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This paper addresses the optimal least-squares linear estimation problem for a class of discrete-
time stochastic systems with random parameter matrices and correlated additive noises. The system
presents the following main features: (1) one-step correlated and cross-correlated random parameter
matrices in the observation equation are assumed; (2) the process and measurement noises are one-
step autocorrelated and two-step cross-correlated. Using an innovation approach and these correlation
assumptions, a recursive algorithm with a simple computational procedure is derived for the optimal
linear filter. As a significant application of the proposed results, the optimal recursive filtering problem
in multi-sensor systems with missing measurements and random delays can be addressed. Numerical
simulation examples are used to demonstrate the feasibility of the proposed filtering algorithm, which
is also compared with other filters that have been proposed.
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1. Introduction

The least-squares (LS) state estimation problem in discrete-time linear systems from noise mea-
surements has been widely considered, due to its applicability in many practical situations. The
Kalman filter provides a recursive algorithm for the optimal LS estimator when the model param-
eter matrices are deterministic and the additive white noises and the initial state are Gaussian
and mutually independent. However, many real systems do not meet these requirements and
new filtering algorithms have been reported for models representing the relationship between
the unknown state and the observable variables and under different assumptions for the noise
processes.

In recent decades, the filtering problem in multi-sensor systems, where sensor networks are used
to obtain all available information on the system state, has become an issue of great interest for
researchers. In data transmission, unreliable network characteristics can produce random sensor
delays, multiple packet dropouts and uncertain observations (missing measurements). Due to
these random uncertainties, standard observation models are not appropriate and estimation
algorithms cannot be derived directly from Kalman filter theory. Accordingly, new algorithms
are needed, and many research papers have been presented concerning the state estimation
problem in multi-sensor systems with some of the aforementioned uncertainties (see Moayedi et
al. (2010); Ma and Sun (2011); Sun and Xiao (2013), among others).

In systems with uncertain observations, besides the usual additive noise, the observation equa-
tion includes a multiplicative noise; hence, these systems are a special case of random measure-
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ment matrices. Moreover, systems with random sensor delays or multiple packet dropouts are
transformed into systems with random measurement matrices in Sahebsara et al. (2007). Systems
with random state transition matrices can be used, for example, to describe randomly variant
dynamic systems with multiple models (Luo et al. 2008) or linear systems with state-dependent
multiplicative noise (Feng et al. 2013). Discrete-time systems with random state transition and
measurement parameter matrices also arise in areas such as the digital control of chemical
processes, systems with human operators, economic systems and stochastically sampled digital
control systems (De Koning 1984).

In De Koning (1984) and Luo et al. (2008), the optimal linear filtering problem in systems with
independent random state transition and measurement matrices is addressed by transforming
the original system into one with deterministic parameter matrices and state-dependent process
and measurement noises, to which the Kalman filter is applied. Although De Koning (1984)
applies the Kalman filter without providing any theoretical justification, Luo et al. (2008) shows
that under mild conditions, the transformed system satisfies the Kalman filter requirements and,
hence, optimal linear estimators are derived for systems with independent random parameter
matrices.

However, in many practical situations the random parameter matrices are not independent
but correlated; for example, when random sensor delays and/or multiple packet dropouts are
converted into observation models with random measurement matrices (Sahebsara et al. 2007),
or when a nonlinear system is linearized around the random state estimate to apply the extended
Kalman filter (for other realistic systems and backgrounds where the model parameter matrices
are random and correlated, see Luo et al. (2012) and Shen et al. (2012)). In Shen et al. (2011),
systems with deterministic transition matrices and one-step correlated measurement matrices are
considered, and the optimal recursive state estimation is derived by converting the observation
equation into one with deterministic measurement matrices and applying the optimal Kalman
filter for the case of one-step correlated measurement noise. In addition, a specific class of
systems, where both the state transition and the measurement matrices are one-step moving
average matrix sequences driven by a common independent zero-mean parameter sequence, is
considered in the latter paper.

