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1 Which factors influence the use of shared and privately-owned

2 e-scooters in the city of Madrid? Implications for urban mobility

3

4  Abstract

5 Micromobility using fully-electric two-wheeled vehicles is increasing in cities worldwide. E-
6  scooters, whether shared or privately-owned, provide short door-to-door trips by facilitating the
7  first/last mile stage of the journey. They are expected to improve livability in cities by reducing
8 harmful emissions and space occupation. In this respect, understanding travel behavior and
9 usage patterns is essential to regulate them appropriately. The purpose of this study is to

10  determine individuals’ sociodemographic variables, mobility-related attributes, and latent
11  constructs influencing e-scooter usage. To that end, an individual-level model is estimated to
12 explain the adoption and frequency of use of both shared and private e-scooters based on
13 survey data. The research takes the city of Madrid as a case study, and contributes to a deeper
14 understanding of the differences in the use of privately-owned and shared e-scooters, with a
15 particular focus on the influence of mobility habits and attitudinal variables. The study is
16 complemented with some insights on shared e-scooter usage at the trip-level, which shows the
17  substitution caused on walking trips, and their limited ability to promote modal shifts from the
18 private car. Finally, the research provides valuable implications for urban dynamics and
19 feedback for policymakers and transport planners.

20 Keywords: E-scooters; E-scooter sharing; Emerging Mobility Services; Urban Mobility;
21 Micromobility; Travel behavior.
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1. INTRODUCTION

Urban mobility tends to evolve towards shared mobility (Cohen and Shaheen, 2018), an
innovative transportation strategy that enables users to have short-term access to a certain
transportation mode (car, e-scooter, bicycle, etc.) on an as-needed basis (Shaheen et al.,
2020). This trend towards shared mobility is more evident among young generations (Le Vine
and Polak, 2015) and is framed within the advent of the concept of mobility as a service (MaaS),
that is, the bundling of different mobility options from multiple providers into a single digital
platform for planning, booking, and paying for services (Kamargianni et al., 2016). The adoption
of MaaS, in which shared mobility plays an important role, could reduce congestion, parking
needs (Falconer et al., 2018), traffic accidents (Warwick et al., 2017), and the carbon footprint of
personal mobility in urban areas (Kerttu et al., 2016). Nevertheless, potential regulatory barriers
and financial, operational, and social norms might decelerate its success (Polydoropoulou et al.,
2020).

Within shared mobility, micromobility includes all services that allow making hybrid use and
handling as a pedestrian or a vehicle driven personally at their convenience or when needed
(Christoforou et al., 2021). Micromobility vehicles operate at speeds typically below 25km/h (a
design speed no higher than 45 km/h) and range from the heaviest two-wheeled self-balancing
personal transporters to the smallest lightweight rollers, considering that an approximate weight
threshold of around 40 kg (Christoforou et al., 2021). Additionally, micromobility vehicles can be
human-powered or motorized, and shared or privately-owned (Christoforou et al., 2021;
Fonseca-Cabrera et al., 2021).

Based on the results of a recent survey in the United States and some EU countries, Heineke et
al. (2021) concluded that a significant proportion of urban dwellers would be willing to use
micromobility for their daily commute. Electric kick scooters, widely known as e-scooters, are
one of the most widespread micromobility modes in many cities worldwide (Hosseinzadeh et al.,
2021). Furthermore, shared e-scooters are the most widespread shared modality in European
urban areas (Fluctuo, 2022). The shared option allows short-term access to an e-scooter on
demand rather than having to buy the vehicle, generally subject to payment for using it.

Given the recent growth and prospects for the use of these vehicles, e-scooters are set to play a
major role in urban mobility (Younes et al., 2020; Tuncer and Brown, 2020), with important
implications for urban livability and sustainability. E-scooters have some positive impacts on
urban transportation and sustainability. Christoforou et al. (2021) highlight that these mobility
services can potentially contribute to reducing private car use, thus replacing single-occupancy
trips and mitigating its related negative externalities such as road congestion. Nevertheless, e-
scooters could also have negative impacts on urban mobility, since they may partly substitute
active modes and, as a consequence, generate negative effects on the environment (Reck et
al., 2021). Additionally, some aspects have been questioned such as the lifespan of the
vehicles, especially their electric batteries, the shared use of public space, and their implications
for road safety (Tuncer and Brown, 2020; Christoforou et al., 2021). For instance, some
contributions such as Fitt and Curl (2019) have analyzed the conflicts between pedestrians and
e-scooter users due to the latter riding on the footpath, an environment clearly non-suitable for
e-scooter use compared to e.g., bikeways (Zhang et al., 2021). Finally, although shared and
privately-owned e-scooters allow users to make similar types of trips, mobility dynamics could
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vary across users of each type of vehicle, so that urban implications could be different (Tuncer
and Brown, 2020; Oostendorp and Hardinghaus, 2022).

Understanding the factors affecting the usage of emerging micromobility systems is essential to
identify key implications for transport policy and planning analysis, particularly within a context
of rapid changes in urban mobility habits (Esztergar-Kiss et al., 2022), some of them further
influenced by the COVID-19 (Nikolaidou et al., 2023). The research works devoted to shared e-
scooters have grown exponentially in the past few years, in line with the widespread adoption in
many cities worldwide. However, almost no research efforts have been conducted to explore the
use of privately-owned e-scooters, nor to analyze differences in their usage patterns compared
to the shared option. Previous scientific literature has not addressed the relative influence of
using shared e-scooters with the usage of private ones, and vice versa. In this regard, since
both alternatives have similarities, it is valuable to jointly consider both these mobility options to
understand which factors may impact the adoption and frequency of use of shared and private
e-scooters.

From the user behavior perspective, previous scientific literature has mainly focused on
examining the impact of sociodemographic variables and activity-travel patterns on e-scooter
sharing usage, though the majority was conducted in cities where these services were not
available yet (see e.g., Mitra and Hess, 2021; Karli et al., 2022). Furthermore, a small number of
contributions deeply investigated the impact of latent variables when choosing e-scooters,
despite their key role evidenced for other micromobility services (see e.g., Mufioz et al., 2016;
Marquez et al., 2021). In addition, most of the research studies on e-scooter sharing were
conducted before the COVID-19 outbreak, so it has hardly been explored how e-scooter use
has been affected by e.g., individuals’ fear of COVID-19 contagion or preferences towards
private transport modes in the aftermath of COVID-19, as indicated by Christidis et al. (2022)
among others. Therefore, further efforts are needed to deeply understand the factors that
encourage the use of e-scooters, through a joint analysis covering both private and shared e-
scooters, in contexts where these services are already available. Further insight is also needed
regarding the impact of e-scooters on demand for traditional modes.

In view of the above, the purpose of this study is to explore the adoption and frequency of use
of both private e-scooters and free-floating e-scooter sharing systems. To that end, a survey
campaign was conducted in Madrid (Spain), one of the main hubs of shared mobility at the
international level given the high supply and variety of such services in operation, especially e-
scooter sharing services. This information was exploited to estimate an individual-level model
aimed at identifying the key factors (i.e., sociodemographic attributes, mobility-related variables,
or psychological preferences and attitudes) determining the usage of e-scooters. Therefore, this
research contributes to the scientific knowledge of micromobility by jointly exploring individuals’
choices towards both private and shared e-scooters. Additionally, the individual-level model is
complemented by some insights into the characteristics of e-scooter sharing trips in the city of
Madrid. Our results help understand individuals’ e-scooter patterns in the aftermath of COVID-
19, being useful for policymakers and transport planners in developing urban policies and
planning future infrastructure. At this point, other case studies may find some diverging trends,
thereby indicating different e-scooter behavior which could vary from city to city and in time. As
pointed out by Gomez et al. (2021), there are distinct differences between cities that may lead to
different behaviors.
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The remainder of this paper is organized as follows. After this introductory chapter, Section 2
reviews the most relevant body of literature for this research. Section 3 describes the case study
considered, the survey campaign managed to capture individuals’ use of e-scooters, and the
data used for this research through descriptive statistics. Section 4 provides the methodology
employed in this study, whereas Section 5 outlines some detailed information on the approach
used to build the latent psychological constructs. Section 6 provides modeling results and
relevant discussion. Finally, Section 7 presents the overall conclusions, and sets out possible
future research steps.

2. LITERATURE REVIEW

The scientific literature on e-scooters has increased noticeably in the past few years, in parallel
with the growing penetration of the shared option in many cities. However, the existing
knowledge is still limited in certain urban areas, especially when it comes to private e-scooters.
This is mainly for two reasons: first, e-scooters are a new micromobility option, so local
transportation practitioners and researchers continue to explore patterns of use of e-scooter
systems and to learn how the urban environment relates to them; and second, e-scooter
datasets are, with some exceptions, limited or unavailable to researchers (Jiao and Bai, 2020).

The majority of contributions in the field of e-scooters have focused on safety-related aspects
(see e.g., Yang et al.,, 2020; Shah et al., 2021; Cicchino et al., 2021; Haworth et al., 2021,
Karpinski et al., 2022). Many other publications have explored usage patterns of current shared
e-scooter systems at the trip level (see e.g., Jiao and Bai, 2020; Almannaa et al., 2021; Reck et
al., 2021; Fauser, 2021; Chicco and Diana, 2022), and the implications of this new urban
mobility actor for transport policy and regulation (see e.g., Button et al., 2020; Tuncer and
Brown, 2020; Riggs et al., 2021; D’Andreagiovanni et al., 2022). By contrast, relatively few
studies have explained the role of individuals’ characteristics —e.g., sociodemographic or
mobility-related attributes— and underlying factors on e-scooter usage or compared the
differences between private and shared e-scooter adoption.

From the travel behavior perspective, the scientific literature on e-scooters can be classified into
two main groups: (1) studies focusing on the intention to adopt e-scooters in cities where this
service is not available (ex-ante); and (2) studies focusing on urban areas where this service is
in operation (ex-post), thus considering data from real users of e-scooters.

Some findings can be highlighted concerning the first set of contributions (ex-ante studies).
These papers conduct stated preference surveys to analyze factors influencing the intention to
adopt e-scooter sharing in different contexts such as Greater Toronto (Mitra and Hess, 2021) or
Turkey (Karh et al., 2022). It is worth mentioning the study by Eccarius and Lu (2020), which
used a structural equation analysis to examine the impact of latent psychological variables on
the intention to use shared e-scooters. To that end, they surveyed university students in Taiwan
and concluded that the perceived compatibility of e-scooters with transportation needs has the
greatest effect on the intention to adopt these micromobility vehicles. Interestingly, they
observed that environmental consciousness, awareness-knowledge (personal knowledge and
attitudes toward electric vehicles), social influence (opinions of familiar people), performance
expectancy (whether shared e-scooters would be useful in daily mobility), effort expectancy
(easy technology and little effort to use shared e-scooters), and the price of these services are
critical factors affecting the usage intention of e-scooter sharing services.
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The second set of contributions (ex-post studies) considers case studies where e-scooter
sharing is already available, so it is possible to capture travel behavior and usage patterns from
real users. For instance, it is widely recognized by the scientific literature that e-scooter sharing
users tend to be males, young and highly educated people (see e.g., Fitt and Curl, 2019; Laa
and Leth, 2020; Javadinasr et al., 2022; Oostendorp and Hardinghaus, 2022). In terms of mode
substitution, it has been found that e-scooter trips mainly replace walking, bicycle, and private
cars (see e.g., James et al.,, 2019; Fitt and Curl, 2019; Reck et al., 2022; Oostendorp and
Hardinghaus, 2022; Weschke et al., 2022).

Regarding the factors that influence the intention to continue using shared e-scooters,
Javadinasr et al. (2022) applied a structural equation model based on survey data in Chicago
(US). They identified six latent variables influencing the continuance intention to use e-scooters:
perceived ease of use, perceived reliability, perceived enjoyment, variety-seeking lifestyle,
perceived usefulness, and social influence. All factors were found to have a positive relationship
with the continued use of e-scooters, but the strongest influence was observed for the perceived
usefulness of e-scooter sharing in meeting mobility needs.

