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Abstract

In this paper, the distributed fusion state estimation problem is addressed for sensor network

systems with random state transition matrix and random measurement matrices, which provide

a unified framework to consider some network-induced random phenomena. The process

noise and all the sensor measurement noises are assumed to be one-step autocorrelated and

different sensor noises are one-step cross-correlated; also, the process noise and each sensor

measurement noise are two-step cross-correlated. These correlation assumptions cover many

practical situations, were the classical independence hypothesis is not realistic. Using an

innovation methodology, local least-squares linear filtering estimators are recursively obtained

at each sensor. The distributed fusion method is then used to form the optimal matrix-weighted

sum of these local filters according to the mean squared error criterion. A numerical simulation

example shows the accuracy of the proposed distributed fusion filtering algorithm and illustrates

some of the network-induced stochastic uncertainties that can be dealt with the current system

model, such as sensor gain degradation, missing measurements and multiplicative noise.

1 Introduction

In recent years, information and communication technologies have experienced a fast development,

making the use of sensor networks become very popular for measurement acquisition and data

processing, as they usually provide more information than traditional single-sensor communication

systems. For this reason, the study of the estimation problem in sensor network stochastic

systems has achieved great interest in many important research fields of engineering, computing

and mathematics, mainly, by their broad scope of applications (target tracking, environment

observation, habitat monitoring, animal tracking, communications, etc.).
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Although fusion algorithms have been proposed according to different methods (see e.g. [1]-

[3]), most existing results do not consider the new problems that arise inevitably in sensor network

systems due to the restrictions of the physical equipment, mainly the limitations of bandwidth

channels and uncertainties in the external environment, in both the modeling process and the

transmission of information. These situations can dramatically worsen the quality of fusion

estimators designed. Multiplicative noise uncertainties, random delays, packet dropouts and

missing measurements, are some of the most common problems that motivated the need to develop

new estimation algorithms. Therefore, it is not surprising that, in the past few years, the study of

the state estimation problem in network systems with only one or several of the aforementioned

uncertainties has become an active research area (see e.g. [4] -[9] and references therein).

Clearly, some of these situations with networked-induced phenomena are special cases of systems

with transition and/or measurement random parameter matrices, which have important practical

significance and arise in many application areas such as digital control of chemical processes, radar

control, navigation systems or economic systems [10]. On the one hand, random state transition

matrices arise in the context of systems with state-dependent multiplicative noise, of great interest

for applications in aerospace systems, communication, processing images, etc. [11]. On the other

hand, systems with observation multiplicative noises [12] clearly are special cases of systems with

random parameter measurement matrices. Also, networked systems with stochastic sensor gain

degradation as those considered in [13] or the systems with state and measurement multiplicative

noises in [9], can be rewritten by transition and measurement random parameter matrices. It must

be mentioned that in many papers, see e.g. [8], systems with random delays and packet dropouts

are transformed into systems with random parameter matrices. Consequently, these kind of systems

can model a great variety of real situations and, for this reason, the estimation problem in this

type of systems has gained a considerable interest in recent years (see e.g. [14]-[18] and references

therein).

Furthermore, in the latest research on signal estimation, the fairly conservative assumption

that the process and measurement noises are uncorrelated is commonly weakened as, in many

practical situations, such noises are usually correlated. For example, when all the sensors operate

in the same noisy environment, the sensor noises are usually correlated. Likewise when the process

noise and the sensor noises are state dependent, there may be cross-correlation between them, as

well as between different sensor noises. Also, the augmented systems used to describe random

delays and measurement losses are systems with correlated noises, and discretized continuous-time

systems have also inherently correlated noises. Hence, in both, systems with deterministic matrices

2



and systems with random parameter matrices, the estimation problem with correlated and cross-

correlated noises, has become a challenging research topic. In the first case, the optimal Kalman

filtering fusion problem in systems with cross-correlated process noises and measurement noises

at the same sampling time is addressed for example in [19], and at consecutive sampling times

in [8]. Under different correlation assumptions of the noises, centralized and distributed fusion

algorithms are obtained in [11], for systems with multiplicative noise in the state equation, in [9],

when multiplicative noises exist in both the state and observation equations, and in [13], for systems

where the measurements might have partial information about the signal. For systems with random

parameter matrices and autocorrelated and cross-correlated noises, many research efforts have been

devoted to the centralized fusion estimation problem ([15]-[18]). Centralized algorithms are based on

a fusion centre able to receive all the measured data from sensors for being processed; they provide

optimal estimators from the measurements of all the sensors and hence, when all the sensors work

correctly, they have the best accuracy. Nevertheless, as it is known, the centralized approach has

several drawbacks such as bad robustness, poor survivability, reliability, heavy communication and

expensive computational cost, which can be overcome by using distributed approaches. In the

distributed fusion method, each sensor estimates the state based on its own measurement data,

and these local estimators are combined according to a certain information fusion criterion. To

the best of the authors knowledge, the distributed fusion estimation problem in networked systems

with both random parameter matrices and autocorrelated and cross-correlated noises has not been

investigated.