In the above-mentioned papers, although the noises of the transformed system with determin-
istic matrices depend on the system state and therefore can be correlated, the original system
noises are assumed to be independent white processes. This assumption can be restrictive in many
real-world problems in which correlation and cross-correlation of the noises may be present. In
systems with deterministic (state transition and measurement) matrices and with correlated and
cross-correlated noises, the estimation problem has aroused significant research interest recently
(see Feng et al. (2013); Caballero-Águila et al. (2013a) and references therein).

In view of the above considerations, this study focuses on the optimal LS linear filtering
problem in systems with random parameter matrices and autocorrelated and cross-correlated
noises, assuming independent random state transition matrices and one-step correlated and
cross-correlated random parameter matrices in the observation equation. The proposed optimal
LS linear recursive filtering algorithm can be applied to two significant classes of systems: (i)
multi-sensor systems with missing measurements when the missing measurement phenomenon
in each sensor is described by different sequences of correlated scalar random variables with
arbitrary discrete probability distribution over the interval [0,1] (see Section 4); and (ii) multi-
sensor systems with correlated random delays in the observations (see Section 5). In both cases,
correlated and cross-correlated noises are considered. This paper makes a substantial and novel
contribution in two respects: (1) Unlike most existing results with random parameter matrices, in
which a system transformation is carried out, the proposed optimal LS linear recursive filtering
algorithm is obtained by using an innovation approach, without requiring any system transfor-
mation and, moreover, in which noise correlation is considered; (2) multi-sensor systems with
missing and randomly delayed measurements can be considered as particular cases of the cur-
rent random measurement matrices model and, hence, the proposed filter can be applied to these
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kind of multi-sensor systems. Besides these advantages, the filtering algorithm described is very
simple computationally.

The rest of this paper is organized as follows. Section 2 describes the system model with
random state transition and measurement matrices, and autocorrelated and cross-correlated
noises. In addition, some properties of the state and noise processes derived from the correlation
assumptions are specified. In Section 3, by using an innovation approach, a recursive algorithm
for the optimal LS linear filter is obtained. In Sections 4 and 5, applications to multi-sensor
systems with missing and randomly delayed measurements, respectively, are considered. In both
sections, a numerical simulation example is presented to show the effectiveness of the proposed
recursive filtering algorithm. Finally, some conclusions are drawn in Section 6.

Notation: The notation used throughout the paper is standard. For any matrix A, the
notation symbols AT and A−1 represent its transpose and inverse, respectively; Rn de-
notes the n-dimensional Euclidean space and Rm×n is the set of m × n real matrices. The
shorthand Diag(A1, . . . , Am) denotes a block diagonal matrix with matrices A1, . . . , Am, and
[A1 | · · · | Am] denotes a partitioned matrix into sub-matrices A1, . . . , Am. If a matrix dimension
is not explicitly stated, it is assumed to be compatible for algebraic operations. I and 0 represent
the identity and zero matrices of appropriate dimensions. δk,s is the Kronecker delta function,
which is equal to one, if k = s, and zero otherwise. ◦ denotes the Hadamard product. Moreover,
for arbitrary random vectors X and Y , we denote Cov[X,Y ] = E[(X −E[X]) (Y − E[Y ])T ] and
Cov[X] = Cov[X, X], where E[·] stands for the mathematical expectation operator.

2. Discrete-time system model with random parameter matrices

Our aim in this paper is to address the optimal LS linear filtering problem in a class of discrete-
time stochastic systems with random parameter matrices (independent random transition ma-
trices and one-step correlated and cross-correlated matrices in the observation equation) and
autocorrelated and cross-correlated noises. In this section, the system model is described and
the statistical properties of the initial state, the random parameter matrices and the noise pro-
cesses are identified.