Other contributions also address the impact of urban environment variables on e-scooter usage.
For instance, Jiao and Bai (2020) modeled spatial and temporal patterns of e-scooter trips from
April 2018 to February 2019 in Austin (US). They concluded a higher e-scooter usage in areas
with higher population density, proximity to the city center, higher density of bus stops or light
rail stations, street network connectivity, compact land use, and higher proportion of residents
with university studies.

Several authors have focused on exploring the characteristics of e-scooter trips, such as
temporal usage patterns and trip purpose, leading to inconclusive results. For instance, Caspi et
al. (2020) found that the use of shared e-scooters in Austin is higher on weekends and holidays,
while on weekdays their use is higher during off-peak hours. These results suggest that the
main trip purpose is other than commuting. Different findings were concluded by Hawa et al.
(2021) when analyzing the geo-temporal dynamics of shared e-scooters in Washington D.C.
(US). These authors noticed that the average number of shared e-scooters available on
weekdays is higher in the afternoon (from 12 p.m. to 6 p.m.), thereby suggesting that they are
mainly used for commuting compared to leisure. Interestingly, Wang et al. (2023) have noted
that, given the growth of the e-scooter sharing market, trip purposes related to this mobility form
will change over time.

The results are also diverse when analyzing e-scooter sharing as first/last mile solutions. For
instance, Smith and Schwieterman (2018) analyzed whether shared e-scooters can meet
mobility needs in Chicago (US) and pointed out that it is the best cost-benefit alternative for
first/last mile transport connections. However, McQueen and Clifton (2022) found that e-
scooters are not perceived as a preferred solution to the first/last mile travel by university
students from Portland (US).

Of particular interest for the purpose of this research, Laa and Leth (2020) and Oostendorp and
Hardinghaus (2022) investigated the socioeconomic profiles and usage patterns associated with
both shared and private e-scooters. To the best of our knowledge, these are the only studies
that have jointly analyzed users’ choices considering private and shared e-scooters. Both
studies adopted a descriptive approach to explore patterns associated with e-scooter users: Laa
and Leth (2020) in Vienna (Austria), and Oostendorp and Hardinghaus (2022) in Germany.
Interestingly, they found that owners present a higher frequency of use than renters. In terms of
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the gender distribution, they obtained different conclusions. Regarding mode substitution, it was
found that shared e-scooters mostly replace walking trips and public transportation, while
private e-scooters replace car trips. At the same time, Oostendorp and Hardinghaus (2022)
observed some complementarity between e-scooter sharing and public transport.

Finally, some studies have analyzed to what extent the COVID-19 pandemic has affected the
use of shared e-scooters. Dias et al. (2022) conducted a systematic literature review to examine
the role of shared e-scooters on urban resilience and sustainability during mobility restrictions.
From a more quantitative point of view, Hosseinzadeh and Kluger (2021) quantified the impact
of the pandemic on shared e-scooters and bikes in Kentucky (US) through a primarily
descriptive approach. Interestingly, Li et al. (2020) exploited data at the trip level in Zurich
(Switzerland) to explore variations of micromobility behavior before and during the pandemic.
Finally, a recent study by Arias-Molinares et al. (2022) examined the impact of the COVID-19
pandemic on the use of shared micromobility services in Madrid. By exploiting data from trip
records, these authors found that e-scooter sharing seems to be the most affected shared
mobility service with a downfall of 84% from pre-COVID-19 (before March 2020) to COVID-19
times (from March to December 2020). At the same time, trip time decreased by one minute
(12.3 vs. 11.3 min) and the average trip distance decreased by 200 meters (2.0 vs. 1.8 km).

Despite the increasing interest in understanding e-scooter use, there are still some gaps in the
literature that have motivated this research. As can be noted, there is a need to further explore
individuals’ choices and preferences toward the use of shared and private e-scooters. The
research by Laa and Leth (2020) provides an initial insight of undoubted interest in this field, but
analyzing a bigger sample and modeling individuals’ behavior are needed to obtain more
rigorous conclusions on the factors that might affect the use of private and shared e-scooters.
Besides, up to date only a small number of studies have explored the role of latent
psychological variables in the use of e-scooters (and particularly in the choice between shared
and private ones), although they have been shown to be key in many other contributions on
new urban mobility systems, see e.g., Acheampong and Siiba (2020), or Aguilera-Garcia et al.
(2022) for carsharing; and Mufioz et al. (2016) or Marquez et al. (2021) for bikesharing.
Additionally, most of the research studies in this field have been carried out before the COVID-
19 outbreak, so there is a need to study to what extent e-scooter use may have been affected
by COVID-related variables such as individuals’ fear of COVID-19 infection.

The current study contributes to the existing literature in several aspects. First, it jointly analyzes
the influence of multiple explanatory variables (individuals’ sociodemographic variables, mobility
patterns, and latent psychological constructs) on the use of shared and privately-owned e-
scooters, thus leading to a more complete and deeper understanding of the differences in the
use of these two mobility forms. This is done by modeling individuals’ use of e-scooters through
econometric techniques, taking Madrid as a case study. In addition, special attention is paid to
the role of psychological variables, which may significantly influence the use of e-scooters. This
could be the case of factors such as environmental consciousness or fear of COVID-19 infection
since, as indicated by several authors (see e.g., Christidis et al., 2022; Fernandez Pozo et al.,
2022; Vallejo-Borda et al., 2022), the COVID-19 pandemic has increased individuals’ preference
for private transport modes.
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3. THE DATA: A SURVEY CAMPAIGN IN A EUROPEAN CITY

3.1 Case-study context: the city of Madrid

The city of Madrid, with a total of 3,3 million inhabitants, is the capital of Spain and the second
largest city in the European Union after Berlin. Following the traditional European urban
standards, Madrid presents a high population density (average values around 9,000
inhab./km?), particularly in the inner districts (over 24,000 inhab./km?). The city has a strong
social and economic interdependence with numerous surrounding municipalities, all of which
form a metropolitan area with more than 6.5 million people. As in other urban areas worldwide,
Madrid has experienced an intense development of suburbanization in terms of housing and
business activities in recent decades.

Urban mobility in the city of Madrid is characterized by a reasonable balance towards
sustainable modes. According to the latest Madrid Mobility Survey (Consorcio Regional de
Transportes de Madrid [CRTM], 2020), active modes (walking and biking) account for 34.6% of
total trips in the city on a working day, followed by public transport (33.4%) and finally private
car/motorbike (28.6%). This modal split in Madrid is partly explained (in line with Feigon et al.,
2018) by its high population density and its large supply of public transport options. The public
transport system includes one of the longest metro networks at the international level,
complemented by an extensive network of urban and suburban bus services, as well as eight
suburban rail lines and four tram routes. Despite these sustainable patterns, the city
experiences recurrent problems with congestion and air quality (see Romero et al., 2019), with a
slightly favorable evolution in the past few years.

The large supply of public transport has been recently complemented by shared mobility
options, including services such as carsharing, e-moped sharing, or e-scooter sharing. The high
availability of these services has made Madrid one of the main international hubs for shared
mobility, as is clearly the case for e-moped sharing (see INVERS GmbH, 2022). As for shared
micromobility services, e-scooter sharing is one of the most widely adopted modalities in the
city. The first attempt to operate these services in the city took place in 2018, but some
problems with licenses forced the local government to put e-scooter sharing on hold until
February 2019. By 2020, the City Council granted 4,821 e-scooter licenses but, at the time this
research was initiated (2021), more than 7,600 shared e-scooter licenses were active
throughout the city, operated by 14 companies. Nevertheless, the number of shared e-scooters
actually in operation was very changeable over time and estimated to be significantly lower than
the total number of licenses granted. Unfortunately, there has been no official data on the total
fleet operated in Madrid by all e-scooter companies. In addition, it was estimated that, as of April
2021, there was a total of 254,000 users of e-scooters (either private or shared ones) in the
Region of Madrid (GESOP, 2021).

In the case of Madrid, e-scooters can only be ridden by one person, have no seat or saddle,
and are powered exclusively by electric motors which provide a maximum speed of 25 km/h. By
law, riding an e-scooter is permitted for people aged above 15, but those under 18 must wear a
helmet. In this respect, it is worth noting that e-scooter sharing companies do not accept
customers under the age of 18. In Spain, users of these vehicles must ride in the center of the
lane, upright and standing. Riding on sidewalks and pedestrian areas is prohibited, but this point
is often violated.
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E-scooter sharing services are provided throughout the city of Madrid, so even outer areas are
served. Each district or neighborhood is assigned a certain number of e-scooters that is
somehow related to its population, so that operators must meet these geographic quotas. As
seems reasonable, the supply of vehicles and the number of operators is higher in inner (and
denser) neighborhoods, but operators must serve the outer areas even if it is sometimes not
profitable for them. Given the low profitability and high competition, some companies have
recently withdrawn from the market. Furthermore, the local government is considering launching
a concession for three operators and imposing a fleet cap on shared e-scooters.

The information shown in Table 1 characterizes e-scooter sharing for the main operators
providing these services in Madrid by mid-2021. Charges are mostly established on a per-min
basis, but some companies set charges on an hourly basis (see the case of Scoot in Table 1).
Some operators also apply an additional charge (typically 1 Euro) for unlocking the e-scooter.
The approximate average price for renting an e-scooter is 0.15 Euros per minute, with prices
ranging from 0.11 to 0.23 Euros per minute. Shared e-scooters in Madrid are free-floating and
can be parked on the sidewalk, except in pedestrian streets or where there are specific parking
spaces for these vehicles (e.g., stations and anchorages specifically reserved for this purpose
on sidewalks and parking areas) within 50 meters.

Table 1. Characterization of e-scooter sharing services for the main operators in Madrid
(2021)

Operator Lime Taxify Scoot Voi Acciona
Implementation 2018 2018 2018 2018 2018
No. e-scooters 641 750 309 162 179

No. Districts operated

(out of a total of 21) 5 17 14 10 11

Unlocking fee 0 Euro 1 Euro 0 Euro 1 Euro 0 Euro

10 Euros per 1 h;
15 Euro per 2 h;
20 Euros per 3 h

0,15 0,15
Euro/min Euro/min

0,15 0,23

Pri . .
rice Euro/min Euro/min

Like many other cities around the world, Madrid experienced a special situation with respect to
COVID-19 infection in recent years. As a result of lockdowns and mobility restrictions, Madrid
experienced a rapid decrease in mobility rates, especially during the first lockdown?.
Additionally, the usage of private transport was very high compared to public transport (Akioui
Sanz et al., 2021; Radics and Christidis, 2022).

As indicated below in Section 3.2, the data employed in this research were collected in May-
July, 2021, a period when mobility restrictions were no longer effective, but when the COVID-19
pandemic was still quite active. Two main waves of infection were observed prior to this
research, from September to November 2020 and January to mid-March 2021. The widespread
vaccination of the population, which started in Spain in April 2021, led to a significant drop in
infections and their severity. As of May-July 2021, when the data for this research was

1 During the first lockdown (March-June 2020), trips made in the Region of Madrid fell by 70%
compared to pre-COVID levels, considering that only essential travel was allowed. After that
hard lockdown was lifted, trips by both private and transit trips in the Region of Madrid sharply
increased by more than 60% compared to the lockdown levels.



313
314
315
316
317
318
319
320

321

322
323
324
325
326
327
328
329

330
331
332
333
334
335
336
337
338

339
340
341
342
343
344
345
346
347
348
349
350

351

352
353
354

collected, the daily average (7-day average) did not exceed 2,000 infections (30
infections/100,000 inhab.), with cumulative incidence rates under 228/100,000 inhab. However,
some noticeable waves of infection were observed in the following months, especially during the
summer holidays (August 2021). In addition, the pandemic has brought significant changes in
individual behavior, greatly impacting trip demand and distribution (Arias-Molinares et al., 2022;
Christidis et al., 2022). For instance, public transport was still underperforming and teleworking
levels were higher compared to the pre-pandemic situation in major Spanish cities (Akioui Sanz
et al., 2021; Radics and Christidis, 2022).