Motivated by the above considerations, this paper deals with the distributed fusion estimation

problem in sensor network systems including simultaneously random parameter matrices and

correlated noises in the state-space model. The main contributions of our study can be

highlighted as follows: (1) The network system model with random parameter matrices considered

provides a unified framework to treat some network-induced phenomena, such as multiplicative

noise uncertainties, missing measurements or sensor gain degradation, and, hence, the proposed

distributed fusion filter has a wide applicability. (2) One-step autocorrelation of the noises and,

also, two-step cross-correlation between the process noise and different sensor noises are considered.

(3) The innovation technique is used to obtain algorithms for the local least-squares linear filtering

estimators which are recursive and computationally simple. (4) The proposed distributed fusion

filter is generated by a matrix-weighted linear combination of the local filtering estimators using

the mean squared error as optimality criterion, requiring the cross-covariance matrices between any

two local filters, but not the error cross-covariance matrices, as in [1].
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The rest of the paper is organized as follows. The system model with multiple sensors and random

parameter matrices is presented in Section 2, including a brief description of the traditional

centralized and distributed fusion estimation methods. The local least-squares linear filtering

algorithms are derived in Section 3, using an innovation approach. In Section 4, the proposed

distributed fusion filter is obtained by a matrix-weighted linear combination of the local filtering

estimators using the mean squared error as optimality criterion. A simulation example is given in

Section 5 to show the performance of the proposed estimation algorithms, and some conclusions

are drawn in Section 6.

Notation: The notation used throughout the paper is standard. R
n denotes the n-dimensional

Euclidean space. AT and A−1 denote the transpose and inverse of a matrix A, respectively. The

shorthand (A1, . . . , Am) denotes a partitioned matrix into sub-matrices A1, . . . , Am. If a matrix

dimension is not explicitly stated, it is assumed to be compatible for algebraic operations. Moreover,

for any function Gk,s, depending on the time instants k and s, we write Gk = Gk,k for simplicity.

Analogously, we write K(i) = K(ii) for any function K(ij), depending on the sensors i and j.

δk−s represents the Kronecker delta function, which is equal to one if k = s, and zero otherwise.

Orthogonal Projection Lemma is abbreviated as OPL. Finally, all the random vectors will be

defined on the probabilistic space (Ω,A, P ), and for arbitrary random vectors X and Y , we denote

Cov[X,Y ] = E[(X − E[X]) (Y − E[Y ])T ] and Cov[X] = Cov[X,X], where E[·] stands for the

mathematical expectation operator.

2 System Formulation and Problem Statement

Consider the following discrete-time linear stochastic system with m different sensors:

xk+1 = Fkxk + wk, k ≥ 0, (1)

y
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, 2, . . . ,m, (2)

where xk ∈ R
nx is the state vector and y

(i)
k ∈ R

ny is the output measured by sensor i, both at time

k. {Fk; k ≥ 0} and {H
(i)
k ; k ≥ 1} are sequences of random parameter matrices with compatible

dimensions. {wk; k ≥ 0} is the process noise and {v
(i)
k ; k ≥ 1} is the measurement noise of the i-th

sensor.

Model assumptions. The assumptions about the initial state, the random parameter matrices and

the noises involved in the system model (1)-(2), under which the fusion filtering problem will be

addressed, are:
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(i) The initial state x0 is a random vector with E[x0] = x0 and Cov[x0] = Σ0.

(ii) {Fk; k ≥ 0} and {H
(i)
k ; k ≥ 1} are sequences of independent random parameter matrices

with known means, E[Fk] = F k, E[H
(i)
k ] = H

(i)
k , i = 1, 2, . . . ,m, and the covariances of

their entries, Cov[fpq (k), fp′q′
(k)], Cov[h(i)

pa
(k), h(i)

qb
(k)], are also assumed to be known. fpq(k)

denotes the (p, q)-th entry of matrix Fk, for p, q = 1, 2, . . . , nx, and h(i)
pq
(k) denotes the (p, q)-th

entry of H
(i)
k , for p = 1, 2, . . . , nx and q = 1, 2, . . . , ny.

(iii) The noises {wk; k ≥ 0} and {v
(i)
k ; k ≥ 1}, i = 1, 2, . . . ,m, are zero-mean sequences with

known covariances and cross-covariances:

Cov[wk, ws] = Qk,s (δk−s + δk−s+1 + δk−s−1) ,

Cov[v
(i)
k , v

(j)
s ] = R

(ij)
k,s (δk−s + δk−s+1 + δk−s−1) ,

Cov[wk, v
(i)
s ] = S

(i)
k,s (δk−s + δk−s+1 + δk−s+2) .

(iv) For i = 1, 2, . . . ,m, the initial state x0 and the processes {Fk; k ≥ 0} and {H
(i)
k ; k ≥ 1}

are mutually independent and they are independent of the additive noises {wk; k ≥ 0} and

{v
(i)
k ; k ≥ 1}.

Remark 1. By denoting F̃k = Fk − F k, H̃
(i)
k = H

(i)
k −H

(i)
k , i = 1, 2, . . . ,m, and D an arbitrary

deterministic matrix, the following identities hold for the (p, q)-th entries of the matrices E[F̃kDF̃ T
k ]

and E[H̃
(i)
k DH̃

(i)T
k ]:

(
E[F̃kDF̃ T

k ]
)
pq

=

nx∑

a=1

nx∑

b=1

Cov[fpa(k), fqb
(k)]Dab, p, q = 1, 2, . . . , nx.