Consider a class of discrete-time linear stochastic systems whose n−dimensional state process,
{xk}k≥0, is perturbed by n×n random parameter matrices {Fk}k≥0 and by an additive process
noise {wk}k≥0; specifically, the state evolution is given by:

xk+1 = Fkxk + wk, k ≥ 0. (1)

The measurements of the state are described by the following observation equation:

yk = Hkxk + Bkvk, k ≥ 1, (2)

where {yk}k≥1 is the r−dimensional observation process; the measurement matrices, {Hk}k≥1,
are r × n random parameter matrices; {Bk}k≥1 are r ×m random parameter matrices and the
additive measurement noise, {vk}k≥1, is an m−dimensional process.

It is known that, if the state xk and the observations y1, . . . , yk have finite second-order mo-
ments, then the optimal LS linear filter of xk is the orthogonal projection of the vector xk

onto L(y1, . . . , yk), i.e., the space of n-dimensional random variables obtained as linear trans-
formations of y1, . . . , yk. The hypotheses about the processes in (1) and (2) that guarantee the
existence of the second-order moments of the vectors y1, . . . , yk, as well as the correlation as-
sumptions of the noise processes and the random parameter matrices in the observation equation
are as follows:

(a) The initial state x0 is a random vector with E[x0] = x0 and Cov[x0] = P0, and it is
independent of the random parameter matrices and noise processes.
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(b) The random parameter matrices {Fk}k≥0, {Hk}k≥1 and {Bk}k≥1 satisfy:

E[Fk] = F k, E[Hk] = Hk, E[Bk] = Bk,
Cov[fk

ij , f
s
pq] = Cfk

ijf
k
pq

δk,s,

Cov[hk
ij , h

s
pq] = Chk

ijh
k
pq

δk,s + Chk
ijh

s
pq

δk,s−1 + Chk
ijh

s
pq

δk,s+1,

Cov[bk
ij , b

s
pq] = Cbk

ijb
k
pq

δk,s + Cbk
ijb

s
pq

δk,s−1 + Cbk
ijb

s
pq

δk,s+1,

Cov[hk
ij , b

s
pq] = Chk

ijb
k
pq

δk,s + Chk
ijb

s
pq

δk,s−1 + Chk
ijb

s
pq

δk,s+1,

where fk
ij , hk

ij and bk
ij denote the (i, j)−th entries of matrices Fk, Hk and Bk, respectively.

The mean matrices F k, Hk and Bk are known matrices ∀k, and Cfk
ijf

k
pq

, Chk
ijh

s
pq

, Cbk
ijb

s
pq

and Chk
ijb

s
pq

, the covariances of the entries of the system random parameter matrices, are
also assumed to be known ∀k and ∀s = k − 1, k, k + 1.

(c) The process noise, {wk}k≥0, and the measurement noise, {vk}k≥1, are zero-mean sequences
with the following covariances and cross-covariances:

Cov[wk, ws] = Qk,kδk,s + Qk,sδk,s−1 + Qk,sδk,s+1,
Cov[vk, vs] = Rk,kδk,s + Rk,sδk,s−1 + Rk,sδk,s+1,
Cov[wk, vs] = Sk,kδk,s + Sk,sδk,s−1 + Sk,sδk,s−2.

(d) Independence assumptions:
− {Fk}k≥0 is independent of ({Hk}k≥1, {Bk}k≥1, {wk}k≥0, {vk}k≥1).
− ({Hk}k≥1, {Bk}k≥1) is independent of ({Fk}k≥0, {wk}k≥0, {vk}k≥1).

Remark 1: correlation of the noise processes. The correlation hypothesis (c) of the process noise
and the measurement noise is the same as those given in Feng et al. (2013) and Caballero-Águila
et al. (2013a). Specifically, both noise processes are correlated at consecutive sampling times and
independent otherwise, and the measurement noise vector vk is correlated with the noise vectors
ws, for s = k, k − 1, k − 2, and independent otherwise. Systems with only finite-step correlated
process noise or multi-step correlated process and measurement noise are considered in Song et
al. (2008), Fu et al. (2008) and Feng et al. (2011), among others.

