Γ C̃i = Γ

• Γ̃ is a disjoint space iff ∀C̃i ∈ Γ̃, ∀c ∈ Γ, C̃i(c) = 1 implies C̃j(c) = 0
∀i 6= j.

• Γ̃ is a partition space iff it is a covering and disjoint space.

Most of the works to represent color terms in the literature attempt to obtain
partition spaces containing the basic color terms in the sense of Berlin and Kay
[40], with small variations in the number of colors, see [1] for a review on the
topic. In most of the cases, the idea is to find a representation of each basic color
term that can be agreed on by most of people in a given context. The proposal
in [1] is more general in that a methodology is provided for representing any
color term, either given by an individual person or agreed by a collective in any
particular cultural or application context, and not only the abovementioned basic
ones.

We consider that it is not mandatory for fuzzy color spaces to be partition
spaces. The methodology proposed in [1] complies with this idea since it allows
for obtaining both partition and non-partition spaces. It uses the theory of con-
ceptual spaces [41, 42] plus particular fuzzifying techniques introduced in [1] for
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obtaining the representation of a single fuzzy color. The calculation of a whole
fuzzy color space Γ̃ = {C̃1, . . . , C̃m}, composed by a collection of fuzzy colors,
can be done by obtaining each fuzzy color C̃i individually.

Some examples of fuzzy color spaces of different typologies are provided in
[1]. First, three partition spaces based on the color prototypes in the ISCC-NBS
system, based on the pioneering work of Berlin and Kay [40] about color nam-
ing. These spaces correspond to the three color sets (pairs of linguistic term and
crisp color) with different levels of color description which are collected in the
Universal Language of Color [43]: the Basic Set comprised of 13 color terms
corresponding to ten basic (pink, red, orange, yellow, brown, olive, green, yellow-
green, blue, purple), and 3 achromatic ones (white, gray, and black); the Extended
Set, comprised of 31 color terms; and the Complete Set containing 267 color
terms. The fuzzy color spaces for these three color sets are called Γ̃ISCC−basic,
Γ̃ISCC−extended, and Γ̃ISCC−complete, respectively in [1], and are designed to be
partition spaces since the colors provided by the ISCC-NBS have an exclusive
nature (i.e. two colors cannot be fully in two categories, that is, in the core of two
fuzzy colors).

Non-covering and non-disjoint spaces are also provided in [1], customized for
specific users in the context of a fixed collection of fruit colors categories. On
the basis of a collection of fruit color categories and their corresponding repre-
sentative crisp colors provided by a certain user, fuzzy color spaces are provided.
Such spaces are non-covering since not every crisp color is suitable for describing
a fruit color category. In addition, they are non-disjoint, since some crisp colors
fully match several categories (for instance, banana and lemon). Several experi-
ments were conducted with 30 users (15 men and 15 women). Users can select
colors they consider to be representative of a color term associated with a fruit and
they assign it manually a customized color name from the image collection. The
image collection and all users data from this experimentation can be downloaded
at the website http://www.jfcssoftware.com.

In addition to human color categories, fuzzy colors can be defined on the basis
of (and employed to represent) information in visual data. For instance, given a
particular image, “red colors in the image” is a fuzzy color defined as the collec-
tion of crisp colors that match the category “red” in the image. This fuzzy color,
which support can be much smaller and even be a crisp singleton in simple im-
ages, can be obtained either as a subset of a fuzzy color “red” defined previously,
by computing the intersection between the corresponding fuzzy set and the set of
crisp colors of the pixels in the image, or even generated specifically for the im-
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age by assigning degrees to crisp colors appearing in the image with some other
procedure.

In next sections, we use the proposal in [1] for illustrative purposes. However,
all the measures and resemblances proposed in the present work can be applied to
fuzzy colors and fuzzy color spaces calculated following any other methodology.
The only requirement for fuzzy colors, as we have seen at the beginning of this
section, is that they must be a normalized fuzzy subset of crisp colors. We have
just mentioned as an example the case of fuzzy colors defined by visual data in
the previous paragraph. A review of other proposals can be found in [1]. Another
recently proposed approach is that of fuzzy colors defined on the basis of several
representative prototypes, introduced in [44] and called granular fuzzy colors. An
important result shown in [44], that we will use later in this work, is that, with
an appropriate choice of prototypes, any fuzzy color can be seen in practice as a
granular fuzzy color in which its membership function is always decreasing with
the distance to some prototype.

3. Resemblance relations between crisp colors

As we have explained in the introduction, color categorization and color re-
semblance are two sides of the same coin. A color category contains a collection
of resemblant precise colors, corresponding to a certain color name. Hence, we
can say that a color category induces a resemblance relation in the set of precise
colors (and vice versa). For instance, if we define a crisp categorization cor-
responding to a partition of a crisp color space, the corresponding resemblance
relation is the crisp equivalence relation having the categorization as quotient set.

An important consequence of the category/resemblance dichotomy is that color
resemblance is relative, as it depends on the categories employed. Let us recall
here the case of the wine colors that may be perceived as not resemblant in the
context of red wine tasting because one of them is fully in the category “ruby”
and the other one is prototypical of the category “garnet”, but they can be per-
ceived as resemblant according to the category “red” in a more general context.
On the contrary, crisp color resemblance based on distance in a crisp color space is
absolute, as it is the case with Euclidean distances in RGB, CIELab and any other
space, each of which define a unique comparison framework for crisp colors.

On the other hand, as we have seen in the previous section, color categories
coming from humans are not crisp but fuzzy, and can be represented by means
of fuzzy sets. As a consequence, the corresponding resemblance relations are not
crisp equivalence relations, but fuzzy resemblance relations [45, 46]. We study
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resemblance relations between two crisp colors induced by a single fuzzy color in
Section 3.1. Also, we study resemblance relations induced by a whole fuzzy color
space in Section 3.2.

The classical way to study color resemblance in image processing is by means
of distances in crisp color spaces. In Section 3.3 we discuss on the relationship
between color resemblance, color categories and distances in crisp color spaces.

3.1. Resemblance between crisp colors induced by a fuzzy color
The representation of a fuzzy color is the fuzzy set of crisp colors that are com-

patible with the fuzzy color. This representation induces a resemblance relation
for crisp colors based on the idea that crisp colors appearing to a certain degree
in the representation of a fuzzy color are supposed to be resemblant at least to
the minimum of those degrees. The semantics of this resemblance relation is the
following: the crisp colors c and c′ are resemblant with respect to the fuzzy color
C̃ to the extent that both c and c′ match C̃. This semantics corresponds to the
classical notion of proximity relation. A proximity relation rC̃ defined on a fuzzy
subset C̃ of Γ (see [47], page 238) must satisfy the following properties:

rC̃(c, c′) = rC̃(c′, c) (1)
rC̃(c, c′) ≤ min(rC̃(c, c), rC̃(c′, c′)) (2)

rC̃(c, c) = C̃(c) (3)

Hence, a first notion of resemblance between crisp colors is that of proximity
induced by a single fuzzy color, that can be defined as follows [47]:

Definition 3.1. The resemblance (proximity) between crisp colors induced by a
single fuzzy color C̃ is

rC̃(c, c′) = min(C̃(c), C̃(c′)) (4)

Definition 3.1 is useful when answering questions like the first one in Table 1:
How similar are two crisp colors c and c′ according to the color red? Particularly,
Eq. (4) can be seen as a type-I comparison measure of two crisp colors in the
sense of [48] on the basis of the attribute “matching the fuzzy color C̃”, since we
do not consider that two crisp colors are resemblant when none of them match the
considered fuzzy color.
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It is easy to show that rC̃ satisfies Eqs. (1)-(3), particularly it is a symmetric
fuzzy relation. It is also easy to show that rC̃ is locally reflexive, that is,

rC̃(c, c) ≥ max
c′∈Γ

(rC̃(c, c′), rC̃(c′, c)) (5)

and max-min transitive, i.e.,

rC̃(c, c′′) ≥ max
c′∈Γ

min(rC̃(c, c′), rC̃(c′, c′′)) (6)

The local character of reflexivity just requires that no color is more similar to a
certain color c than c itself. It is reasonable since, as a proximity relation based
on a certain fuzzy color C̃, we are restricting the semantics of our resemblance to
the case of matching C̃. As stated in Eq. (3), the proximity of a color c to itself in
the context of a fuzzy color C̃ is C̃(c), being the largest resemblance value to c.