3.2 Data collection and survey design

A specific survey campaign on e-scooter usage was conducted in Madrid in 2021. Existing data
potentially useful for this research and already available was not considered appropriate for the
purpose of this investigation, as is the case of e.g., the latest Madrid mobility survey in 2018
(see CRTM, 2020). Given the still minor presence of e-scooters in urban modal share, this
source captured very few e-scooter users and consequently provided scarce insight into
micromobility usage. Therefore, it was needed to design a specific survey to achieve the
objectives of the study to capture the main determinants that influence the use of e-scooters,
both privately-owned and shared ones.

The target population in this study comprises those people of legal age (people aged 18 years
and above), residing in and/or commuting to the city of Madrid, who are aware of the existence
of e-scooter sharing services and/or private e-scooters. The survey was designed after
developing a comprehensive review of previous questionnaires on individuals’ willingness to use
and/or adopt micromobility services (e.g., Munkacsy, 2017; Mitra and Hess, 2021). The final
questionnaire was defined after a pilot survey conducted by the authors. Several screening
questions were included in the questionnaire to exclude respondents who do not meet certain
requirements, such as residing outside the Madrid metropolitan area or not knowing about the
existence of e-scooters (shared and/or private).

The survey campaign was conducted from May to July 2021, avoiding summer break, holidays,
or special events, in order to collect fairly representative data on urban mobility patterns in
Madrid. Online questionnaires were considered the most appropriate approach for collecting the
information for this study for several reasons. First, this methodology enabled capturing answers
in difficult public-health situations due to the COVID-19 pandemic. Second, web-based
questionnaires have been widely used in similar studies on shared mobility (see e.g., Mitra and
Hess, 2021; Gomez et al., 2021; Julio and Monzon, 2022), providing good data quality with a
reasonable economic effort. The web-based survey was disseminated through multiple sources
such as messaging apps, banner ads, social media platforms, and electronic mailing lists. The
initial sample size was 768 responses, but the final database was reduced after excluding
incomplete answers, and removing those observations including inconsistent or non-logical
answers. Consequently, the complete dataset for this study consisted of 694 valid responses.

The survey captured four main aspects from respondents:

e Individuals’ sociodemographic characteristics: gender, age, level of education, household
annual income, occupation, household structure, and residential location based on zip
codes.
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Usual mobility habits and travel-related information: public transport card ownership,
vehicle ownership (including car, motorcycle, e-bike, and e-scooter), number of trips on the
last weekday and non-weekday (excluding walking trips), and number of walking trips over
10 minutes on the last weekday and non-weekday.

Lifestyle preferences and attitudinal statements: respondents were asked to rate their level
of agreement, on a 5-point Likert scale, towards 21 different statements on multiple topics.
The attitudinal statements covered the following individuals’ behaviors, preferences, habits,
and perceptions:

i)

i)

ii)

iv)

Vi)

Environmental consciousness. Environmentally friendly behavior concerning the mode
of transport chosen, waste recycling efforts, and willingness to pay more for
environmentally friendly products, were captured by several indicators. In this respect,
pro-environmental attitudes may lead to greater usage of environmentally friendly
modes of transport (such as electric shared vehicles, public transport, and bicycles)
instead of private fossil fuel vehicles, as already found in the literature (see e.g.,
Astroza et al., 2017; Acheampong and Siiba, 2020; Julio and Monzon, 2022).

Tech-sawviness. Several indicators captured the interest of the individuals regarding
new technologies, such as online social media, internet services, or mobile apps for
daily tasks. This latent construct has been widely used in previous research studies
exploring the usage of emerging urban transportation modes, such as carsharing (see
e.g., Veldzquez Romera, 2019; Acheampong and Siiba, 2020; Aguilera-Garcia et al.,
2022).

Physical agility. A set of basic physical attributes measures the capacity of the
individuals to ride a bicycle and climb stairs, slopes, etc. The inclusion of this construct
is reasonable since a relatively good physical condition seems to be an important
factor when riding a micromobility vehicle (Mufioz et al., 2013).

Willingness to share. Individuals’ willingness to purchase second-hand products, along
with the tendency to use sharing economy apps or websites (as is the case of e-
scooter sharing), was captured by several indicators. This construct may potentially
influence e-scooter sharing use, as also suggested for other shared mobility options in
the Spanish context (see e.g., Veldzquez Romera, 2019; Gomez et al., 2021;
Aguilera-Garcia et al., 2022). Additionally, our latent construct is also connected with
new technologies and disruptive practices, which also could affect the usage of shared
mobility options.

Preventive COVID-19 infection behavior. A set of indicators highlight the personal
susceptibility and sensitivity to COVID-19. The inclusion of this latent construct is
deemed noteworthy given that the COVID-19 pandemic has led to drastic changes in
individuals’ mobility behavior (see e.g., Shamshiripour et al., 2020; de Haas et al.,
2020; Christidis et al., 2022; Fernandez Pozo et al., 2022; Nikolaidou et al., 2023),
such as a modal shift from public transport to private vehicles.

Safety awareness. Several indicators capture individuals’ safety awareness as a
pedestrian and/or as a rider of different modes of transport (car, moto, bike), along
with perceptions of occupational risk prevention measures. Given the vulnerability of
e-scooter riders versus e.g. car drivers when riding on the street, the inclusion of this
latent construct in our behavioral model makes sense. Individuals’ perceptions of
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safety factors and risk aversion may potentially affect the use of micromobility
vehicles, as also revealed in the case of cycling (see e.g., Mufioz et al., 2016;
Marquez et al., 2021 or Julio and Monzon, 2022).

vii) Perceived availability of shared e-scooters. A set of statements addresses the
perceived and subjective availability of e-scooter sharing services. Even though the
presence of shared e-scooters is somewhat evident throughout Madrid city, adoption
or usage may be influenced by the subjective identification of shared e-scooters
circulating or parked around the city. Additionally, the degree to which people trust in
e-scooter sharing services depends on the availability of e-scooters at times and in
places they are needed, as indicated by Javadinasr et al. (2022).

e Usage of e-scooters: respondents reported their adoption and frequency of use of e-
scooters, both private and free-floating e-scooter sharing services (see more details in
Section 3.3). These are the main variables of interest modeled in this study. For a better
understanding of mobility trends related to e-scooter sharing, respondents were asked to
report details about their last trip in a shared e-scooter, including trip purpose, day of the
week, time of day, travel time, complementarity with other modes of transport in the same
trip, and the mode of transport that would have been used if no shared e-scooter had been
available.

To provide a clearer description of the survey content, it has been presented in four defined
blocks, as described above. Nevertheless, it is important to mention that sociodemographic-
related questions were presented at the end of the survey, and the battery of attitudinal
statements was mixed throughout the questionnaire, as suggested in the survey design
literature. Researchers carefully took all the actions needed to comply with the provisions of

current legislation on the anonymity and protection of personal data?.

The basic descriptive statistics of the socioeconomic, demographic, and activity-travel variables
are detailed in Section 3.3. In order to complement the modeling results, Section 3.4 provides
some insights into the use of e-scooter sharing systems at the trip level.

3.3 Data description

In the survey, respondents were asked to report their frequency of use of e-scooters, both
private and shared free-floating, among the following categories: i) | have never used it; ii) | last
used it some months ago; iii) | use it less than once a month; iv) | use it 1-4 times a month; and
V) | use it every week.

This information has been used to build the main four variables of interest in our model,
capturing the adoption and frequency of use of shared and private e-scooters. Adoption
variables are represented as binary variables indicating whether the individual has ever used
each mobility option, while the variables for frequency of use were considered to be built with
the following four categories: (1) infrequent (last used some months ago); (2) occasional (used

2 Appropriate informed consent and research permissions were obtained, and the data collected
have been kept confidential. Although sensitive data were asked from respondents (e.g.,
gender, age, level of income, etc.), the questionnaire did not collect personal information (e.qg.,
name, ID, residential address, etc.). Additionally, this paper only provides aggregated statistical
information and modeling results to ensure that sensitive data is not disclosed.

11



436
437

438
439
440
441
442
443
444

445
446

447
448
449
450
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

less than once a month); (3) monthly (used 1-4 times a month); and (4) weekly (used every
week).

Table 2 summarizes the distribution of the usage of both mobility options in the dataset.
According to the results, e-scooter sharing adoption (39.8%) is considerably higher compared to
the usage of privately-owned e-scooters (15.9%). By comparison, Fitt and Curl (2019) indicated
that only 18% of respondents had used privately-owned e-scooters. However, riders of private
e-scooters seem to make a more regular and frequent use (see Table 2), as also indicated by
Laa and Leth (2020), and Oostendorp and Hardinghaus (2022). Interestingly, 65 out of 110
users of private e-scooters reported that they had also used the shared option at some point.

Table 2. Usage (adoption and frequency of use) of shared and private e-scooters in the
complete dataset (n = 694)

Usage Shared e-scooters Private e-scooters
& Respondents % Sample  Respondents % Sample

Non-user (never used) 418 60.23 584 84.15
Infrequent (last used some months ago)? 60 8.65 58 8.36
Occasional (less than once a month)? 127 18.30 5 0.72
Monthly (1-4 times a month)? 65 9.37 9 1.30
Weekly (1 or more times a week)? 24 3.46 38 5.48
Total 694 100.00 694 100.00

a In the modeling estimation of the frequency of use of private e-scooters, this variable was

merged with the following two categories: (1) infrequent/occasional (used less than once a
month) with 63 out of 110 users; and (2) monthly/weekly (used more than once a month) with
47 out of 110 users. The reader is referred to Section 4 for further details.

Table 3 shows the distribution of explanatory variables in the complete dataset. Different
groupings within the categorical variables were tested to ensure good representativity and later
identify the factors most strongly related to the usage of e-scooters. It is important to remind that
people who did not express their awareness of the existence of e-scooters (private or shared)
were screened out of the survey. Therefore, the complete dataset is not necessarily
representative of the entire population residing in and/or commuting to Madrid, which does not
affect the validity of the sample for the type of analysis conducted in this research® (see
Wooldridge, 1999 and Solon et al., 2015). For comparative purposes, the values available from
official statistics (see Madrid City Council, 2021) are provided insofar as it is possible for the
sociodemographic variables (people aged 18 years and above) of the city of Madrid. However,
this comparison is quite complex to conduct and not totally fair, given that the targeted
population of this research is expected to be very different from the total population of Madrid. In
fact, the sample presents some over-representation of young and middle-young individuals,
which seems reasonable given the data collection method and the greater awareness of shared
mobility services among this segment of the population.

3 1t should be noted that the focus of the current paper is not so much on obtaining a perfect
representativeness of the target population as it is on estimating causal effects, i.e., how
changes in exogenous factors impact the endogenous variables of interest. This requires
obtaining sufficient heterogeneity and subgroup sample sizes to have precise estimates and
adequately detect causal relationships and patterns in the data from the statistical models.