As a consequence of the noise correlation assumptions, it is easy to see that:

• The vectors wk and yk are correlated, with

Wk := E
[
wky

T
k

]
= Qk,k−1H

T
k + Sk,kB

T
k , k ≥ 1. (3)

• The state vector xk is correlated with the observation noise vectors vk and vk−1, with

Ek,k := E[xkv
T
k ] = F k−1Sk−2,k + Sk−1,k, k ≥ 2; E1,1 = S0,1,

Ek,k−1 := E[xkv
T
k−1] = F k−1Ek−1,k−1 + Sk−1,k−1, k ≥ 2.

(4)

Remark 2: correlation of the random parameter matrices in the observation equation. Besides con-
sidering autocorrelated and cross-correlated noises (assumption (c)), the correlation assumption
(b) of the random parameter matrices {Hk}k≥1 and {Bk}k≥1 in the observation equation is the
main difference between the current model and the model in Luo et al. (2008), where {Hk}k≥1 is
assumed to be a sequence of independent random parameter matrices, and the observation noise
is not multiplied by random parameter matrices. The correlation of the measurement matrices
{Hk}k≥1 at consecutive sampling times allows us to apply the results proposed in this paper
to multi-sensor systems with correlated missing measurements (see Section 4). In addition, the
correlation and cross-correlation of the random parameter matrices {Hk}k≥1 and {Bk}k≥1 al-
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low us to consider multi-sensor systems with correlated randomly delayed measurements as a
particular case of the current study (see Section 5).

As a consequence of the correlation assumptions of the noises and random parameter matrices,
using the conditional expectation properties, and denoting H̃k = Hk −Hk and B̃k = Bk − Bk,
it can be seen that the vector Bkvk is correlated with the observation vector yk−1, and

Vk,k−1 := E
[
Bkvky

T
k−1

]
= Bk

(
Hk−1Sk−2,k + Bk−1Rk−1,k

)T

+ E
[
B̃kS

T
k−2,kH̃

T
k−1

]
+ E

[
B̃kRk,k−1B̃

T
k−1

]
, k ≥ 2.

(5)

The matrix E
[
B̃kS

T
k−2,kH̃

T
k−1

]
is yielded by both the cross-correlation of the noise pro-

cesses and that of the random parameter matrices {Hk}k≥1 and {Bk}k≥1, while the matrix

E
[
B̃kRk,k−1B̃

T
k−1

]
arises because of the one-step correlation of the measurement noise and also

that of the matrices {Bk}k≥1. From assumption (b), the (p, q)−th entries of these matrices are
obtained by:

(
E[B̃kS

T
k−2,kH̃

T
k−1]

)
pq

=
m∑

j=1

n∑

i=1

Cbk
qjh

k−1
pi

(
ST

k−2,k

)
ji

(p, q = 1, 2, . . . , r),

(
E[B̃kRk,k−1B̃

T
k−1]

)
pq

=
m∑

j=1

m∑

i=1

Cbk
qjb

k−1
pi

(Rk,k−1)ji (p, q = 1, 2, . . . , r).

Remark 3: state transition equation. Linear discrete-time systems with random state transition
matrices, {Fk}k≥0, have important applications; for example, they can be used to describe ran-
domly variant dynamic systems with multiple models (Luo et al. 2008) or linear systems with
state-dependent multiplicative noise (Feng et al. 2013). Furthermore, bilinear stochastic systems
(Carravetta et al. 1997) can be reduced to models with random transition matrices.