Let us illustrate the usefulness of this proposal with an example: suppose that
in a medical image, pixels corresponding to a tumour are known to be red (a fuzzy
color category) and topologically connected, and one wanted to perform a fuzzy
segmentation of the tumour on the basis of color similarity between neighbour
pixels, like in [49]. Then, one might be interested in computing the resemblance
between the crisp colors of neighbour pixels in the image on the basis of the red
category only, so that similarity with crisp colors out of the support of red yields
0, even if two neighbour pixels are assigned the same such crisp color.

Other proposals can be employed for resemblance induced by a fuzzy color.
For instance, when reflexivity is required for a particular application, that is, when
we require

rC̃(c, c) = 1 (7)

we can use as an alternative the technique proposed in page 267 of [47], that
generates a decomposable fuzzy equivalence relation as:

rC̃(c, c′) =

{
1 c = c′

min(C̃(c), C̃(c′))
(8)

Note that Eq. (8) is a slight modification of Eq. (4) that guarantees reflexivity and,
at the same time, keeps symmetry and max-min transitivity, as shown in [47]. It
also keeps Eq. (2), but not Eq. (3), which is replaced by Eq. (7).

In order to illustrate resemblance induced by a single fuzzy color as defined by
Eq. (4), we consider the precise colors c1− c8 in Table 2. Note that the alternative
in Eq. (8) yields the same values, except for the case of comparison of each color
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with itself, in which Eq. (8) yields 1 in every case (main diagonal). Tables 3, 4, 5
and 6 show the resemblance degrees between the crisp colors c1− c8 according to
the fuzzy colors Blue, Red, Orange and Yellow, respectively, from the fuzzy color
space Γ̃ISCC−basic based on the ISCC-NBS Basic Set mentioned in Section 2. In
Table 3 it can be observed that the resemblance between the crisp colors c1 and c2

induced by the fuzzy color Blue is greater than 0 since both colors are perceived as
similar with respect to the color Blue, while it is 0 for the rest of the colors (c3-c8).
However, resemblance of c1 and c2 with respect to the fuzzy color Red (Table 4) is
0, showing how the resemblance is relative to the reference fuzzy color employed.
The same happens for color c1 and c2 with respect to the fuzzy colors Orange and
Yellow (tables 5 and 6). It can be seen that colors c3, c4 and c5 are resemblant to
some degree with respect to the fuzzy color Red (Table 4), colors c4, c5, c6 and
c7 with respect to the fuzzy color Orange (Table 5), and colors c6, c7 and c8 with
respect to the fuzzy color Yellow (Table 6).

On the issue of reflexivity that we have discussed above, note that rC̃(c1, c1) 6=
1 in Table 3 because the property of reflexivity in Definition 3.1 is not imposed.
The same happens to colors c4, c5 with respect to the fuzzy colors Red, Orange,
and c6 and c7 with respect to Orange and Yellow. As we have seen, when reflex-
ivity is required, we can use alternatively Eq. (8).

Color RGB Value

c1 [5, 209, 233]
c2 [1, 126, 170]
c3 [200, 26, 51]
c4 [255, 51, 53]
c5 [255, 75, 37]
c6 [250, 152, 40]
c7 [225, 171, 8]
c8 [254, 253, 21]

Table 2: A collection of crisp colors c1 − c8 and their corresponding RGB values.

3.2. Resemblance between crisp colors induced by a fuzzy color space
The notion of resemblance induced by a fuzzy color can be extended to resem-

blance induced by a fuzzy color space just taking the maximum degree among all
the fuzzy colors of the fuzzy color space. Note that we only consider the case of
finite fuzzy color spaces, since the amount of color categories humans are able to
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c1 0.439
c2 0.439 1
c3 0 0 0
c4 0 0 0 0
c5 0 0 0 0 0
c6 0 0 0 0 0 0
c7 0 0 0 0 0 0 0
c8 0 0 0 0 0 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8

Table 3: Resemblance degree induced by the fuzzy color Blue of the fuzzy color space
Γ̃ISCC−basic defined in [1] between the crisp colors c1-c8 of Table 2.

c1 0
c2 0 0
c3 0 0 1
c4 0 0 0.658 0.658
c5 0 0 0.298 0.298 0.298
c6 0 0 0 0 0 0
c7 0 0 0 0 0 0 0
c8 0 0 0 0 0 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8

Table 4: Resemblance degree induced by the fuzzy color Red of the fuzzy color space Γ̃ISCC−basic

defined in [1] between the crisp colors c1-c8 of Table 2.

c1 0
c2 0 0
c3 0 0 0
c4 0 0 0 0.342
c5 0 0 0 0.342 0.702
c6 0 0 0 0.342 0.702 0.865
c7 0 0 0 0.262 0.262 0.262 0.262
c8 0 0 0 0 0 0 0 0

c1 c2 c3 c4 c5 c6 c7 c8

Table 5: Resemblance degree induced by the fuzzy color Orange of the fuzzy color space
Γ̃ISCC−basic defined in [1] between the crisp colors c1-c8 of Table 2.
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c1 0
c2 0 0
c3 0 0 0
c4 0 0 0 0
c5 0 0 0 0 0
c6 0 0 0 0 0 0.135
c7 0 0 0 0 0 0.135 0.738
c8 0 0 0 0 0 0.135 0.738 1

c1 c2 c3 c4 c5 c6 c7 c8

Table 6: Resemblance degree induced by the fuzzy color Yellow of the fuzzy color space
Γ̃ISCC−basic defined in [1] between the crisp colors c1-c8 of Table 2.

manage is finite. The semantics of this resemblance is the following: two crisp
colors c and c′ are resemblant according to a fuzzy color space Γ̃ to the extent
that ∃C̃ ∈ Γ̃ such that c and c′ are resemblant according to C̃ as defined in the
previous section, that is, when both crisp colors pertain to C̃. On the basis of this
idea, we introduce the following definition:

Definition 3.2. The resemblance between crisp colors c and c′ induced by a fuzzy
color space Γ̃ is

RΓ̃(c, c′) = max
C̃∈Γ̃

rC̃(c, c′) (9)

Definition 3.2 is useful in practice when answering questions like the second
one in Table 1: How similar are two crisp colors c and c′ according to a given
fuzzy color space? And related questions such as What RGB colors are resemblant
to color c?, or Give me images containing colors that resemble that of pixel p, etc.

