

Which factors influence the use of shared and privately-owned e-scooters in the city of Madrid? Implications for urban mobility

Álvaro Aguilera-García (corresponding author)

PhD Candidate, Centro de Investigación del Transporte (TRANSyT)
Universidad Politécnica de Madrid.

Calle Profesor Aranguren 3, 28040 Madrid, Spain.

E-mail: alvaro.aguilera@upm.es

Phone: +34 91 0674234.

ORCID: 0000-0003-2085-4102.

Juan Gomez

Assistant Professor, Centro de Investigación del Transporte (TRANSyT)
Universidad Politécnica de Madrid.

Calle Profesor Aranguren 3, 28040 Madrid, Spain.

E-mail: juan.gomez.sanchez@upm.es

ORCID: 0000-0002-4629-8733.

Thais Rangel

Professor, Centro de Investigación del Transporte (TRANSyT)
Universidad Politécnica de Madrid.

Calle Profesor Aranguren 3, 28040 Madrid, Spain.

Departamento de Ingeniería de Organización, Administración de Empresas y Estadística,
Escuela Técnica Superior Ingeniería y Diseño Industrial

Universidad Politécnica de Madrid.

Ronda de Valencia, 3, 28012, Madrid, Spain.

E-mail: thais.rangel@upm.es

ORCID: 0000-0002-0452-4501.

María de los Ángeles Baeza

Professor, Departamento de Economía Financiera y Contabilidad
Universidad de Granada.

Campus Universitario de Cartuja, 18011 Granada, Spain.

E-mail: mabaeza@ugr.es

ORCID: 0000-0002-4485-4230.

José Manuel Vassallo

Professor, Centro de Investigación del Transporte (TRANSyT)
Universidad Politécnica de Madrid.

Calle Profesor Aranguren 3, 28040 Madrid, Spain.

E-mail: josemanuel.vassallo@upm.es

ORCID: 0000-0001-7151-4939.

Acknowledgments

The authors wish to thank MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR, which have funded the project GREENSHARE (TED2021-129239B-I00). This work was also supported by the Community of Madrid and the European Regional Development Fund - REACT-EU resources of the Madrid Operational Program 2014-2020, which funded the project E.MORES-CM.

Declarations of interest: none.

1 Which factors influence the use of shared and privately-owned

2 e-scooters in the city of Madrid? Implications for urban mobility

3

4 Abstract

5 Micromobility using fully-electric two-wheeled vehicles is increasing in cities worldwide. E-
6 scooters, whether shared or privately-owned, provide short door-to-door trips by facilitating the
7 first/last mile stage of the journey. They are expected to improve livability in cities by reducing
8 harmful emissions and space occupation. In this respect, understanding travel behavior and
9 usage patterns is essential to regulate them appropriately. The purpose of this study is to
10 determine individuals' sociodemographic variables, mobility-related attributes, and latent
11 constructs influencing e-scooter usage. To that end, an individual-level model is estimated to
12 explain the adoption and frequency of use of both shared and private e-scooters based on
13 survey data. The research takes the city of Madrid as a case study, and contributes to a deeper
14 understanding of the differences in the use of privately-owned and shared e-scooters, with a
15 particular focus on the influence of mobility habits and attitudinal variables. The study is
16 complemented with some insights on shared e-scooter usage at the trip-level, which shows the
17 substitution caused on walking trips, and their limited ability to promote modal shifts from the
18 private car. Finally, the research provides valuable implications for urban dynamics and
19 feedback for policymakers and transport planners.

20 Keywords: E-scooters; E-scooter sharing; Emerging Mobility Services; Urban Mobility;
21 Micromobility; Travel behavior.

22 1. INTRODUCTION

23 Urban mobility tends to evolve towards shared mobility (Cohen and Shaheen, 2018), an
24 innovative transportation strategy that enables users to have short-term access to a certain
25 transportation mode (car, e-scooter, bicycle, etc.) on an as-needed basis (Shaheen et al.,
26 2020). This trend towards shared mobility is more evident among young generations (Le Vine
27 and Polak, 2015) and is framed within the advent of the concept of mobility as a service (MaaS),
28 that is, the bundling of different mobility options from multiple providers into a single digital
29 platform for planning, booking, and paying for services (Kamargianni et al., 2016). The adoption
30 of MaaS, in which shared mobility plays an important role, could reduce congestion, parking
31 needs (Falconer et al., 2018), traffic accidents (Warwick et al., 2017), and the carbon footprint of
32 personal mobility in urban areas (Kerttu et al., 2016). Nevertheless, potential regulatory barriers
33 and financial, operational, and social norms might decelerate its success (Polydoropoulou et al.,
34 2020).

35 Within shared mobility, micromobility includes all services that allow making hybrid use and
36 handling as a pedestrian or a vehicle driven personally at their convenience or when needed
37 (Christoforou et al., 2021). Micromobility vehicles operate at speeds typically below 25km/h (a
38 design speed no higher than 45 km/h) and range from the heaviest two-wheeled self-balancing
39 personal transporters to the smallest lightweight rollers, considering that an approximate weight
40 threshold of around 40 kg (Christoforou et al., 2021). Additionally, micromobility vehicles can be
41 human-powered or motorized, and shared or privately-owned (Christoforou et al., 2021;
42 Fonseca-Cabrera et al., 2021).

43 Based on the results of a recent survey in the United States and some EU countries, Heineke et
44 al. (2021) concluded that a significant proportion of urban dwellers would be willing to use
45 micromobility for their daily commute. Electric kick scooters, widely known as e-scooters, are
46 one of the most widespread micromobility modes in many cities worldwide (Hosseinzadeh et al.,
47 2021). Furthermore, shared e-scooters are the most widespread shared modality in European
48 urban areas (Fluctuo, 2022). The shared option allows short-term access to an e-scooter on
49 demand rather than having to buy the vehicle, generally subject to payment for using it.

50 Given the recent growth and prospects for the use of these vehicles, e-scooters are set to play a
51 major role in urban mobility (Younes et al., 2020; Tuncer and Brown, 2020), with important
52 implications for urban livability and sustainability. E-scooters have some positive impacts on
53 urban transportation and sustainability. Christoforou et al. (2021) highlight that these mobility
54 services can potentially contribute to reducing private car use, thus replacing single-occupancy
55 trips and mitigating its related negative externalities such as road congestion. Nevertheless, e-
56 scooters could also have negative impacts on urban mobility, since they may partly substitute
57 active modes and, as a consequence, generate negative effects on the environment (Reck et
58 al., 2021). Additionally, some aspects have been questioned such as the lifespan of the
59 vehicles, especially their electric batteries, the shared use of public space, and their implications
60 for road safety (Tuncer and Brown, 2020; Christoforou et al., 2021). For instance, some
61 contributions such as Fitt and Curl (2019) have analyzed the conflicts between pedestrians and
62 e-scooter users due to the latter riding on the footpath, an environment clearly non-suitable for
63 e-scooter use compared to e.g., bikeways (Zhang et al., 2021). Finally, although shared and
64 privately-owned e-scooters allow users to make similar types of trips, mobility dynamics could

65 vary across users of each type of vehicle, so that urban implications could be different (Tuncer
66 and Brown, 2020; Oostendorp and Hardinghaus, 2022).

67 Understanding the factors affecting the usage of emerging micromobility systems is essential to
68 identify key implications for transport policy and planning analysis, particularly within a context
69 of rapid changes in urban mobility habits (Esztergár-Kiss et al., 2022), some of them further
70 influenced by the COVID-19 (Nikolaïdou et al., 2023). The research works devoted to shared e-
71 scooters have grown exponentially in the past few years, in line with the widespread adoption in
72 many cities worldwide. However, almost no research efforts have been conducted to explore the
73 use of privately-owned e-scooters, nor to analyze differences in their usage patterns compared
74 to the shared option. Previous scientific literature has not addressed the relative influence of
75 using shared e-scooters with the usage of private ones, and vice versa. In this regard, since
76 both alternatives have similarities, it is valuable to jointly consider both these mobility options to
77 understand which factors may impact the adoption and frequency of use of shared and private
78 e-scooters.

79 From the user behavior perspective, previous scientific literature has mainly focused on
80 examining the impact of sociodemographic variables and activity-travel patterns on e-scooter
81 sharing usage, though the majority was conducted in cities where these services were not
82 available yet (see e.g., Mitra and Hess, 2021; Karli et al., 2022). Furthermore, a small number of
83 contributions deeply investigated the impact of latent variables when choosing e-scooters,
84 despite their key role evidenced for other micromobility services (see e.g., Muñoz et al., 2016;
85 Márquez et al., 2021). In addition, most of the research studies on e-scooter sharing were
86 conducted before the COVID-19 outbreak, so it has hardly been explored how e-scooter use
87 has been affected by e.g., individuals' fear of COVID-19 contagion or preferences towards
88 private transport modes in the aftermath of COVID-19, as indicated by Christidis et al. (2022)
89 among others. Therefore, further efforts are needed to deeply understand the factors that
90 encourage the use of e-scooters, through a joint analysis covering both private and shared e-
91 scooters, in contexts where these services are already available. Further insight is also needed
92 regarding the impact of e-scooters on demand for traditional modes.

93 In view of the above, the purpose of this study is to explore the adoption and frequency of use
94 of both private e-scooters and free-floating e-scooter sharing systems. To that end, a survey
95 campaign was conducted in Madrid (Spain), one of the main hubs of shared mobility at the
96 international level given the high supply and variety of such services in operation, especially e-
97 scooter sharing services. This information was exploited to estimate an individual-level model
98 aimed at identifying the key factors (i.e., sociodemographic attributes, mobility-related variables,
99 or psychological preferences and attitudes) determining the usage of e-scooters. Therefore, this
100 research contributes to the scientific knowledge of micromobility by jointly exploring individuals'
101 choices towards both private and shared e-scooters. Additionally, the individual-level model is
102 complemented by some insights into the characteristics of e-scooter sharing trips in the city of
103 Madrid. Our results help understand individuals' e-scooter patterns in the aftermath of COVID-
104 19, being useful for policymakers and transport planners in developing urban policies and
105 planning future infrastructure. At this point, other case studies may find some diverging trends,
106 thereby indicating different e-scooter behavior which could vary from city to city and in time. As
107 pointed out by Gomez et al. (2021), there are distinct differences between cities that may lead to
108 different behaviors.

109 The remainder of this paper is organized as follows. After this introductory chapter, Section 2
110 reviews the most relevant body of literature for this research. Section 3 describes the case study
111 considered, the survey campaign managed to capture individuals' use of e-scooters, and the
112 data used for this research through descriptive statistics. Section 4 provides the methodology
113 employed in this study, whereas Section 5 outlines some detailed information on the approach
114 used to build the latent psychological constructs. Section 6 provides modeling results and
115 relevant discussion. Finally, Section 7 presents the overall conclusions, and sets out possible
116 future research steps.

117 2. LITERATURE REVIEW

118 The scientific literature on e-scooters has increased noticeably in the past few years, in parallel
119 with the growing penetration of the shared option in many cities. However, the existing
120 knowledge is still limited in certain urban areas, especially when it comes to private e-scooters.
121 This is mainly for two reasons: first, e-scooters are a new micromobility option, so local
122 transportation practitioners and researchers continue to explore patterns of use of e-scooter
123 systems and to learn how the urban environment relates to them; and second, e-scooter
124 datasets are, with some exceptions, limited or unavailable to researchers (Jiao and Bai, 2020).

125 The majority of contributions in the field of e-scooters have focused on safety-related aspects
126 (see e.g., Yang et al., 2020; Shah et al., 2021; Cicchino et al., 2021; Haworth et al., 2021;
127 Karpinski et al., 2022). Many other publications have explored usage patterns of current shared
128 e-scooter systems at the trip level (see e.g., Jiao and Bai, 2020; Almannaa et al., 2021; Reck et
129 al., 2021; Fauser, 2021; Chicco and Diana, 2022), and the implications of this new urban
130 mobility actor for transport policy and regulation (see e.g., Button et al., 2020; Tuncer and
131 Brown, 2020; Riggs et al., 2021; D'Andreagiovanni et al., 2022). By contrast, relatively few
132 studies have explained the role of individuals' characteristics —e.g., sociodemographic or
133 mobility-related attributes— and underlying factors on e-scooter usage or compared the
134 differences between private and shared e-scooter adoption.

135 From the travel behavior perspective, the scientific literature on e-scooters can be classified into
136 two main groups: (1) studies focusing on the intention to adopt e-scooters in cities where this
137 service is not available (ex-ante); and (2) studies focusing on urban areas where this service is
138 in operation (ex-post), thus considering data from real users of e-scooters.

139 Some findings can be highlighted concerning the first set of contributions (**ex-ante studies**).
140 These papers conduct stated preference surveys to analyze factors influencing the intention to
141 adopt e-scooter sharing in different contexts such as Greater Toronto (Mitra and Hess, 2021) or
142 Turkey (Karlı et al., 2022). It is worth mentioning the study by Eccarius and Lu (2020), which
143 used a structural equation analysis to examine the impact of latent psychological variables on
144 the intention to use shared e-scooters. To that end, they surveyed university students in Taiwan
145 and concluded that the perceived compatibility of e-scooters with transportation needs has the
146 greatest effect on the intention to adopt these micromobility vehicles. Interestingly, they
147 observed that environmental consciousness, awareness-knowledge (personal knowledge and
148 attitudes toward electric vehicles), social influence (opinions of familiar people), performance
149 expectancy (whether shared e-scooters would be useful in daily mobility), effort expectancy
150 (easy technology and little effort to use shared e-scooters), and the price of these services are
151 critical factors affecting the usage intention of e-scooter sharing services.

152 The second set of contributions (**ex-post studies**) considers case studies where e-scooter
153 sharing is already available, so it is possible to capture travel behavior and usage patterns from
154 real users. For instance, it is widely recognized by the scientific literature that e-scooter sharing
155 users tend to be males, young and highly educated people (see e.g., Fitt and Curl, 2019; Laa
156 and Leth, 2020; Javadinasr et al., 2022; Oostendorp and Hardingham, 2022). In terms of mode
157 substitution, it has been found that e-scooter trips mainly replace walking, bicycle, and private
158 cars (see e.g., James et al., 2019; Fitt and Curl, 2019; Reck et al., 2022; Oostendorp and
159 Hardingham, 2022; Weschke et al., 2022).

160 Regarding the factors that influence the intention to continue using shared e-scooters,
161 Javadinasr et al. (2022) applied a structural equation model based on survey data in Chicago
162 (US). They identified six latent variables influencing the continuance intention to use e-scooters:
163 perceived ease of use, perceived reliability, perceived enjoyment, variety-seeking lifestyle,
164 perceived usefulness, and social influence. All factors were found to have a positive relationship
165 with the continued use of e-scooters, but the strongest influence was observed for the perceived
166 usefulness of e-scooter sharing in meeting mobility needs.

167 Other contributions also address the impact of urban environment variables on e-scooter usage.
168 For instance, Jiao and Bai (2020) modeled spatial and temporal patterns of e-scooter trips from
169 April 2018 to February 2019 in Austin (US). They concluded a higher e-scooter usage in areas
170 with higher population density, proximity to the city center, higher density of bus stops or light
171 rail stations, street network connectivity, compact land use, and higher proportion of residents
172 with university studies.

173 Several authors have focused on exploring the characteristics of e-scooter trips, such as
174 temporal usage patterns and trip purpose, leading to inconclusive results. For instance, Caspi et
175 al. (2020) found that the use of shared e-scooters in Austin is higher on weekends and holidays,
176 while on weekdays their use is higher during off-peak hours. These results suggest that the
177 main trip purpose is other than commuting. Different findings were concluded by Hawa et al.
178 (2021) when analyzing the geo-temporal dynamics of shared e-scooters in Washington D.C.
179 (US). These authors noticed that the average number of shared e-scooters available on
180 weekdays is higher in the afternoon (from 12 p.m. to 6 p.m.), thereby suggesting that they are
181 mainly used for commuting compared to leisure. Interestingly, Wang et al. (2023) have noted
182 that, given the growth of the e-scooter sharing market, trip purposes related to this mobility form
183 will change over time.

184 The results are also diverse when analyzing e-scooter sharing as first/last mile solutions. For
185 instance, Smith and Schwieterman (2018) analyzed whether shared e-scooters can meet
186 mobility needs in Chicago (US) and pointed out that it is the best cost-benefit alternative for
187 first/last mile transport connections. However, McQueen and Clifton (2022) found that e-
188 scooters are not perceived as a preferred solution to the first/last mile travel by university
189 students from Portland (US).