After denoting F̃k = Fk − F k, from the state equation (1) and the conditional expectation
properties, it is easy to deduce that Dk+1 = E[xk+1x

T
k+1] is recursively calculated by:

Dk+1 = F kDkF
T
k + E[F̃kDkF̃

T
k ] + Qk,k + F kQk−1,k + Qk,k−1F

T
k , k ≥ 1;

D1 = F 0D0F
T
0 + E[F̃0D0F̃

T
0 ] + Q0,0, D0 = P0 + x0x

T
0 ,

(6)

where, from assumption (b), the (p, q)−th entry of the matrix E[F̃kDkF̃
T
k ] is obtained by

(
E[F̃kDkF̃

T
k ]

)
pq

=
n∑

j=1

n∑

i=1

Cfk
qjf

k
pi

(Dk)ji (p, q = 1, 2, . . . , n).

Also, from the state equation (1), it is immediately clear that Gk+1,k = E[xk+1x
T
k ] satisfies

Gk+1,k = F kDk + Qk,k−1, k ≥ 1; G1,0 = F 0D0. (7)

3. Optimal LS linear estimation problem

Given the observations up to time k, {y1, . . . , yk}, our aim is to derive a recursive algorithm
for the optimal LS linear filter, x̂k/k, of the state xk. Since x̂k/k is the orthogonal projection of
xk onto the space L(y1, . . . , yk) of linear transformations of y1, . . . , yk, and these observations
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are generally non-orthogonal vectors, an innovation approach will be used. This approach con-
siderably simplifies the algorithm derivation, because the innovation process is a white noise.
The innovation approach is based on the Gram-Schmidt orthogonalization procedure by means
of which the observation process {yk}k≥1 is transformed into an equivalent process (innovation
process) {µk}k≥1, equivalent in the sense that L(µ1, . . . , µk) = L(y1, . . . , yk); that is, each set
{µ1, . . . , µk} spans the same linear subspace as {y1, . . . , yk}.

The innovation at time k is defined as µk = yk− ŷk/k−1, where ŷk/k−1, the one-stage LS linear
predictor of yk, is the projection of yk onto L(µ1, . . . , µk−1). The orthogonality property allows
us to find the projection by projecting onto each of the previous orthogonal vectors separately;
that is,

ŷk/k−1 =
k−1∑

i=1

E[ykµ
T
i ](E[µiµ

T
i ])−1µi, k ≥ 2; ŷ1/0 = H1x̂1/0. (8)

Similarly, by denoting Xk,i = E[xkµ
T
i ] and Πi = E[µiµ

T
i ], a general expression for the optimal

LS linear filter, x̂k/k, as a linear combination of the innovations is obtained; namely,

x̂k/k =
k∑

i=1

Xk,iΠ−1
i µi, k ≥ 1; x̂0/0 = x0,

and, the following expression for the filter, x̂k/k, in terms of the predictor, x̂k/k−1, is obvious:

x̂k/k = x̂k/k−1 + Xk,kΠ−1
k µk, k ≥ 1; x̂0/0 = x0. (9)

Next, we obtain the state predictor x̂k/k−1, the innovation µk and its covariance matrix Πk, and
the matrix Xk,k, which together with (9) will constitute the proposed recursive linear filtering
algorithm.

3.1 State predictor x̂k/k−1

In systems with random parameter matrices and uncorrelated additive white noises (Luo et al.
2008), the one-stage state predictor is calculated as x̂k/k−1 = F k−1x̂k−1/k−1; this is because the
uncorrelation assumption of the noises guarantees that ŵk−1/k−1 = 0. However, this is not true
for the problem at hand, where the noise estimator ŵk−1/k−1 must be taken into account in
order to derive the one-stage state predictor. From the Orthogonal Projection Lemma (OPL),
we have

x̂k/k−1 = F k−1x̂k−1/k−1 + ŵk−1/k−1, k ≥ 1,

and hence, an expression for the noise filter ŵk/k is necessary. Taking into account that wk is
independent of µ1, . . . , µk−1 and ŷk/k−1, we have,

ŵk/k =
k∑

i=1

E[wkµ
T
i ]Π−1

i µi = E[wkµ
T
k ]Π−1

k µk = E[wky
T
k ]Π−1

k µk, k ≥ 1; ŵ0/0 = 0.