(
E[H̃

(i)
k DH̃

(i)T
k ]

)
pq

=

nx∑

a=1

nx∑

b=1

Cov[h(i)
pa
(k), h(i)

qb
(k)]Dab, p, q = 1, 2, . . . , ny.

Remark 2. Assumptions (i)-(iii) lead to the following recursive formula for Dk ≡ E[xkx
T
k ], the

correlation matrix of the state vector xk (see, e.g. [15]):

Dk+1 = F kDkF
T
k + E[F̃kDkF̃

T
k ] +Qk + F kQk−1,k +Qk,k−1F

T
k , k ≥ 1;

D1 = F 0D0F
T
0 + E[F̃0D0F̃

T
0 ] +Q0,

D0 = Σ0 + x0x
T
0 .

(3)

Remark 3. The following correlation properties of the vector noises wk and v
(i)
k are easily inferred

from the assumptions (iii)-(iv):

• For i = 1, 2, . . . ,m, the noise vector wk is uncorrelated with the observations y
(i)
1 , . . . , y

(i)
k−1,

and correlated with y
(i)
k , with

W
(i)
k ≡ E[wky

(i)T
k ] = Qk,k−1H

(i)T
k + S

(i)
k , k ≥ 1. (4)
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• For i, j = 1, 2, . . . ,m, the noise vector v
(i)
k is uncorrelated with the observations y

(j)
1 , . . . , y

(j)
k−2,

and correlated with y
(j)
k−1, with

V
(ij)
k,k−1 ≡ E[v

(i)
k y

(j)T
k−1 ] = S

(i)T
k−2,kH

(j)T
k−1 +R

(ij)
k,k−1, k ≥ 2. (5)

Our aim is to address the optimal least-squares (LS) linear filtering problem of state xk by

fusing effectively the observations y
(i)
1 , . . . , y

(i)
k , i = 1, 2, . . . ,m; specifically, we use the traditional

centralized and distributed fusion methods. As is known, the main drawbacks of the first are

the expensive computational cost, poor robustness and flexibility. The latter overcomes these

disadvantages and provides greater accuracy than local estimators. The centralized fusion method

use all measurement data coming from m sensors directly in the fusion center for state estimation,

while in the distributed fusion method the observations in the fusion center are replaced by estimates

that have been locally computed.

Centralized fusion algorithm. Combining the m measurement equations given by (2) and setting

yk =
(
y
(1)T
k , . . . , y

(m)T
k

)T
, the discrete-time multi-sensor system with random parameter matrices

and correlated additive noises (1)-(2) considered in this paper, is a special case of the discrete-

time stochastic system with random parameter matrices and correlated additive noises considered

in [17]. Hence, the optimal centralized fusion filter could be obtained by the optimal LS lineal

filtering algorithm in [17].

Distributed fusion algorithm. The distributed fusion method computes, at each sensor, a local

optimal LS linear state filter using its own measurement data, and, subsequently, the fusion center

computes the LS matrix-weighted linear combination of the local filtering estimators. Hence, the

distributed fusion filtering algorithm is performed in two steps. In the first one (Section 3), for

each i = 1, 2, . . . ,m, a local LS linear estimator of the signal xk, denoted by x̂
(i)
k/k, is produced

using the measurements y
(i)
1 , . . . , y

(i)
k , by a recursive algorithm. In the second step (Section 4),

a fusion distributed estimator, x̂
(D)
k/k , is generated by a matrix-weighted linear combination of the

local estimators, x̂
(i)
k/k

, i = 1, 2, . . . ,m, using the mean squared error as optimality criterion.

3 Local LS Linear Filtering Algorithm

This section is concerned with the problem of obtaining a recursive algorithm for the local LS linear

filter at each sensor i, for i = 1, . . . ,m, by using an innovation approach.

Theorem 1 For system (1)-(2), under assumptions (i)-(iv), the local LS linear filter, x̂
(i)
k/k, is given
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by

x̂
(i)
k/k = x̂

(i)
k/k−1 + X

(i)
k Π

(i)−1
k µ

(i)
k , k ≥ 1; x̂

(i)
0/0 = x0, (6)

where the one-stage state predictor, x̂
(i)
k/k−1, satisfies

x̂
(i)
k/k−1 = F k−1x̂

(i)
k−1/k−1 +W

(i)
k−1Π

(i)−1
k−1 µ

(i)
k−1, k ≥ 2; x̂

(i)
1/0 = F 0x0. (7)

The filtering error covariance matrix, Σ
(i)
k/k, is given by

Σ
(i)
k/k

= Σ
(i)
k/k−1

− X
(i)
k Π

(i)−1
k X

(i)T
k , k ≥ 1; Σ

(i)
0/0

= Σ0, (8)

where the prediction error covariance matrix, Σ
(i)
k/k−1, is calculated by

Σ
(i)
k/k−1 = F k−1Σ

(i)
k−1/k−1F

T
k−1 + E[F̃k−1Dk−1F̃

T
k−1] +Qk−1

+F k−1J
(i)
k−1 + J

(i)T
k−1 F

T
k−1 −W

(i)
k−1Π

(i)−1
k−1 W

(i)T
k−1 , k ≥ 2;