190 Of particular interest for the purpose of this research, Laa and Leth (2020) and Oostendorp and
191 Hardingham (2022) investigated the socioeconomic profiles and usage patterns associated with
192 both shared and private e-scooters. To the best of our knowledge, these are the only studies
193 that have jointly analyzed users' choices considering private and shared e-scooters. Both
194 studies adopted a descriptive approach to explore patterns associated with e-scooter users: Laa
195 and Leth (2020) in Vienna (Austria), and Oostendorp and Hardingham (2022) in Germany.
196 Interestingly, they found that owners present a higher frequency of use than renters. In terms of

197 the gender distribution, they obtained different conclusions. Regarding mode substitution, it was
198 found that shared e-scooters mostly replace walking trips and public transportation, while
199 private e-scooters replace car trips. At the same time, Oostendorp and Hardinhaus (2022)
200 observed some complementarity between e-scooter sharing and public transport.

201 Finally, some studies have analyzed to what extent the COVID-19 pandemic has affected the
202 use of shared e-scooters. Dias et al. (2022) conducted a systematic literature review to examine
203 the role of shared e-scooters on urban resilience and sustainability during mobility restrictions.
204 From a more quantitative point of view, Hosseinzadeh and Kluger (2021) quantified the impact
205 of the pandemic on shared e-scooters and bikes in Kentucky (US) through a primarily
206 descriptive approach. Interestingly, Li et al. (2020) exploited data at the trip level in Zurich
207 (Switzerland) to explore variations of micromobility behavior before and during the pandemic.
208 Finally, a recent study by Arias-Molinares et al. (2022) examined the impact of the COVID-19
209 pandemic on the use of shared micromobility services in Madrid. By exploiting data from trip
210 records, these authors found that e-scooter sharing seems to be the most affected shared
211 mobility service with a downfall of 84% from pre-COVID-19 (before March 2020) to COVID-19
212 times (from March to December 2020). At the same time, trip time decreased by one minute
213 (12.3 vs. 11.3 min) and the average trip distance decreased by 200 meters (2.0 vs. 1.8 km).

214 Despite the increasing interest in understanding e-scooter use, there are still some gaps in the
215 literature that have motivated this research. As can be noted, there is a need to further explore
216 individuals' choices and preferences toward the use of shared and private e-scooters. The
217 research by Laa and Leth (2020) provides an initial insight of undoubted interest in this field, but
218 analyzing a bigger sample and modeling individuals' behavior are needed to obtain more
219 rigorous conclusions on the factors that might affect the use of private and shared e-scooters.
220 Besides, up to date only a small number of studies have explored the role of latent
221 psychological variables in the use of e-scooters (and particularly in the choice between shared
222 and private ones), although they have been shown to be key in many other contributions on
223 new urban mobility systems, see e.g., Acheampong and Siiba (2020), or Aguilera-García et al.
224 (2022) for carsharing; and Muñoz et al. (2016) or Márquez et al. (2021) for bikesharing.
225 Additionally, most of the research studies in this field have been carried out before the COVID-
226 19 outbreak, so there is a need to study to what extent e-scooter use may have been affected
227 by COVID-related variables such as individuals' fear of COVID-19 infection.

228 The current study contributes to the existing literature in several aspects. First, it jointly analyzes
229 the influence of multiple explanatory variables (individuals' sociodemographic variables, mobility
230 patterns, and latent psychological constructs) on the use of shared and privately-owned e-
231 scooters, thus leading to a more complete and deeper understanding of the differences in the
232 use of these two mobility forms. This is done by modeling individuals' use of e-scooters through
233 econometric techniques, taking Madrid as a case study. In addition, special attention is paid to
234 the role of psychological variables, which may significantly influence the use of e-scooters. This
235 could be the case of factors such as environmental consciousness or fear of COVID-19 infection
236 since, as indicated by several authors (see e.g., Christidis et al., 2022; Fernández Pozo et al.,
237 2022; Vallejo-Borda et al., 2022), the COVID-19 pandemic has increased individuals' preference
238 for private transport modes.

239 **3. THE DATA: A SURVEY CAMPAIGN IN A EUROPEAN CITY**

240 **3.1 Case-study context: the city of Madrid**

241 The city of Madrid, with a total of 3.3 million inhabitants, is the capital of Spain and the second
242 largest city in the European Union after Berlin. Following the traditional European urban
243 standards, Madrid presents a high population density (average values around 9,000
244 inhab./km²), particularly in the inner districts (over 24,000 inhab./km²). The city has a strong
245 social and economic interdependence with numerous surrounding municipalities, all of which
246 form a metropolitan area with more than 6.5 million people. As in other urban areas worldwide,
247 Madrid has experienced an intense development of suburbanization in terms of housing and
248 business activities in recent decades.

249 Urban mobility in the city of Madrid is characterized by a reasonable balance towards
250 sustainable modes. According to the latest Madrid Mobility Survey (Consorcio Regional de
251 Transportes de Madrid [CRTM], 2020), active modes (walking and biking) account for 34.6% of
252 total trips in the city on a working day, followed by public transport (33.4%) and finally private
253 car/motorbike (28.6%). This modal split in Madrid is partly explained (in line with Feigon et al.,
254 2018) by its high population density and its large supply of public transport options. The public
255 transport system includes one of the longest metro networks at the international level,
256 complemented by an extensive network of urban and suburban bus services, as well as eight
257 suburban rail lines and four tram routes. Despite these sustainable patterns, the city
258 experiences recurrent problems with congestion and air quality (see Romero et al., 2019), with a
259 slightly favorable evolution in the past few years.

260 The large supply of public transport has been recently complemented by shared mobility
261 options, including services such as carsharing, e-moped sharing, or e-scooter sharing. The high
262 availability of these services has made Madrid one of the main international hubs for shared
263 mobility, as is clearly the case for e-moped sharing (see INVERS GmbH, 2022). As for shared
264 micromobility services, e-scooter sharing is one of the most widely adopted modalities in the
265 city. The first attempt to operate these services in the city took place in 2018, but some
266 problems with licenses forced the local government to put e-scooter sharing on hold until
267 February 2019. By 2020, the City Council granted 4,821 e-scooter licenses but, at the time this
268 research was initiated (2021), more than 7,600 shared e-scooter licenses were active
269 throughout the city, operated by 14 companies. Nevertheless, the number of shared e-scooters
270 actually in operation was very changeable over time and estimated to be significantly lower than
271 the total number of licenses granted. Unfortunately, there has been no official data on the total
272 fleet operated in Madrid by all e-scooter companies. In addition, it was estimated that, as of April
273 2021, there was a total of 254,000 users of e-scooters (either private or shared ones) in the
274 Region of Madrid (GESOP, 2021).

275 In the case of Madrid, e-scooters can only be ridden by one person, have no seat or saddle,
276 and are powered exclusively by electric motors which provide a maximum speed of 25 km/h. By
277 law, riding an e-scooter is permitted for people aged above 15, but those under 18 must wear a
278 helmet. In this respect, it is worth noting that e-scooter sharing companies do not accept
279 customers under the age of 18. In Spain, users of these vehicles must ride in the center of the
280 lane, upright and standing. Riding on sidewalks and pedestrian areas is prohibited, but this point
281 is often violated.

282 E-scooter sharing services are provided throughout the city of Madrid, so even outer areas are
283 served. Each district or neighborhood is assigned a certain number of e-scooters that is
284 somehow related to its population, so that operators must meet these geographic quotas. As
285 seems reasonable, the supply of vehicles and the number of operators is higher in inner (and
286 denser) neighborhoods, but operators must serve the outer areas even if it is sometimes not
287 profitable for them. Given the low profitability and high competition, some companies have
288 recently withdrawn from the market. Furthermore, the local government is considering launching
289 a concession for three operators and imposing a fleet cap on shared e-scooters.

290 The information shown in Table 1 characterizes e-scooter sharing for the main operators
291 providing these services in Madrid by mid-2021. Charges are mostly established on a per-min
292 basis, but some companies set charges on an hourly basis (see the case of Scoot in Table 1).
293 Some operators also apply an additional charge (typically 1 Euro) for unlocking the e-scooter.
294 The approximate average price for renting an e-scooter is 0.15 Euros per minute, with prices
295 ranging from 0.11 to 0.23 Euros per minute. Shared e-scooters in Madrid are free-floating and
296 can be parked on the sidewalk, except in pedestrian streets or where there are specific parking
297 spaces for these vehicles (e.g., stations and anchorages specifically reserved for this purpose
298 on sidewalks and parking areas) within 50 meters.

299 **Table 1. Characterization of e-scooter sharing services for the main operators in Madrid**
300 **(2021)**

Operator	Lime	Taxify	Scoot	Voi	Acciona
Implementation	2018	2018	2018	2018	2018
No. e-scooters	641	750	309	162	179
No. Districts operated (out of a total of 21)	15	17	14	10	11
Unlocking fee	0 Euro	1 Euro	0 Euro	1 Euro	0 Euro
Price	0,15 Euro/min	0,15 Euro/min	10 Euros per 1 h; 15 Euro per 2 h; 20 Euros per 3 h	0,15 Euro/min	0,23 Euro/min

301
302 Like many other cities around the world, Madrid experienced a special situation with respect to
303 COVID-19 infection in recent years. As a result of lockdowns and mobility restrictions, Madrid
304 experienced a rapid decrease in mobility rates, especially during the first lockdown¹.
305 Additionally, the usage of private transport was very high compared to public transport (Akioui
306 Sanz et al., 2021; Radics and Christidis, 2022).

307 As indicated below in Section 3.2, the data employed in this research were collected in May-
308 July, 2021, a period when mobility restrictions were no longer effective, but when the COVID-19
309 pandemic was still quite active. Two main waves of infection were observed prior to this
310 research, from September to November 2020 and January to mid-March 2021. The widespread
311 vaccination of the population, which started in Spain in April 2021, led to a significant drop in
312 infections and their severity. As of May-July 2021, when the data for this research was

¹ During the first lockdown (March-June 2020), trips made in the Region of Madrid fell by 70% compared to pre-COVID levels, considering that only essential travel was allowed. After that hard lockdown was lifted, trips by both private and transit trips in the Region of Madrid sharply increased by more than 60% compared to the lockdown levels.

313 collected, the daily average (7-day average) did not exceed 2,000 infections (30
314 infections/100,000 inhab.), with cumulative incidence rates under 228/100,000 inhab. However,
315 some noticeable waves of infection were observed in the following months, especially during the
316 summer holidays (August 2021). In addition, the pandemic has brought significant changes in
317 individual behavior, greatly impacting trip demand and distribution (Arias-Molinares et al., 2022;
318 Christidis et al., 2022). For instance, public transport was still underperforming and teleworking
319 levels were higher compared to the pre-pandemic situation in major Spanish cities (Akioui Sanz
320 et al., 2021; Radics and Christidis, 2022).

321 **3.2 Data collection and survey design**

322 A specific survey campaign on e-scooter usage was conducted in Madrid in 2021. Existing data
323 potentially useful for this research and already available was not considered appropriate for the
324 purpose of this investigation, as is the case of e.g., the latest Madrid mobility survey in 2018
325 (see CRTM, 2020). Given the still minor presence of e-scooters in urban modal share, this
326 source captured very few e-scooter users and consequently provided scarce insight into
327 micromobility usage. Therefore, it was needed to design a specific survey to achieve the
328 objectives of the study to capture the main determinants that influence the use of e-scooters,
329 both privately-owned and shared ones.

330 The target population in this study comprises those people of legal age (people aged 18 years
331 and above), residing in and/or commuting to the city of Madrid, who are aware of the existence
332 of e-scooter sharing services and/or private e-scooters. The survey was designed after
333 developing a comprehensive review of previous questionnaires on individuals' willingness to use
334 and/or adopt micromobility services (e.g., Munkácsy, 2017; Mitra and Hess, 2021). The final
335 questionnaire was defined after a pilot survey conducted by the authors. Several screening
336 questions were included in the questionnaire to exclude respondents who do not meet certain
337 requirements, such as residing outside the Madrid metropolitan area or not knowing about the
338 existence of e-scooters (shared and/or private).

339 The survey campaign was conducted from May to July 2021, avoiding summer break, holidays,
340 or special events, in order to collect fairly representative data on urban mobility patterns in
341 Madrid. Online questionnaires were considered the most appropriate approach for collecting the
342 information for this study for several reasons. First, this methodology enabled capturing answers
343 in difficult public-health situations due to the COVID-19 pandemic. Second, web-based
344 questionnaires have been widely used in similar studies on shared mobility (see e.g., Mitra and
345 Hess, 2021; Gomez et al., 2021; Julio and Monzon, 2022), providing good data quality with a
346 reasonable economic effort. The web-based survey was disseminated through multiple sources
347 such as messaging apps, banner ads, social media platforms, and electronic mailing lists. The
348 initial sample size was 768 responses, but the final database was reduced after excluding
349 incomplete answers, and removing those observations including inconsistent or non-logical
350 answers. Consequently, the complete dataset for this study consisted of 694 valid responses.

351 The survey captured four main aspects from respondents:

352 • *Individuals' sociodemographic characteristics*: gender, age, level of education, household
353 annual income, occupation, household structure, and residential location based on zip
354 codes.

- *Usual mobility habits and travel-related information*: public transport card ownership, vehicle ownership (including car, motorcycle, e-bike, and e-scooter), number of trips on the last weekday and non-weekday (excluding walking trips), and number of walking trips over 10 minutes on the last weekday and non-weekday.
- *Lifestyle preferences and attitudinal statements*: respondents were asked to rate their level of agreement, on a 5-point Likert scale, towards 21 different statements on multiple topics. The attitudinal statements covered the following individuals' behaviors, preferences, habits, and perceptions:
 - i) Environmental consciousness. Environmentally friendly behavior concerning the mode of transport chosen, waste recycling efforts, and willingness to pay more for environmentally friendly products, were captured by several indicators. In this respect, pro-environmental attitudes may lead to greater usage of environmentally friendly modes of transport (such as electric shared vehicles, public transport, and bicycles) instead of private fossil fuel vehicles, as already found in the literature (see e.g., Astroza et al., 2017; Acheampong and Siiba, 2020; Julio and Monzon, 2022).
 - ii) Tech-savviness. Several indicators captured the interest of the individuals regarding new technologies, such as online social media, internet services, or mobile apps for daily tasks. This latent construct has been widely used in previous research studies exploring the usage of emerging urban transportation modes, such as carsharing (see e.g., Velázquez Romera, 2019; Acheampong and Siiba, 2020; Aguilera-García et al., 2022).
 - iii) Physical agility. A set of basic physical attributes measures the capacity of the individuals to ride a bicycle and climb stairs, slopes, etc. The inclusion of this construct is reasonable since a relatively good physical condition seems to be an important factor when riding a micromobility vehicle (Muñoz et al., 2013).
 - iv) Willingness to share. Individuals' willingness to purchase second-hand products, along with the tendency to use sharing economy apps or websites (as is the case of e-scooter sharing), was captured by several indicators. This construct may potentially influence e-scooter sharing use, as also suggested for other shared mobility options in the Spanish context (see e.g., Velázquez Romera, 2019; Gomez et al., 2021; Aguilera-García et al., 2022). Additionally, our latent construct is also connected with new technologies and disruptive practices, which also could affect the usage of shared mobility options.
 - v) Preventive COVID-19 infection behavior. A set of indicators highlight the personal susceptibility and sensitivity to COVID-19. The inclusion of this latent construct is deemed noteworthy given that the COVID-19 pandemic has led to drastic changes in individuals' mobility behavior (see e.g., Shamshiripour et al., 2020; de Haas et al., 2020; Christidis et al., 2022; Fernández Pozo et al., 2022; Nikolaïdou et al., 2023), such as a modal shift from public transport to private vehicles.
 - vi) Safety awareness. Several indicators capture individuals' safety awareness as a pedestrian and/or as a rider of different modes of transport (car, moto, bike), along with perceptions of occupational risk prevention measures. Given the vulnerability of e-scooter riders versus e.g. car drivers when riding on the street, the inclusion of this latent construct in our behavioral model makes sense. Individuals' perceptions of

399 safety factors and risk aversion may potentially affect the use of micromobility
400 vehicles, as also revealed in the case of cycling (see e.g., Muñoz et al., 2016;
401 Márquez et al., 2021 or Julio and Monzon, 2022).

402 vii) Perceived availability of shared e-scooters. A set of statements addresses the
403 perceived and subjective availability of e-scooter sharing services. Even though the
404 presence of shared e-scooters is somewhat evident throughout Madrid city, adoption
405 or usage may be influenced by the subjective identification of shared e-scooters
406 circulating or parked around the city. Additionally, the degree to which people trust in
407 e-scooter sharing services depends on the availability of e-scooters at times and in
408 places they are needed, as indicated by Javadinasr et al. (2022).

409 • *Usage of e-scooters*: respondents reported their adoption and frequency of use of e-
410 scooters, both private and free-floating e-scooter sharing services (see more details in
411 Section 3.3). These are the main variables of interest modeled in this study. For a better
412 understanding of mobility trends related to e-scooter sharing, respondents were asked to
413 report details about their last trip in a shared e-scooter, including trip purpose, day of the
414 week, time of day, travel time, complementarity with other modes of transport in the same
415 trip, and the mode of transport that would have been used if no shared e-scooter had been
416 available.