When rC̃ is the proximity relation defined by Eq. (4), it is easy to show that
RΓ̃ satisfies the following properties:

RΓ̃(c, c′) = RΓ̃(c′, c) (10)
RΓ̃(c, c′) ≤ min(RΓ̃(c, c), RΓ̃(c′, c′)) (11)

RΓ̃(c, c) = max
C̃∈Γ̃

C̃(c) (12)

RΓ̃(c, c) ≥ max
c′∈Γ

(RΓ̃(c, c′), RΓ̃(c′, c)) (13)

RΓ̃(c, c′′) ≥ max
c′∈Γ

min(RΓ̃(c, c′), RΓ̃(c′, c′′)) (14)

Particularly, we have that RΓ̃ is symmetric (Eq. (10)), max-min transitive (Eq.
(14)) and locally reflexive (Eq. (13)), as it is the case for rC̃ defined by Eq. (4).
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As in the previous section, when reflexivity is required, we can use in Eq. (9)
the resemblance rC̃ defined by Eq. (8). In such case, the values yield by RΓ̃ are
the same except with the single exception that RΓ̃(c, c) = 1 for all c ∈ Γ. This
alternative satisfies the same properties as the previous one, except for Eq. (12),
and RΓ̃ is a fuzzy equivalence relation.

Note also that, in the first alternative, reflexivity can also be achieved in the
particular case that the cores of the fuzzy colors in Γ̃ form a crisp covering of Γ,
since in that case it is

max
C̃∈Γ̃

C̃(c) = 1 (15)

However, such kind of fuzzy color space is not usual in practical applications.
In order to illustrate our proposal, Table 7 shows the resemblance induced

by the fuzzy colors Blue, Red, Orange, and Yellow of the fuzzy color space
Γ̃ISCC−basic between the crisp colors c1-c8 of Table 2, using the first alternative
in this section (the second alternative yields the same values except for the main
diagonals of the matrices, where all values are 1 as reflexivity is imposed).

3.3. Color resemblance, color categories and distances in crisp color spaces
The problem of how to compare precise colors in terms of resemblance has

been dealt with in the image processing area by means of distances in color spaces,
typically Euclidean distance [14, 15, 16]. An important question that arises is,
what is the relation between distances and categories/resemblance? We can dis-
cuss this issue from the point of view of both categories and resemblance relations.

Categories: With respect to categories, it is important to remark that distances
are on the basis of most of the techniques for building fuzzy color spaces. This
idea is natural for humans since we are used to employ color prototypes for defin-
ing basic color categories; as an example, color naming techniques [50] provide
prototypes for defining correspondences between color categories and computa-
tional representations of color on the basis of the distance. Roughly, membership
to a fuzzy color decreases with distance to some of the crisp representatives of the
color (with a rate that can depend on the direction along which we move in the
color space domain [44]), so membership can be seen as inversely proportional to
distance. In particular, considering a maximum distanceM in a color space on the
basis of a distance d, a membership function for a color category C̃r with respect
to a representative prototype r could be defined as

C̃r(c) = 1− d(r, c)

M
(16)
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c1 0.439
c2 0.439 1
c3 0 0 1
c4 0 0 0.658 0.658
c5 0 0 0.298 0.342 0.702
c6 0 0 0 0.342 0.702 0.865
c7 0 0 0 0.262 0.262 0.262 0.738
c8 0 0 0 0 0 0.135 0.738 1

c1 c2 c3 c4 c5 c6 c7 c8

Table 7: Resemblance degree induced by the fuzzy colors Blue, Red, Orange, and Yellow of the
fuzzy color space Γ̃ISCC−basic between the crisp colors c1-c8 of Table 2.

c1 0.744
c2 0.744 0.925
c3 0.418 0.418 0.918
c4 0.332 0.375 0.820 0.820
c5 0.321 0.375 0.789 0.789 0.845
c6 0.328 0.375 0.717 0.780 0.845 0.900
c7 0.323 0.375 0.717 0.780 0.845 0.900 0.930
c8 0.247 0.375 0.717 0.721 0.721 0.859 0.859 0.859

c1 c2 c3 c4 c5 c6 c7 c8

Table 8: Resemblance degree between the crisp colors c1-c8 of Table 2 induced by the set of four
fuzzy colors of the form C̃r of Eq. (16) in RGB, with r being the representatives in the ISCC-Basic
system of the colors Blue, Red, Orange, and Yellow.

c1 0.597
c2 0.597 0.816
c3 0.487 0.487 0.917
c4 0.458 0.424 0.806 0.806
c5 0.458 0.424 0.789 0.789 0.796
c6 0.458 0.424 0.676 0.742 0.796 0.927
c7 0.458 0.424 0.676 0.742 0.796 0.854 0.916
c8 0.458 0.403 0.618 0.618 0.618 0.787 0.839 0.839

c1 c2 c3 c4 c5 c6 c7 c8

Table 9: Resemblance degree between the crisp colors c1-c8 of Table 2 induced by the set of four
fuzzy colors of the form C̃r of Eq. (16) in CIEDE2000, with r being the representatives in the
ISCC-Basic system of the colors Blue, Red, Orange, and Yellow.
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Let us remark that there are many approaches to transform a distance measure
to a resemblance one [51, 52, 48], and the linear case in Eq. (16) is a particular
case with well-known limitations. Regardless the transformation applied, what is
usual in fuzzy color literature is to define membership functions on the basis of
parametric functions of the distance [53, 1]. Most recent works face this issue by
taking into account that precise colors can be roughly divided into three categories
in terms of their distance to the representative of a fuzzy color: those that are close
enough for their membership to be 1; those that are far enough for their member-
ship to be 0; and those having an intermediate distance to the representative, that
are assigned membership degrees in (0, 1). The first two groups can be defined
in terms of bounds; the third one is defined by those same bounds together with a
way to compute membership in a proportional (and inverse) way to the distance.
Hence, in every direction, membership to fuzzy categories can be defined as a
piecewise function which is constantly 1 in the vicinity of the crisp representative
of the category as defined by a first bound; constantly 0 beyond a certain distance
given by a second bound; and decreasing from 1 to 0 with distance between both
bounds. This is not the case for fuzzy colors defined following Eq. (16). In fact,
every precise color being at a distance less than M from r is in the support of
C̃r. Nevertheless, Eq. (3) can be seen as the simplest transformation that inter-
prets distance as a membership degree, allowing us to compare more complex
approaches with the use of distance as membership degree. In this sense, let us
remark that our goal is to discuss the relationship between distances in crisp color
spaces and color categories, but not to analyze or compare different approaches to
transform a distance measure to a resemblance.

Table 8 shows the use of Eq. (16) for calculating resemblance between the co-
lors c1-c8 of our example in the previous section. Fuzzy colors are calculated using
Eq. (16) with the Euclidean distance in the RGB color space with M = 255

√
3

and the representatives in the ISCC-NBS Basic Set for colors Blue ([1, 161, 194]),
Red ([190, 1, 50]), Orange ([243, 132, 1]), and Yellow ([243, 195, 1]). Resemblance
of precise colors is computed using Eqs. (4) and (9) for that collection of fuzzy
colors. The results are shown in Table 8. The same computation is performed
with the CIEDE2000 metric1 [18] with M = 100 as maximum distance2, and the

1The CIEDE2000 metric based on the CIE Lab system is specifically defined so that distances
are perceptually more significant for humans, i.e., so that the corresponding space is perceptually
uniform.