12



467  Table 3. Summary of explanatory variables in the complete dataset
o % Official
VARIABLES Subgroup Respondents % Sample Data 2021
SOCIODEMOGRAPHIC ATTRIBUTES
Gender Male 414 59.7% 45.8%
Female 280 40.4% 54.2%
Age 18-19 88 12.7% 2.2%
20-24 248 35.7% 6.1%
25-34 166 23.9% 16.1%
35-49 131 18.9% 27.6%
50 or more 61 8.8% 48.1%
Education Secondary education or lower 255 36.7% 62.3%
Bachelor’s degree(s) 195 28.1% 7.4%
Graduate degree(s) (e.g., MS, PhD) 243 35.0% 30.2%
DN/DWA 1 0.1% 0.1%
Annual HH income Less than 18,000 Euro 71 10.2%
18,000 to 29,999 Euro 106 15.3%
30,000 to 59,999 Euro 135 19.5%
60,000 Euro or more 102 14.7%
Without own income 158 22.8%
DN/DWA 122 17.6%
Occupation Student 277 39.9%
Employed 210 30.3%
Part-time employee/student 133 19.2%
Other (homemaker, unemployed, retired, etc.) 74 10.7%
Household Living alone 38 5.5%
structure Living with non-relatives (e.g., roommates) 64 9.2%
Couple without children 78 11.2%
Family with children 510 73.5%
Other types of family 4 0.6%
Residential Madrid city: inside the M30 Ring 212 30.6%
location Madrid city: outside the M30 Ring 241 34.7%
Metropolitan area (outside Madrid city) 195 28.1%
DN/DWA 46 6.6%
MOBILITY-RELATED ATTRIBUTES
Public transport No 150 21.6%
card ownership Multi-personal reloadable card (10-journey and 161 23.2%
single ticket) '
Monthly/Annual season ticket 383 55.2%
Vehicle ownership No 151 21.8%
Regular access to a vehicle 543 78.2%
E-bike ownership No 433 62.4%
Regular access to an e-bike 261 37.6%
E-scooter No 592 85.3%
ownership Regular access to an e-scooter 102 14.7%
Weekday mobility Zero trips 66 9.5%
(excluding walking 1to 2 trips 436 62.8%
trips) 3 or more trips 192 27.7%
Non-weekday Zero trips 120 17.3%
mobility (excluding 1 to 2 trips 351 50.6%
walking trips) 3 or more trips 223 32.1%
Weekday walking Zero trips 149 21.5%
trips over 10 min 1to 2 trips 383 55.2%
3 or more trips 162 23.3%
Non-weekday Zero trips 124 17.9%
walking trips over 1to 2 trips 301 43.4%
10 min 3 or more trips 269 38.8%
468

469  As can be observed in Table 3, the sample has sufficient sociodemographic variability. The
470  sample presents a higher proportion of males (59.7%) and individuals aged under 35 (72.3%).
471  There is also a noticeable presence of highly educated people, with 63.1% of respondents
472 having university studies, while household income is fairly evenly distributed. Concerning
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occupation, 39.9% of respondents are students, 30.3% are employees, and 19.2% are part-time
employees/students. As for household structure, families with children make up the majority of
the sample (73.5%). These sample characteristics are in line with many aforementioned studies
on emerging urban mobility services (see e.g., Munkacsy and Monzon, 2018; Wang et al., 2018;
Gomez et al., 2021), particularly if we take into account that gender and age gap is the most
noticeable sociodemographic characteristic in terms of interest in and use of micromobility
services (see e.g., Degele et al.,, 2018; Nikiforiadis et al., 2021; Mitra and Hess, 2021,
Javadinasr et al., 2022).

Most respondents live in Madrid city, 30.6% of them inside the first ring road M30 and 34.7%
outside the M30. The remainder 28% of respondents live beyond the municipal limits of Madrid
but within the metropolitan area and commute to the city of Madrid. Concerning travel-related
information, most respondents have a public transport card, either a monthly/annual (55.2%) or
a multi-personal reloadable (23.2%) transit card; and there is a noticeable share of individuals in
the sample with regular access to a vehicle (car/moto) in their household (78.2%). Ownership or
access to an e-bike or an e-scooter presents a lower proportion (37.6% and 14.7, respectively),
as could be expected. Finally, the distribution indicates slightly higher mobility rates (excluding
walking trips) during weekdays compared to non-weekday mobility, while the opposite is found
for walking trips over 10 min.

The information presented in Appendix A shows the distribution of explanatory variables across
e-scooter adoption (either private or shared). This point is of great interest to explore, at least
preliminarily, differences between users and non-users of shared and private e-scooters in
terms of the distribution of all potential explanatory variables. According to the results, gender,
age, education, and occupation seem critical variables impacting the use of e-scooter sharing.
There is a higher presence of males than females within the group of shared e-scooter users.
The proportion of adopters is also higher among young people and students. Concerning the
level of education, we can observe a higher share of adopters with a Bachelor's degree across
shared e-scooter users compared to the complete dataset. Furthermore, we can observe that e-
scooter sharing services are more highly adopted by respondents living with non-relative
members or roommates, which is also related to young people and students. It is also found that
living in the city center could be related to a greater adoption of e-scooter sharing services,
which can be explained by the fact that the supply of these services is greater in denser urban
districts. Likewise, the use of e-scooter sharing seems to be higher among those people who
declared not having regular access to a private vehicle and/or an e-bike, and those individuals
frequently using public transport. Finally, shared e-scooter adopters show a somewhat higher
intensity in their out-of-home activity (higher weekend mobility rates).

As for private e-scooters, some differences can be found in this preliminary analysis. Age does
not seem to influence the probability of adoption. Additionally, it is observed that the use of
private e-scooters is higher among respondents living in Madrid city, which is not only limited to
residents of the city center as was previously the case with the shared option. The most
interesting trend is the influence of the usage of public transportation. In this respect, according
to Appendix A, it seems that private e-scooter adopters are low-intensive users of public
transport, while a complementarity effect with vehicle ownership is suggested.

It is worth noting that all of the above comments are of great interest but can only be considered
preliminary insights, and more rigorous techniques are needed to draw more conclusive results
on the use of shared and private e-scooters.
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3.4 Insights on the use of e-scooter sharing systems at the trip-level

This section complements the individual-level model by exploring e-scooter sharing mobility
patterns at the trip level in the city of Madrid. Specifically, it characterizes e-scooter sharing
demand, providing insights into the mobility trend of this service at the trip-level. To that end, we
exploit the information on the last e-scooter sharing trip provided by those users who declared
remembering that trip (n = 239; 86.6% of adopters of shared e-scooters in the sample). This
information is particularly relevant in the context of rapid changes due to, among other things,
the COVID-19 pandemic and before a fleet cap on e-scooters is imposed in Madrid.
Additionally, it is important to note that the information on the last private e-scooter trip is not
representative enough, so we decided not to use it for this paper. We did not obtain enough
representativeness because: first, private e-scooter adoption seems to be low (15.9%); and
second, with the aim of avoiding an excessive amount of time for completing the questionnaire,
those people who adopted both shared and private e-scooters were asked to report only on the
last trip (either by shared or private e-scooter) they remembered.

Table 4 includes descriptive characteristics for the trips by shared e-scooters reported in the
subsample. This data includes multiple trip-related attributes such as trip purpose, day of the
week, time of day, travel time, complementarity with other modes of transport in this specific trip,
and the mode that would have been used if the shared e-scooter had not been available. As
one might expect, this information should be taken with caution because it is difficult to
disentangle whether the choices made for the last e-scooter sharing trip are a snapshot of a
specific choice or simply a reflection of the overall activity-travel pattern of the individual. Thus,
this approach is intrinsically exploratory, considering characteristics of an isolated trip outside
the broader context of the individual’'s mobility patterns.

As can be noted, the most common trip purpose is by far leisure (51.5%), followed by work-
related trips (18.8%), that is, commuting to the workplace or education center/university. These
insights into trip purposes are also aligned with other research works such as McKenzie, G.
(2019), Caspi et al., (2020), Oostendorp and Hardinghaus (2022), and Arias-Molinares et al.
(2022). Remarkably, 15.5% of respondents reported having used the shared e-scooter just to try
the service, denoting that it is still an emerging urban transportation mode. In terms of time-
dependent patterns, a higher share of trips has been made during weekends, late evenings,
and night periods, which again is also connected with leisure activities, the most common trip
purpose reported above. Along the same line, other studies (Bai and Jiao, 2020; Caspi et al.,
2020) found greater e-scooter sharing ridership on weekends. Additionally, Bai and Jiao (2020),
Reck, et al. (2021) and Arias-Molinares et al. (2022) also observed that the use of shared e-
scooters is higher in the afternoons and evenings. By contrast, Hawa et al. (2021) suggested
that e-scooter sharing is mainly used during weekdays in the case of Washington D.C. (US).

On the travel time dimension, it seems that e-scooter sharing systems are mainly covering
short-distance mobility needs, given that the majority of trips are under 15 minutes, whereas
only 15.5% are over 20 minutes. This finding is also supported by previous research studies,
which indicate an average trip time of 7.5 minutes in Austin (Jiao and Bai, 2020), 11.3 minutes
in Madrid (Arias-Molinares et al., 2022), and 16 minutes in Germany (Oostendorp and
Hardinghaus, 2022). In this regard, we can confirm that e-scooters are of special interest for
short-distance trips in urban settings.
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Table 4. Trip characteristics of the last trip in a shared e-scooter

VARIABLES (nT:";’;g) % Sample
Trip purpose Leisure/social or recreational activity 123 51.5%
Commuting to the workplace or education center/university 45 18.8%
Attending a work meeting (outside my workplace) 1 0.4%
Shopping, personal or family errands 26 10.9%
Trying an e-scooter sharing service 37 15.5%
Other 7 2.9%
Day of week Monday-Thursday 80 33.5%
Friday 31 13.0%
Saturday-Sunday 101 42.3%
DN/DWA 27 11.3%
Time of day 6:00 - 13:00 34 14.2%
13:00-17:00 34 14.2%
17:00 - 21:00 91 38.1%
21:00 - 2:00 45 18.8%
2:00 - 6:00 12 5.0%
DN/DWA 23 9.6%
Travel time Less than 5 minutes 22 9.2%
Between 5 and 10 minutes 75 31.4%
Between 10 and 15 minutes 66 27.6%
Between 15 and 20 minutes 33 13.8%
More than 20 minutes 37 15.5%
DN/DWA 6 2.5%
Complementarity  Public transport: metro, bus, train, commuter rail, etc. 61 25.5%
with other My own vehicle 17 7.1%
modes Other shared mobility options (carsharing, moped sharing, bikesharing) 7 2.9%
No 154 64.4%
Mode Walking 135 56.5%
substituted Public transit: metro, bus, train, commuter rail, etc. 44 18.4%
My own vehicle 5 2.1%
My own e-scooter or bicycle 3 1.3%
Other shared mobility options (carsharing, moped sharing, bikesharing) 29 12.1%
Taxi or ridehailing 14 5.9%
Other 9 3.8%

Furthermore, we explore the complementarity with other modes of transport, that is, those
modes from which users are switching to/from a shared e-scooter. Most e-scooter trips involve
only one stage (64.4%), so no combination with existing transport modes is observed for the
majority of cases. Nevertheless, there is some complementarity between e-scooter sharing and
public transport (25.5%), increasing its efficiency and attractiveness. In this regard, Oostendorp
and Hardinghaus (2022) also observed that nearly a quarter of shared e-scooters trips are
combined with public transport.

Finally, from descriptive statistics, there is evidence that shared e-scooters have mainly
substituted walking trips. In this regard, 56.5% of the trips would have been made on foot in
case e-scooter sharing had not been available. This is followed by public transportation (18.4%)
and, to a lesser extent, other shared mobility options (12.1%). This finding is aligned with other
research on shared e-scooters (see e.g., James et al., 2019; Fitt and Curl, 2019; Laa and Leth,
2020; Mitra and Hess, 2021; Nikiforiadis et al., 2021; Oostendorp and Hardinghaus, 2022;
Javadinasr et al., 2022; Reck et al., 2022; Weschke et al., 2022). Considering the results, the
idea that car trips are barely substituted by e-scooter sharing seems to be reinforced, so the
positive impacts of e-scooter sharing on the environment happen to be questionable.
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4. METHODOLOGY

This research explores the key variables (socioeconomic, psychological constructs, mobility
habits, etc.) determining the usage of e-scooters at the individual level. To that end, the
methodology adopts highly advanced econometric techniques in the framework of choice
modeling, based on the data collected from a survey campaign. As commented above, the
sample size consisted of 694 valid responses, which is used in all the modeling estimations,
except for the final submodels on the frequency of use (276 and 110 individuals make up the
subsamples of e-scooter sharing and private e-scooters, respectively).

Particularly, we estimate a choice model based on the utility-maximizing framework (see e.g.,
Ben-Akiva et al., 2002) at the individual level, in which we integrate latent behavioral constructs
and include multi-stage interrelations between variables. Within the choice modeling framework,
we used the statistical technique of Generalized Structural Equation Modeling (GSEM), since
this approach provides a flexible tool to easily analyze the interrelations between variables,
study complex choice processes, incorporate successive interrelationships between
endogenous variables, accommodate cause-effect structures, and include multiple linking
functions of different nature (Rabe-Hesketh et al., 2004). The standard calibration method is the
maximum likelihood estimation. An in-depth explanation of the GSEM technique, as well as its
estimation process, is beyond the scope of this article so the reader is referred to Rabe-Hesketh
et al. (2004) and Bartus (2017). It is worth noting that GSEM-based analyses have been widely
adopted in previous studies in the field of transport research (see e.g., Yin et al., 2020; Vega-
Gonzalo et al., 2023).