417 To provide a clearer description of the survey content, it has been presented in four defined
418 blocks, as described above. Nevertheless, it is important to mention that sociodemographic-
419 related questions were presented at the end of the survey, and the battery of attitudinal
420 statements was mixed throughout the questionnaire, as suggested in the survey design
421 literature. Researchers carefully took all the actions needed to comply with the provisions of
422 current legislation on the anonymity and protection of personal data².

423 The basic descriptive statistics of the socioeconomic, demographic, and activity-travel variables
424 are detailed in Section 3.3. In order to complement the modeling results, Section 3.4 provides
425 some insights into the use of e-scooter sharing systems at the trip level.

426 **3.3 Data description**

427 In the survey, respondents were asked to report their frequency of use of e-scooters, both
428 private and shared free-floating, among the following categories: i) I have never used it; ii) I last
429 used it some months ago; iii) I use it less than once a month; iv) I use it 1-4 times a month; and
430 v) I use it every week.

431 This information has been used to build the main four variables of interest in our model,
432 capturing the adoption and frequency of use of shared and private e-scooters. Adoption
433 variables are represented as binary variables indicating whether the individual has ever used
434 each mobility option, while the variables for frequency of use were considered to be built with
435 the following four categories: (1) *infrequent* (last used some months ago); (2) *occasional* (used

² Appropriate informed consent and research permissions were obtained, and the data collected have been kept confidential. Although sensitive data were asked from respondents (e.g., gender, age, level of income, etc.), the questionnaire did not collect personal information (e.g., name, ID, residential address, etc.). Additionally, this paper only provides aggregated statistical information and modeling results to ensure that sensitive data is not disclosed.

436 less than once a month); (3) *monthly* (used 1-4 times a month); and (4) *weekly* (used every
437 week).

438 Table 2 summarizes the distribution of the usage of both mobility options in the dataset.
439 According to the results, e-scooter sharing adoption (39.8%) is considerably higher compared to
440 the usage of privately-owned e-scooters (15.9%). By comparison, Fitt and Curl (2019) indicated
441 that only 18% of respondents had used privately-owned e-scooters. However, riders of private
442 e-scooters seem to make a more regular and frequent use (see Table 2), as also indicated by
443 Laa and Leth (2020), and Oostendorp and Hardinghaus (2022). Interestingly, 65 out of 110
444 users of private e-scooters reported that they had also used the shared option at some point.

445 **Table 2. Usage (adoption and frequency of use) of shared and private e-scooters in the**
446 **complete dataset (n = 694)**

Usage	Shared e-scooters		Private e-scooters	
	Respondents	% Sample	Respondents	% Sample
Non-user (never used)	418	60.23	584	84.15
Infrequent (last used some months ago) ^a	60	8.65	58	8.36
Occasional (less than once a month) ^a	127	18.30	5	0.72
Monthly (1-4 times a month) ^a	65	9.37	9	1.30
Weekly (1 or more times a week) ^a	24	3.46	38	5.48
Total	694	100.00	694	100.00

447 ^a In the modeling estimation of the frequency of use of private e-scooters, this variable was
448 merged with the following two categories: (1) infrequent/occasional (used less than once a
449 month) with 63 out of 110 users; and (2) monthly/weekly (used more than once a month) with
450 47 out of 110 users. The reader is referred to Section 4 for further details.
451

452 Table 3 shows the distribution of explanatory variables in the complete dataset. Different
453 groupings within the categorical variables were tested to ensure good representativity and later
454 identify the factors most strongly related to the usage of e-scooters. It is important to remind that
455 people who did not express their awareness of the existence of e-scooters (private or shared)
456 were screened out of the survey. Therefore, the complete dataset is not necessarily
457 representative of the entire population residing in and/or commuting to Madrid, which does not
458 affect the validity of the sample for the type of analysis conducted in this research³ (see
459 Wooldridge, 1999 and Solon et al., 2015). For comparative purposes, the values available from
460 official statistics (see Madrid City Council, 2021) are provided insofar as it is possible for the
461 sociodemographic variables (people aged 18 years and above) of the city of Madrid. However,
462 this comparison is quite complex to conduct and not totally fair, given that the targeted
463 population of this research is expected to be very different from the total population of Madrid. In
464 fact, the sample presents some over-representation of young and middle-young individuals,
465 which seems reasonable given the data collection method and the greater awareness of shared
466 mobility services among this segment of the population.

³ It should be noted that the focus of the current paper is not so much on obtaining a perfect representativeness of the target population as it is on estimating causal effects, i.e., how changes in exogenous factors impact the endogenous variables of interest. This requires obtaining sufficient heterogeneity and subgroup sample sizes to have precise estimates and adequately detect causal relationships and patterns in the data from the statistical models.

467 **Table 3. Summary of explanatory variables in the complete dataset**

VARIABLES	Subgroup	Respondents	% Sample	% Official Data 2021
SOCIODEMOGRAPHIC ATTRIBUTES				
Gender	Male	414	59.7%	45.8%
	Female	280	40.4%	54.2%
Age	18-19	88	12.7%	2.2%
	20-24	248	35.7%	6.1%
	25-34	166	23.9%	16.1%
	35-49	131	18.9%	27.6%
	50 or more	61	8.8%	48.1%
Education	Secondary education or lower	255	36.7%	62.3%
	Bachelor's degree(s)	195	28.1%	7.4%
	Graduate degree(s) (e.g., MS, PhD)	243	35.0%	30.2%
	DN/DWA	1	0.1%	0.1%
Annual HH income	Less than 18,000 Euro	71	10.2%	
	18,000 to 29,999 Euro	106	15.3%	
	30,000 to 59,999 Euro	135	19.5%	
	60,000 Euro or more	102	14.7%	
	Without own income	158	22.8%	
	DN/DWA	122	17.6%	
Occupation	Student	277	39.9%	
	Employed	210	30.3%	
	Part-time employee/student	133	19.2%	
	Other (homemaker, unemployed, retired, etc.)	74	10.7%	
Household structure	Living alone	38	5.5%	
	Living with non-relatives (e.g., roommates)	64	9.2%	
	Couple without children	78	11.2%	
	Family with children	510	73.5%	
	Other types of family	4	0.6%	
Residential location	Madrid city: inside the M30 Ring	212	30.6%	
	Madrid city: outside the M30 Ring	241	34.7%	
	Metropolitan area (outside Madrid city)	195	28.1%	
	DN/DWA	46	6.6%	
MOBILITY-RELATED ATTRIBUTES				
Public transport card ownership	No	150	21.6%	
	Multi-personal reloadable card (10-journey and single ticket)	161	23.2%	
	Monthly/Annual season ticket	383	55.2%	
Vehicle ownership	No	151	21.8%	
	Regular access to a vehicle	543	78.2%	
E-bike ownership	No	433	62.4%	
	Regular access to an e-bike	261	37.6%	
E-scooter ownership	No	592	85.3%	
	Regular access to an e-scooter	102	14.7%	
Weekday mobility (excluding walking trips)	Zero trips	66	9.5%	
	1 to 2 trips	436	62.8%	
	3 or more trips	192	27.7%	
Non-weekday mobility (excluding walking trips)	Zero trips	120	17.3%	
	1 to 2 trips	351	50.6%	
	3 or more trips	223	32.1%	
Weekday walking trips over 10 min	Zero trips	149	21.5%	
	1 to 2 trips	383	55.2%	
	3 or more trips	162	23.3%	
Non-weekday walking trips over 10 min	Zero trips	124	17.9%	
	1 to 2 trips	301	43.4%	
	3 or more trips	269	38.8%	

468

469 As can be observed in Table 3, the sample has sufficient sociodemographic variability. The
 470 sample presents a higher proportion of males (59.7%) and individuals aged under 35 (72.3%).
 471 There is also a noticeable presence of highly educated people, with 63.1% of respondents
 472 having university studies, while household income is fairly evenly distributed. Concerning

473 occupation, 39.9% of respondents are students, 30.3% are employees, and 19.2% are part-time
474 employees/students. As for household structure, families with children make up the majority of
475 the sample (73.5%). These sample characteristics are in line with many aforementioned studies
476 on emerging urban mobility services (see e.g., Munkácsy and Monzon, 2018; Wang et al., 2018;
477 Gomez et al., 2021), particularly if we take into account that gender and age gap is the most
478 noticeable sociodemographic characteristic in terms of interest in and use of micromobility
479 services (see e.g., Degele et al., 2018; Nikiforidis et al., 2021; Mitra and Hess, 2021;
480 Javadinasr et al., 2022).

481 Most respondents live in Madrid city, 30.6% of them inside the first ring road M30 and 34.7%
482 outside the M30. The remainder 28% of respondents live beyond the municipal limits of Madrid
483 but within the metropolitan area and commute to the city of Madrid. Concerning travel-related
484 information, most respondents have a public transport card, either a monthly/annual (55.2%) or
485 a multi-personal reloadable (23.2%) transit card; and there is a noticeable share of individuals in
486 the sample with regular access to a vehicle (car/moto) in their household (78.2%). Ownership or
487 access to an e-bike or an e-scooter presents a lower proportion (37.6% and 14.7, respectively),
488 as could be expected. Finally, the distribution indicates slightly higher mobility rates (excluding
489 walking trips) during weekdays compared to non-weekday mobility, while the opposite is found
490 for walking trips over 10 min.

491 The information presented in Appendix A shows the distribution of explanatory variables across
492 e-scooter adoption (either private or shared). This point is of great interest to explore, at least
493 preliminarily, differences between users and non-users of shared and private e-scooters in
494 terms of the distribution of all potential explanatory variables. According to the results, gender,
495 age, education, and occupation seem critical variables impacting the use of e-scooter sharing.
496 There is a higher presence of males than females within the group of shared e-scooter users.
497 The proportion of adopters is also higher among young people and students. Concerning the
498 level of education, we can observe a higher share of adopters with a Bachelor's degree across
499 shared e-scooter users compared to the complete dataset. Furthermore, we can observe that e-
500 scooter sharing services are more highly adopted by respondents living with non-relative
501 members or roommates, which is also related to young people and students. It is also found that
502 living in the city center could be related to a greater adoption of e-scooter sharing services,
503 which can be explained by the fact that the supply of these services is greater in denser urban
504 districts. Likewise, the use of e-scooter sharing seems to be higher among those people who
505 declared not having regular access to a private vehicle and/or an e-bike, and those individuals
506 frequently using public transport. Finally, shared e-scooter adopters show a somewhat higher
507 intensity in their out-of-home activity (higher weekend mobility rates).

508 As for private e-scooters, some differences can be found in this preliminary analysis. Age does
509 not seem to influence the probability of adoption. Additionally, it is observed that the use of
510 private e-scooters is higher among respondents living in Madrid city, which is not only limited to
511 residents of the city center as was previously the case with the shared option. The most
512 interesting trend is the influence of the usage of public transportation. In this respect, according
513 to Appendix A, it seems that private e-scooter adopters are low-intensive users of public
514 transport, while a complementarity effect with vehicle ownership is suggested.

515 It is worth noting that all of the above comments are of great interest but can only be considered
516 preliminary insights, and more rigorous techniques are needed to draw more conclusive results
517 on the use of shared and private e-scooters.

518 **3.4 Insights on the use of e-scooter sharing systems at the trip-level**

519 This section complements the individual-level model by exploring e-scooter sharing mobility
520 patterns at the trip level in the city of Madrid. Specifically, it characterizes e-scooter sharing
521 demand, providing insights into the mobility trend of this service at the trip-level. To that end, we
522 exploit the information on the last e-scooter sharing trip provided by those users who declared
523 remembering that trip (n = 239; 86.6% of adopters of shared e-scooters in the sample). This
524 information is particularly relevant in the context of rapid changes due to, among other things,
525 the COVID-19 pandemic and before a fleet cap on e-scooters is imposed in Madrid.
526 Additionally, it is important to note that the information on the last private e-scooter trip is not
527 representative enough, so we decided not to use it for this paper. We did not obtain enough
528 representativeness because: first, private e-scooter adoption seems to be low (15.9%); and
529 second, with the aim of avoiding an excessive amount of time for completing the questionnaire,
530 those people who adopted both shared and private e-scooters were asked to report only on the
531 last trip (either by shared or private e-scooter) they remembered.

532 Table 4 includes descriptive characteristics for the trips by shared e-scooters reported in the
533 subsample. This data includes multiple trip-related attributes such as trip purpose, day of the
534 week, time of day, travel time, complementarity with other modes of transport in this specific trip,
535 and the mode that would have been used if the shared e-scooter had not been available. As
536 one might expect, this information should be taken with caution because it is difficult to
537 disentangle whether the choices made for the last e-scooter sharing trip are a snapshot of a
538 specific choice or simply a reflection of the overall activity-travel pattern of the individual. Thus,
539 this approach is intrinsically exploratory, considering characteristics of an isolated trip outside
540 the broader context of the individual's mobility patterns.

541 As can be noted, the most common trip purpose is by far leisure (51.5%), followed by work-
542 related trips (18.8%), that is, commuting to the workplace or education center/university. These
543 insights into trip purposes are also aligned with other research works such as McKenzie, G.
544 (2019), Caspi et al., (2020), Oostendorp and Hardinhaus (2022), and Arias-Molinares et al.
545 (2022). Remarkably, 15.5% of respondents reported having used the shared e-scooter just to try
546 the service, denoting that it is still an emerging urban transportation mode. In terms of time-
547 dependent patterns, a higher share of trips has been made during weekends, late evenings,
548 and night periods, which again is also connected with leisure activities, the most common trip
549 purpose reported above. Along the same line, other studies (Bai and Jiao, 2020; Caspi et al.,
550 2020) found greater e-scooter sharing ridership on weekends. Additionally, Bai and Jiao (2020),
551 Reck, et al. (2021) and Arias-Molinares et al. (2022) also observed that the use of shared e-
552 scooters is higher in the afternoons and evenings. By contrast, Hawa et al. (2021) suggested
553 that e-scooter sharing is mainly used during weekdays in the case of Washington D.C. (US).

554 On the travel time dimension, it seems that e-scooter sharing systems are mainly covering
555 short-distance mobility needs, given that the majority of trips are under 15 minutes, whereas
556 only 15.5% are over 20 minutes. This finding is also supported by previous research studies,
557 which indicate an average trip time of 7.5 minutes in Austin (Jiao and Bai, 2020), 11.3 minutes
558 in Madrid (Arias-Molinares et al., 2022), and 16 minutes in Germany (Oostendorp and
559 Hardinhaus, 2022). In this regard, we can confirm that e-scooters are of special interest for
560 short-distance trips in urban settings.