2Note that M = 100 is rather conservative and does not correspond to the maximum possible
value of the CIEDE2000 metric, which is larger, with a larger value of M increasing even more
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results are shown in Table 9.
It is easy to see the difference between the resemblance as calculated in tables

7 and those of tables 8 and 9. Zero resemblances in Table 7 are replaced by high
resemblances in tables 8 and 9, see for instance resemblance between colors c3 and
c6-c8, due to the fact that only distance is used in the definition of fuzzy colors,
without taking into consideration human-like semantics in the form of bounds, as
discussed above. Let us remark that this is going to be the case for any color space.
It can be also appreciated in that the resemblances evolve in a softer way. For
instance, consider the columns corresponding to color c3. Resemblance decreases
abruptly from 1 to 0 as we go from rows c3 to c6 in Table 7, whilst in Table 8 it
decreases from 0.918 to 0.717, and in Table 9 it decreases from 0.917 to 0.676. In
addition, these results are less in accordance with the human semantics regarding
comparison in terms of colors Blue, Red, Orange and Yellow. This can be seen in
the resemblance between c1 and c3, which are clearly very different according to
these colors (and hence in Table 7 their resemblance is 0), whilst in Tables 8 and
9, resemblances of 0.418 and 0.487, respectively, are provided.

Resemblance: With respect to resemblance, a fuzzy resemblance relation can
be defined directly between precise colors as

rd(c, c
′) = 1− d(c, c′)

M
(17)

Implicitly, this relation is associated to the collection of all fuzzy colors C̃r

calculated using Eq. (16) for all r in the crisp color space, since rd(c, c′) corre-
sponds to the membership of c′ to C̃c (and equivalently to the membership of c to
C̃c′). It is clear that not all of these fuzzy colors will correspond to human color
categories. Also, such collection of categories is always the same, independent of
the context, and huge, and hence is not suited to deal with the human perception
of color categories, from which categories are subjective and context/application
dependent.

As a final conclusion of this section, human compliant color resemblance is
relative to the categories defining the context for the comparison, and hence can
be computed from a suitable fuzzy color space for such context. Fuzzy colors
capturing human color semantics cannot be defined in terms of distance alone,
but as piecewise functions whose support do not cover the whole color space.

the resemblance values in Table 9. The maximum distance among colors c1-c8 in our example is
between 85 and 86.
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Distance has a different role: it is necessary in order to define categories, since
the semantics of the latter are defined implicitly by piecewise functions defined
on the former. As a consequence, there is no necessity of having a perceptually
uniform distance when defining fuzzy colors, since we are not using distance, but
similarity, for comparing crisp colors, and the uniformity of perception of similar-
ity comes from the fuzzy sets defining the fuzzy colors. Finally, distance is also
useful when the color comparison is not requested to be compliant with human
semantics, but for other different purposes in the setting of image processing.

4. Relations between two pieces of color information

Crisp and fuzzy colors can be used in different ways to represent color infor-
mation in a computer, filling the semantic gap with human’s perception of color.
However, as we explained in the introduction, fuzzy colors may represent infor-
mation with different semantics depending on its use. In order to consider match-
ing of colors according to different semantics, in this section we consider color
information expressed by means of:

1. A crisp color c ∈ Γ, e.g., this pixel has color [255,0,0] in RGB.
2. A conjunctively-used fuzzy color, e.g., I like red cars; the grass is green. It

defines the matching (compatibility) between a linguistic term and the crisp
colors in a crisp color space.

3. A disjunctively-used fuzzy color, corresponding to a description by means
of a flexible restriction of our knowledge about the actual value of a variable
whose possible values are crisp colors. For example, my car is red.

In the following we describe different situations in which pairs of color in-
formations involving at least one fuzzy color are compared or matched, and the
corresponding relations and measures that may be used for determining the degree
of resemblance, compatibility, or possibility/necessity for each case. Particularly,
we analyze the case of a crisp and a fuzzy color in Section 4.1, and the case of
two fuzzy colors in Section 4.2.

It is important to note that in this work we do not work with the physical mag-
nitudes of the color (wavelengths) in order to represent the crisp color spaces on
which we build our fuzzy color spaces, but with a discrete crisp color space Γ re-
sulting from the light digitalization process through a suitable device (a camera, in
this case). We assume a discrete and finite subset of crisp colors in the color space
Γ, as usual in the computer representation of crisp colors, although theoretically
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it works on an infinite vector space. This restriction is necessary when calculating
the different expressions for the proposed relations on the basis of fuzzy colors,
and does not imply loss of generality, since humans can only distinguish a finite
set of crisp colors, usually lower than the computers can represent. It is also finite
the set of color categories that a human is able to manage, each category being de-
fined as a fuzzy subset in the crisp color space, as we have pointed out in previous
sections.

4.1. Relations between a crisp color and a fuzzy color
In this section we deal with the case in which only one of the color informa-

tions to be compared is expressed via a fuzzy color. We propose a compatibility
relation between a crisp color and a fuzzy color Cu (conjunctively-used) in Sec-
tion 4.1.1. Possibility/necessity relations between a crisp color and a fuzzy color
Du (disjunctively-used) are proposed in Section 4.1.2.

4.1.1. Compatibility between a crisp color and a conjunctively-used fuzzy color
Compatibility between a crisp color and a fuzzy color Cu depends on the rep-

resentation of the fuzzy color, so a crisp color will be compatible with a fuzzy
color Cu to a certain degree given by its membership function. This semantics is
captured by the following definition:

Definition 4.1. The compatibility between a crisp color c and a fuzzy color Cu
C̃ ∈ Γ̃ is

K(c, C̃) = C̃(c) (18)

This definition is useful for answering questions such as the question 3 of
Table 1, to what degree pixel p is red?, give me images containing red pixels, etc.
As an example, Table 10 shows the compatibility of the crisp colors c1-c8 of Table
2 with the fuzzy colors Blue, Red, Orange and Yellow defined in Γ̃ISCC−basic. As
can be observed in the table, the color c2 is 100% compatible with the fuzzy color
Blue since it belongs to the core of Blue. This is also the case of the crisp color c3

with respect to the fuzzy color Red, as well as c8 with respect to the Yellow. The
rest of crisp colors (c1, c4, c5, c6 and c7) are also compatible with the fuzzy colors
to the degree they belong to each fuzzy color.

4.1.2. Possibility and necessity of a crisp color compatible with a disjunctively-
used fuzzy color

A fuzzy color used in a disjunctive way is a possibility distribution on the set
of crisp colors. Hence for answering questions using disjunctive colors, we need
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Crisp color Blue Red Orange Yellow

c1 0.439 0 0 0
c2 1 0 0 0
c3 0 1 0 0
c4 0 0.658 0.342 0
c5 0 0.298 0.702 0
c6 0 0 0.865 0.135
c7 0 0 0.262 0.738
c8 0 0 0 1

Table 10: Compatibility of the crisp colors c1-c8 of Table 2 with the fuzzy colors Blue, Red,
Orange and Yellow defined in Γ̃ISCC−basic.

to measure possibility/necessity of the compatibility between a crisp color and a
fuzzy color Du as follows:

Definition 4.2. The possibility and the necessity that a certain color variable V
takes value c knowing that its value is in a Du fuzzy color C̃ ∈ Γ̃ are, respectively

pos(V = c|V is C̃) = C̃(c) (19)

and

nec(V = c|V is C̃) = 1− max
c′∈Γ | c′ 6=c

{C̃(c′)} (20)

Note that the possibility that a color variable V takes the value c knowing that
its value is a known fuzzy color C̃, is equal to the compatibility of the crisp color
c with the fuzzy color C̃ ∈ Γ̃. In addition, note that for any fuzzy color C̃ ∈ Γ̃
such that its core is not a singleton, Nec(V = c|V is C̃) = 0. As a final remark,
if C̃ is a singleton, it is easy to show that

pos(V = c|V is {c′}) = Nec(V = c|V is {c′}) =

=

{
1 c = c′

0 otherwise

This definition is useful for answering questions such as the question 4 of
the Table 1, knowing that my car is red, what is the possibility/necessity that the
color of my car is c?. For example, as shown in Table 10, the possibility that a car
painted in the red color of Table 2 is painted with the crisp color c3 is 1, whereas
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for the color c4 is 0.658. In the case of necessity it is always 0 since the cores of
the fuzzy colors in Γ̃ISCC−basic are not singletons. Likewise, if a fuzzy color space
is defined by fuzzy colors having a singleton as core, the necessity of a crisp color
c and a fuzzy color C̃ will be 1 in the case of C̃(c′) = 1 and c = c′. Intermediate
values can be obtained for other fuzzy colors. For instance, if the fuzzy color
representing the red colors in a certain image is C̃ = 1/c + α/c′, with α ∈ [0, 1],
then it is nec(V = c|V is C̃) = 1− α.