Σ
(i)
1/0 = F 0Σ0/0F

T
0 + E[F̃0D0F̃

T
0 ] +Q0,

(9)

with

J
(i)
k = Qk−1,k − X

(i)
k Π

(i)−1
k W

(i)T
k , k ≥ 1. (10)

The matrix X
(i)
k is obtained by

X
(i)
k = Σ

(i)
k/k−1H

(i)T
k +M

(i)
k , k ≥ 1, (11)

where M
(i)
k is given by

M
(i)
k = F k−1S

(i)
k−2,k+ S

(i)
k−1,k− X

(i)
k,k−1Π

(i)−1
k−1 V

(i)T
k,k−1, k≥ 2; M

(i)
1 = S

(i)
0,1, (12)

with

X
(i)
k,k−1 = F k−1X

(i)
k−1 +W

(i)
k−1, k ≥ 2. (13)

The innovation, µ
(i)
k , is given by

µ
(i)
k = y

(i)
k −H

(i)
k x̂

(i)
k/k−1 − V

(i)
k,k−1Π

(i)−1
k−1 µ

(i)
k−1, k ≥ 2;

µ
(i)
1 = y

(i)
1 −H

(i)
1 x̂

(i)
1/0,

(14)

and the innovation covariance matrix, Π
(i)
k , satisfies

Π
(i)
k = E[H̃

(i)
k DkH̃

(i)T
k ] +H

(i)
k X

(i)
k +M

(i)T
k H

(i)T
k +R

(i)
k

−V
(i)
k,k−1Π

(i)−1
k−1 V

(i)T
k,k−1, k ≥ 2;

Π
(i)
1 = E[H̃

(i)
1 D1H̃

(i)T
1 ] +H

(i)
1 X

(i)
1 +M

(i)T
1 H

(i)T
1 +R

(i)
1 .

(15)

The matrices Dk, W
(i)
k and V

(i)
k,k−1 are given in (3), (4) and (5), respectively.
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Proof. See Appendix. �

The computational procedure of the proposed local LS linear filtering algorithm can be

summarized as follows:

The matrices W
(i)
k and V

(i)
k,k−1 are computed by expressions (4) and (5), respectively. We obtain

Dk recursively by (3), where the matrix E[F̃k−1Dk−1F̃
T
k−1], necessary to compute Dk and Σ

(i)
k/k−1,

is obtained as indicated in Remark 1. The matrix E[H̃kDkH̃
T
k ] is also computed in order to obtain

the innovation covariance matrix Π
(i)
k . Note that all these matrices depend only on the system

model information and can be obtained before the observations are available.

At the sampling time k, once the (k − 1)-th iteration is finished and the new observation y
(i)
k

is available, starting with the prior knowledge including X
(i)
k−1, µ

(i)
k−1, Π

(i)
k−1, x̂

(i)
k/k−1

, Σ
(i)
k/k−1

the

proposed filtering algorithm operates as follows:

Step 1: From (13), X
(i)
k,k−1 is computed and, from it, M

(i)
k is provided by (12), and then X

(i)
k is

obtained by (11).

Step 2: The innovation µ
(i)
k and its covariance matrix Π

(i)
k are computed by (14) and (15),

respectively.

Step 3: The filter, x̂
(i)
k/k, and the filtering error covariance matrix, Σ

(i)
k/k, are computed by (6) and

(8), respectively.

Step 4: To implement the above steps at time k + 1, we must:

4.1) Compute the state predictor, x̂
(i)
k+1/k

, by (7).

4.2) Compute J
(i)
k by (10), and from this, the prediction error covariance matrix, Σ

(i)
k+1/k, by (9).

4 Distributed Fusion Filtering Estimators

Once the local LS linear filters, x̂
(i)
k/k for each sensor i = 1, 2, . . . ,m, have been obtained, our

objective in this section is to design a distributed fusion filter, x̂
(D)
k/k

, by a matrix-weighted linear

combination of such estimators, which minimizes the mean squared estimation error. To simplify

the derivation of the proposed fusion estimators, we previously present some useful lemmas that

provide the expectations K
(ij)
k/k−1 = E[x̂

(i)
k/k−1x̂

(j)T
k/k−1], L

(ij)
k = E[x̂

(i)
k/k−1µ

(j)T
k ] and Π

(ij)
k = E[µ

(i)
k µ

(j)
k ],

necessary for subsequent calculations. The assumptions and notation in these lemmas are those of

Section 3.
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4.1 Preliminary Results

Lemma 1 For i, j = 1, 2, . . . ,m, the cross-covariance matrix between any two local state predictors,

K
(ij)
k/k−1 = E[x̂

(i)
k/k−1x̂

(j)T
k/k−1], satisfies

K
(ij)
k/k−1 = F k−1K

(ij)
k−1/k−2F

T
k−1 + F k−1L

(ij)
k−1Π

(j)−1
k−1 X

(j)T
k,k−1

+X
(i)
k,k−1Π

(i)−1
k−1 Π

(ij)
k−1Π

(j)−1
k−1 X

(j)T
k,k−1

+X
(i)
k,k−1Π

(i)−1
k−1 L

(ji)T
k−1 F

T
k−1, k ≥ 2; i 6= j,

K
(ij)
1/0 = F 0x0x

T
0 F

T
0 ,

K
(i)
k/k−1 = Dk − Σ

(i)
k/k−1, k ≥ 1.