Prior to estimating the aforementioned model, we built the unobserved latent constructs from
the responses to the 21 attitudinal statements (indicators) captured in the questionnaire on
different topics. To that end, an Exploratory Factor Analysis (EFA) was conducted to extract the
optimum latent variables (factors) that sufficiently account for the covariance patterns among
them. The EFA suggested seven factors for the indicators collected in the survey: environmental
consciousness, tech sawviness, physical agility, willingness to share, preventive COVID-19
infection behavior, safety awareness, and perceived availability of shared e-scooters. This was
subsequently confirmed by the Confirmatory Factor Analysis (CFA). Section 5 presents further
details of the indicators employed, their internal consistency, the seven unobserved latent
constructs obtained, the validity of the postulated structure, and the results of the statistics in the
CFA framework.

After defining the latent constructs, we jointly estimate the measurement variables and choice
outcomes using a GSEM-based analysis, which integrates the latent constructs and represents
multi-stage interrelations between variables as explained below. An overview of the individual-
level model adopted to explain the usage of both shared and private e-scooters is presented in
Figure 1. Firstly, in the SEM part, the latent constructs are defined as functions of individuals’
sociodemographic factors. These relationships are estimated through observations of the latent
construct indicators since a parsimonious dependence structure through the stochastic latent
constructs is established. Then, we simultaneously preserve the correlation among
measurement variables by extracting the seven optimum latent variables (see more comments
in Section 5), which can explain the common variances in the measurement variables.
Furthermore, both the underlying latent constructs and the exogenous variables are
incorporated as determinants of all endogenous outcome variables of interest in this research:
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mobility rates and walking trips on the last weekday and non-weekday, and especially, adoption
and frequency of use of e-scooters (shared and private ones).

Gender Age Education ( EI’W‘II:OH. )W TE_Ch )
E “.conscious,” ‘. sawviness ./
i3 8 T |
g — HH Income HH structure /’Physical N ™/ COVID-19™,
E 5 { - J( Sharer )( )
fa g \agility S\ \behavior /
9B Public Ebikeand || o oo e N
= transport card vehicle location ( 2 Y ( ercm:«lre )
ownership ownership N EIERS, 7 Ny, BREllD 2
| Discrete Choice |
Models SEM

{ Weekday Non-weekday Weekday Non-weekday | ! Indicators
mobility mobility walking trips walking trips
{4 il (ordinal) (ordinal) (ordinal) (ordinal) |
H '} e 4 E
B A
E Adoption of Adoption of
§ E i| shared e-scooters |, | private e-scooters
E . & (binomial) ‘\ {binomial)
£ 8E o\
b g g Frequency of \' Frequency of
c o use of shared use of private
g :E e-scooters e-scooters
z {ordinal) {ordinal)

Figure 1. Structure of the individual-level model to explore the usage of both shared and
private e-scooters

As can be observed in Figure 1, the endogenous variables are modeled in a sequential manner
by employing different link functions (ordinal and binomial logit) depending on the nature of
each dependent variable. The sequential structure adopted in the individual-level model is
aimed at explaining the usage of both shared and private e-scooters, controlling for potential
self-selection effects, and accommodating recursive effects among variables. After testing
multiple recursive directionalities between endogenous variables, the best fitting model was
obtained in the causal specification assuming both mobility rates and walking trips (on the last
weekday and non-weekday) impacting the adoption of shared and private e-scooters, and all
the above endogenous variables finally influencing the frequency of use. Therefore, the
adoption variables control for the potential self-selection effect coming from non-users of each
mobility option. Additionally, the adoption of shared e-scooter sharing is assumed to impact both
the adoption and frequency of use of private e-scooters. Consequently, the current study also
holds insights into how e-scooter sharing attitudes influence the usage of private e-scooters,
which has been crucial in previous research on other micromobility services (see for example
Julio and Monzon, 2022 for the case of bikesharing in Madrid).

Finally, it is important to mention that, although our data on the frequency of use of private e-
scooters are fairly in line with previous research (see e.g., Fitt and Curl, 2019; Laa and Leth,
2020; Oostendorp and Hardinghaus, 2022), the number of observations in certain categories is
low for the purpose of modeling (see Table 2). In this regard, different groupings within the
categories were tested to ensure good representativity and thorough application of the GSEM-
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based analysis. Consequently, the variable for frequency of use of private e-scooters was
merged with the following two categories: (1) infrequent/occasional (used less than once a
month) with 63 out of 110 users; and (2) monthly/weekly (used more than once a month) with 47
out of 110 users.

5. LATENT VARIABLES CONSTRUCTS

Respondents were asked in the questionnaire to report their level of agreement about 21
attitude statements on different topics (see Figure 2), which represent the indicators employed
to later build the underlying latent constructs included in our model. A Likert-type scale ranging
from 1 (completely unidentified) to 5 (completely identified) was the scoring system used to
measure the attitudinal behavior of the individuals. Thus, the current study holds insights into
how different individual attitudes and preferences influence the usage of e-scooters, which have
been crucial in previous research on other emerging mobility services such as ridehailing or
carsharing. Following recommendations in the survey literature, these statements were not
designed in a homogeneous way and were mixed throughout the questionnaire to mitigate
automatic responses by individuals and include adequate heterogeneity in each latent
construct. Based on these statements, an EFA was conducted to specify the optimal number of
latent constructs that sufficiently account for the covariance patterns among them. After testing
different numbers of orthogonal and oblique rotations, an EFA with oblique Promax rotation was
used in this research, making the solution more interpretable. Additionally, a factor loading value
of 0.50 was laid down as the threshold to maintain an indicator within a factor. This value
indicates the relationship of each indicator with the latent constructs, i.e., the strength of each
indicator on a factor and its direction.

The EFA suggested seven latent factors for the 21 indicators. Then, we used CFA to test the
specific theoretical hypothesis about the data obtained with the EFA. Therefore, making the
prior assumption obtained in the EFA, we validated the structure across observed indicators and
latent variables according to the literature (Akaike, 1987; Hu and Bentler, 1999; Kline, 2016).

Figure 2 presents the statements obtained in each underlying latent construct according to the
EFA and CFA results, and the attitudinal statement loadings obtained with the EFA, which were
as expected. It is important to note that two statements were removed as they did not load well
on any of the factors and obtained a factor loading lower than 0.50. As a result, 19 attitudinal
statements were finally kept.

Factor 1 (FA1) captures the pro-environmental attitudes of the individuals with three indicators.
Factor 2 (FA2) is made up of three statements that reflect the familiarity of individuals with new
technologies. Factor 3 (FA3) measures the ability of individuals to ride a bicycle and climb
stairs, slopes, etc. Factor 4 (FA4) is related to individuals’ willingness to purchase second-hand
products, along with the tendency to use sharing economy apps or websites. Factor 5 (FA5) is
associated with four indicators and refers to the personal susceptibility and sensitivity to COVID-
19. Factor 6 (FAB6) captures individuals’ perceptions of safety factors and risk aversion through
three indicators. Finally, Factor 7 (FA7) measures the perceived and subjective availability of e-
scooter sharing services. As a result, we constructed 7 latent variables, denominated
“Environmental consciousness” (FAl), “Tech-savviness” (FA2), “Physical agility” (FAS3),
“Willingness to share” (FA4), “Preventive COVID-19 infection behavior” (FA5), “Safety
awareness” (FAB), and “Perceived availability of shared e-scooters” (FA7).
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Attitude statements in the survey

When choosing my mode of transport, | try to be environmentally friendly

| <0817
| l usually recycle at home <— 0.695 ——
| Generally, | am willing to pay more for a product that is more environmentally friendly |€:—‘ 0.738 —
| frequently use online social media (e.g., Facebook, Twitter, Instagram, or Snapchat) |<__ i
I regularly use internet services or mobile applications to facilitate my _ ST~
daily life: banking services, online purchases, GPS navigation, email, etc. < 0.666 —
= = = 0754 —
Learning how to use new smartphone apps and testing them is easy forme <
I am able to ride a bicycle without any problems <—0.814
| get out of breath too easily while walking upstairs, slopes, etc. <0705 ===
I regularly use sharing economy apps or websites: Airbnb, Wallapop, Couchsurfing, etc. |<— 0834
I am willing to purchase second-hand products (clothing, furniture, etc.) <— 0.857 —
I wash my hands frequently and do not touch anything that someone B
else might have touched — 0.626_
I have decided to reduce my social activity to prevent the transmission of the COVID-19 | < — ggsa __—
Given the current health situation, | go out strictly as needed <— 0.858 —
Due to COVID-19, | avoid places where | may find crowds , 0.758
(public transport, cinema, gymnasium, etc.) -
Safety is a fundamental aspect when choosing my mode of transport o797
l only cross a street by the pedestrian crossing and/or if | have a green light <— 0531 ——
Itis essential to comply with occupational risk prevention measures <— 07—
I notice shared e-scooters parked or circulating near my home €— 0823
I notice shared e-scooters parked or circulating near 0761 —

my frequent destinations (work, school, and other places)

Figure 2. Latent variables constructs and factor loadings obtained in the EFA for each
attitude statement in the survey questions

Two different tests were calculated to check sampling adequacy for each latent variable and the
whole set, as well as certain redundancy between the variables: the Kaiser-Meyer-Olkin (KMO)
test and Bartlett’s test of Sphericity. First, the KMO value of 0.740 upholds the adequacy of the
sample, so it was plausible to use factor analysis for the data of this study. Second, the p-value
from Bartlett's test of Sphericity indicated the adequacy of conducting factor analysis
techniques. Finally, multiple overall goodness-of-fit statistics were conducted in the CFA
framework to determine the extent to which the postulated structure is consistent with the EFA
results. These statistics also test whether the specific theoretical hypothesis fits with the latent
variable measurement model. As can be observed in Table 5, the results obtained uphold the
validity of the latent constructs according to the cutoff values recommended by Akaike (1987),
Hu and Bentler (1999), and Kline (2016).

Table 5. Goodness-of-fit statistics conducted in the factor analysis framework

Goodness-of-fit index Measurement model Recommended cutoff values

KMO test (overall) 0.740 >0.50
Root Mean Square Error of Approximation (RMSEA) 0.045 <0.08
Comparative Fit Index (CFl) 0.923 >0.90
Tucker Lewis Index (TLI) 0.900 >0.80
Standardized Root Mean Square Residual (SRMR) 0.044 <0.08
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6. MODELING RESULTS AND DISCUSSION

This section reveals the model estimation results obtained from the GSEM-based analysis
investigating e-scooter usage. First, we examine the modeling results for the structural
relationships between individual sociodemographic and latent constructs (see Section 6.1). In
Section 6.2 we briefly present the structural relationships between the first block of endogenous
outcome variables (individuals’ mobility rates during weekdays and weekends) and both the
latent constructs and the individual sociodemographic variables. Section 6.3 addresses the
outcomes from the submodels, explaining the main variables of interest: adoption and frequency
of use of e-scooters (shared and private ones). Finally, Section 6.5 affords relevant implications
from this research.

It is worth noting that non-statistically significant explanatory variables were excluded to get
parsimonious model specifications. Nevertheless, some of these variables have been kept
because of their intuitive insights and interpretation (see Tables 6 and 7, and Appendix B),
which may also provide useful input in future specifications on shared mobility services using
e.g. a larger sample size.

6.1 Model results for the latent variables

The modeling results for the structural relationships between individual sociodemographic inputs
and the seven latent constructs are shown in Table 6. As can be observed in Table 6,
household income is the sole variable that is statistically significant, presenting an inverted U-
shaped effect. Medium-income individuals (between 30,000 and 59,999 Euro) show a higher
environmental consciousness compared to respondents with lower and higher incomes. The
modeling results also indicate a significantly higher tech-savviness for individuals with a higher
level of income. As expected, familiarity with new technologies is lower as age increases.