561 **Table 4. Trip characteristics of the last trip in a shared e-scooter**

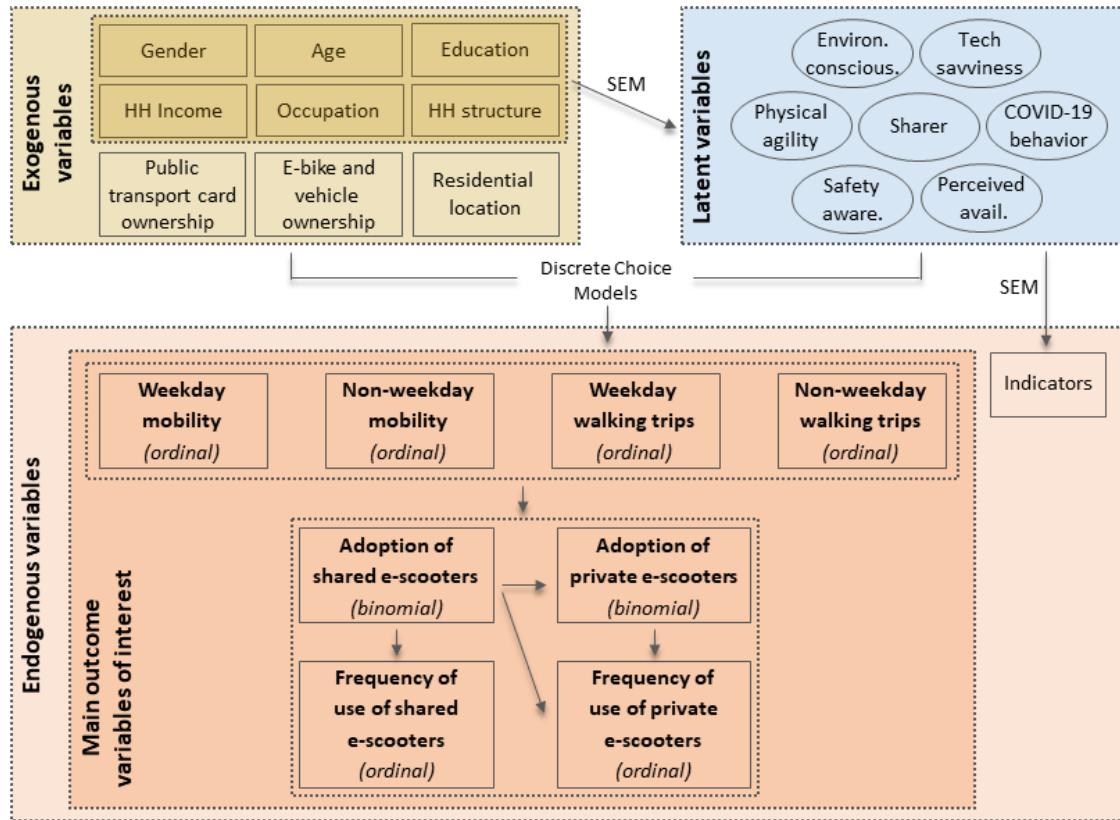
VARIABLES		Trips (n = 239)	% Sample
Trip purpose	Leisure/social or recreational activity	123	51.5%
	Commuting to the workplace or education center/university	45	18.8%
	Attending a work meeting (outside my workplace)	1	0.4%
	Shopping, personal or family errands	26	10.9%
	Trying an e-scooter sharing service	37	15.5%
	Other	7	2.9%
Day of week	Monday-Thursday	80	33.5%
	Friday	31	13.0%
	Saturday-Sunday	101	42.3%
	DN/DWA	27	11.3%
Time of day	6:00 – 13:00	34	14.2%
	13:00 – 17:00	34	14.2%
	17:00 – 21:00	91	38.1%
	21:00 – 2:00	45	18.8%
	2:00 – 6:00	12	5.0%
	DN/DWA	23	9.6%
Travel time	Less than 5 minutes	22	9.2%
	Between 5 and 10 minutes	75	31.4%
	Between 10 and 15 minutes	66	27.6%
	Between 15 and 20 minutes	33	13.8%
	More than 20 minutes	37	15.5%
	DN/DWA	6	2.5%
Complementarity with other modes	Public transport: metro, bus, train, commuter rail, etc.	61	25.5%
	My own vehicle	17	7.1%
	Other shared mobility options (carsharing, moped sharing, bikesharing)	7	2.9%
	No	154	64.4%
Mode substituted	Walking	135	56.5%
	Public transit: metro, bus, train, commuter rail, etc.	44	18.4%
	My own vehicle	5	2.1%
	My own e-scooter or bicycle	3	1.3%
	Other shared mobility options (carsharing, moped sharing, bikesharing)	29	12.1%
	Taxi or ridehailing	14	5.9%
	Other	9	3.8%

562

563 Furthermore, we explore the complementarity with other modes of transport, that is, those
 564 modes from which users are switching to/from a shared e-scooter. Most e-scooter trips involve
 565 only one stage (64.4%), so no combination with existing transport modes is observed for the
 566 majority of cases. Nevertheless, there is some complementarity between e-scooter sharing and
 567 public transport (25.5%), increasing its efficiency and attractiveness. In this regard, Oostendorp
 568 and Hardinghaus (2022) also observed that nearly a quarter of shared e-scooter trips are
 569 combined with public transport.

570 Finally, from descriptive statistics, there is evidence that shared e-scooters have mainly
 571 substituted walking trips. In this regard, 56.5% of the trips would have been made on foot in
 572 case e-scooter sharing had not been available. This is followed by public transportation (18.4%)
 573 and, to a lesser extent, other shared mobility options (12.1%). This finding is aligned with other
 574 research on shared e-scooters (see e.g., James et al., 2019; Fitt and Curl, 2019; Laa and Leth,
 575 2020; Mitra and Hess, 2021; Nikiforidis et al., 2021; Oostendorp and Hardinghaus, 2022;
 576 Javadinasr et al., 2022; Reck et al., 2022; Weschke et al., 2022). Considering the results, the
 577 idea that car trips are barely substituted by e-scooter sharing seems to be reinforced, so the
 578 positive impacts of e-scooter sharing on the environment happen to be questionable.

579 **4. METHODOLOGY**


580 This research explores the key variables (socioeconomic, psychological constructs, mobility
581 habits, etc.) determining the usage of e-scooters at the individual level. To that end, the
582 methodology adopts highly advanced econometric techniques in the framework of choice
583 modeling, based on the data collected from a survey campaign. As commented above, the
584 sample size consisted of 694 valid responses, which is used in all the modeling estimations,
585 except for the final submodels on the frequency of use (276 and 110 individuals make up the
586 subsamples of e-scooter sharing and private e-scooters, respectively).

587 Particularly, we estimate a choice model based on the utility-maximizing framework (see e.g.,
588 Ben-Akiva et al., 2002) at the individual level, in which we integrate latent behavioral constructs
589 and include multi-stage interrelations between variables. Within the choice modeling framework,
590 we used the statistical technique of Generalized Structural Equation Modeling (GSEM), since
591 this approach provides a flexible tool to easily analyze the interrelations between variables,
592 study complex choice processes, incorporate successive interrelationships between
593 endogenous variables, accommodate cause-effect structures, and include multiple linking
594 functions of different nature (Rabe-Hesketh et al., 2004). The standard calibration method is the
595 maximum likelihood estimation. An in-depth explanation of the GSEM technique, as well as its
596 estimation process, is beyond the scope of this article so the reader is referred to Rabe-Hesketh
597 et al. (2004) and Bartus (2017). It is worth noting that GSEM-based analyses have been widely
598 adopted in previous studies in the field of transport research (see e.g., Yin et al., 2020; Vega-
599 Gonzalo et al., 2023).

600 Prior to estimating the aforementioned model, we built the unobserved latent constructs from
601 the responses to the 21 attitudinal statements (indicators) captured in the questionnaire on
602 different topics. To that end, an Exploratory Factor Analysis (EFA) was conducted to extract the
603 optimum latent variables (factors) that sufficiently account for the covariance patterns among
604 them. The EFA suggested seven factors for the indicators collected in the survey: environmental
605 consciousness, tech savviness, physical agility, willingness to share, preventive COVID-19
606 infection behavior, safety awareness, and perceived availability of shared e-scooters. This was
607 subsequently confirmed by the Confirmatory Factor Analysis (CFA). Section 5 presents further
608 details of the indicators employed, their internal consistency, the seven unobserved latent
609 constructs obtained, the validity of the postulated structure, and the results of the statistics in the
610 CFA framework.

611 After defining the latent constructs, we jointly estimate the measurement variables and choice
612 outcomes using a GSEM-based analysis, which integrates the latent constructs and represents
613 multi-stage interrelations between variables as explained below. An overview of the individual-
614 level model adopted to explain the usage of both shared and private e-scooters is presented in
615 Figure 1. Firstly, in the SEM part, the latent constructs are defined as functions of individuals'
616 sociodemographic factors. These relationships are estimated through observations of the latent
617 construct indicators since a parsimonious dependence structure through the stochastic latent
618 constructs is established. Then, we simultaneously preserve the correlation among
619 measurement variables by extracting the seven optimum latent variables (see more comments
620 in Section 5), which can explain the common variances in the measurement variables.
621 Furthermore, both the underlying latent constructs and the exogenous variables are
622 incorporated as determinants of all endogenous outcome variables of interest in this research:

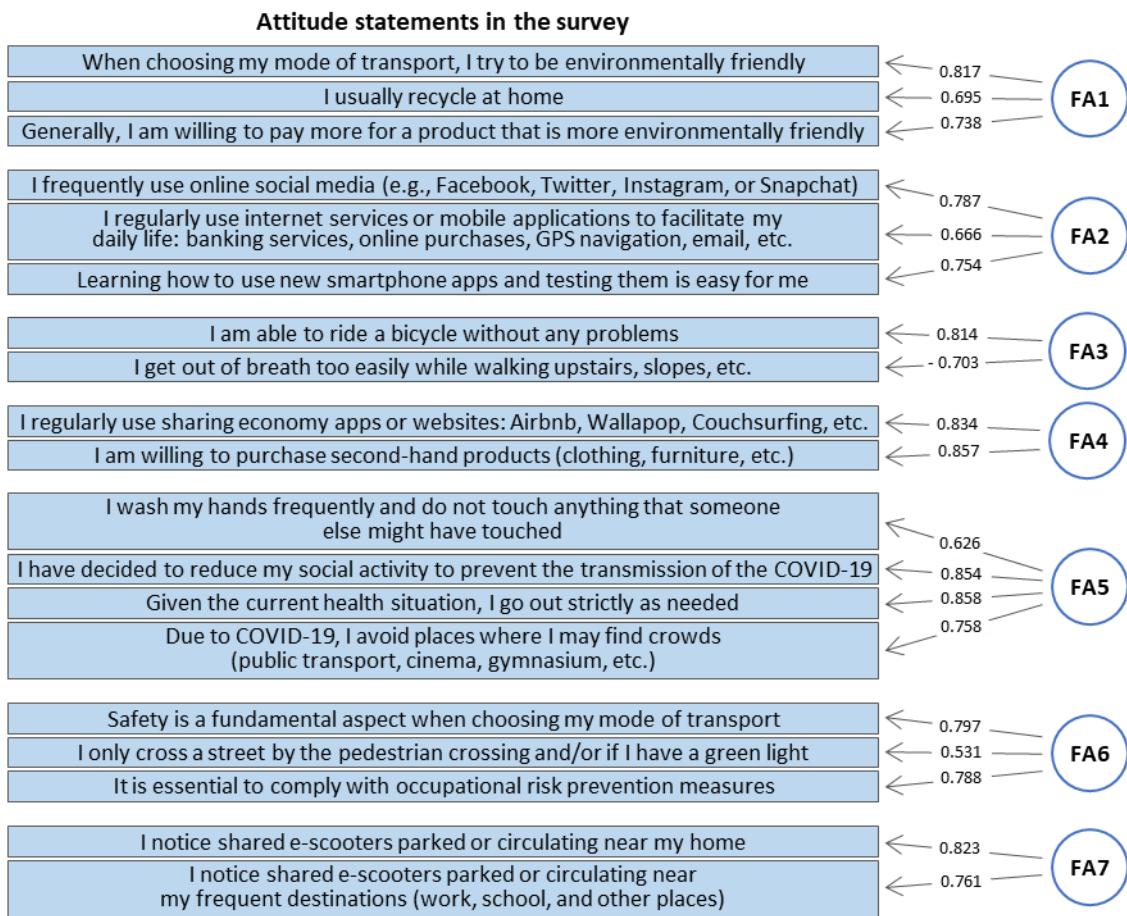
623 mobility rates and walking trips on the last weekday and non-weekday, and especially, adoption
 624 and frequency of use of e-scooters (shared and private ones).

625
 626 **Figure 1. Structure of the individual-level model to explore the usage of both shared and**
 627 **private e-scooters**

628 As can be observed in Figure 1, the endogenous variables are modeled in a sequential manner
 629 by employing different link functions (ordinal and binomial logit) depending on the nature of
 630 each dependent variable. The sequential structure adopted in the individual-level model is
 631 aimed at explaining the usage of both shared and private e-scooters, controlling for potential
 632 self-selection effects, and accommodating recursive effects among variables. After testing
 633 multiple recursive directionalities between endogenous variables, the best fitting model was
 634 obtained in the causal specification assuming both mobility rates and walking trips (on the last
 635 weekday and non-weekday) impacting the adoption of shared and private e-scooters, and all
 636 the above endogenous variables finally influencing the frequency of use. Therefore, the
 637 adoption variables control for the potential self-selection effect coming from non-users of each
 638 mobility option. Additionally, the adoption of shared e-scooter sharing is assumed to impact both
 639 the adoption and frequency of use of private e-scooters. Consequently, the current study also
 640 holds insights into how e-scooter sharing attitudes influence the usage of private e-scooters,
 641 which has been crucial in previous research on other micromobility services (see for example
 642 Julio and Monzon, 2022 for the case of bikesharing in Madrid).

643 Finally, it is important to mention that, although our data on the frequency of use of private e-
 644 scooters are fairly in line with previous research (see e.g., Fitt and Curl, 2019; Laa and Leth,
 645 2020; Oostendorp and Hardinghaus, 2022), the number of observations in certain categories is
 646 low for the purpose of modeling (see Table 2). In this regard, different groupings within the
 647 categories were tested to ensure good representativity and thorough application of the GSEM-

648 based analysis. Consequently, the variable for frequency of use of private e-scooters was
649 merged with the following two categories: (1) infrequent/occasional (used less than once a
650 month) with 63 out of 110 users; and (2) monthly/weekly (used more than once a month) with 47
651 out of 110 users.


652 5. LATENT VARIABLES CONSTRUCTS

653 Respondents were asked in the questionnaire to report their level of agreement about 21
654 attitude statements on different topics (see Figure 2), which represent the indicators employed
655 to later build the underlying latent constructs included in our model. A Likert-type scale ranging
656 from 1 (completely unidentified) to 5 (completely identified) was the scoring system used to
657 measure the attitudinal behavior of the individuals. Thus, the current study holds insights into
658 how different individual attitudes and preferences influence the usage of e-scooters, which have
659 been crucial in previous research on other emerging mobility services such as ridehailing or
660 carsharing. Following recommendations in the survey literature, these statements were not
661 designed in a homogeneous way and were mixed throughout the questionnaire to mitigate
662 automatic responses by individuals and include adequate heterogeneity in each latent
663 construct. Based on these statements, an EFA was conducted to specify the optimal number of
664 latent constructs that sufficiently account for the covariance patterns among them. After testing
665 different numbers of orthogonal and oblique rotations, an EFA with oblique Promax rotation was
666 used in this research, making the solution more interpretable. Additionally, a factor loading value
667 of 0.50 was laid down as the threshold to maintain an indicator within a factor. This value
668 indicates the relationship of each indicator with the latent constructs, i.e., the strength of each
669 indicator on a factor and its direction.

670 The EFA suggested seven latent factors for the 21 indicators. Then, we used CFA to test the
671 specific theoretical hypothesis about the data obtained with the EFA. Therefore, making the
672 prior assumption obtained in the EFA, we validated the structure across observed indicators and
673 latent variables according to the literature (Akaike, 1987; Hu and Bentler, 1999; Kline, 2016).

674 Figure 2 presents the statements obtained in each underlying latent construct according to the
675 EFA and CFA results, and the attitudinal statement loadings obtained with the EFA, which were
676 as expected. It is important to note that two statements were removed as they did not load well
677 on any of the factors and obtained a factor loading lower than 0.50. As a result, 19 attitudinal
678 statements were finally kept.

679 Factor 1 (FA1) captures the pro-environmental attitudes of the individuals with three indicators.
680 Factor 2 (FA2) is made up of three statements that reflect the familiarity of individuals with new
681 technologies. Factor 3 (FA3) measures the ability of individuals to ride a bicycle and climb
682 stairs, slopes, etc. Factor 4 (FA4) is related to individuals' willingness to purchase second-hand
683 products, along with the tendency to use sharing economy apps or websites. Factor 5 (FA5) is
684 associated with four indicators and refers to the personal susceptibility and sensitivity to COVID-
685 19. Factor 6 (FA6) captures individuals' perceptions of safety factors and risk aversion through
686 three indicators. Finally, Factor 7 (FA7) measures the perceived and subjective availability of e-
687 scooter sharing services. As a result, we constructed 7 latent variables, denominated
688 "Environmental consciousness" (FA1), "Tech-savviness" (FA2), "Physical agility" (FA3),
689 "Willingness to share" (FA4), "Preventive COVID-19 infection behavior" (FA5), "Safety
690 awareness" (FA6), and "Perceived availability of shared e-scooters" (FA7).

691
692 **Figure 2. Latent variables constructs and factor loadings obtained in the EFA for each**
693 **attitude statement in the survey questions**

694 Two different tests were calculated to check sampling adequacy for each latent variable and the
695 whole set, as well as certain redundancy between the variables: the Kaiser-Meyer-Olkin (KMO)
696 test and Bartlett's test of Sphericity. First, the KMO value of 0.740 upholds the adequacy of the
697 sample, so it was plausible to use factor analysis for the data of this study. Second, the p-value
698 from Bartlett's test of Sphericity indicated the adequacy of conducting factor analysis
699 techniques. Finally, multiple overall goodness-of-fit statistics were conducted in the CFA
700 framework to determine the extent to which the postulated structure is consistent with the EFA
701 results. These statistics also test whether the specific theoretical hypothesis fits with the latent
702 variable measurement model. As can be observed in Table 5, the results obtained uphold the
703 validity of the latent constructs according to the cutoff values recommended by Akaike (1987),
704 Hu and Bentler (1999), and Kline (2016).