4.2. Relations between two fuzzy colors
In this section we consider the case of matching two pieces of color informa-

tions expressed by fuzzy colors. We consider relations between fuzzy colors used
in a conjunctive and/or disjunctive way. Our objective is to show that it is possible
to solve such cases using existing tools, in our case possibility theory, by making
specific proposals; however, other approaches to solve these cases are possible.
A compatibility relation between fuzzy colors Cu is proposed in Section 4.2.1.
Possibility/necessity relations for the case Cu - Du and Du - Du are proposed in
sections 4.2.2 and 4.2.3, respectively.

4.2.1. Compatibility between two conjunctively-used fuzzy colors
Two fuzzy colors Cu will be compatible to the extent that there exists a crisp

color belonging to both fuzzy colors. Therefore, the compatibility of a fuzzy color
Cu with itself will be 1. In general, compatibility is defined as follows:

Definition 4.3. The compatibility between two fuzzy colors Cu can be defined as

K(C̃, C̃ ′) = max
c∈Γ

min{C̃(c), C̃ ′(c)} (21)

This definition is useful when answering questions such as the question 5 of
the Table 1, like to what extent it is possible to find a crisp color that is red and
orange? As an example, table 11 shows the compatibility between the fuzzy co-
lors Blue, Red, Orange and Yellow defined in Γ̃ISCC−basic. Since Γ̃ISCC−basic is a
partition space, the compatibility of fuzzy colors is not expected to be higher than
0.5. For example, the higher compatibility between different fuzzy colors in our
example is that of the fuzzy colors Red and Yellow (0.5). The compatibility be-
tween Orange and Yellow is also rather high for a partition space (0.484). Finally,
the compatibility between the fuzzy color Blue and the rest is 0 since there is no
crisp color belonging to both colors, as expected. Also expected is the fact that
the compatibility of each fuzzy color with itself is 1.
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Blue 1
Red 0 1

Orange 0 0.5 1
Yellow 0 0 0.484 1

Blue Red Orange Yellow

Table 11: Compatibility between the fuzzy colors Blue, Red, Orange and Yellow defined in
Γ̃ISCC−basic.

4.2.2. Possibility and necessity of a conjunctively-used fuzzy color compatible
with a disjunctively-used fuzzy color

Since one of the colors is used in a disjunctive way, we have relations of pos-
sibility and necessity. We introduce the following definitions:

Definition 4.4. The possibility and the necessity that a certain color variable V
takes a value compatible with a Cu fuzzy color C̃ knowing that the value of V is
in a Du fuzzy color C̃ ′ are, respectively

pos(V ∈ C̃|V is C̃ ′) = max
c∈Γ

min{C̃ ′(c), C̃(c)} (22)

nec(V ∈ C̃|V is C̃ ′) = 1−max
c∈Γ

min{C̃ ′(c), 1− C̃(c)} (23)

This definition is useful when answering questions such as question 6 of Ta-
ble 1: She told me she likes red cars. My car is orange. What is the possibil-
ity/necessity that she likes my car?

4.2.3. Possibility and necessity of a disjunctively-used fuzzy color compatible with
a disjunctively-used fuzzy color

As in the previous section, since both colors are used in a disjunctive way, we
have relations of possibility and necessity. We introduce the following definitions:

Definition 4.5. The possibility and the necessity that a certain color variable V
takes a value compatible with a Du fuzzy color C̃ knowing that the value of V is
in a Du fuzzy color C̃ ′ are, respectively

pos(V = V ′|V is C̃ and V ′ is C̃ ′) = max
c∈Γ

min{C̃ ′(c), C̃(c)} (24)

nec(V = V ′|V is C̃ and V ′ is C̃ ′) = 1− max
c,c′∈Γ | c′ 6=c

min{C̃(c), C̃ ′(c′)} (25)
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This definition is useful when answering questions such as question 7 of Table
1: Jim saw a red car, and Tim saw an orange car, what’s the possibility/necessity
that both cars were painted in the same color?.

In the previous relations, a classic equality in the vectorial space is used as
equality criteria. Another alternative is to consider the resemblance induced by a
fuzzy color space Γ̃ as equality criteria, as follows:

Definition 4.6. The possibility and necessity that the value of a certain color vari-
able V which is in a fuzzy color Du C̃ is similar according to the fuzzy color space
Γ̃ to the value of a variable V ′ which is in a fuzzy color Du C̃ ′, are, respectively

pos(V = V ′|V is C̃ and V ′ is C̃ ′) = max
c,c′∈Γ

min{C̃(c), C̃ ′(c′), RΓ̃(c, c′)} (26)

nec(V = V ′|V is C̃ and V ′ is C̃ ′) = 1− max
c,c′∈Γ

min{C̃(c), C̃ ′(c′), 1−RΓ̃(c, c′)}
(27)

This last definition illustrates that there are many possible ways to perform
comparison for each of the cases we discuss in the paper, even with different
semantics. Note that results provided by Def. (4.6) can be very different from
those provided by Def. (4.5). Consider for instance the case of a covering but
non-disjoint space as introduced in Section 2. Let us assume that the supports
of C̃ and C̃ ′ are disjoint. Hence, Eq. (24) yields 0. Now, let us assume that
there exists a third fuzzy color C̃ ′′ ∈ Γ̃ and two crisp colors c, c′ ∈ Γ such that
C̃ ′′(c) = C̃ ′′(c′) = 1, C̃(c) = 1, and C̃ ′(c′) = 1. Then Eq. (26) yields 1.

This same alternative could have been applied in the relations defined previ-
ously in this section by using the similarity between crisp colors instead of equal-
ity in the color space Γ, among other alternative formulations.

5. Inclusion and similarity between fuzzy colors

Inclusion and similarity indexes for fuzzy colors are useful for different pur-
poses, and can be applied to fuzzy colors under different uses (but the same for
both colors). For instance, the degree of inclusion between fuzzy colors is use-
ful for determining whether a fuzzy color is a particularization or restriction of
another fuzzy color. The degree of similarity allows us to compare fuzzy colors
defined for different contexts and see to which extent they are the same.
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Fuzzy extensions of the usual predicates of inclusion and equality are provided
in sections 5.1 and 5.2. Extensions of similarity and inclusion indexes for fuzzy
sets are proposed in Section 5.4 on the basis of a new notion of degree of overlap-
ping of fuzzy sets, introduced in Section 5.3. Some experiments for comparing
both approaches are shown in Section 5.5.

As in previous sections, let us remark that there are many possible ways to
compute degrees of inclusion and similarity, with different semantics and proper-
ties. Different studies and proposals can be found in [36, 51, 37, 52, 48, 54, 55].
The amount of such indexes that can be applied is virtually infinite. Our proposals
here are intended to show that it is possible to perform these kind of comparisons
using fuzzy set theory.