Our findings regarding the physical agility construct indicate a lower capacity to climb stairs,
slopes, and so on, and ride a bicycle for females and aged individuals. Some statistically-
significant results are also obtained for several categories clearly related to older ages
concerning occupation and household structure (e.g., retired people, families with children, etc.).
By contrast, strong connections are also found between this latent construct and individuals with
higher incomes.

As for the construct capturing individuals’ willingness to share, the model finds higher sharing
attitudes among females, while people aged 50 and over have a statistically significant lower
sharing propensity. It is important to mention that our latent construct is also connected with
new technologies and disruptive practices, such as the tendency to use sharing economy apps
or websites (as is the case of the ones used for e-scooter sharing).

Concerning the latent construct capturing the preventive COVID-19 infection behavior of the
individuals, the results clearly reflect a significantly higher susceptibility and sensitivity to
COVID-19 as age increases. Our findings also indicate that employees are significantly less
likely to have COVID-19 infection preventive behavior, which could be linked to engaging in
indispensable social interactions (e.g., individuals working directly with the public or not having
the possibility to telework). Finally, there is higher risk awareness and preventive behavior in
families without children, compared to other household structures.
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Table 6. SEM component results: sociodemographic determinants of latent variables

VARIABLES
(base category)

Environmental
consciousness

Tech-savviness

Physical agility

Willingness to
share

Preventive COVID-
19 infection
behavior

Safety awareness

Perceived
availability of
shared e-scooters

Gender
(Male)

Female

-0.401*** (0.073)

0.292*** (0.095)

0.203*** (0.038)

Age
(18-19)

20-24
25-34
35-49

50 or more

-0.365*** (0.048)
-0.498*** (0.067)

-0.308** (0.135)

0.186*** (0.062)
0.258*** (0.080)

0.102** (0.049)
0.266*** (0.067)

-0.281* (0.150)
-0.281* (0.150)
-0.380* (0.226)

Education
(Secondary
education or
lower)

Bachelor’s degree(s)

Graduate degree(s)

-0.110%** (0.042)

0.320** (0.136)

0.323*(0.172)

Annual HH 18,000 to 29,999 Euro 0.057 (0.077) - - - - - -
income
(Less than 30,000 to 59,999 Euro 0.123* (0.071) - 0.185* (0.101) - - - -
18,000 Euro) 60,000 Euro or more - 0.178*** (0.055) 0.290** (0.113) - - - 0.433*** (0.157)
Without own income 0.055 (0.067) -- -- -- -- -- -0.235* (0.136)
Occupation Employed - - -0.330%** (0.096) - -0.204*** (0.057) - -
(Student) Part-time
employee/student 0.257%(0.131)
Other - - -0.428%** (0.122) - - - -
Household Living with non-relatives -- -- -- - - - -
Structure
(Living alone) Couple without children - - - - 0.165** (0.067) - -
Family with children -- -- -0.171%* (0.084) -- -- -- -0.677*** (0.122)
Observations 694 694 694 694 694 694 694

Level of significance: *** p < 0.01, ** p < 0.05, *p < 0.1.
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The strongest predictors of safety awareness are gender, age, and education. In this regard,
women are more likely to have a higher perception of safety factors and risk aversion. The
same was observed for older people than their younger counterparts, while the opposite is
found for respondents with university studies. The last latent construct captured the subjective
perception of the availability of e-scooter sharing services in Madrid streets. Interestingly, the
model denotes that older respondents and families with children are significantly less likely to
identify shared e-scooters circulating or parked around the city. By contrast, the opposite trend
is found for people with higher levels of income and education.

6.2 Model results for the co-endogenous variables

This section summarizes the most relevant estimation results for the submodels explaining
individuals’ mobility patterns (both global mobility rates and walking trips), captured for the last
weekday and non-weekday. To save space, the corresponding quantitative results arising from
the modeling process are presented in Appendix B.

Some noticeable results are found concerning the influence of latent constructs on individual
mobility patterns. For instance, it can be observed that individuals with higher pro-environmental
attitudes make more walking trips on weekdays. Furthermore, we can also notice that
individuals with higher sensitivity to COVID-19 are significantly less likely to have higher mobility
rates, both on weekdays and non-weekdays. Finally, a statistically significant relationship is
reasonably found between making more walking trips and identifying shared e-scooters
circulating or parked around the city.

The findings also show a strong relationship between individuals’ mobility patterns and some
sociodemographic variables. According to the modeling results, young and highly educated
people present higher mobility rates on non-working days, both in general mobility and walking
mobility. Furthermore, middle-income groups and people who declared to use public transport
frequently, show higher mobility rates on weekdays. Finally, weekday mobility is also greater
among individuals residing outside inner districts, indicating the greater need to commute in
these areas of the city.

6.3 Model results for e-scooter usage

This section presents the modeling results for the main variables of interest in this research:
adoption and frequency of use of e-scooters (shared and private ones). We should keep in mind
that these submodels jointly consider, as determinants of the variables of interest: i) latent
constructs explained in Sections 5 and 6.1; ii) the sociodemographic and travel-related
exogenous variables; and iii) the co-endogenous variables explained in Section 6.2 (i.e., overall
mobility rates and walking trips variables).

Furthermore, to control for the potential self-selection effect coming from non-users, the
submodels for frequency of use only consider adopters of these modes. As a consequence, the
subsamples are reduced: the submodel of frequency of use of shared e-scooters has a
subsample of 276 individuals, while for the case of frequency of use of private e-scooters, the
subsample includes 110 individuals. Finally, the model also assumed that the adoption of e-
scooter sharing may influence the usage of private e-scooters.
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6.3.1 Adoption and frequency of use of shared e-scooters

The modeling results for the adoption and frequency of use of shared e-scooters are presented
in the first and second numeric columns of Table 7, respectively. Noticeable insights are found
for some latent variables influencing the use of shared e-scooters. Regarding the adoption
variable, individuals with a higher propensity to purchase second-hand products and prone to
use sharing economy platforms, present a significantly higher likelihood of adopting e-scooter
sharing services in Madrid. Furthermore, e-scooter sharing adoption is significantly higher
among those respondents who identify shared e-scooters circulating or parked around the city.
This finding could be considered as a proxy of the influence of perceived reliability in the context
of e-scooters obtained by Javadinasr et al. (2022) for the case of Chicago (US). At this point, we
should recall that these two latent variables are related to younger segments of the population
in our model.

Although no statistically significant results were found for pro-environmental behaviors in the
adoption of shared e-scooters, a positive relationship with the frequency of use is observed.
This finding may indicate that this transport mode is perceived as green mobility only among
frequent users. Along the same line, previous research studies such as Eccarius and Lu (2020),
and Mitra and Hess (2021) also found that pro-environmental behaviors play an important role
in the potential use of shared e-scooters. Interestingly, opposite results were found by Aguilera-
Garcia et al. (2022) on the influence of environmental consciousness in relation to carsharing
services in the cities of Madrid and Munich.

As expected, safety awareness is negatively related to the frequency of use. This means that e-
scooter sharing users with higher concern about safety factors and risk aversion are more likely
to be infrequent or occasional riders. Therefore, these results indicate that individuals’
perceptions of safety factors and risk aversion potentially reduce the frequency of use of shared
e-scooters.

As for the influence of sociodemographic variables, female respondents are less likely to adopt
shared e-scooters. In fact, gender has been found in the previous research literature as one of
the most important factors affecting e-scooter sharing use (see e.g., Fitt and Curl, 2019; Laa
and Leth, 2020; Nikiforiadis et al., 2021; Oostendorp and Hardinghaus, 2022; Javadinasr et al.,
2022; Reck et al., 2022). Middle-aged and especially older people are also less likely to adopt
this emerging mobility service than younger individuals. Surprisingly, middle-aged users (aged
between 35 and 49) in Madrid show a more intensive use compared to their counterparts. In
comparison, Fitt and Curl (2019) indicate that individuals below the age of 34 are most likely to
use e-scooters in New Zealand cities, while Javadinasr et al. (2022) and Laa and Leth (2020)
found that the majority of shared e-scooter users are younger than 44 years old in Chicago (US)
and young to middle-aged in Vienna (Austria), respectively. Similarly, previous research studies
conducted for the case of Madrid have concluded that, in general terms, individuals’ usage of
app-based mobility services decreases as age increases (see e.g., Aguilera-Garcia et al., 2020
for e-moped sharing; Gomez et al., 2021 for ridehailing; or Aguilera-Garcia et al., 2022 for
carsharing).
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830 Table 7. Results of adoption and frequency of use of shared and private e-scooters

Frequency of

Adoption of e- Adoption of Frequency of use of

VARIABLES . use of e-scooter . .,
(base category) scooter sharing sharin private e-scooters private e-scooters
gory (base: never used) (ordinagl) (base: never used) (ordinal)

LATENT VARIABLES Environ. conscious. -
Tech-savviness --
Physical agility --
Willing. to share 0.343*** (0.083) -- - --
COVID-19 behavior -- -- - 1.112%** (0.458)
Safety awareness -- -0.437* (0.229) -- --

Perceived availability 0.268*** (0.074) - - -

0.294* (0.166) 0.280* (0.162) --

SOCIODEMOGRAPHIC VARIABLES

(GAZZZT Female -0.846%** (0.211) - -0.412* (0.236) -0.891%* (0.522)
Age (18-20) 20-24 -0.783** (0.315) - - -

25-34 -1.193*** (0.353) - - -

35-49 -1.570*** (0.392) 0.821** (0.367) - -

50 or more -3.310*** (0.605) -- -- --
Education Bachelor’s degree(s) 0.538** (0.226) -- 0.657** (0.256) --
(Secondary

Graduate degree(s) -- -- 0.657** (0.256) --

education or lower)

Annual HH income
(Less than 18,000

18,000 to 29,999 Euro -- -
30,000 to 59,999 Euro 0.682** (0.288) --

-0.482* (0.255) --
-0.482* (0.255) 1.860*** (0.599)

Euro) 60,000 Euro or more 0.705** (0.336) - -0.848** (0.366) 1.854** (0.739)
Without own income -- -- - -
Occupation Employed -- -- - -
(Student) Part-time employee/student -- -- - --
Other - - - -

Household Structure
(Living alone)

Living with non-relatives --
Couple without children -0.757* (0.401) -- - --
Family with children -0.514* (0.290) -- -- --

OTHER EXOGENOUS VARIABLES

Public transport Multi-personal reloadable -1.065*** (0.341) _

card ownership card

No

(No) Monthly/AnnuaI season _ _ -0.654** (0.282) _
ticket

E-bike ownership I have regular access to an e-

(No) bike -2.716*** (0.257)

0.682** (0.345) - --

Vehicle ownership | have regular access to a

(No) vehicle 0.698** (0.303) -

Residential location  gytside the M30 Ring -~ - - -
(Inside the M30

Ring) Metropolitan area -- -0.437* (0.252) -0.728*** (0.280) 1.795** (0.619)
ENDOGENOUS VARIABLES

Weekday mobility 1to 2 trips -- - - -

(Zero trips) 3 or more trips 0.391* (0.227) - - -
Non-weekday 1to 2 trips 0.644** (0.276) 0.742** (0.369) -- -

mobility
(Zero trips)

3 or more trips

1.364*** (0.298)

0.763** (0.367)

Weekday walking
trips over 10 min
(Zero trips)

1to 2 trips

3 or more trips

0.818*** (0.292)
1.600*** (0.351)

1.388%** (0.542)

Non-weekday
walking trips over
10 min

(Zero trips)

1to 2 trips

3 or more trips

Ever used e-scooter

0.955*** (0.226)

sharing Yes n/a n/a -

(No)

Constant 0.957** (0.417) n/a -1.961*** (0.452) n/a

Thresholds Thresholds 1 n/a 0.196 (0.413) n/a 1.364*** (0.391)
Thresholds 2 n/a 2.456*** (0.440) n/a n/a
Thresholds 3 n/a 4.197*** (0.490) n/a n/a

Observations 694 276 694 110

831
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The results also show that people with a Bachelor's degree are more likely to adopt this
emerging mobility service than individuals without university studies. This result is also
consistent with Oostendorp and Hardinghaus (2022), and Javadinasr et al. (2022), which
indicate that higher-educated individuals are more likely to use e-scooter sharing services.
Statistically-significant results are also obtained for other sociodemographic variables. For
instance, it is found that higher household income (above 30,000 Euro) is a significant predictor
of adopting e-scooter sharing services in the case of Madrid, as it happens with e.g., ridehailing
or carsharing (see Gomez et al.,, 2021; Aguilera-Garcia et al. 2022). Regarding household
structure, the modeling results may suggest that families would prefer to use transport modes
other than e-scooters to meet their travel needs. As can be observed, the results evidence a
decreasing tendency to adopt e-scooter sharing among childless couples and families with
children, compared to other household structures. In addition, adopters living with non-relatives
are significantly more prone to be frequent users of e-scooter sharing.