Proof. Using (25) and that L
(ij)
k = E[x̂

(i)
k/k−1µ

(j)T
k ] and Π

(ij)
k = E[µ

(i)
k µ

(j)
k ], the proof of this lemma

is immediately clear. �

Lemma 2 For i, j = 1, 2, . . . ,m and i 6= j, the expectation L
(ij)
k = E[x̂

(i)
k/k−1µ

(j)T
k ] satisfies

L
(ij)
k =

(
K

(i)
k/k−1 −K

(ij)
k/k−1

)
H

(j)T
k + X

(i)
k,k−1Π

(i)−1
k−1 V

(ji)T
k,k−1

−L
(ij)
k,k−1Π

(j)−1
k−1 V

(j)T
k,k−1, k ≥ 2;

L
(ij)
1 = 0,

where L
(ij)
k,k−1 = E[x̂

(i)
k/k−1µ

(j)T
k−1 ] is given by

L
(ij)
k,k−1 = F k−1L

(ij)
k−1 + X

(i)
k,k−1Π

(i)−1
k−1 Π

(ij)
k−1, k ≥ 2.

Proof. Taking into account expression (14) for µ
(j)
k , we have that

L
(ij)
k = E[x̂

(i)
k/k−1y

(j)T
k ]−K

(ij)
k/k−1H

(j)T
k − L

(ij)
k,k−1Π

(j)−1
k−1 V

(j)T
k,k−1.

Now, using (2) for y
(j)
k , (25) for x̂

(i)
k/k−1, and the OPL, we obtain

E[x̂
(i)
k/k−1y

(j)T
k ] = K

(i)
k/k−1H

(j)T
k + X

(i)
k,k−1Π

(i)−1
k−1 V

(ji)T
k,k−1.

From the above relations, the expression for L
(ij)
k is immediately derived.

Using again (25) for x̂
(i)
k/k−1, expression for L

(ij)
k,k−1 is also immediately clear, and the proof is

completed. �

Lemma 3 For i, j = 1, 2, . . . ,m and i 6= j, the innovation cross-covariance matrix, Π
(ij)
k =

E[µ
(i)
k µ

(j)T
k ], satisfies

Π
(ij)
k = H

(i)
k

(
X

(j)
k − L

(ij)
k

)
+M

(ji)T
k H

(j)T
k +R

(ij)
k

−V
(ij)
k,k−1Π

(j)−1
k−1 V

(j)T
k,k−1−V

(i)
k,k−1Π

(i)−1
k−1 Π

(ji)T
k,k−1, k≥ 2;

Π
(ij)
1 = H

(i)
1

(
X

(j)
1 − L

(ij)
1

)
+M

(ji)T
1 H

(j)T
1 +R

(ij)
1 ,
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where M
(ij)
k = E[(xk − x̂

(i)
k/k−1)v

(j)T
k ] is given by

M
(ij)
k = F k−1S

(j)
k−2,k + S

(j)
k−1,k − X

(i)
k,k−1Π

(i)−1
k−1 V

(ji)T
k,k−1, k ≥ 2; M

(ij)
1 = S

(j)
0,1,

and Π
(ij)
k,k−1 = E[µ

(i)
k µ

(j)T
k−1 ] is obtained by

Π
(ij)
k,k−1 = H

(i)
k

(
X

(j)
k,k−1 − L

(ij)
k,k−1

)
+ V

(ij)
k,k−1 − V

(i)
k,k−1Π

(i)−1
k−1 Π

(ij)
k−1, k ≥ 2.

Proof. Using (14) for the innovation µ
(i)
k , it is clear that

Π
(ij)
k = E[y

(i)
k µ

(j)T
k ]−H

(i)
k L

(ij)
k − V

(i)
k,k−1Π

(i)−1
k−1 E[µ

(i)
k−1µ

(j)T
k ].

A similar reasoning to that used to obtain (15) yields

E[y
(i)
k µ

(j)T
k ] = H

(i)
k X

(j)
k +M

(ji)T
k H

(j)T
k +R

(ij)
k − V

(ij)
k,k−1Π

(j)−1
k−1 V

(j)T
k,k−1, k ≥ 2;

E[y
(i)
1 µ

(j)T
1 ] = H

(i)
1 X

(i)
1 +M

(ji)T
1 H

(j)T
1 +R

(ij)
1 .

So, the expression for Π
(ij)
k is immediately derived. The expression for Π

(ij)
k,k−1 is obtained by an

analogous reasoning. �

4.2 Distributed Fusion Filter Design

As we have already indicated, our goal is to obtain a distributed fusion filter, x̂
(D)
k/k , generated

by a weighted sum of the local estimators,

m∑

i=1

F
(i)
k x̂

(i)
k/k, in which the weight matrices, F

(i)
k ,

i = 1, 2, . . . ,m, are computed to minimize the mean squared estimation error.