705 **Table 5. Goodness-of-fit statistics conducted in the factor analysis framework**

Goodness-of-fit index	Measurement model	Recommended cutoff values
KMO test (overall)	0.740	≥ 0.50
Root Mean Square Error of Approximation (RMSEA)	0.045	≤ 0.08
Comparative Fit Index (CFI)	0.923	≥ 0.90
Tucker Lewis Index (TLI)	0.900	≥ 0.80
Standardized Root Mean Square Residual (SRMR)	0.044	≤ 0.08

706

707 **6. MODELING RESULTS AND DISCUSSION**

708 This section reveals the model estimation results obtained from the GSEM-based analysis
709 investigating e-scooter usage. First, we examine the modeling results for the structural
710 relationships between individual sociodemographic and latent constructs (see Section 6.1). In
711 Section 6.2 we briefly present the structural relationships between the first block of endogenous
712 outcome variables (individuals' mobility rates during weekdays and weekends) and both the
713 latent constructs and the individual sociodemographic variables. Section 6.3 addresses the
714 outcomes from the submodels, explaining the main variables of interest: adoption and frequency
715 of use of e-scooters (shared and private ones). Finally, Section 6.5 affords relevant implications
716 from this research.

717 It is worth noting that non-statistically significant explanatory variables were excluded to get
718 parsimonious model specifications. Nevertheless, some of these variables have been kept
719 because of their intuitive insights and interpretation (see Tables 6 and 7, and Appendix B),
720 which may also provide useful input in future specifications on shared mobility services using
721 e.g. a larger sample size.

722 **6.1 Model results for the latent variables**

723 The modeling results for the structural relationships between individual sociodemographic inputs
724 and the seven latent constructs are shown in Table 6. As can be observed in Table 6,
725 household income is the sole variable that is statistically significant, presenting an inverted U-
726 shaped effect. Medium-income individuals (between 30,000 and 59,999 Euro) show a higher
727 environmental consciousness compared to respondents with lower and higher incomes. The
728 modeling results also indicate a significantly higher tech-savviness for individuals with a higher
729 level of income. As expected, familiarity with new technologies is lower as age increases.

730 Our findings regarding the physical agility construct indicate a lower capacity to climb stairs,
731 slopes, and so on, and ride a bicycle for females and aged individuals. Some statistically-
732 significant results are also obtained for several categories clearly related to older ages
733 concerning occupation and household structure (e.g., retired people, families with children, etc.).
734 By contrast, strong connections are also found between this latent construct and individuals with
735 higher incomes.

736 As for the construct capturing individuals' willingness to share, the model finds higher sharing
737 attitudes among females, while people aged 50 and over have a statistically significant lower
738 sharing propensity. It is important to mention that our latent construct is also connected with
739 new technologies and disruptive practices, such as the tendency to use sharing economy apps
740 or websites (as is the case of the ones used for e-scooter sharing).

741 Concerning the latent construct capturing the preventive COVID-19 infection behavior of the
742 individuals, the results clearly reflect a significantly higher susceptibility and sensitivity to
743 COVID-19 as age increases. Our findings also indicate that employees are significantly less
744 likely to have COVID-19 infection preventive behavior, which could be linked to engaging in
745 indispensable social interactions (e.g., individuals working directly with the public or not having
746 the possibility to telework). Finally, there is higher risk awareness and preventive behavior in
747 families without children, compared to other household structures.

Table 6. SEM component results: sociodemographic determinants of latent variables

VARIABLES (base category)		Environmental consciousness	Tech-savviness	Physical agility	Willingness to share	Preventive COVID- 19 infection behavior	Safety awareness	Perceived availability of shared e-scooters
Gender (Male)	Female	--	--	-0.401*** (0.073)	0.292*** (0.095)	--	0.203*** (0.038)	--
Age (18-19)	20-24	--	--	--	--	--	--	--
	25-34	--	--	--	--	--	--	-0.281* (0.150)
	35-49	--	-0.365*** (0.048)	--	--	0.186*** (0.062)	0.102** (0.049)	-0.281* (0.150)
	50 or more	--	-0.498*** (0.067)	-0.308** (0.135)	-0.653*** (0.165)	0.258*** (0.080)	0.266*** (0.067)	-0.380* (0.226)
Education (Secondary education or lower)	Bachelor's degree(s)	--	--	--	--	--	-0.110*** (0.042)	0.320** (0.136)
	Graduate degree(s)	--	--	--	--	--	--	0.323* (0.172)
Annual HH income (Less than 18,000 Euro)	18,000 to 29,999 Euro	0.057 (0.077)	--	--	--	--	--	--
	30,000 to 59,999 Euro	0.123* (0.071)	--	0.185* (0.101)	--	--	--	--
	60,000 Euro or more	--	0.178*** (0.055)	0.290** (0.113)	--	--	--	0.433*** (0.157)
	Without own income	0.055 (0.067)	--	--	--	--	--	-0.235* (0.136)
Occupation (Student)	Employed	--	--	-0.330*** (0.096)	--	-0.204*** (0.057)	--	--
	Part-time employee/student	--	--	--	--	--	--	-0.257* (0.131)
	Other	--	--	-0.428*** (0.122)	--	--	--	--
Household Structure (Living alone)	Living with non-relatives	--	--	--	--	--	--	--
	Couple without children	--	--	--	--	0.165** (0.067)	--	--
	Family with children	--	--	-0.171** (0.084)	--	--	--	-0.677*** (0.122)
Observations		694	694	694	694	694	694	694

749 Level of significance: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors are in parentheses.

750 The strongest predictors of safety awareness are gender, age, and education. In this regard,
751 women are more likely to have a higher perception of safety factors and risk aversion. The
752 same was observed for older people than their younger counterparts, while the opposite is
753 found for respondents with university studies. The last latent construct captured the subjective
754 perception of the availability of e-scooter sharing services in Madrid streets. Interestingly, the
755 model denotes that older respondents and families with children are significantly less likely to
756 identify shared e-scooters circulating or parked around the city. By contrast, the opposite trend
757 is found for people with higher levels of income and education.

758 **6.2 Model results for the co-endogenous variables**

759 This section summarizes the most relevant estimation results for the submodels explaining
760 individuals' mobility patterns (both global mobility rates and walking trips), captured for the last
761 weekday and non-weekday. To save space, the corresponding quantitative results arising from
762 the modeling process are presented in Appendix B.

763 Some noticeable results are found concerning the influence of latent constructs on individual
764 mobility patterns. For instance, it can be observed that individuals with higher pro-environmental
765 attitudes make more walking trips on weekdays. Furthermore, we can also notice that
766 individuals with higher sensitivity to COVID-19 are significantly less likely to have higher mobility
767 rates, both on weekdays and non-weekdays. Finally, a statistically significant relationship is
768 reasonably found between making more walking trips and identifying shared e-scooters
769 circulating or parked around the city.

770 The findings also show a strong relationship between individuals' mobility patterns and some
771 sociodemographic variables. According to the modeling results, young and highly educated
772 people present higher mobility rates on non-working days, both in general mobility and walking
773 mobility. Furthermore, middle-income groups and people who declared to use public transport
774 frequently, show higher mobility rates on weekdays. Finally, weekday mobility is also greater
775 among individuals residing outside inner districts, indicating the greater need to commute in
776 these areas of the city.

777 **6.3 Model results for e-scooter usage**

778 This section presents the modeling results for the main variables of interest in this research:
779 adoption and frequency of use of e-scooters (shared and private ones). We should keep in mind
780 that these submodels jointly consider, as determinants of the variables of interest: i) latent
781 constructs explained in Sections 5 and 6.1; ii) the sociodemographic and travel-related
782 exogenous variables; and iii) the co-endogenous variables explained in Section 6.2 (i.e., overall
783 mobility rates and walking trips variables).

784 Furthermore, to control for the potential self-selection effect coming from non-users, the
785 submodels for frequency of use only consider adopters of these modes. As a consequence, the
786 subsamples are reduced: the submodel of frequency of use of shared e-scooters has a
787 subsample of 276 individuals, while for the case of frequency of use of private e-scooters, the
788 subsample includes 110 individuals. Finally, the model also assumed that the adoption of e-
789 scooter sharing may influence the usage of private e-scooters.

790 6.3.1 *Adoption and frequency of use of shared e-scooters*

791 The modeling results for the adoption and frequency of use of shared e-scooters are presented
792 in the first and second numeric columns of Table 7, respectively. Noticeable insights are found
793 for some latent variables influencing the use of shared e-scooters. Regarding the adoption
794 variable, individuals with a higher propensity to purchase second-hand products and prone to
795 use sharing economy platforms, present a significantly higher likelihood of adopting e-scooter
796 sharing services in Madrid. Furthermore, e-scooter sharing adoption is significantly higher
797 among those respondents who identify shared e-scooters circulating or parked around the city.
798 This finding could be considered as a proxy of the influence of perceived reliability in the context
799 of e-scooters obtained by Javadinasr et al. (2022) for the case of Chicago (US). At this point, we
800 should recall that these two latent variables are related to younger segments of the population
801 in our model.

802 Although no statistically significant results were found for pro-environmental behaviors in the
803 adoption of shared e-scooters, a positive relationship with the frequency of use is observed.
804 This finding may indicate that this transport mode is perceived as green mobility only among
805 frequent users. Along the same line, previous research studies such as Eccarius and Lu (2020),
806 and Mitra and Hess (2021) also found that pro-environmental behaviors play an important role
807 in the potential use of shared e-scooters. Interestingly, opposite results were found by Aguilera-
808 García et al. (2022) on the influence of environmental consciousness in relation to carsharing
809 services in the cities of Madrid and Munich.

810 As expected, safety awareness is negatively related to the frequency of use. This means that e-
811 scooter sharing users with higher concern about safety factors and risk aversion are more likely
812 to be infrequent or occasional riders. Therefore, these results indicate that individuals'
813 perceptions of safety factors and risk aversion potentially reduce the frequency of use of shared
814 e-scooters.

815 As for the influence of sociodemographic variables, female respondents are less likely to adopt
816 shared e-scooters. In fact, gender has been found in the previous research literature as one of
817 the most important factors affecting e-scooter sharing use (see e.g., Fitt and Curl, 2019; Laa
818 and Leth, 2020; Nikiforidis et al., 2021; Oostendorp and Hardinhaus, 2022; Javadinasr et al.,
819 2022; Reck et al., 2022). Middle-aged and especially older people are also less likely to adopt
820 this emerging mobility service than younger individuals. Surprisingly, middle-aged users (aged
821 between 35 and 49) in Madrid show a more intensive use compared to their counterparts. In
822 comparison, Fitt and Curl (2019) indicate that individuals below the age of 34 are most likely to
823 use e-scooters in New Zealand cities, while Javadinasr et al. (2022) and Laa and Leth (2020)
824 found that the majority of shared e-scooter users are younger than 44 years old in Chicago (US)
825 and young to middle-aged in Vienna (Austria), respectively. Similarly, previous research studies
826 conducted for the case of Madrid have concluded that, in general terms, individuals' usage of
827 app-based mobility services decreases as age increases (see e.g., Aguilera-García et al., 2020
828 for e-moped sharing; Gomez et al., 2021 for ridehailing; or Aguilera-García et al., 2022 for
829 carsharing).

830 **Table 7. Results of adoption and frequency of use of shared and private e-scooters**

VARIABLES (base category)		Adoption of e-scooter sharing (base: never used)	Frequency of use of e-scooter sharing (ordinal)	Adoption of private e-scooters (base: never used)	Frequency of use of private e-scooters (ordinal)
LATENT VARIABLES					
Environ. conscious.	--	0.294* (0.166)	0.280* (0.162)	--	--
Tech-savviness	--	--	--	--	--
Physical agility	--	--	--	--	--
Willing. to share	0.343*** (0.083)	--	--	--	--
COVID-19 behavior	--	--	--	--	1.112*** (0.458)
Safety awareness	--	-0.437* (0.229)	--	--	--
Perceived availability	0.268*** (0.074)	--	--	--	--
SOCIODEMOGRAPHIC VARIABLES					
Gender (Male)	Female	-0.846*** (0.211)	--	-0.412* (0.236)	-0.891** (0.522)
Age (18-20)	20-24	-0.783** (0.315)	--	--	--
	25-34	-1.193*** (0.353)	--	--	--
	35-49	-1.570*** (0.392)	0.821** (0.367)	--	--
	50 or more	-3.310*** (0.605)	--	--	--
Education (Secondary education or lower)	Bachelor's degree(s)	0.538** (0.226)	--	0.657** (0.256)	--
	Graduate degree(s)	--	--	0.657** (0.256)	--
Annual HH income (Less than 18,000 Euro)	18,000 to 29,999 Euro	--	--	-0.482* (0.255)	--
	30,000 to 59,999 Euro	0.682** (0.288)	--	-0.482* (0.255)	1.860*** (0.599)
	60,000 Euro or more	0.705** (0.336)	--	-0.848** (0.366)	1.854** (0.739)
	Without own income	--	--	--	--
Occupation (Student)	Employed	--	--	--	--
	Part-time employee/student	--	--	--	--
	Other	--	--	--	--
Household Structure (Living alone)	Living with non-relatives	--	0.646** (0.325)	--	--
	Couple without children	-0.757* (0.401)	--	--	--
	Family with children	-0.514* (0.290)	--	--	--
OTHER EXOGENOUS VARIABLES					
Public transport card ownership (No)	Multi-personal reloadable card	--	--	-1.065*** (0.341)	--
	Monthly/Annual season ticket	--	--	-0.654** (0.282)	--
E-bike ownership (No)	I have regular access to an e-bike	-2.716*** (0.257)	0.682** (0.345)	--	--
Vehicle ownership (No)	I have regular access to a vehicle	--	--	0.698** (0.303)	--
Residential location (Inside the M30 Ring)	Outside the M30 Ring	--	--	--	--
	Metropolitan area	--	-0.437* (0.252)	-0.728*** (0.280)	1.795** (0.619)
ENDOGENOUS VARIABLES					
Weekday mobility (Zero trips)	1 to 2 trips	--	--	--	--
	3 or more trips	0.391* (0.227)	--	--	--
Non-weekday mobility (Zero trips)	1 to 2 trips	0.644** (0.276)	0.742** (0.369)	--	--
	3 or more trips	1.364*** (0.298)	0.763** (0.367)	--	--
Weekday walking trips over 10 min (Zero trips)	1 to 2 trips	--	0.818*** (0.292)	--	--
	3 or more trips	--	1.600*** (0.351)	--	1.388*** (0.542)
Non-weekday walking trips over 10 min (Zero trips)	1 to 2 trips	--	--	--	--
	3 or more trips	--	--	--	--
Ever used e-scooter sharing (No)	Yes	n/a	n/a	0.955*** (0.226)	--
Constant		0.957** (0.417)	n/a	-1.961*** (0.452)	n/a
Thresholds	Thresholds 1	n/a	0.196 (0.413)	n/a	1.364*** (0.391)
	Thresholds 2	n/a	2.456*** (0.440)	n/a	n/a
	Thresholds 3	n/a	4.197*** (0.490)	n/a	n/a
Observations		694	276	694	110

831 Level of significance: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors are in parentheses.

832 The results also show that people with a Bachelor's degree are more likely to adopt this
833 emerging mobility service than individuals without university studies. This result is also
834 consistent with Oostendorp and Hardinghaus (2022), and Javadinasr et al. (2022), which
835 indicate that higher-educated individuals are more likely to use e-scooter sharing services.
836 Statistically-significant results are also obtained for other sociodemographic variables. For
837 instance, it is found that higher household income (above 30,000 Euro) is a significant predictor
838 of adopting e-scooter sharing services in the case of Madrid, as it happens with e.g., ridehailing
839 or carsharing (see Gomez et al., 2021; Aguilera-García et al. 2022). Regarding household
840 structure, the modeling results may suggest that families would prefer to use transport modes
841 other than e-scooters to meet their travel needs. As can be observed, the results evidence a
842 decreasing tendency to adopt e-scooter sharing among childless couples and families with
843 children, compared to other household structures. In addition, adopters living with non-relatives
844 are significantly more prone to be frequent users of e-scooter sharing.

845 Furthermore, individuals residing beyond the municipal limits of Madrid are less likely to be
846 frequent users of shared e-scooters compared to those living in inner neighborhoods. This
847 result is also coherent with the higher supply of these services in highly dense and inner areas.
848 Additionally, similar results were found in previous e-scooter sharing literature (see e.g., Jiao
849 and Bai, 2020; Caspi et al., 2020; Bai and Jiao, 2020; Hawa et al., 2021; Nikiforidis et al.,
850 2021; Arias-Molinares et al., 2022), whose results indicate that higher population density,
851 proximity to the city center, compact land use, higher employment zones, and better access to
852 transit, are positively correlated with higher e-scooter sharing ridership.

853 Concerning travel-related variables, the model results indicate a lower likelihood of adopting e-
854 scooter sharing among individuals who have access to an e-bike for their personal use, while
855 the opposite effect is obtained in the frequency of use. This result suggests that individuals who
856 need a micromobility device to fulfill their travel needs prefer riding their privately-owned e-bike
857 to using e-scooter sharing, which still is a reasonable alternative for e-bike owners.
858 Furthermore, frequent users of e-scooter sharing are also riders of e-bikes, highlighting the
859 complementarity between these micromobility modes.