Furthermore, individuals residing beyond the municipal limits of Madrid are less likely to be
frequent users of shared e-scooters compared to those living in inner neighborhoods. This
result is also coherent with the higher supply of these services in highly dense and inner areas.
Additionally, similar results were found in previous e-scooter sharing literature (see e.g., Jiao
and Bai, 2020; Caspi et al., 2020; Bai and Jiao, 2020; Hawa et al., 2021; Nikiforiadis et al.,
2021; Arias-Molinares et al., 2022), whose results indicate that higher population density,
proximity to the city center, compact land use, higher employment zones, and better access to
transit, are positively correlated with higher e-scooter sharing ridership.

Concerning travel-related variables, the model results indicate a lower likelihood of adopting e-
scooter sharing among individuals who have access to an e-bike for their personal use, while
the opposite effect is obtained in the frequency of use. This result suggests that individuals who
need a micromobility device to fulfill their travel needs prefer riding their privately-owned e-bike
to using e-scooter sharing, which still is a reasonable alternative for e-bike owners.
Furthermore, frequent users of e-scooter sharing are also riders of e-bikes, highlighting the
complementarity between these micromobility modes.

Interestingly, mobility patterns are critical factors affecting the usage of e-scooter sharing. As
can be seen, explanatory variables capturing overall mobility rates (both for weekdays and non-
weekdays) are significant positive predictors of e-scooter sharing adoption. Furthermore, those
users with higher mobility rates during non-weekdays also present a higher frequency of use.
This result may indirectly indicate that shared e-scooters are mainly used for out-of-home
leisure purposes, as found in Section 3.4 and in accordance with McKenzie (2019), Caspi et al.
(2020), and Arias-Molinares et al. (2022). Additionally, a higher frequency of use of e-scooter
sharing is found for people making more walking trips during weekdays, which is also congruent
with the higher environmental consciousness obtained for these people.

6.3.2 Adoption and frequency of use of private e-scooters

In addition to the abovementioned model estimation results, this section discusses the results
for the submodels explaining individuals’ adoption and frequency of use of private e-scooters
(see the third and last numeric columns of Table 7). As a reminder, the model considers that the
usage of private e-scooters may be potentially impacted by the adoption of e-scooter sharing.
Indeed, 65 out of 110 users of private e-scooters reported that they had also used the shared
option at some point.
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With regard to the influence of latent variables, individuals with pro-environmental behaviors
have a significantly higher likelihood of acquiring private e-scooters in Madrid. This is an
interesting outcome since it suggests that these micromobility vehicles are perceived as a green
mode of transportation among the general population. In consequence, higher environmental
consciousness may lead to increasing the adoption (and use) of private e-scooters.

Furthermore, the modeling clearly reflects a significantly higher intensity of use as susceptibility
and sensitivity to COVID-19 increase. This result is as expected since the COVID-19 pandemic
has led to positive attitudes and preferences toward private transport modes to reduce the
possibility of infections (Shamshiripour et al., 2020; de Haas et al., 2020; Christidis et al., 2022).
These changes in individuals’ mobility behavior may reduce trips on public transport, as also
indicated by Fernandez Pozo et al. (2022) in the case of Madrid during the de-escalation
phases.

Remarkably, sociodemographic factors play a major role when explaining the adoption of
private e-scooters. Statistically significant results are obtained for gender, education, and
income. As can be observed in Table 7, males, and highly educated individuals, are more likely
to use e-scooters. This is totally consistent with Laa and Leth (2020), and Oostendorp and
Hardinghaus (2022), which also observed that users of private e-scooters tend to be male and
highly educated individuals. Regarding household income, our results point out that people are
less likely to adopt private e-scooters as income brackets increase. By contrast, the likelihood of
using a private e-scooter more frequently increases among those with household incomes
above 30,000 Euros.

Additionally, individuals residing outside the municipal limits of Madrid are less likely to adopt
private e-scooters compared to people living in inner districts. This contrasts with the results for
the frequency of use as in this case proximity to the city center is negatively correlated with
higher e-scooter ridership. It may indicate that individuals living in areas with low population
density and compact land use are less prone to own e-scooters, although they show more
intensive use of this micromobility option, likely because shared options are scarcer in the
outskirts of the city.

Concerning travel-related variables, the results indicate a lower likelihood of adopting private e-
scooters among people with a public transportation pass (either monthly/annual season tickets
or a multi-personal reloadable card), while the opposite effect is obtained for the variable
capturing for regular access to a vehicle (car/moto). This result suggests that individuals who
have private e-scooters also prefer privately-owned vehicles to public transport. Furthermore, a
higher frequency of use of private e-scooters is found for people making more walking trips
during weekdays, which is reasonable given the partial substitution effect that may exist
between these two mobility alternatives.

Finally, private e-scooter usage has been found to be positively impacted by the adoption of e-
scooter sharing, as was initially assumed. In this regard, individuals who have used e-scooter
sharing at least once are more likely to acquire private e-scooters. Thus, the shared mobility
option influences the usage of the private one, as has been observed in previous research on
shared mobility analyzing the use of bikesharing in Madrid (see e.g., the study by Julio and
Monzon, 2022).
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7. CONCLUSIONS AND FURTHER RESEARCH

This research provided evidence on the factors influencing the use of both shared and privately-
owned e-scooters in Madrid, using a proven methodology in the field of transport research. The
maturity horizon for adopting these micromobility vehicles may lead them to play a major role in
urban transport, resulting in important implications for urban livability and sustainability (Fitt and
Curl, 2019; Christoforou et al., 2021; Zhang et al., 2021). This research study provides valuable
implications for urban dynamics and feedback for policymakers and transport planners to make
appropriate decisions and better implement suitable urban policies in the aftermath of the
COVID-19 pandemic.

In light of the results, the user profile of e-scooter sharing seems to be similar to that of users of
other app-based shared mobility services (e.g., moped sharing, carsharing, or ridehailing), as
they tend to be males, young, wealthy, well-educated people, and those who live in inner
neighborhoods. Similarly, males and highly educated individuals are more likely to use privately-
owned e-scooters. By contrast, the level of income and household distance to the city center
showed to negatively influence e-scooter usage.

This study also helps to understand the importance of underlying constructs on e-scooter
usage. The results indicate positive relationships with the use of shared e-scooters among
people with pro-environmental behaviors, prone to use sharing economy platforms, with a
higher propensity to purchase second-hand products, and who identify shared e-scooters
circulating or parked around the city. Conversely, greater concerns about safety factors and risk
aversion are negatively related to e-scooter sharing usage. Precisely, women and aged people
are more susceptible to risks and are less likely to use e-scooter sharing than their counterparts.
Therefore, appropriate measures to improve the safety perception, such as designing and
planning a more e-scooter-friendly infrastructure (together with e.g., bikes), or providing parking
facilities for shared mobility, might not only encourage women and aged people to use e-
scooters more often, but also attract new people to adopt these micromobility vehicles. In this
respect, it might be expected that e-scooter usage will increase over time as long as
generations of young adopters get older, and the e-scooters become more familiar to other
segments of the population. Then, urban planners should be also aware of the growing trend in
the adoption of these vehicles to design an effective e-scooter regulation and infrastructure.

Interestingly, since our survey was conducted in 2021 when the COVID-19 pandemic was still
an issue, we were able to notice the resilience and potential of riding private e-scooters to cope
with this adverse situation, as occurs with other private transport modes such as cars or
motorcycles (see e.g., Shamshiripour et al., 2020; de Haas et al., 2020; Christidis et al., 2022),
in contrast to public transport which has been severely affected (Fernandez Pozo et al., 2022;
Nikolaidou et al., 2023). In this situation, e-scooters appear to be a more sustainable and
affordable alternative compared to other private modes of transportation (Arias-Molinares et al.,
2022), such as cars or mopeds powered by fossil fuels, especially for urban trips.

Furthermore, our findings indicate that e-scooters are perceived as a green mode of
transportation, similar to other research studies on e-scooter sharing (Eccarius and Lu,2020;
Mitra and Hess, 2021), e-bike sharing (Julio and Monzon, 2022) and carsharing (Acheampong
and Siiba, 2020). To have positive environmental impacts, shared e-scooters must replace trips
that would otherwise be done using less sustainable transport modes. As pointed out by many
research studies (see e.g., Younes et al., 2020; Christoforou et al., 2021; Arias-Molinares et al.,
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2022), micromobility and shared e-scooters, in particular, have significant potential to promote a
shift towards low-carbon mobility and reducing car dependency. In this sense, e-scooters can
potentially contribute to positive impacts on urban transportation and livability, replacing single-
occupancy trips and mitigating their related negative externalities such as road congestion,
urban space scarcity, or greenhouse gas emissions. However, the idea that car trips are
attracted by e-scooters is hardly proven in our research. In consequence, to achieve a modal
shift towards sustainability, it is necessary to implement policies at the local level that
encourage the use of environmentally-friendly modes and discourage motor-based mobility, e.g.
through on-street parking limitations, low emission zones, or extensive pedestrian areas.

Our results evidence some complementarity between e-scooter sharing and public transport,
although the e-scooter-only option seems to be the majority. Accordingly, it is unclear whether
shared e-scooters are mainly used as first/last mile mobility solutions for reaching the public
transport network. The research also suggests that people who own a private e-scooter also
prefer privately-owned vehicles to use public transport. In this respect, policymakers should
jointly promote this kind of trip to increase the attractiveness and efficiency of public transport,
by e.g., establishing single fares for the combined trips, designing physical infrastructure for the
combination of different transport modes, or integrating different transport modes into one
service to fulfill the mobility needs (Esztergar-Kiss et al., 2022). This in turn would help open up
numerous opportunities for a more sustainable mobility system in everyday life, as long as e-
scooters act as feeders of the public transport system.

Shared e-scooters seem to constitute a short-distance transport solution to replace long-
distance walking trips. While this trend may benefit many users by reducing their travel times, it
may also bear adverse implications for urban livability and mobility, leading to negative health
and environmental effects (Reck et al., 2021). At this point, it is important to note that e-scooter
sharing is mainly used when the public transport supply is noticeably low, that is, during
weekends, late evenings, and night periods. Additionally, leisure was the most common trip
purpose reported by respondents. All these points also reinforce the importance of further
collaboration and integration between public transport and micromobility, as the first and last leg
of the trip, in order to increase longer intermodal trips with public transport and e-scooters in
everyday mobility. As a result, e-scooters may be used more for commuting trips and replace
other private fossil-fuel vehicles, thus contributing to social welfare.

Although the present research article provides valuable insights into factors affecting e-scooter
usage in urban areas, several potential areas may be considered in future research. Future
research might find some diverging trends between Madrid and other case studies, thereby
indicating that the performance of e-scooter systems cannot be generalized to all cities
worldwide. Overall, the implications for urban dynamics will depend on a variety of context-
specific factors, including the availability and convenience of e-scooters, the cost of these
options relative to public transport and active modes, cultural preferences, and local policies
and regulations related to transportation. Indeed, urban dynamics and transport systems are in
a state of flux nowadays. Additionally, site-specific parameters range unique factors to each
urban environment, including population density, infrastructure, topography, or weather
conditions, which collectively may influence the usage of e-scooters. Consequently, the design
of effective and successful e-scooter policies requires taking account of a large number of
context and site-specific parameters that vary according to the geographical context (e.g.
differences between cities in Europe and Asia or the Americas) and even from city to city, such
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as the characteristics of the transport network, mobility dynamics, the urban form, citizens’
concerns, or the social context. Additionally, other e-scooter patterns (e.g., spatial accessibility)
could be interesting to be investigated through data-driven approaches. Further explorations of
e-scooter usage could also consider site-specific parameters to derive accurate insights and
actionable recommendations.