5.1. Inclusion of a fuzzy color in another
In the fuzzy set theory the usual definition of inclusion is crisp: a set A is

included in B if A(x) ≤ B(x) ∀x. This notion can be extended by introducing
inclusion degrees using different functions. One approach to this problem is to de-
fine inclusion indicators satisfying a set of axioms known as the Sinha-Dougherty
axioms [36]. We can use the following definitions from [37]:

Definition 5.1 ([37]). Let A, B be two fuzzy sets defined on a crisp set X . Let I
be a contrapositive fuzzy implication. Then, the family of functions given by

Sub(A,B) = min
x∈X

I(A(x), B(x)) (28)

is a family of inclusion indicators that satisfy all the Sinha-Dougherty axioms
[37].

On this basis, it is possible to define an inclusion relation between fuzzy colors
as follows:

Definition 5.2. The degree of inclusion of a fuzzy color C̃ in another fuzzy color
C̃ ′ is calculated by means of a suitable inclusion indicator in the family given by
Eq. 28, i.e.,

Inc(C̃, C̃ ′) = Sub(C̃, C̃ ′) = min
c∈Γ

I(C̃(c), C̃ ′(c)) (29)

An example of contrapositive fuzzy implication I satisfying the conditions
above is the Lukasiewicz’s implicator IL, given by

IL(x, y) = min(1, 1− x+ y) (30)
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In particular, the degree of inclusion of a fuzzy color C̃ in another fuzzy color
C̃ ′ based on Lukasiewicz’s implicator is

Inc(C̃, C̃ ′) = min
c∈Γ

min(1, 1− C̃(c) + C̃ ′(c)) (31)

The inclusion indicator between pieces of color information is useful in the
case of fuzzy colors Du when answering questions such as question 8 of the Ta-
ble 1: to what extent Jim’s knowledge about my car’s color is more specific than
Tim’s? In the context of Du fuzzy sets, specificity refers to the difficulty of deter-
mining the value of the variable when the available information is that its value is
within the fuzzy set. Specificity can also be seen roughly as how close is the fuzzy
set to be a crisp singleton [56]. Specificity and inclusion are clearly related in the
case of normal fuzzy sets: if F ⊂ G, then F is more specific than G. A study
of different specificity measures and their properties can be found for instance in
[57, 56]. The work in [56] is also somehow related to the present work in that
specificity measures are defined on the basis of measures of similarity for fuzzy
sets.

In the case of Cu fuzzy colors, inclusion indicators are useful for questions
such as question 9 of Table 1, to what extent this picture uses all the colors of
this one? In Section 5.5, some examples of inclusions in fuzzy color spaces are
shown.

5.2. Similarity between two fuzzy colors
The inclusion relation between fuzzy colors can be extended to a similarity

relation naturally as the degree to which the double inclusion between sets holds.
In this way a family of indicators of similarity between fuzzy sets can be defined
as follows [54]:

Definition 5.3. The degree of similarity between two fuzzy colors C̃ and C̃ ′ is
calculated by means of one function of the family Sub as

Sim(C̃, C̃ ′) = min{Sub(C̃, C̃ ′), Sub(C̃ ′, C̃)} (32)

The similarity between fuzzy colors, which is a reflexive and symmetric fuzzy
resemblance relation, is useful for answering questions such as questions 10 and
11 of the Table 1: how similar are fuzzy colors defined by two different users for
the same category of color?, and to what extent Jim’s knowledge about my car’s
color is similar to Tim’s? Again, we will see examples of similarity in fuzzy color
spaces in Section 5.5.

As we mentioned at the beginning of this section, there are many other possible
ways to compute similarity, see for instance [51, 52, 48, 54, 55].
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5.3. Quantifier-based overlapping indexes for comparison of fuzzy colors
The measures of inclusion and similarity between fuzzy colors introduced in

the previous sections are gradual in that they provide degrees of inclusion and sim-
ilarity. However, such graduality is due to membership being in [0, 1] only. More
specifically, the proposed measures are natural extensions of the crisp notions of
inclusion and similarity since, for every finite and arbitrarily large set X 6= ∅ and
fuzzy subsets A and B of X , having a single object x0 ∈ X such that A(x0) = 1
and B(x0) = 0 yields Inc(A,B) = Sim(A,B) = 0 even when A(x) = B(x)
∀x ∈ X\{x0}. Hence, being completely different in one single element yields a
value 0 for inclusion (of the set having the element with respect to the other) and
similarity, despite the agreement on the rest of elements for an arbitrarily large set
X .

In many cases, similarity and inclusion indexes with a different semantics are
needed. For instance, in the crisp case there are similarity indexes that take into
account the amount of elements in which A and B agree among all elements in
A and B (type-I comparison measure in the sense of [48]), or even including
common dissagreements as well (type-II in [48])). An example of type-I measure
is the well-known Jaccard index, defined for crisp sets A and B as

J(A,B) =
|A ∩B|
|A ∪B|

(33)

The difference between this kind of index and the measures introduced in the
previous section can be easily illustrated by a crisp example: let |X| = 100,
x ∈ X , and A = X\{x}. Then Sim(A,X) = 0 (since there is one element in
X that is not in A) whilst J(A,X) = 0.99 (since A and X agree in 99% of the
elements). It is easy to show that Sim(A,B) ≤ J(A,B) for all crisp A,B ⊂ X
with X 6= ∅ a finite set.

In this section we introduce similarity and inclusion indexes between fuzzy
colors that take into account both i) the graduality in the membership to the fuzzy
colors, and ii) the amount of elements in which the fuzzy sets agree. They can
be seen as fuzzy extensions of similarity and inclusion indexes. Our proposal
will be based on the notion of Q-overlapping of fuzzy sets, that we introduce in
the following section. In Section 5.4 we introduce our proposals, whilst in Section
5.5 we shall provide an experimental comparison between both kinds of similarity
and inclusion measures.
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5.3.1. Q-overlapping index
The notion of Q-overlapping index is based on fuzzy quantification3 as fol-

lows:

Definition 5.4. LetQ be a fuzzy relative quantifier defined by a membership func-
tion Q : [0, 1] → [0, 1] such that Q(v) = 0 iff v = 0, Q(v) = 1 iff v = 1, and Q
is non-decreasing. Let A,B be two fuzzy sets defined on a finite set X 6= ∅ with
A ∪ B 6= ∅. The Q-overlapping of A and B, denoted OQ(A,B), is given by the
evaluation of the quantified sentence

Q of (A ∪B) are (A ∩B)

using a suitable evaluation method, where union and intersection are performed
using a t-conorm and a t-norm, respectively.

Definition 5.4 provides a wide family of indexes parametrized by the t-norm
and t-conorm and the quantifier employed, and the quantifier sentence evaluation
method. A recent study about quantification methods and their properties can be
found in [59]. Many quantifiers can be employed. In particular, we can use the
following result:

Proposition 5.1. Let N : [0, 1] → [0, 1] be a strict fuzzy negation. Then, QN :
[0, 1]→ [0, 1] defined as

QN(v) = 1−N(v) (34)

is a quantifier satisfying the conditions required in Definition 5.4.

Proof: Since N is a strict fuzzy negation then it is continuous and strictly de-
creasing. Hence, QN is strictly increasing and thus, QN is non-decreasing. In
addition, N(0) = 1, and N(1) = 0, and hence QN(0) = 1 − N(0) = 0 and
QN(1) = 1−N(1) = 1; moreover, since QN is strictly increasing, it is Q(v) = 0
iff v = 0 and Q(v) = 1 iff v = 1.