860 Interestingly, mobility patterns are critical factors affecting the usage of e-scooter sharing. As
861 can be seen, explanatory variables capturing overall mobility rates (both for weekdays and non-
862 weekdays) are significant positive predictors of e-scooter sharing adoption. Furthermore, those
863 users with higher mobility rates during non-weekdays also present a higher frequency of use.
864 This result may indirectly indicate that shared e-scooters are mainly used for out-of-home
865 leisure purposes, as found in Section 3.4 and in accordance with McKenzie (2019), Caspi et al.
866 (2020), and Arias-Molinares et al. (2022). Additionally, a higher frequency of use of e-scooter
867 sharing is found for people making more walking trips during weekdays, which is also congruent
868 with the higher environmental consciousness obtained for these people.

869 6.3.2 Adoption and frequency of use of private e-scooters

870 In addition to the abovementioned model estimation results, this section discusses the results
871 for the submodels explaining individuals' adoption and frequency of use of private e-scooters
872 (see the third and last numeric columns of Table 7). As a reminder, the model considers that the
873 usage of private e-scooters may be potentially impacted by the adoption of e-scooter sharing.
874 Indeed, 65 out of 110 users of private e-scooters reported that they had also used the shared
875 option at some point.

876 With regard to the influence of latent variables, individuals with pro-environmental behaviors
877 have a significantly higher likelihood of acquiring private e-scooters in Madrid. This is an
878 interesting outcome since it suggests that these micromobility vehicles are perceived as a green
879 mode of transportation among the general population. In consequence, higher environmental
880 consciousness may lead to increasing the adoption (and use) of private e-scooters.

881 Furthermore, the modeling clearly reflects a significantly higher intensity of use as susceptibility
882 and sensitivity to COVID-19 increase. This result is as expected since the COVID-19 pandemic
883 has led to positive attitudes and preferences toward private transport modes to reduce the
884 possibility of infections (Shamshiripour et al., 2020; de Haas et al., 2020; Christidis et al., 2022).
885 These changes in individuals' mobility behavior may reduce trips on public transport, as also
886 indicated by Fernández Pozo et al. (2022) in the case of Madrid during the de-escalation
887 phases.

888 Remarkably, sociodemographic factors play a major role when explaining the adoption of
889 private e-scooters. Statistically significant results are obtained for gender, education, and
890 income. As can be observed in Table 7, males, and highly educated individuals, are more likely
891 to use e-scooters. This is totally consistent with Laa and Leth (2020), and Oostendorp and
892 Hardingham (2022), which also observed that users of private e-scooters tend to be male and
893 highly educated individuals. Regarding household income, our results point out that people are
894 less likely to adopt private e-scooters as income brackets increase. By contrast, the likelihood of
895 using a private e-scooter more frequently increases among those with household incomes
896 above 30,000 Euros.

897 Additionally, individuals residing outside the municipal limits of Madrid are less likely to adopt
898 private e-scooters compared to people living in inner districts. This contrasts with the results for
899 the frequency of use as in this case proximity to the city center is negatively correlated with
900 higher e-scooter ridership. It may indicate that individuals living in areas with low population
901 density and compact land use are less prone to own e-scooters, although they show more
902 intensive use of this micromobility option, likely because shared options are scarcer in the
903 outskirts of the city.

904 Concerning travel-related variables, the results indicate a lower likelihood of adopting private e-
905 scooters among people with a public transportation pass (either monthly/annual season tickets
906 or a multi-personal reloadable card), while the opposite effect is obtained for the variable
907 capturing for regular access to a vehicle (car/moto). This result suggests that individuals who
908 have private e-scooters also prefer privately-owned vehicles to public transport. Furthermore, a
909 higher frequency of use of private e-scooters is found for people making more walking trips
910 during weekdays, which is reasonable given the partial substitution effect that may exist
911 between these two mobility alternatives.

912 Finally, private e-scooter usage has been found to be positively impacted by the adoption of e-
913 scooter sharing, as was initially assumed. In this regard, individuals who have used e-scooter
914 sharing at least once are more likely to acquire private e-scooters. Thus, the shared mobility
915 option influences the usage of the private one, as has been observed in previous research on
916 shared mobility analyzing the use of bikesharing in Madrid (see e.g., the study by Julio and
917 Monzon, 2022).

918 7. CONCLUSIONS AND FURTHER RESEARCH

919 This research provided evidence on the factors influencing the use of both shared and privately-
920 owned e-scooters in Madrid, using a proven methodology in the field of transport research. The
921 maturity horizon for adopting these micromobility vehicles may lead them to play a major role in
922 urban transport, resulting in important implications for urban livability and sustainability (Fitt and
923 Curl, 2019; Christoforou et al., 2021; Zhang et al., 2021). This research study provides valuable
924 implications for urban dynamics and feedback for policymakers and transport planners to make
925 appropriate decisions and better implement suitable urban policies in the aftermath of the
926 COVID-19 pandemic.

927 In light of the results, the user profile of e-scooter sharing seems to be similar to that of users of
928 other app-based shared mobility services (e.g., moped sharing, carsharing, or ridehailing), as
929 they tend to be males, young, wealthy, well-educated people, and those who live in inner
930 neighborhoods. Similarly, males and highly educated individuals are more likely to use privately-
931 owned e-scooters. By contrast, the level of income and household distance to the city center
932 showed to negatively influence e-scooter usage.

933 This study also helps to understand the importance of underlying constructs on e-scooter
934 usage. The results indicate positive relationships with the use of shared e-scooters among
935 people with pro-environmental behaviors, prone to use sharing economy platforms, with a
936 higher propensity to purchase second-hand products, and who identify shared e-scooters
937 circulating or parked around the city. Conversely, greater concerns about safety factors and risk
938 aversion are negatively related to e-scooter sharing usage. Precisely, women and aged people
939 are more susceptible to risks and are less likely to use e-scooter sharing than their counterparts.
940 Therefore, appropriate measures to improve the safety perception, such as designing and
941 planning a more e-scooter-friendly infrastructure (together with e.g., bikes), or providing parking
942 facilities for shared mobility, might not only encourage women and aged people to use e-
943 scooters more often, but also attract new people to adopt these micromobility vehicles. In this
944 respect, it might be expected that e-scooter usage will increase over time as long as
945 generations of young adopters get older, and the e-scooters become more familiar to other
946 segments of the population. Then, urban planners should be also aware of the growing trend in
947 the adoption of these vehicles to design an effective e-scooter regulation and infrastructure.

948 Interestingly, since our survey was conducted in 2021 when the COVID-19 pandemic was still
949 an issue, we were able to notice the resilience and potential of riding private e-scooters to cope
950 with this adverse situation, as occurs with other private transport modes such as cars or
951 motorcycles (see e.g., Shamshiripour et al., 2020; de Haas et al., 2020; Christidis et al., 2022),
952 in contrast to public transport which has been severely affected (Fernández Pozo et al., 2022;
953 Nikolaïdou et al., 2023). In this situation, e-scooters appear to be a more sustainable and
954 affordable alternative compared to other private modes of transportation (Arias-Molinares et al.,
955 2022), such as cars or mopeds powered by fossil fuels, especially for urban trips.

956 Furthermore, our findings indicate that e-scooters are perceived as a green mode of
957 transportation, similar to other research studies on e-scooter sharing (Eccarius and Lu, 2020;
958 Mitra and Hess, 2021), e-bike sharing (Julio and Monzon, 2022) and carsharing (Acheampong
959 and Siiba, 2020). To have positive environmental impacts, shared e-scooters must replace trips
960 that would otherwise be done using less sustainable transport modes. As pointed out by many
961 research studies (see e.g., Younes et al., 2020; Christoforou et al., 2021; Arias-Molinares et al.,

962 2022), micromobility and shared e-scooters, in particular, have significant potential to promote a
963 shift towards low-carbon mobility and reducing car dependency. In this sense, e-scooters can
964 potentially contribute to positive impacts on urban transportation and livability, replacing single-
965 occupancy trips and mitigating their related negative externalities such as road congestion,
966 urban space scarcity, or greenhouse gas emissions. However, the idea that car trips are
967 attracted by e-scooters is hardly proven in our research. In consequence, to achieve a modal
968 shift towards sustainability, it is necessary to implement policies at the local level that
969 encourage the use of environmentally-friendly modes and discourage motor-based mobility, e.g.
970 through on-street parking limitations, low emission zones, or extensive pedestrian areas.

971 Our results evidence some complementarity between e-scooter sharing and public transport,
972 although the e-scooter-only option seems to be the majority. Accordingly, it is unclear whether
973 shared e-scooters are mainly used as first/last mile mobility solutions for reaching the public
974 transport network. The research also suggests that people who own a private e-scooter also
975 prefer privately-owned vehicles to use public transport. In this respect, policymakers should
976 jointly promote this kind of trip to increase the attractiveness and efficiency of public transport,
977 by e.g., establishing single fares for the combined trips, designing physical infrastructure for the
978 combination of different transport modes, or integrating different transport modes into one
979 service to fulfill the mobility needs (Esztergár-Kiss et al., 2022). This in turn would help open up
980 numerous opportunities for a more sustainable mobility system in everyday life, as long as e-
981 scooters act as feeders of the public transport system.

982 Shared e-scooters seem to constitute a short-distance transport solution to replace long-
983 distance walking trips. While this trend may benefit many users by reducing their travel times, it
984 may also bear adverse implications for urban livability and mobility, leading to negative health
985 and environmental effects (Reck et al., 2021). At this point, it is important to note that e-scooter
986 sharing is mainly used when the public transport supply is noticeably low, that is, during
987 weekends, late evenings, and night periods. Additionally, leisure was the most common trip
988 purpose reported by respondents. All these points also reinforce the importance of further
989 collaboration and integration between public transport and micromobility, as the first and last leg
990 of the trip, in order to increase longer intermodal trips with public transport and e-scooters in
991 everyday mobility. As a result, e-scooters may be used more for commuting trips and replace
992 other private fossil-fuel vehicles, thus contributing to social welfare.

993 Although the present research article provides valuable insights into factors affecting e-scooter
994 usage in urban areas, several potential areas may be considered in future research. Future
995 research might find some diverging trends between Madrid and other case studies, thereby
996 indicating that the performance of e-scooter systems cannot be generalized to all cities
997 worldwide. Overall, the implications for urban dynamics will depend on a variety of context-
998 specific factors, including the availability and convenience of e-scooters, the cost of these
999 options relative to public transport and active modes, cultural preferences, and local policies
1000 and regulations related to transportation. Indeed, urban dynamics and transport systems are in
1001 a state of flux nowadays. Additionally, site-specific parameters range unique factors to each
1002 urban environment, including population density, infrastructure, topography, or weather
1003 conditions, which collectively may influence the usage of e-scooters. Consequently, the design
1004 of effective and successful e-scooter policies requires taking account of a large number of
1005 context and site-specific parameters that vary according to the geographical context (e.g.
1006 differences between cities in Europe and Asia or the Americas) and even from city to city, such

1007 as the characteristics of the transport network, mobility dynamics, the urban form, citizens'
1008 concerns, or the social context. Additionally, other e-scooter patterns (e.g., spatial accessibility)
1009 could be interesting to be investigated through data-driven approaches. Further explorations of
1010 e-scooter usage could also consider site-specific parameters to derive accurate insights and
1011 actionable recommendations.

1012 While the methodology used in this research can be used by policymakers and transport
1013 planners to explore e-scooter dynamics in other regions, the challenge of transferring results
1014 and findings from one location to another adds a lot of complexity to understanding and
1015 optimizing usage patterns of e-scooters. This issue requires careful consideration due to the
1016 intricate interplay of site-specific parameters. While some principles and trends might exhibit a
1017 degree of universality (e.g., increased e-scooter usage during pleasant weather), blindly
1018 applying findings from one location to another can lead to misguided conclusions. In other
1019 words, what works well in a city with a high student population and limited parking options might
1020 not be directly applicable to a city with a predominantly elderly demographic and better public
1021 transport systems. This challenge underscores the need for localized research that
1022 acknowledges and accommodates the unique characteristics of each urban setting.

1023 Further studies could also enrich this research with a long-term assessment of the evolution of
1024 e-scooter usage, which would provide a better overview of the spectrum of possible outcomes
1025 in different urban dynamics. In the case of Madrid, another study could be illustrative after the
1026 fleet cap on shared e-scooters is imposed. Another significant milestone for the future is to
1027 analyze in depth how to shrink the gender gap in e-scooter usage by e.g., setting suitable
1028 infrastructures and focusing on safety conditions. Finally, further contributions should address
1029 how extending pedestrian space in cities and heavier restrictions to the usage of motor-based
1030 vehicles may impact e-scooter usage.

1031 **Appendix A. Distribution of explanatory variables in the complete dataset and across e-
1032 scooter adoption**

VARIABLES	Subgroup	Complete dataset (n = 694)	Usage of shared e-scooters		Usage of private e-scooters	
			Non-user	User	Non-user	User
			(n = 418)	(n = 276)	(n = 584)	(n = 110)
Gender	Male	59.7%	53.6%	68.8%	58.7%	64.5%
	Female	40.4%	46.4%	31.2%	41.3%	35.5%
Age	18-19	12.7%	9.1%	18.1%	12.5%	13.6%
	20-24	35.7%	31.8%	41.7%	35.8%	35.5%
	25-34	23.9%	23.0%	25.4%	23.6%	25.5%
	35-49	18.9%	22.7%	13.0%	18.7%	20.0%
	50 or more	8.8%	13.4%	1.8%	9.4%	5.5%
Education	Secondary education or lower	36.7%	34.0%	40.9%	38.4%	28.2%
	Bachelor's degree(s)	28.1%	24.2%	34.1%	26.0%	39.1%
	Graduate degree(s) (e.g., MS, PhD)	35.0%	41.9%	24.6%	35.4%	32.7%
	DN/DWA	0.1%	0.0%	0.4%	0.2%	0.0%
Annual HH income	Less than 18,000 Euro	10.2%	8.6%	12.7%	9.8%	12.7%
	18,000 to 29,999 Euro	15.3%	16.5%	13.4%	16.1%	10.9%
	30,000 to 59,999 Euro	19.5%	19.6%	19.2%	19.2%	20.9%
	60,000 Euro or more	14.7%	15.6%	13.4%	15.2%	11.8%
	Without own income	22.8%	23.7%	21.4%	22.4%	24.5%
	DN/DWA	17.6%	16.0%	19.9%	17.3%	19.1%
Occupation	Student	39.9%	35.2%	47.1%	39.4%	42.7%
	Employed	30.3%	36.1%	21.4%	30.7%	28.2%
	Part-time employee/student	19.2%	18.2%	20.7%	19.3%	18.2%
	Other (homemaker, unemployed, retired, etc.)	10.7%	10.5%	10.9%	10.6%	10.9%
Household structure	Living alone	5.5%	5.5%	5.4%	5.5%	5.5%
	Living with non-relatives (e.g., roommates)	9.2%	5.5%	14.9%	8.6%	12.7%
	Couple without children	11.2%	12.9%	8.7%	12.2%	6.4%
	Family with children	73.5%	75.4%	70.7%	73.1%	75.5%
	Other types of family	0.6%	0.7%	0.4%	0.7%	0.0%
Residential location	Madrid city: inside the M30 Ring	30.6%	25.6%	38.0%	30.0%	33.6%
	Madrid city: outside the M30 Ring	34.7%	36.8%	31.5%	33.4%	41.8%
	Metropolitan area (outside Madrid city)	28.1%	30.6%	24.3%	30.0%	18.2%
	DN/DWA	6.6%	6.9%	6.2%	6.7%	6.4%
Public transport card ownership	No	21.6%	23.7%	18.5%	19.9%	30.9%
	Multi-personal reloadable card (10-journey and single ticket)	23.2%	26.6%	18.1%	24.7%	15.5%
	Monthly/Annual season ticket	55.2%	49.8%	63.4%	55.5%	53.6%
Vehicle ownership	No	21.8%	19.4%	25.4%	22.9%	15.5%
	Regular access to a vehicle	78.2%	80.6%	74.6%	77.1%	84.5%
E-bike ownership	No	62.4%	45.2%	88.4%	63.2%	58.2%
	Regular access to an e-bike	37.6%	54.8%	11.6%	36.8%	41.8%
E-scooter ownership	No	85.3%	89.5%	79.0%	100.0%	7.3%
	Regular access to an e-scooter	14.7%	10.5%	21.0%	0.0%	92.7%
Weekday mobility (excluding walking trips)	Zero trips	9.5%	10.3%	8.3%	9.8%	8.2%
	1 to 2 trips	62.8%	65.3%	59.1%	62.3%	65.5%
	3 or more trips	27.7%	24.4%	32.6%	27.9%	26.4%
Non-weekday mobility (excluding walking trips)	Zero trips	17.3%	21.1%	11.6%	18.5%	10.9%
	1 to 2 trips	50.6%	53.1%	46.7%	50.5%	51.8%
	3 or more trips	32.1%	25.8%	41.7%	31.0%	37.3%
Weekday walking trips over 10 min	Zero trips	21.5%	21.3%	21.7%	20.9%	24.5%
	1 to 2 trips	55.2%	56.5%	53.3%	56.2%	50.0%
	3 or more trips	23.3%	22.2%	25.0%	22.9%	25.5%
Non-weekday walking trips over 10 min	Zero trips	17.9%	20.6%	13.8%	18.7%	14.5%
	1 to 2 trips	43.4%	42.8%	44.2%	43.0%	44.5%
	3 or more trips	38.8%	36.6%	42.0%	38.4%	40.9%