While the methodology used in this research can be used by policymakers and transport
planners to explore e-scooter dynamics in other regions, the challenge of transferring results
and findings from one location to another adds a lot of complexity to understanding and
optimizing usage patterns of e-scooters. This issue requires careful consideration due to the
intricate interplay of site-specific parameters. While some principles and trends might exhibit a
degree of universality (e.g., increased e-scooter usage during pleasant weather), blindly
applying findings from one location to another can lead to misguided conclusions. In other
words, what works well in a city with a high student population and limited parking options might
not be directly applicable to a city with a predominantly elderly demographic and better public
transport systems. This challenge underscores the need for localized research that
acknowledges and accommodates the unique characteristics of each urban setting.

Further studies could also enrich this research with a long-term assessment of the evolution of
e-scooter usage, which would provide a better overview of the spectrum of possible outcomes
in different urban dynamics. In the case of Madrid, another study could be illustrative after the
fleet cap on shared e-scooters is imposed. Another significant milestone for the future is to
analyze in depth how to shrink the gender gap in e-scooter usage by e.g., setting suitable
infrastructures and focusing on safety conditions. Finally, further contributions should address
how extending pedestrian space in cities and heavier restrictions to the usage of motor-based
vehicles may impact e-scooter usage.
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Appendix A. Distribution of explanatory variables in the complete dataset and across e-
scooter adoption

Usage of shared e-

Usage of private e-

Complete scooters scooters
VARIABLES Subgroup dataset
(n=694) Non- Non-
user User user User
(n=418) (n=276) (n=584) (n=110)
Gender Male 59.7% 53.6% 68.8% 58.7% 64.5%
Female 40.4% 46.4% 31.2% 41.3% 35.5%
Age 18-19 12.7% 9.1% 18.1% 12.5% 13.6%
20-24 35.7% 31.8% 41.7% 35.8% 35.5%
25-34 23.9% 23.0% 25.4% 23.6% 25.5%
35-49 18.9% 22.7% 13.0% 18.7% 20.0%
50 or more 8.8% 13.4% 1.8% 9.4% 5.5%
Education Secondary education or lower 36.7% 34.0% 40.9% 38.4% 28.2%
Bachelor’s degree(s) 28.1% 24.2% 34.1% 26.0% 39.1%
Graduate degree(s) (e.g., MS, PhD) 35.0% 41.9% 24.6% 35.4% 32.7%
DN/DWA 0.1% 0.0% 0.4% 0.2% 0.0%
8 Annual HH income Less than 18,000 Euro 10.2% 8.6% 12.7% 9.8% 12.7%
T 18,000 to 29,999 Euro 15.3% 16.5% 13.4% 16.1% 10.9%
& 30,000 to 59,999 Euro 19.5% 19.6% 19.2% 19.2% 20.9%
g 60,000 Euro or more 14.7% 15.6% 13.4% 15.2% 11.8%
(@] Without own income 22.8% 23.7% 21.4% 22.4% 24.5%
E DN/DWA 17.6% 16.0% 19.9% 17.3% 19.1%
B  Occupation Student 39.9% 35.2% 47.1% 39.4% 42.7%
8 Employed 30.3% 36.1% 21.4% 30.7% 28.2%
3 Part-time employee/student 19.2% 18.2% 20.7% 19.3% 18.2%
?ett?fer d(,hlftt;emaker' unemployed, 10.7% 10.5%  109%  10.6%  10.9%
Household Living alone 5.5% 5.5% 5.4% 5.5% 5.5%
structure h')"(')rr’fn‘:‘gizs')“’”'re'at“’es (eg. 9.2% 5.5% 14.9% 8.6% 12.7%
Couple without children 11.2% 12.9% 8.7% 12.2% 6.4%
Family with children 73.5% 75.4% 70.7% 73.1% 75.5%
Other types of family 0.6% 0.7% 0.4% 0.7% 0.0%
Residential location ~ Madrid city: inside the M30 Ring 30.6% 25.6% 38.0% 30.0% 33.6%
Madrid city: outside the M30 Ring 34.7% 36.8% 31.5% 33.4% 41.8%
Metropolitan area (outside Madrid city) 28.1% 30.6% 24.3% 30.0% 18.2%
DN/DWA 6.6% 6.9% 6.2% 6.7% 6.4%
Public transport No 21.6% 23.7% 18.5% 19.9% 30.9%
card ownership Muiti-personal reloadable card (10- 232%  266%  181%  247%  15.5%
journey and single ticket)
Monthly/Annual season ticket 55.2% 49.8% 63.4% 55.5% 53.6%
] Vehicle ownership No 21.8% 19.4% 25.4% 22.9% 15.5%
IS Regular access to a vehicle 78.2% 80.6% 74.6% 77.1% 84.5%
o E-bike ownership No 62.4% 45.2% 88.4% 63.2% 58.2%
[ Regular access to an e-bike 37.6% 54.8% 11.6% 36.8% 41.8%
E: E-scooter No 85.3% 89.5% 79.0% 100.0% 7.3%
A _ownership Regular access to an e-scooter 14.7% 10.5% 21.0% 0.0% 92.7%
',"_" Weekday mobility Zero trips 9.5% 10.3% 8.3% 9.8% 8.2%
5 (excluding walking 1to 2 trips 62.8% 65.3% 59.1% 62.3% 65.5%
g trips) 3 or more trips 27.7% 24.4% 32.6% 27.9% 26.4%
> Non-weekday Zero trips 17.3% 21.1% 11.6% 18.5% 10.9%
'5 mobility (excluding 1to 2 trips 50.6% 53.1% 46.7% 50.5% 51.8%
o walking trips) 3 or more trips 32.1% 25.8% 41.7% 31.0% 37.3%
g Weekday walking Zero trips 21.5% 21.3% 21.7% 20.9% 24.5%
trips over 10 min 1to 2 trips 55.2% 56.5% 53.3% 56.2% 50.0%
3 or more trips 23.3% 22.2% 25.0% 22.9% 25.5%
Non-weekday Zero trips 17.9% 20.6% 13.8% 18.7% 14.5%
walking trips over 1to 2 trips 43.4% 42.8% 44.2% 43.0% 44.5%
10 min 3 or more trips 38.8% 36.6% 42.0% 38.4% 40.9%
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Appendix B. Results for the individual-level model on e-scooter use

> main outcome variables of interest

VARIABLES
(base category)

Weekday
mobility
(ordinal)

Non-weekday
mobility
(ordinal)

Weekday walking
trips
(ordinal)

Non-weekday
walking trips
(ordinal)

Adoption of e-
scooter sharing
(base: never used)

Freq. of use of e-
scooter sharing
(ordinal)

Adoption of
private e-scooters
(base: never used)

Freq. of use of
private e-scooters
(ordinal)

LATENT VARIABLES

Environmental consciousness
Tech-savviness

Physical agility

Willingness to share

COVID-19 behavior

Safety awareness

Perceived avail. of shared e-scooters

0.139* (0.083)
0.195*** (0.064)
-0.291** (0.144)

0.136* (0.075)

-0.268** (0.135)

0.194* (0.116)

0.115** (0.058)

0.272* (0.149)

0.097* (0.053)

0.343*** (0.083)

0.268*** (0.074)

0.294* (0.166)

0.280* (0.162)

1.112%** (0.458)

SOCIODEMOGRAPHIC VARIABLES

Gender (Male)

Female

0.386** (0.153)

0.339** (0.150)

-0.846%** (0.211)

-0.891** (0.522)

Age
(18-20)

20-24
25-34
35-49
50 or more

-0.482** (0.243)
-0.486* (0.291)
-0.963*** (0.325)
-1.020%** (0.369)

-0.498*** (0.184)
-0.498*** (0.184)
-0.583** (0.248)

-0.792*** (0.236)
-0.556* (0.292)

-0.783** (0.315)
-1.193%** (0.353)
-1.570%** (0.392)
-3.310%** (0.605)

Education
(Secondary education or lower)

Bachelor’s degree(s)
Graduate degree(s)

0.894*** (0.233)

0.515%** (0.194)
0.747*** (0.241)

0.447** (0.200)

0.538** (0.226)

0.657** (0.256)
0.657** (0.256)

Annual HH income
(Less than 18,000 Euro)

18,000 to 29,999 Euro
30,000 to 59,999 Euro
60,000 Euro or more
Without own income

0.540** (0.259)
0.397* (0.228)
0.397* (0.228)
0.353 (0.220)

0.438** (0.221)
0.405* (0.208)

0.598*** (0.198)

0.682** (0.288)
0.705** (0.336)

-0.482* (0.255)
-0.482* (0.255)
-0.848** (0.366)

1.860*** (0.599)
1.854** (0.739)

Occupation
(Student)

Employed
Part-time employee/student
Other

-0.889*** (0.241)

Household Structure
(Living alone)

Living with non-relatives
Couple without children
Family with children

0.421** (0.203)

-0.315* (0.176)

-0.757* (0.401)
-0.514* (0.290)

OTHER EXOGENOUS VARIABLES

Public transport card (No)

Multi-personal reloadable card
Monthly/Annual season ticket

0.775*** (0.190)

0.704%** (0.234)
0.994*** (0.214)

0.505** (0.218)
0.636*** (0.201)

-1.065*** (0.341)
-0.654** (0.282)

E-bike ownership (No)

| have regular access to an e-bike

0.278* (0.151)

-2.716*** (0.257)

0.682** (0.345)

Vehicle ownership (No)

| have regular access to a vehicle

0.698** (0.303)

Residential location(Madrid city:
inside the M30 Ring)

Madrid city: outside the M30 Ring
Metropolitan area

0.387** (0.190)
0.499** (0.205)

0.401** (0.182)

-0.437* (0.252)

-0.728*** (0.280)

ENDOGENOUS VARIABLES

Weekday mobility 1to 2 trips n/a n/a n/a n/a -- -- -- --

(Zero trips) 3 or more trips n/a n/a n/a n/a 0.391* (0.227) - - -

Non-weekday mobility 1to 2 trips n/a n/a n/a n/a 0.644** (0.276) 0.742** (0.369) - -

(Zero trips) 3 or more trips n/a n/a n/a n/a 1.364%** (0.298) 0.763** (0.367) - -

Weekday walking trips over 10 1to 2 trips n/a n/a n/a n/a - 0.818*** (0.292) - -

min (Zero trips) 3 or more trips n/a n/a n/a n/a -- 1.600*** (0.351) - 1.388*** (0.542)

Non-weekday walking trips over 1to 2 trips n/a n/a n/a n/a -- -- -- --

10 min (Zero trips) 3 or more trips n/a n/a n/a n/a - - - -

Ever used e-scooter sharing (No) Yes n/a n/a n/a n/a n/a n/a 0.955*** (0.226) --

Constant n/a n/a n/a n/a 0.957** (0.417) n/a -1.961*** (0.452) n/a

Thresholds Thresholds 1 -1.211*** (0.304) -1.788*** (0.225) -0.576** (0.254) -1.211*** (0.251) n/a 0.196 (0.413) n/a 1.364*** (0.391)
Thresholds 2 2.275*** (0.315) 0.564*** (0.214) 2.045%** (0.268) 0.850*** (0.249) n/a 2.456*** (0.440) n/a n/a
Thresholds 3 5.381*** (0.414) 3.952*** (0.351) 4.564*** (0.344) 4.074*** (0.331) n/a 4.197*** (0.490) n/a n/a

Observations 694 694 694 694 694 276 694 110

1036

Level of significance: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors are in parentheses.
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