So, by denoting X̂k/k =
(
x̂
(1)T
k/k , . . . , x̂

(m)T
k/k

)T
and Fk =

(
F

(1)
k , . . . , F

(m)
k

)
, the aim is to find Fk

such that the estimator FkX̂k/k minimizes

E
[
(xk −FkX̂k/k)(xk −FkX̂k/k)

T
]
.

As it is well known, the solution of this problem is given by the matrix

Fopt
k = E

[
xkX̂

T
k/k

] (
E
[
X̂k/kX̂

T
k/k

])
−1
, k ≥ 1. (16)

The following theorem provides the proposed distributed fusion filtering estimators, x̂
(D)
k/k

, and

their error covariance matrices, Σ
(D)
k/k.

Theorem 2 Let X̂k/k =
(
x̂
(1)T
k/k , . . . , x̂

(m)T
k/k

)T
be the vector formed by the local LS filtering

estimators calculated in Theorem 1. Then, the distributed fusion filter is given by

x̂
(D)
k/k = Ξk/kK

−1
k/kX̂k/k, k ≥ 1, (17)

10



where

Kk/k =
(
K

(ij)
k/k

)
i,j=1,...,m

and Ξk/k =
(
K

(1)
k/k, . . . ,K

(m)
k/k

)
,

and K
(ij)
k/k = E

[
x̂
(i)
k/kx̂

(j)T
k/k

]
, i, j = 1, 2, . . . ,m, are computed by

K
(ij)
k/k = K

(ij)
k/k−1 + L

(ij)
k Π

(j)−1
k X

(j)T
k + X

(i)
k Π

(i)−1
k L

(ji)T
k

+X
(i)
k Π

(i)−1
k Π

(ij)
k Π

(j)−1
k X

(j)T
k , k ≥ 1; i 6= j

K
(i)
k/k

= Dk − Σ
(i)
k/k

, k ≥ 1,

(18)

with K
(ij)
k/k−1, L

(ij)
k and Π

(ij)
k given in lemmas 1, 2 and 3, respectively.

The error covariance matrices of the distributed fusion filtering estimators are computed by

Σ
(D)
k/k = Dk − Ξk/kK

−1
k/kΞ

T
k/k, k ≥ 1. (19)

Proof. Expressions (17) and (19) for the distributed estimators and their error covariance matrices,

respectively, are immediately derived from (16). Expression (18) for the cross-covariance matrices

between local filtering estimators follows easily using expression (6) of such estimators. �

5 Numerical Simulation Example

Consider the following discrete-time linear networked system with state-dependent multiplicative

noise, and scalar measurements from four sensors:

xk = (0.95 + 0.2ǫk−1)xk−1 + wk−1, k ≥ 1,

y
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, 2, 3, 4

where {ǫk; k ≥ 0} is a zero-mean Gaussian white process with unit variance. The additive noises

are defined as wk = 0.6(ηk+ηk+1) and v
(i)
k = c

(i)
k (ηk−1+ηk), i = 1, 2, 3, 4, where c

(1)
k = 1, c

(2)
k = 0.5,

c
(3)
k = 0.75, c

(4)
k = 0.85, and {ηk; k ≥ 0} is a zero-mean Gaussian white process with variance 0.5.

For i = 1, 2, 3, 4, the random parameter matrices H
(i)
k are defined as follows:

• H
(1)
k = 0.82λ

(1)
k , where {λ

(1)
k ; k ≥ 1}, is a sequence of independent and identically distributed

(iid) random variables uniformly distributed over [0.3, 0.7].

• H
(2)
k = 0.75λ

(2)
k , where {λ

(2)
k ; k ≥ 1}, is a sequence of iid discrete random variables with

P [λ
(2)
k = 0] = 0.1, P [λ

(2)
k = 0.5] = 0.5, P [λ

(2)
k = 1] = 0.4.

• H
(3)
k = 0.74λ

(3)
k , where {λ

(3)
k ; k ≥ 1}, is a Bernoulli process with P [λ

(3)
k = 1] = p(3), ∀k.

• H
(4)
k = λ

(4)
k (0.75 + 0.95ξk), where {λ

(4)
k ; k ≥ 1} is a Bernoulli process with P [λ

(4)
k = 1] = p(4),

∀k, and {ξk; k ≥ 0} is a zero-mean Gaussian white process with unit variance.
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Note that the random parameter matrices at each sensor, H
(i)
k , allow to model different types

of uncertainty. Namely, in sensors 1 and 2, as in [13], the scalar random variables λ
(i)
k take values

over the interval [0, 1] and represent continuous and discrete stochastic sensor gain degradations,

respectively. In sensor 3, λ
(3)
k are Bernoulli random variables, thus covering the phenomenon of

missing measurements, with λ
(3)
k = 1 meaning that the signal xk is present in the measurement

y
(3)
k coming from the third sensor at time k, while λ

(i)
k = 0 means that the signal is missing in the

measured data at time k or, equivalently, that such observation is only noise v
(3)
k . Finally, as in [5],

both missing measurements and multiplicative noise are considered in sensor 4.

To illustrate the feasibility and effectiveness of the proposed algorithms, they were implemented

in MATLAB, and one hundred iterations of the algorithms were run. Using simulated values, both

centralized and distributed filtering estimates were calculated, as well as the corresponding error

variances, in order to measure the estimation accuracy.