1033

1034

1035 Appendix B. Results for the individual-level model on e-scooter use: main outcome variables of interest

VARIABLES (base category)	Weekday mobility (ordinal)	Non-weekday mobility (ordinal)	Weekday walking trips (ordinal)	Non-weekday walking trips (ordinal)	Adoption of e- scooter sharing (base: never used)	Freq. of use of e- scooter sharing (ordinal)	Adoption of private e-scooters (base: never used)	Freq. of use of private e-scooters (ordinal)
LATENT VARIABLES								
Environmental consciousness	--	--	0.194* (0.116)	--	--	0.294* (0.166)	0.280* (0.162)	--
Tech-savviness	--	--	--	0.272* (0.149)	--	--	--	--
Physical agility	0.139* (0.083)	0.136* (0.075)	--	--	--	--	--	--
Willingness to share	0.195*** (0.064)	--	--	--	0.343*** (0.083)	--	--	--
COVID-19 behavior	-0.291** (0.144)	-0.268** (0.135)	--	--	--	--	--	1.112*** (0.458)
Safety awareness	--	--	--	--	--	-0.437* (0.229)	--	--
Perceived avail. of shared e-scooters	--	--	0.115** (0.058)	0.097* (0.053)	0.268*** (0.074)	--	--	--
SOCIODEMOGRAPHIC VARIABLES								
Gender (Male)	Female	--	--	0.386** (0.153)	0.339** (0.150)	-0.846*** (0.211)	--	-0.412* (0.236)
Age	20-24	--	-0.482** (0.243)	-0.498*** (0.184)	--	-0.783** (0.315)	--	--
(18-20)	25-34	-0.395* (0.202)	-0.486* (0.291)	-0.498*** (0.184)	--	-1.193*** (0.353)	--	--
	35-49	--	-0.963*** (0.325)	-0.583** (0.248)	-0.792*** (0.236)	-1.570*** (0.392)	0.821** (0.367)	--
	50 or more	--	-1.020*** (0.369)	--	-0.556* (0.292)	3.310*** (0.605)	--	--
Education	Bachelor's degree(s)	--	0.515*** (0.194)	--	--	0.538** (0.226)	--	0.657** (0.256)
(Secondary education or lower)	Graduate degree(s)	0.894*** (0.233)	0.747*** (0.241)	--	0.447** (0.200)	--	--	0.657** (0.256)
Annual HH income	18,000 to 29,999 Euro	0.540** (0.259)	--	0.438** (0.221)	--	--	-0.482* (0.255)	--
(Less than 18,000 Euro)	30,000 to 59,999 Euro	0.397* (0.228)	--	0.405* (0.208)	--	0.682** (0.288)	--	-0.482* (0.255)
	60,000 Euro or more	0.397* (0.228)	--	--	--	0.705** (0.336)	--	1.860*** (0.599)
	Without own income	0.353 (0.220)	--	0.598*** (0.198)	--	--	-0.848** (0.366)	1.854** (0.739)
Occupation	Employed	-0.889*** (0.241)	--	--	--	--	--	--
(Student)	Part-time employee/student	--	--	--	--	--	--	--
	Other	--	--	--	--	--	--	--
Household Structure	Living with non-relatives	--	--	--	--	0.646** (0.325)	--	--
(Living alone)	Couple without children	--	--	--	-0.757* (0.401)	--	--	--
	Family with children	0.421** (0.203)	--	--	-0.315* (0.176)	-0.514* (0.290)	--	--
OTHER EXOGENOUS VARIABLES								
Public transport card (No)	Multi-personal reloadable card	--	--	0.704*** (0.234)	0.505** (0.218)	--	--	-1.065*** (0.341)
	Monthly/Annual season ticket	0.775*** (0.190)	--	0.994*** (0.214)	0.636*** (0.201)	--	--	-0.654** (0.282)
E-bike ownership (No)	I have regular access to an e-bike	--	--	--	0.278* (0.151)	-2.716*** (0.257)	0.682** (0.345)	--
Vehicle ownership (No)	I have regular access to a vehicle	--	--	--	--	--	0.698** (0.303)	--
Residential location(Madrid city: inside the M30 Ring)	Madrid city: outside the M30 Ring	0.387** (0.190)	--	--	--	--	--	--
	Metropolitan area	0.499** (0.205)	--	0.401** (0.182)	--	--	-0.437* (0.252)	-0.728*** (0.280)
								1.795** (0.619)
ENDOGENOUS VARIABLES								
Weekday mobility	1 to 2 trips	n/a	n/a	n/a	n/a	--	--	--
(Zero trips)	3 or more trips	n/a	n/a	n/a	n/a	0.391* (0.227)	--	--
Non-weekday mobility	1 to 2 trips	n/a	n/a	n/a	n/a	0.644** (0.276)	0.742** (0.369)	--
(Zero trips)	3 or more trips	n/a	n/a	n/a	n/a	1.364*** (0.298)	0.763** (0.367)	--
Weekday walking trips over 10 min (Zero trips)	1 to 2 trips	n/a	n/a	n/a	n/a	--	0.818*** (0.292)	--
	3 or more trips	n/a	n/a	n/a	n/a	--	1.600*** (0.351)	1.388*** (0.542)
Non-weekday walking trips over 10 min (Zero trips)	1 to 2 trips	n/a	n/a	n/a	n/a	--	--	--
	3 or more trips	n/a	n/a	n/a	n/a	--	--	--
Ever used e-scooter sharing (No)	Yes	n/a	n/a	n/a	n/a	n/a	0.955*** (0.226)	--
Constant		n/a	n/a	n/a	0.957** (0.417)	n/a	-1.961*** (0.452)	n/a
Thresholds	Thresholds 1	-1.211*** (0.304)	-1.788*** (0.225)	-0.576** (0.254)	-1.211*** (0.251)	n/a	0.196 (0.413)	1.364*** (0.391)
	Thresholds 2	2.275*** (0.315)	0.564*** (0.214)	2.045*** (0.268)	0.850*** (0.249)	n/a	2.456*** (0.440)	n/a
	Thresholds 3	5.381*** (0.414)	3.952*** (0.351)	4.564*** (0.344)	4.074*** (0.331)	n/a	4.197*** (0.490)	n/a
Observations		694	694	694	694	694	276	694
								110

1036 Level of significance: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors are in parentheses.

1037 **References**

1038 Acheampong, R.A., Siiba, A. (2020). Modelling the determinants of car-sharing adoption
1039 intentions among young adults: the role of attitude, perceived benefits, travel expectations and
1040 socio-demographic factors. *Transportation*, 47 (5), 2557–2580. <https://doi.org/10.1007/s11116-019-10029-3>.

1042 Aguilera-García, Á., Gomez, J., Antoniou, C., Vassallo, J. M. (2022). Behavioral factors
1043 impacting adoption and frequency of use of carsharing: A tale of two European cities. *Transport
1044 Policy*, 123, 55–72. <https://doi.org/10.1016/j.trapol.2022.04.007>.

1045 Akaike, H. (1987). Factor analysis and AIC. *Psychometrika*, 52 (3), 317–332.
1046 <https://doi.org/10.1007/bf02294359>.

1047 Akioui Sanz, A. A., Monzón, A., del Valle, L. Á. (2021). Evolution of mobility during the COVID-
1048 19 crisis in the region of Madrid. *Transportation Research Procedia*, 58, 416–422.
1049 <https://doi.org/10.1016/j.trpro.2021.11.056>.

1050 Almannaa, M.H., Ashqar, H.I., Elhenawy, M., Andry Rakotonirainy, M.M., Rakha, H. (2021). A
1051 comparative analysis of e-scooter and e-bike usage patterns: Findings from the City of Austin,
1052 TX. *International Journal of Sustainable Transportation*, 15, 7, 571–579.
1053 <https://doi.org/10.1080/15568318.2020.1833117>.

1054 Arias-Molinares, D., García-Palomares, J. C., Gutiérrez, J. (2022). Micromobility services before
1055 and after a global pandemic: impact on spatio-temporal travel patterns. *International Journal of
1056 Sustainable Transportation*, 1-16. <https://doi.org/10.1080/15568318.2022.2147282>.

1057 Astroza, S., Garikapati, V. M., Bhat, C. R., Pendyala, R. M., Lavieri, P. S., Dias, F. F. (2017).
1058 Analysis of the Impact of Technology Use on Multimodality and Activity Travel Characteristics.
1059 *Transportation Research Record: Journal of the Transportation Research Board*, 2666(), 19–28.
1060 <https://doi.org/10.3141/2666-03>.

1061 Bai, S., Jiao, J. (2020). Dockless E-scooter usage patterns and urban built Environments: a
1062 comparison study of Austin, TX, and Minneapolis, MN. *Travel Behaviour and Society*, 20, 264–
1063 272. <https://doi.org/10.1016/j.tbs.2020.04.005>.

1064 Bartus, T. (2017). Multilevel multiprocess modeling with Gsem. *STATA J.* 17 (2), 442–461.
1065 <https://doi.org/10.1177/1536867x1701700211>.

1066 Ben-Akiva, M., Walker, J., Bernardino, A.T., Gopinath, D.A., Morikawa, T., Polydoropoulou, A.
1067 (2002). Integration of choice and latent variable models. *Perpetual Motion: Travel Behaviour
1068 Research Opportunities and Application Challenges*, 431–470.

1069 Button, K., Frye, H., Reaves, D. (2020). Economic regulation and E-scooter networks in the
1070 USA. *Research in Transportation Economics*, 84, 100973.
1071 <https://doi.org/10.1016/j.retrec.2020.100973>.

1072 Caspi, O., Smart, M.J., Noland, R.B. (2020). Spatial associations of dockless shared escooter
1073 usage. *Transportation Research Part D: Transport Environmental*, 86, 102396.
1074 <https://doi.org/10.1016/j.trd.2020.102396>.

1075 Chicco, A., Diana, M. (2022). Understanding micro-mobility usage patterns: a preliminary
1076 comparison between dockless bike sharing and e-scooters in the city of Turin (Italy).
1077 *Transportation Research Procedia*, 62, 459–466. <https://doi.org/10.1016/j.trpro.2022.02.057>.

1078 Christidis, P., Navajas Cawood, E., Fiorello, D. (2022). Challenges for urban transport policy
1079 after the Covid-19 pandemic: Main findings from a survey in 20 European cities. *Transport
1080 Policy*, 129, 105–116. <https://doi.org/10.1016/j.tranpol.2022.10.007>.

1081 Christoforou, Z., de Bortoli, A., Gioldasis, C., Seidowsky, R. (2021). Who is using e-scooters
1082 and how? Evidence from Paris. *Transportation Research Part D: Transport and Environment*,
1083 92, 102708. <https://doi.org/10.1016/j.trd.2021.102708>.

1084 Cicchino, J.B., Kulie, P.E., McCarthy, M.L. (2021). Severity of e-scooter rider injuries associated
1085 with trip characteristics. *Journal of Safety Research*, 76, 256–261.
1086 <https://doi.org/10.1016/j.jsr.2020.12.016>.

1087 Cohen, A., Shaheen, S. (2018). Planning for Shared Mobility.
1088 <http://dx.doi.org/10.7922/G2NV9GDD>.

1089 Consorcio Regional de Transportes de Madrid (2020). In: Encuesta domiciliaria de movilidad de
1090 la Comunidad de Madrid 2018 – EDM2018. Retrieved July 15, 2020, from.
1091 <https://www.crtm.es/conocenos/planificacion-estudios-y-proyectos/encuesta-domiciliaria/edm2018.aspx>.

1093 D'Andreagiovanni, F., Nardin, A., Carrese, S. (2022). An Analysis of the Service Coverage and
1094 Regulation of E-Scooter Sharing in Rome (Italy). *Transportation Research Procedia*, 60, 440–
1095 447. <https://doi.org/10.1016/j.trpro.2021.12.057>.

1096 de Haas, M., Faber, R., Hamersma, M. (2020). How COVID-19 and the Dutch 'intelligent
1097 lockdown' change activities, work and travel behaviour: Evidence from longitudinal data in the
1098 Netherlands. *Transportation Research Interdisciplinary Perspectives*, 6, 100150.
1099 <https://doi.org/10.1016/j.trip.2020.100150>.

1100 Degele, J., Gorr, A., Haas, K., Kormann, D., Krauss, S., Lipinski, P., Tenbih, M., Koppenhoefer,
1101 C., Fauser, J., Hertweck, D. (2018). Identifying E-Scooter Sharing Customer Segments Using
1102 Clustering. 2018 IEEE International Conference on Engineering, Technology and Innovation
1103 (ICE/ITMC), 1–8. <https://doi.org/10.1109/ICE.2018.8436288>.

1104 Dias, G., Arsenio, E., Ribeiro, P. (2021). The role of shared E-Scooter systems in urban
1105 sustainability and resilience during the COVID-19 mobility restrictions. *Sustainability*, 13(13),
1106 7084. <https://doi.org/10.3390/su13137084>.

1107 Eccarius, T., Lu, C-C. (2020). Adoption intentions for micro-mobility – Insights from electric
1108 scooter sharing in Taiwan. *Transportation Research Part D: Transport and Environment*, 84,
1109 102327. <https://doi.org/10.1016/j.trd.2020.102327>.

1110 Esztergár-Kiss, D., Tordai, D., Lopez Lizarraga, J. C. (2022). Assessment of travel behavior
1111 related to e-scooters using a stated preference experiment. *Transportation Research Part A:
1112 Policy and Practice*, 166, 389–405. <https://doi.org/10.1016/j.tra.2022.11.010>.

1113 Falconer, R., Felder, M., Zhou, T. (2018). Mobility-as-a-Service - The value proposition for the
1114 public and our urban systems. Retrieved from <https://www.marsdd.com/wp-content/uploads/2018/04/Mobility-as-a-Service-the-value-proposition-Mar18.pdf>.

1116 Fauser, J., Sigle, N., Hertweck, D. (2021). Data-based application scenarios for e-scooters. 6th
1117 International Conference on Smart Data and Smart Cities, 15–17. <https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-41-2021>.

1119 Feigon, S., Frisbie, T., Halls, C., Murphy, C. (2018). Shared Use Mobility: European Experience
1120 and Lessons Learned. FHWA Global Benchmarking Program Report. Report No. FHWA-PL-18-
1121 026. Retrieved from <https://international.fhwa.dot.gov/sum/>.

1122 Fernández Pozo, R., Wilby, M. R., Vinagre Díaz, J. J., Rodríguez González, A. B. (2022). Data-
1123 driven analysis of the impact of COVID-19 on Madrid's public transport during each phase of the
1124 pandemic. *Cities*, 127, 103723. <https://doi.org/10.1016/j.cities.2022.103723>

1125 Fitt, H., Curl, A. (2019). E-scooter use in New Zealand: Insights around some frequently asked
1126 questions. <https://doi.org/10.13140/RG.2.2.13510.93761>.

1127 Fluctuo (2022). European Shared Mobility Index 2022. Retrieved from <https://european->
1128 [index.fluctuo.com/](https://european-index.fluctuo.com/)

1129 Fonseca-Cabrera, A. S., Llopis-Castelló, D., Pérez-Zuriaga, A. M., Alonso-Troyano, C., García,
1130 A. (2021). Micromobility users' behaviour and perceived risk during meeting manoeuvres.
1131 *International Journal of Environmental Research and Public Health*, 18(23), 12465.
1132 <https://doi.org/10.3390/ijerph182312465>.

1133 GESOP (2021). La bicicleta y el patinete en tiempos de pandemia en las zonas urbanas
1134 españolas. Informe de resultados, Abril de 2021. Red de Ciudades por la Bicicleta. Retrieved
1135 from [https://www.ciudadesporlabicicleta.org/wp-](https://www.ciudadesporlabicicleta.org/wp-content/uploads/2021/05/1314_BiciyPatineteCOVID_Informe-OK.pdf)
1136 [content/uploads/2021/05/1314_BiciyPatineteCOVID_Informe-OK.pdf](https://www.ciudadesporlabicicleta.org/wp-content/uploads/2021/05/1314_BiciyPatineteCOVID_Informe-OK.pdf).