Therefore, the state predictor, x̂k/k−1, satisfies

x̂k/k−1 = F k−1x̂k−1/k−1 +Wk−1Π−1
k−1µk−1, k ≥ 2; x̂1/0 = F 0x̂0/0, (10)

where Wk is given by (3).
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3.2 Prediction Pk/k−1 and filtering Pk/k error covariance matrices

From (1) and (10), it is easy to see that the prediction error covariance matrix, Pk/k−1, satisfies

Pk/k−1 = F k−1Pk−1/k−1F
T
k−1 + E[F̃k−1Dk−1F̃

T
k−1] + Qk−1,k−1 + F k−1Jk−1 + J T

k−1F
T
k−1

−Wk−1Π−1
k−1WT

k−1, k ≥ 2;

P1/0 = F 0P0/0F
T
0 + E[F̃0D0F̃

T
0 ] + Q0,0,

(11)

where, using (9), it is clear that Jk = E
[(

xk − x̂k/k

)
wT

k

]
is calculated by

Jk = Qk−1,k −Xk,kΠ−1
k WT

k , k ≥ 1. (12)

Again, from (9), the filtering error covariance matrix, Pk/k, is given by

Pk/k = Pk/k−1 −Xk,kΠ−1
k X T

k,k, k ≥ 1; P0/0 = P0. (13)

3.3 Innovation µk = yk − ŷk/k−1

In Luo et al. (2008), the one-stage observation predictor is calculated as ŷk/k−1 = Hkx̂k/k−1;
this is because the uncorrelation assumption of the noises guarantees that v̂k/k−1 = 0. However,
due to the correlation assumptions of the measurement matrices, (b), and the noise processes,
(c), this is not true for the problem at hand and both the correlation of Hk−1 and Hk and the
noise estimator v̂k/k−1, must be taken into account in deriving the predictor ŷk/k−1.

Therefore, to obtain the innovation µk = yk − ŷk/k−1, it is necessary to find a new expression
for ŷk/k−1. For this purpose, taking into account (8), we first calculate

E[ykµ
T
i ] = E[Hkxkµ

T
i ] + E[Bkvkµ

T
i ] =

{
HkXk,i, i ≤ k − 2,

E[Hkxkµ
T
k−1] + Vk,k−1, i = k − 1,

(14)

and, substituting the expectations (14) in (8), we obtain

ŷk/k−1 = Hk

k−1∑

i=1

Xk,iΠ−1
i µi +

(
E[Hkxkµ

T
k−1] + Vk,k−1 −HkXk,k−1

)
Π−1

k−1µk−1.

Now, from the conditional expectation properties, we obtain that

E[Hkxkµ
T
k−1]−HkXk,k−1 = E[H̃kxkµ

T
k−1] = E[H̃kxky

T
k−1]

= E[H̃kGk,k−1H̃
T
k−1] + E[H̃kEk,k−1B̃

T
k−1],

where Gk,k−1 and Ek,k−1 are given in (7) and (4), respectively.

Hence, it is concluded that the one-stage observation predictor satisfies

ŷk/k−1 = Hkx̂k/k−1 + Ψk,k−1Π−1
k−1µk−1, k ≥ 1, (15)

where

Ψk,k−1 = E[H̃kGk,k−1H̃
T
k−1] + E[H̃kEk,k−1B̃

T
k−1] + Vk,k−1, k ≥ 2; Ψ1,0 = 0. (16)
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It can be observed that the matrices E[H̃kGk,k−1H̃
T
k−1] and E[H̃kET

k,k−1B̃
T
k−1] are yielded by

the correlation of the random parameter matrices of the observation equation at consecutive
sampling times. From (b), the (p, q)−th entries of these matrices are obtained by

(
E[H̃kGk,k−1H̃

T
k−1]

)
pq

=
n∑

j=1

n∑

i=1

Chk
qjh

k−1
pi

(Gk,k−1)ji (p, q = 1, 2, . . . , r),

(
E[H̃kET

k,k−1B̃
T
k−1]

)
pq

=
n∑

j=1

m∑

i=1

Chk
qjb

k−1
pi

(ET
k,k−1

)
ji

(p, q = 1, 2, . . . , r).