A particular case is the quantifier QM defined as

QM(v) = v ∀v ∈ [0, 1] (35)

3Fuzzy quantification has been employed before in the setting of fuzzy color spaces, particu-
larly for defining linguistic histograms [58].
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which can be obtained using Equation (34) from the standard negation N(v) =
1 − v. Let us remark that it is possible to use other quantifiers that cannot be
obtained using Proposition 5.1, particularly non-continuous quantifiers.

As a particular case, when using QM as quantifier, a t-norm t and a t-conorm
s, and Zadeh’s evaluation method for quantified sentences (see [59]), we have:

OQM(A,B) =

∑
x∈X t(A(x), B(x))∑
x∈X s(A(x), B(x))

(36)

which is the usual fuzzy extension of the Jaccard index using as fuzzy cardinality
the sigma-count [52, 48].

A suitable method for evaluation of quantified sentences, that we shall employ
in the rest of the paper, is the method GD introduced in [60]. Given F,G fuzzy
subsets of a finite set X 6= ∅ with G 6= ∅ and a fuzzy quantifier Q, the evaluation
of the quantified sentence Q of G are F, denoted GDQ(F/G), is

GDQ(F/G) =
∑

αi∈Λ(F/G)

(αi − αi+1)Q

(
|(F ∩G)αi

|
|Gαi
|

)
(37)

where the intersection is performed via the minimum, Fαi
is the αi − cut of F

(same for G), and Λ(F/G) = {α1, α2, . . . , αm} is the union of the level sets of F
and G, that is, the finite subset containing all the values F (x) > 0 and G(x) > 0
with x ∈ X , with 1 = α1 > α2 > · · · > αm > αm+1 = 0. In addition, if G is not
a normal fuzzy set, G is normalized and the same normalization factor is applied
to F ∩G before the evaluation.

5.4. Similarity and inclusion based on the Q-overlapping index
Using the Q-overlapping index we can define similarity and inclusion indexes

for fuzzy colors with finite support as follows:

Definition 5.5. The degree of similarity between two fuzzy colors C̃ and C̃ ′ with
finite support, based on a suitable quantified sentence evaluation method, and a
non-decreasing quantifier Q with Q(v) = 0 iff v = 0 and Q(v) = 1 iff v = 1, is
defined as

QSim(C̃, C̃ ′) = OQ(C̃, C̃ ′) (38)

Definition 5.5 introduces a family of fuzzy resemblance relations (reflexive
and symmetric) depending on the quantifier, fuzzy operators and evaluation method
considered. In this paper we shall employ the quantifier QM and the evaluation
method GD because of their suitable properties shown in the previous section.
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Definition 5.6. The degree of inclusion of a fuzzy color C̃ with respect to another
fuzzy color C̃ ′, both with finite support, based on a suitable quantified sentence
evaluation method and a non-decreasing quantifier Q with Q(v) = 0 iff v = 0
and Q(v) = 1 iff v = 1, is defined as

QInc(C̃, C̃ ′) = QSim(C̃ ∩ C̃ ′, C̃) = OQ(C̃ ∩ C̃ ′, C̃). (39)

where the intersection is performed using the minimum.

The rationale behind Definition 5.6 is that F is included inG to the degree that
F∩G = G. Note that by definition,QInc(A,B) is the evaluation of the quantified
sentence Q of A ∪ (A ∩ B) are A ∩ (A ∩ B). Since maximum and minimum are
employed for union and intersection, this is equivalent to Q of A are A ∩ B which,
using the minimum as t-norm and GD as the evaluation method, is the same as
the evaluation of Q of A are B [60], with a clear semantics of inclusion of A in B.
Hence, apart from the membership degrees, QInc takes into account the amount
of elements in A that are in B, whilst QSim takes into account the amount of
elements in A∪B that are in A∩B. Moreover, as we have shown in the previous
section, in the crisp case with QM and using GD, we have

QSim(A,B) = OQM(A ∩B/A ∪B) =
|A ∩B|
|A ∪B|

= J(A,B) (40)

In the same case, by the properties of method GD, it is

QInc(A,B) = OQM(A ∩B/A) =
|A ∩B|
|A|

(41)

5.5. Experiments and discussion
In order to illustrate the inclusion relation, Table 12 shows some examples of

the inclusion degree between fuzzy colors. The column Inc represents the inclu-
sion degree given by Eq. (31), whilst column QInc corresponds to the inclusion
as given by Eq. (39) using the quantifier QM and method GD. Specifically, this
table shows the inclusion degree between fuzzy colors from the fuzzy color space
Γ̃ISCC−complete based on the ISCC-NBS Complete Set mentioned in Section 2 (see
[1]) with respect to their related fuzzy colors Blue, Red, Orange and Yellow de-
fined in the corresponding space Γ̃ISCC−basic based on the ISCC-NBS Basic Set.
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In this case, as explained in [1], the fuzzy colors defined in the fuzzy color space
Γ̃ISCC−complete are more specific than the fuzzy colors defined in Γ̃ISCC−basic be-
cause Γ̃ISCC−complete is based on the complete set of colors of the ISCC-NBS.

In this example it is remarkable that there are not big differences between
both inclusion degrees though, as expected, QInc provides larger values. We can
observe to what extent some colors are more specific than others. For instance,
colors like Vivid Orange and Vivid Yellow in the Complete Set are completely
included in Orange and Yellow of the Basic Set, respectively. High values are also
obtained by Vivid Red and, to a lesser extent, Vivid Blue. On the contrary, the
lower values are obtained for colors like Very Light Blue, Very Deep Red, Dark
Red, Light Orange and Deep Yellow. These results show that, for some of the
adjectives employed in the construction of the Complete Set from the terms of the
Basic Set, the modification of the color they reflect yields colors that have little
relation to the original ones. This is the case for instance of Deep, Very Deep,
and Dark, corresponding to low intensity. On the contrary, some others like Vivid,
corresponds to colors that are closer to the pure representative of the basic color
term.

For our last example, we have employed a non-partition typology of fuzzy
color space for the definition of color terms related to fruits, presented in [1],
comprising among others the color terms Banana and Lemon. In [1], an experi-
ment was conducted for determining a fuzzy color space for fruits for each of 30
users, in order to check for differences in the definitions of the spaces, as well as
for compliance with each user’s subjectivity4.