The error variances of the local, centralized and distributed fusion filters are compared

considering fixed values p(3) = 0.5, p(4) = 0.75. In Fig. 1, we can see that the error variances of the

distributed fusion filter are significantly smaller than those of every local filter, but lightly greater

than those of the centralized filter. Nevertheless, although the centralized fusion filter outperforms

the distributed one, this difference is slight and both filters perform similarly and provide good

estimations. Besides, this slight difference is compensated by the fact that the distributed fusion

structure reduces the computational cost and has the advantage of better robustness and fault

tolerance. For example, assuming that the fourth sensor is faulty and the measurement equation

is given by y
(4)
k = H

(4)
k xk + v

(4)
k + ak, where ak = 0.5k for 50 ≤ k ≤ 70 and ak = 0 otherwise, Fig.

2 displays the corresponding filtering mean square errors of one thousand independent simulations

at each sampling time k, showing that the distributed fusion method has better fault-tolerance

abilities than the centralized one.

Next, we analyze the centralized and distributed filtering accuracy in function of the

probabilities p(3) and p(4) of the Bernoulli variables that model uncertainties of the observations

coming from sensors 3 and 4, respectively. Specifically, the filter performances are analyzed when

p(3) is varied from 0.1 to 0.9, and different values of p(4) are considered. Since the behavior of the

error variances is analogous in all the iterations, only the results of a specific iteration (k = 100) are

shown here. In Fig. 3 the centralized and distributed filtering error variances are displayed versus

p(3), for p(4) = 0.3, 0.5, 0.7 and 0.9. As expected, from this figure it is concluded that, as p(3) or

p(4) increase, the centralized and distributed error variances both become smaller and, hence, the

performance of the centralized and distributed filters improve as these probabilities increase.
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Figure 1: Error variance comparison of the centralized, distributed and local filtering estimators.
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Figure 2: Centralized and distributed filtering mean square errors.
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Figure 3: Centralized and distributed filtering error variances at k = 100 versus p(3), when

p(4) = 0.3, 0.5, 0.7 and 0.9

Finally, to evaluate the performance of the proposed filters in comparison with other filters

reported in the literature, the filtering mean square error (MSE) at each sampling time k is

calculated. To compute the MSE, one thousand independent simulations were considered and one

hundred iterations of each algorithm were performed considering the values p(3) = 0.5, p(4) = 0.75.

A comparative analysis was carried out between the proposed centralized and distributed filters

and the following filters:

- The centralized Kalman filter for systems with independent additive noises.

- The centralized filter for multi-sensor systems with multiplicative noises in the state and

observation equations, missing measurements and noise correlation at the same sampling

time [5].

- The centralized filter for networked systems with multiplicative noise in the state equation,

stochastic sensor gain degradation and independent additive noises [13].

The results of these comparisons are displayed in Figure 4, which shows that the proposed

centralized and distributed filters perform better than the other three centralized filters. The

Kalman filter provides the worst estimations since neither multiplicative noises nor missing

measurements are taken into account. The performance of the filter in [5] is better than that
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Figure 4: Mean square errors, when p(3) = 0.5, p(4) = 0.75.

of the filter in [13] since the latter ignore any correlation assumption and multiplicative observation

noise in sensor 4 is not taken into account.

6 Conclusion

The distributed fusion filtering problem has been investigated for multi-sensor stochastic systems

with random parameter matrices and correlated noises. The main outcomes and results can be

summarized as follows:

• Recursive algorithms for the local LS linear filters of the system state based on the measured

output data coming from each sensor have been designed by an innovation approach. The

computational procedure of these local filtering algorithms is very simple and suitable for

online applications.

• Once the local filters have been obtained, a distributed fusion filter has been designed as the

matrix-weighted sum of such local estimators that minimizes the mean-squared estimation

error. The error covariance matrices of such distributed fusion filter have been also derived.

• A numerical simulation example has illustrated the usefulness of the proposed results.

Error variance comparison has shown that both the centralized and the distributed filters

outperform the local ones; this example has also shown that the slight superiority of
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the centralized filter over the distributed filter is compensated by better robustness and

fault-tolerance abilities of the latter. This example has also highlighted the applicability

of the proposed algorithm for a great variety of multi-sensor systems featuring network-

induced stochastic uncertainties, such as sensor gain degradation, missing measurements or

multiplicative observation noises, which can be dealt with the observation model considered

in this paper.