1137 Gomez, J., Aguilera-García, Á., Dias, F.F., Bhat, C.R., Vassallo, J.M. (2021). Adoption and
1138 frequency of use of ride-hailing services in a European city: the case of Madrid. *Transportation*
1139 *Research Part C: Emerging Technologies*, 131, 103359.
1140 <https://doi.org/10.1016/j.trc.2021.103359>.

1141 Hawa, L., Cui, B., Sun, L., El-Geneidy, A. (2021). Scoot over: Determinants of shared electric
1142 scooter presence in Washington D.C. *Case Studies on Transport Policy*, 9(2), 418–430.
1143 <https://doi.org/10.1016/j.cstp.2021.01.003>.

1144 Haworth, N., Schramm, A., Twisk, D. (2021). Comparing the risky behaviours of shared and
1145 private e-scooter and bicycle riders in downtown Brisbane, Australia. *Accident Analysis &*
1146 *Prevention*, 152, 105981. <https://doi.org/10.1016/j.aap.2021.105981>.

1147 Heineke, K., Kloss, B., Rupalla, F., Scurtu, D. (2021). Why micromobility is here to stay.
1148 McKinsey Center for Future Mobility, McKinsey & Company. Retrieved from
1149 [https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/why-micromobility-](https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/why-micromobility-is-here-to-stay)
1150 [is-here-to-stay](https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/why-micromobility-is-here-to-stay).

1151 Hosseinzadeh, A., Algomaiah, M., Kluger, R., Li, Z. (2021). E-scooters and sustainability:
1152 Investigating the relationship between the density of E-scooter trips and characteristics of
1153 sustainable urban development. *Sustainable Cities and Society*, 66, 102624.
1154 <https://doi.org/10.1016/j.scs.2020.102624>.

1155 Hosseinzadeh, A., Kluger, R. (2021). Analyzing the impact of COVID-19 pandemic on
1156 micromobility transportation. In *International Conference on Transportation and Development*
1157 2021, 52–60. <https://doi.org/10.1061/9780784483541.005>.

1158 Hu, L., Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
1159 conventional criteria versus new alternatives. *Structural Equation Modeling: A Multidisciplinary*
1160 *Journal*, 6 (1), 1–55. <https://doi.org/10.1080/10705519909540118>.

1161 INVERS GmbH (2022): Global Moped Sharing Market Report 2022.
1162 <https://go.invers.com/en/resources/global-moped-sharing-market-report-2022>.

1163 James, O., Swiderski, J., Hicks, J., Teoman, D., Buehler, R. (2019). Pedestrians and Escooters:
1164 an initial look at E-scooter parking and perceptions by riders and non-riders. *Sustainability*,
1165 11(20), 5591. <https://doi.org/10.3390/su11205591>.

1166 Javadinasr, M., Asgharpour, S., Rahimi, E., Choobchian, P., Mohammadian, A.K., Auld, J.
1167 (2022). Eliciting attitudinal factors affecting the continuance use of E-scooters: An empirical
1168 study in Chicago. *Transportation Research Part F: Traffic Psychology and Behaviour*, 87, 87–
1169 101. <https://doi.org/10.1016/j.trf.2022.03.019>.

1170 Jiao, J., Bai, S. (2020). Understanding the Shared E-scooter Travels in Austin, TX. *International
1171 Journal of Geo-Information*, 9(2), 135. <https://doi.org/10.3390/ijgi9020135>.

1172 Julio, R., Monzon, A. (2022). Long term assessment of a successful e-bike-sharing system. Key
1173 drivers and impact on travel behaviour. *Case Studies on Transport Policy*, 10(2), 1299–1313.
1174 <https://doi.org/10.1016/j.cstp.2022.04.019>.

1175 Kamargianni, M., Li, W., Matyas, M., Schäfer, A. (2016). A Critical Review of New Mobility
1176 Services for Urban Transport. *Transportation Research Procedia*, 14, 3294–3303.
1177 <https://doi.org/10.1016/j.trpro.2016.05.277>.

1178 Karpinski, E., Bayles, E., Daigle, L., Mantine, D. (2022). Characteristics of early shared E-
1179 Scooter fatalities in the United States 2018–2020. *Safety Science*, 153, 105811.
1180 <https://doi.org/10.1016/j.ssci.2022.105811>.

1181 Karlı, R.G. Ö., Karlı, H., Çelikyay, H.S. (2022). Investigating the acceptance of shared e-
1182 scooters: Empirical evidence from Turkey. *Case Studies on Transport Policy*, 10, 2, 1058–1068.
1183 <https://doi.org/10.1016/j.cstp.2022.03.018>.

1184 Kerttu, J., Smidfelt Rosqvist, L., Wendle, B. (2016). Konsekvenser av Mobility as a Service -
1185 Jämförelse av alternativa scenarier för implementering av nya mobilitetstjänster (förstudie).
1186 Trivector Rapport 2016:112, Trivector Traffic AB.

1187 Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford
1188 publications.

1189 Laa, B., Leth, U. (2020). Survey of E-scooter users in Vienna: Who they are and how they ride.
1190 *Journal of Transport Geography*, 89, 102874. <https://doi.org/10.1016/j.jtrangeo.2020.102874>.

1191 Le Vine, S., Polak, J. (2015). Introduction to special issue: new directions in shared-mobility
1192 research. *Transportation*, 42, 407–411. <https://doi.org/10.1007/s11116-015-9603-4>.

1193 Lee, H. J., Luchetti, M., Aschwanden, D., Sesker, A. A., Strickhouser, J. E., Terracciano, A.,
1194 Sutin, A. R. (2022). Perceived changes in social contact during COVID-19 pandemic in the
1195 United States. *Personal Relationships*, 29(1), 59–76. <https://doi.org/10.1111/pere/12413>.

1196 Li, A., Zhao, P., He, H., Axhausen, K. W. (2020). Understanding the variations of micro-mobility
1197 behavior before and during COVID-19 pandemic period. *Arbeitsberichte Verkehrs-und
1198 Raumplanung*, 1547. <https://doi.org/10.3929/ethz-b-000430395>.

1199 Madrid City Council (2021). Banco de Datos del Ayuntamiento de Madrid. Retrieved August 15,
1200 from https://www-s.madrid.es/CSEBD_WBINTER/inicio.html.

1201 Márquez, L., Cantillo, V., Arellana, J. (2021). How do the characteristics of bike lanes influence
1202 safety perception and the intention to use cycling as a feeder mode to BRT? *Travel Behaviour*
1203 and Society, 24, 205–217. <https://doi.org/10.1016/j.tbs.2021.04.005>.

1204 McKenzie, G. (2019). Spatiotemporal comparative analysis of scooter-share and bike-share
1205 usage patterns in Washington, D.C. *Journal of Transport Geography*, 78, 19–28.
1206 <https://doi.org/10.1016/j.jtrangeo.2019.05.007>.

1207 McQueen, M., Clifton, K.J. (2022). Assessing the perception of E-scooters as a practical and
1208 equitable first-mile/last-mile solution. *Transportation Research Part A: Policy and Practice*, 165,
1209 395–418. <https://doi.org/10.1016/j.tra.2022.09.021>.

1210 Mitra, R., Hess, P.M. (2021). Who are the potential users of shared e-scooters? An examination
1211 of socio-demographic, attitudinal and environmental factors. *Travel Behaviour and Society*, 23,
1212 100–107. <https://doi.org/10.1016/j.tbs.2020.12.004>.

1213 Munkácsy, András (2017). User profiles and adoption attributes of innovative bike-sharing
1214 systems: the case of BiciMAD (Madrid). Doctoral Thesis. ETSI Caminos, Canales Y Puertos.
1215 Universidad Politecnica de Madrid (UPM). <https://doi.org/10.20868/UPM.thesis.47849>.

1216 Muñoz, B., Monzon, A., Lois, D. (2013). Cycling Habits and Other Psychological Variables
1217 Affecting Commuting by Bicycle in Madrid, Spain. *Transportation Research Record*, 2382(1), 1–
1218 9. <https://doi.org/10.3141/2382-01>.

1219 Muñoz, B., Monzon, A., López, E. (2016). Transition to a cyclable city: Latent variables affecting
1220 bicycle commuting. *Transportation Research Part A: Policy and Practice*, 84, 4–17.
1221 <https://doi.org/10.1016/j.tra.2015.10.006>.

1222 Nikiforidis, A., Paschalidis, E., Stamatiadis, N., Raptopoulou, A., Kostareli, A., Basbas, S.
1223 (2021). Analysis of attitudes and engagement of shared e-scooter users. *Transportation*
1224 *Research Part D: Transport and Environment*, 94, 102790.
1225 <https://doi.org/10.1016/j.trd.2021.102790>.

1226 Nikolaïdou, A., Kopsacheilis, A., Georgiadis, G., Noutsias, T., Politis, I., Fyrogenis, I. (2023).
1227 Factors affecting public transport performance due to the COVID-19 outbreak: A worldwide
1228 analysis. *Cities*, 134, 104206. <https://doi.org/10.1016/j.cities.2023.104206>.

1229 Oostendorp, R., Hardinghaus, M. (2022) Shared vs. private e-scooters: Same vehicle - different
1230 mode? Empirical evidence on e-scooter usage in Germany. *Transport Research Arena (TRA)*
1231 2022. <https://elib.dlr.de/191432>.

1232 Polydoropoulou, A., Pagoni, I., Tsirimpa, A. (2020). Ready for Mobility as a Service? Insights
1233 from stakeholders and end-users. *Travel Behaviour and Society*, 21, 295–306.
1234 <https://doi.org/10.1016/j.tbs.2018.11.003>.

1235 Rabe-Hesketh, S., Skrondal, A., Pickles, A. (2004). Generalized multilevel structural equation
1236 modeling. *Psychometrika*, 69 (2), 167–190. <https://doi.org/10.1007/bf02295939>.

1237 Radics, M., Christidis, P. (2022). Impact of the COVID-19 pandemic on mobility in Spain.
1238 JRC128451, EUR 31033 EN, Publications Office of the European Union. ISBN 978-92-76-
1239 49855-1. <https://doi.org/10.2760/040554>.

1240 Reck, D. J., Haitao, H., Guidon, S., Axhausen, K. W. (2021). Explaining shared micromobility
1241 usage, competition and mode choice by modelling empirical data from Zurich, Switzerland.

1242 Transportation Research Part C: Emerging Technologies, 124, 102947.
1243 <https://doi.org/10.1016/j.trc.2020.102947>.

1244 Reck, D. J., Martin, H., Axhausen, K. W. (2022). Mode choice, substitution patterns and
1245 environmental impacts of shared and personal micro-mobility. Transportation Research Part D:
1246 Transport and Environment, 102, 103134. <https://doi.org/10.1016/j.trd.2021.103134>.

1247 Riggs, W., Kawashima, M., Batstone, D. (2021). Exploring best practice for municipal e-scooter
1248 policy in the United States. Transportation Research Part A: Policy and Practice, 151, 18–27.
1249 <https://doi.org/10.1016/j.tra.2021.06.025>.

1250 Romero, F., Gomez, J., Rangel, T., Vassallo, J. M. (2019). Impact of restrictions to tackle high
1251 pollution episodes in Madrid: Modal share change in commuting corridors. Transportation
1252 Research Part D: Transport and Environment, 77, 77–91.
1253 <https://doi.org/10.1016/j.trd.2019.10.021>.

1254 Shah, N.R., Aryal, S., Wen, Y., Cherry, C.R. (2021). Comparison of motor vehicle-involved e-
1255 scooter and bicycle crashes using standardized crash typology. Journal of Safety Research, 77,
1256 217–228. <https://doi.org/10.1016/j.jsr.2021.03.005>.

1257 Shaheen, S., Cohen, A., Chan, N., Bansal, A. (2020). Sharing strategies: carsharing, shared
1258 micromobility (bikesharing and scooter sharing), transportation network companies, microtransit,
1259 and other innovative mobility modes. Transportation, Land Use, and Environmental Planning,
1260 237–262. <https://doi.org/10.1016/B978-0-12-815167-9.00013-X>.

1261 Shamshiripour, A., Rahimi, E., Shabanpour, R., Mohammadian, A. (2020). How is COVID-19
1262 reshaping activity-travel behavior? Evidence from a comprehensive survey in Chicago.
1263 Transportation Research Interdisciplinary Perspectives, 7, 100216.
1264 <https://doi.org/10.1016/j.trip.2020.100216>.

1265 Smith, C. S., Schwieterman, J. P. (2018). E-scooter scenarios: evaluating the potential mobility
1266 benefits of shared dockless scooters in Chicago. Retrieved from
1267 <https://trid.trb.org/view/1577726>.

1268 Solon, G., Haider, S.J., Wooldridge, J.M. (2015). What are we weighting for? Journal of Human
1269 Resources, 50(2), 301–316. <https://doi.org/10.3386/jhr.50.2.301>.

1270 Tuncer, S., Brown, B. (2020). E-scooters on the Ground: Lessons for Redesigning Urban Micro-
1271 Mobility. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
1272 1–14. <https://doi.org/10.1145/3313831.3376499>.

1273 Vallejo-Borda, J. A., Giesen, R., Basnak, P., Reyes, J. P., Mella Lira, B., Beck, M. J., Hensher,
1274 D. A., Ortúzar, J. D. D. (2022). Characterising public transport shifting to active and private
1275 modes in South American capitals during the COVID-19 pandemic. Transportation Research
1276 Part A: Policy and Practice, 164, 186–205. <https://doi.org/10.1016/j.tra.2022.08.010>.

1277 Vega-Gonzalo, M., Aguilera-García, Á., Gomez, J., Vassallo, J. M. (2023). Traditional taxi, e-
1278 hailing or ride-hailing? A GSEM approach to exploring service adoption patterns.
1279 Transportation, 1–40. <https://doi.org/10.1007/s11116-022-10356-y>.

1280 Velázquez Romera, G. (2019). Behavioral factors underlying the adoption of smart mobility
1281 solutions. Doctoral Thesis. ETSI Caminos, Canales Y Puertos. Universidad Politecnica de
1282 Madrid (UPM). <https://doi.org/10.20868/UPM.thesis.56452>.

1283 Wang, K., Akar, G., Chen, Y. (2018). Bike sharing differences among Millennials, Gen Xers, and
1284 Baby Boomers: Lessons learnt from New York City's bike share. *Transportation Research Part*
1285 *A: Policy and Practice*, 116, 1–14. <https://doi.org/10.1016/j.tra.2018.06.001>.

1286 Wang, K., Qian, X., Fitch, D.T., Lee, Y., Malik, J., Circella, G. (2022). What travel modes do
1287 shared e-scooters displace? A review of recent research findings, *Transport Reviews*, 43:1, 5–
1288 31. <https://doi.org/10.1080/01441647.2021.2015639>.

1289 Warwick, G., Tiffany, D. F., Justine, B., Brett, B. (2017). The rise of mobility as a service -
1290 Reshaping how urbanites get around. *Deloitte Review*, 20, 114–129.
1291 <https://www2.deloitte.com/nl/nl/pages/consumer-industrial-products/articles/the-rise-of-mobility-as-a-service.html>.

1293 Weschke, J., Oostendorp, R., Hardingham, M. (2022). Mode shift, motivational reasons, and
1294 impact on emissions of shared e-scooter usage. *Transportation Research Part D: Transport and*
1295 *Environment*, 112, 103468. <https://doi.org/10.1016/j.trd.2022.103468>.

1296 Wooldridge, J.M. (1999). Asymptotic properties of weighted M-estimators for variable probability
1297 samples. *Econometrica*, 67(6), 1385–1406. <https://doi.org/10.1111/1468-0262.00083>.

1298 Yang, H., Ma, Q., Wang, Z., Cai, Q., Xie, K., Yang, D. (2020). Safety of micro-mobility: Analysis
1299 of E-Scooter crashes by mining news reports. *Accident Analysis & Prevention*, 143, 105608.
1300 <https://doi.org/10.1016/j.aap.2020.105608>.

1301 Yin, C., Zhang, J., Shao, C. (2020). Relationships of the multi-scale built environment with
1302 active commuting, body mass index, and life satisfaction in China: a GSEM-based analysis.
1303 *Travel Behaviour and Society*, 21, 69–78. <https://doi.org/10.1016/j.tbs.2020.05.010>.

1304 Younes, H., Zou, Z., Wu, J., Baiocchi, G. (2020). Comparing the Temporal Determinants of
1305 Dockless Scooter-share and Station-based Bike-share in Washington, D.C. *Transportation*
1306 *Research Part A: Policy and Practice*, 134, 308–320. <https://doi.org/10.1016/j.tra.2020.02.021>.

1307 Zhang, W., Buehler, R., Broaddus, A., Sweeney, T. (2021). What type of infrastructures do e-
1308 scooter riders prefer? A route choice model. *Transportation Research Part D: Transport and*
1309 *Environment*, 94, 102761. <https://doi.org/10.1016/j.trd.2021.102761>.