For these fuzzy color spaces, in Table 13, we have calculated the degree of
inclusion and similarity between the fuzzy colors corresponding to the color terms
Banana and Lemon defined by each user, using the two approaches to inclusion
and similarity we have seen previously. The non-partition typology can be seen
in that, for users 2 and 9, both fuzzy colors are equal. It can be also observed
that, following the inclusion from Eq. (31) (Inc column) there are users who
consider colors that clearly belong to the concept Banana and do not belong to
the concept Lemon, and vice versa, since the corresponding degree of inclusion
between fuzzy colors is 0 (users 5, 6, 10, 13, 14, 15, 18, 19, 20, 24, 25, 26 and
30) while others do not consider that possibility (users 2, 9, 11, 16, 17, 22, 27
and 29) since the degree of inclusion is greater than 0. On the other hand, we

4A detailed description of the experiment, as well as the dataset and software employed, can
be found in http://www.jfcssoftware.com.
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Blue
Inc QInc

Vivid Blue 0.611 0.832
Brilliant Blue 0.427 0.706

Strong Blue 0.906 0.997
Deep Blue 0.207 0.473

Very Light Blue 0 0.053
Light Blue 0 0.168

Moderate Blue 0.25 0.499
Dark Blue 0 0.089

(a)

Red
Inc QInc

Vivid Red 0.76 0.959
Strong Red 0.04 0.535

Deep Red 0 0.099
Very Deep Red 0 0
Moderate Red 0 0.01

Dark Red 0 0

(b)

Orange
Inc QInc

Vivid Orange 1 1
Brilliant Orange 0.525 0.696

Strong Orange 0.9 0.989
Deep Orange 0.424 0.576
Light Orange 0 0.085

Moderate Orange 0.399 0.515

(c)

Yellow
Inc QInc

Vivid Yellow 1 1
Brilliant Yellow 0.425 0.492

Strong Yellow 0.435 0.7
Deep Yellow 0 0.077
Light Yellow 0.062 0.127

Moderate Yellow 0.312 0.415

(d)

Table 12: Inclusion degree between fuzzy colors defined in Γ̃ISCC−complete with respect to their
related fuzzy colors defined in Γ̃ISCC−basic. (a) Blue, (b) Red, (c) Orange and (d) Yellow.

can see that significantly larger values are obtained for some users following the
inclusion from Eq. (39) (column QInc). This is the case in the Banana ⊆ Lemon
column, which raises from the value 0 provided by Inc to values as high as 0.716
(user 24), with other five users raising from 0 to values higher than 0.5. The same
happens in the Lemon ⊆ Banana column for four users. This example illustrates
how one single object inA not being inB makes Inc yields a value 0 even if a high
percentage of overlapping exists between both fuzzy sets, and howQInc is able to
discard such cases by measuring the overlapping. Finally, in the last column, the
similarity between Banana and Lemon can be observed from two different points
of view: as an extension of the crisp notion of similarity where a value 0 is yielded
if there is at least one element in A that is not in B (Sim), and taking into account
the amount of elements in which A and B agree among all elements in A and B
(QSim). It can be observed that, following the similarity from Eq. (32) (Sim
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column) there are users who consider that the color concepts Banana and Lemon
are completely different (similarity degree = 0), whereas following the similarity
from Eq. (38) (QSim column) values greater than 0.5 can be obtained (users 8,
16, 20, 23 and 24).

6. Conclusions

Color comparison is a key issue and one of the most important problems in
computational systems dealing with color categories and color information. In

Banana ⊆ Lemon Lemon ⊆ Banana Lemon = Banana
Inc QInc Inc QInc Sim QSim

user1 0 0.504 0 0.381 0 0.287
user2 1 1 1 1 1 1
user3 0 0.551 0.32 0.641 0 0.424
user4 0 0.33 0 0.381 0 0.217
user5 0 0.049 0 0.011 0 0.009
user6 0 0.37 0.18 0.33 0 0.222
user7 0.674 0.971 0.475 0.804 0.475 0.785
user8 0 0.65 0.809 0.981 0 0.642
user9 1 1 1 1 1 1

user10 0 0.417 0 0.209 0 0.169
user11 0.451 0.72 0.422 0.889 0.422 0.662
user12 0 0.694 0.092 0.581 0 0.469
user13 0.082 0.603 0 0.461 0 0.363
user14 0 0.164 0 0.089 0 0.067
user15 0 0.442 0 0.537 0 0.323
user16 0.776 0.913 0 0.53 0 0.504
user17 0.192 0.584 0 0.625 0 0.457
user18 0 0.021 0 0.037 0 0.014
user19 0 0.018 0 0.008 0 0.006
user20 0.507 0.881 0 0.635 0 0.586
user21 0.769 0.882 0.746 0.906 0.746 0.81
user22 0.263 0.789 0.942 0.965 0.263 0.767
user23 0 0.702 0.571 0.851 0 0.626
user24 0 0.716 0.534 0.798 0 0.609
user25 0 0.182 0 0.084 0 0.064
user26 0 0.053 0 0.027 0 0.019
user27 0.742 0.962 0.824 0.913 0.742 0.882
user28 0 0.38 0 0.201 0 0.168
user29 0.787 0.959 0.639 0.813 0.639 0.787
user30 0 0.259 0 0.187 0 0.136

Table 13: Inclusion and similarity degrees between the fuzzy colors Banana and Lemon as defined
by 30 users.
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c′ Cu C̃ ′ Du C̃ ′

c rC̃(c, c′) (4) K(c,C̃ ′) (18) Pos(V=c — V is C̃ ′) (19)
R(c, c′) (9) Nec(V=c — V is C̃ ′) (20)

Cu C̃ K(C̃,C̃ ′) (21) Pos(V ∈ C̃ — V is C̃ ′) (22)
Inc(C̃,C̃ ′) (29) Nec(V ∈ C̃ — V is C̃ ′) (23)
Sim(C̃,C̃ ′) (32)
QInc(C̃,C̃ ′) (39)
QSim(C̃,C̃ ′) (38)

Du C̃ Pos(V is C̃ — V is C̃ ′) (24)
Nec(V is C̃ — V is C̃ ′) (25)
Inc(C̃,C̃ ′) (29)
Sim(C̃,C̃ ′) (32)
QInc(C̃,C̃ ′) (39)
QSim(C̃,C̃ ′) (38)

Table 14: Relations between color information and the corresponding equation numbers. Table is
symmetric, only elements in the diagonal or above are shown.

this paper we have shown that fuzzy set and possibility theories provide suitable
tools for solving two main, widely present color comparison problems: fuzzy
color resemblance (isomorphic to fuzzy color categorization), and matching of
color information under different uses of fuzzy colors. Although we use [1] for il-
lustrative purposes to define colors which we use to compare, our proposal here is
not dependent on the way in which colors are defined. In the same way, the partic-
ular formulations of resemblance, compatibility, inclusion and similarity measures
in this paper are just particular ways to perform such comparisons, but there are
many other tools in the literature that can be used for the same purposes, as we
have discussed and referenced all through the paper.

This work integrates and updates with new formulations some of our previous,
partial results for some of these problems, with additional contributions regarding
inclusion and similarity on the basis of the concepts of quantifier-based overlap-
ping indexes, that are here introduced for the first time, as well as illustrative ex-
amples and an experimental comparison. Table 14 summarizes our contributions
and contains the most common relations that, in our opinion, can be considered
when matching color information, where c and c′ ∈ Γ are crisp colors, and C̃, C̃ ′

∈ Γ̃ are fuzzy colors. To the best of our knowledge, this is the first work to offer
a global and integrated view of the problem of color comparison based on fuzzy
colors.
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As future work, we shall address the problem of matching color information
defined by level 2 fuzzy sets considering conjunctive and disjunctive use, like for
instance the colors I like are 0.5/red + 1/grey + 1/blue (conjunctively-used) and
she told me to paint the whole wall in 0.8/red + 0.7/green + 1/grey (disjunctively-
used). We shall also study the effect of the evaluation method and quantifier em-
ployed in the definition of Q-overlapping measures, in order to determine the most
suitable combination for particular purposes. Finally, our results will be used in
real-world problems, particularly fuzzy image segmentation based on color and
texture, image information retrieval, and linguistic description of images includ-
ing color terms in the setting of data-to-text systems.
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Descripción lingüı́stica de información visual mediante técnicas de minerı́a de
datos y computación flexible. This work has also been partially supported by
the Spanish Ministry of Science, Innovation and Universities and the European
Regional Development Fund - ERDF (Fondo Europeo de Desarrollo Regional -
FEDER) under project PGC2018-096156-B-I00 Recuperación y Descripción de
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