A challenging further research topic is to address the estimation problem for this kind of systems

with random parameter matrices, considering a sensor network whose nodes are distributed

according to a given topology, characterized by a directed graph. Also, an interesting future research

topic is to consider other kinds of stochastic uncertainties which often appear in networked systems,

such as random delays and packet dropouts.
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Appendix: Proof of Theorem 1

This appendix provides the proof of Theorem 1 by an innovation approach. For the i-th sensor,

the innovation at time k is defined as µ
(i)
k = y

(i)
k − ŷ

(i)
k/k−1, where ŷ

(i)
k/k−1 is the LS linear estimator

of y
(i)
k based on measurements y

(i)
s , s ≤ k− 1. Replacing the observation process by the innovation

one, the LS linear estimator, ẑ
(i)
k/L, of a random vector zk based on the observations y

(i)
1 , . . . , y

(i)
L ,

can be calculated as linear combination of the innovations µ
(i)
1 , . . . , µ

(i)
L ; namely,

ẑ
(i)
k/L =

L∑

s=1

E[zkµ
(i)T
s ](E[µ(i)

s µ(i)T
s ])−1µ(i)

s , k ≥ 1. (20)

From the system equations (1)-(2) and the OPL, the state predictor x̂
(i)
k/k−1 and the observation

predictor ŷ
(i)
k/k−1, verify:

x̂
(i)
k/k−1

= F k−1x̂
(i)
k−1/k−1

+ ŵ
(i)
k−1/k−1

, k ≥ 1, (21)
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ŷ
(i)
k/k−1 = H

(i)
k x̂

(i)
k/k−1 + v̂

(i)
k/k−1, k ≥ 1. (22)

Because of the correlation assumption (iii), the noise filter ŵ
(i)
k/k and the one-stage noise predictor

v̂
(i)
k/k−1 are not equal to zero and, hence, expressions for such estimators must be calculated.

LS linear noise estimators ŵ
(i)
k/k and v̂

(i)
k/k−1. From the general expression for the estimators (20),

taking into account that by Remark 3,

E[wkµ
(i)T
k ] = E[wky

(i)T
k ] = W

(i)
k and E[v

(i)
k µ

(i)T
k−1] = E[v

(i)
k y

(i)T
k−1 ] = V

(i)
k,k−1,

we have that the noise filter, ŵ
(i)
k/k, and the one-stage noise predictor, v̂

(i)
k/k−1, satisfy:

ŵ
(i)
k/k = W

(i)
k Π

(i)−1
k µ

(i)
k , k ≥ 1; ŵ

(i)
0/0 = 0. (23)

v̂
(i)
k/k−1 = V

(i)
k,k−1Π

(i)−1
k−1 µ

(i)
k−1, k ≥ 2; v̂

(i)
1/0 = 0. (24)

Now, we will prove the local filtering algorithm by several steps:

(I) Derivation of the filter (6), one-stage state predictor (7) and their error covariance matrices

(8) and (9), respectively.

From (20), by denoting X
(i)
k = E[xkµ

(i)T
k ] and Π

(i)
k = E[µ

(i)
k µ

(i)T
k ], the expression (6) for the

filter is obvious, and from this relation and the OPL, we obtain (8) for the filtering error covariance.

From (21) and (23), the expression (7), with W
(i)
k satisfying (4), for the state predictor is

immediately obtained. This expression together with the state equation (1) lead to (9) for the

prediction error covariance matrix, where Dk is given by (3), and J
(i)
k = E[(xk − x̂

(i)
k/k)w

T
k ] clearly

satisfies (10).

(II) Derivation of (11) for the matrix X
(i)
k = E[xkµ

(i)T
k ].

From (6) and (7), the following recursive expression for the state predictor is obtained:

x̂
(i)
k/k−1 = F k−1x̂

(i)
k−1/k−2 + X

(i)
k,k−1Π

(i)−1
k−1 µ

(i)
k−1, k ≥ 2, (25)

where, from (1), the matrix X
(i)
k,k−1 = E[xkµ

(i)T
k−1] clearly verifies (13).

Using relation (25) and again (1), we obtain that the correlation between the prediction error

and the noise, M
(i)
k ≡ E[(xk − x̂

(i)
k/k−1)v

(i)T
k ], satisfies (12). This correlation property allows us

to obtain easily expression (11) for the matrix X
(i)
k = E[xkµ

(i)T
k ]. Indeed, by the OPL, we have

X
(i)
k = E[(xk − x̂

(i)
k/k−1)y

(i)T
k ], and, from (2), expression (11) for X

(i)
k is obtained.

(III) Derivation of the innovation (14) and its covariance matrix (15).

From (22) and (24), is clear that the innovation is given by (14), with V
(i)
k,k−1 satisfying (5).

Next, an expression (15) for Π
(i)
k = E[µ

(i)
k µ

(i)T
k ] is derived. From the OPL and (2), we have that

Π
(i)
k = E[y

(i)
k µ

(i)T
k ] = H

(i)
k E[xkµ

(i)T
k ] +E[H̃

(i)
k xkµ

(i)T
k ] + E[v

(i)
k µ

(i)T
k ]. (26)
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− Again, from the OPL and (2), and the conditional expectation properties,

E[H̃
(i)
k xkµ

(i)T
k ] = E[H̃

(i)
k xkx

T
k H̃

(i)T
k ] = E[H̃

(i)
k DkH̃

(i)T
k ], k ≥ 1.

− Using (14) for µ
(i)
k , with (2) for y

(i)
k , we obtain that

E[v
(i)
k µ

(i)T
k ] = M

(i)T
k H

(i)T
k +R

(i)
k − V

(i)
k,k−1Π

(i)−1
k−1 V

(i)T
k,k−1, k ≥ 2;

E[v
(i)
1 µ

(i)T
1 ] = M

(i)T
1 H

(i)T
1 +R

(i)
1 .

Substituting the above expectations into (26), we easily obtain (15), and the proof is completed.
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