Hence, the innovation µk is obtained as a linear combination of the new observation, the state
predictor and the previous innovation:

µk = yk −Hkx̂k/k−1 −Ψk,k−1Π−1
k−1µk−1, k ≥ 1. (17)

3.4 Matrix X k,k = E[xkµT
k ]

Next, an expression for the matrix Xk,k = E[xkµ
T
k ] = E[xky

T
k ] − E[xkŷ

T
k/k−1] is derived. From

(2) and (4), it is clear that

E[xky
T
k ] = DkH

T
k + Ek,kB

T
k , k ≥ 1.

From (15) and since, from the OPL, E[xkx̂
T
k/k−1] = Dk − Pk/k−1, we obtain:

E[xkŷ
T
k/k−1] =

(Dk − Pk/k−1

)
H

T
k + Xk,k−1Π−1

k−1Ψ
T
k,k−1, k ≥ 1,

where Xk,k−1 = E
[
xkµ

T
k−1

]
satisfies

Xk,k−1 = F k−1Xk−1,k−1 +Wk−1, k ≥ 2. (18)

By subtracting the above expectations, the following expression for Xk,k is derived

Xk,k = Pk/k−1H
T
k + Ek,kB

T
k −Xk,k−1Π−1

k−1Ψ
T
k,k−1, k ≥ 1. (19)

3.5 Innovation covariance matrix Πk = E[µkµT
k ]

Finally, we obtain an expression for Πk = E[µkµ
T
k ] = E[yky

T
k ]− E[ŷk/k−1ŷ

T
k/k−1]. From (2) and

again using the conditional expectation properties, we have

E[yky
T
k ] =HkDkH

T
k + E[H̃kDkH̃

T
k ] + BkRk,kB

T
k + E[B̃kRk,kB̃

T
k ]

+ HkEk,kB
T
k + E[H̃kEk,kB̃

T
k ] + BkET

k,kH
T
k + E[B̃kET

k,kH̃
T
k ],

where Dk and Ek,k are given in (6) and (4), respectively.

Using (15) and since E[x̂k/k−1µ
T
k−1] = E[xkµ

T
k−1] = Xk,k−1, the following identity holds:

E[ŷk/k−1ŷ
T
k/k−1] = Hk(Dk − Pk/k−1)H

T
k + Ψk,k−1Π−1

k−1Ψ
T
k,k−1

+ HkXk,k−1Π−1
k−1Ψ

T
k,k−1 + Ψk,k−1Π−1

k−1X T
k,k−1H

T
k .

8
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From the above expectations, using (19) and after some manipulations, the following expression
for the innovation covariance matrix Πk is obtained:

Πk =E[H̃kDkH̃
T
k ] + E[B̃kRk,kB̃

T
k ] + E[B̃kET

k,kH̃
T
k ] + E[H̃kEk,kB̃

T
k ] + BkRk,kB

T
k

+ HkXk,k + X T
k,kH

T
k −HkPk/k−1H

T
k −Ψk,k−1Π−1

k−1Ψ
T
k,k−1, k ≥ 1.

(20)

It can be observed that the matrices E[H̃kDkH̃
T
k ], E[B̃kRk,kB̃

T
k ] and E[B̃kET

k,kH̃
T
k ] are yielded

by the correlation of the random matrices of the observation equation at the same time instant.
From (b), the (p, q)−th entries of these matrices are obtained by

(
E[H̃kDkH̃

T
k ]

)
pq

=
n∑

j=1

n∑

i=1

Chk
qjh

k
pi

(Dk)ji (p, q = 1, 2, . . . , r),

(
E[B̃kRk,kB̃

T
k ]

)
pq

=
m∑

j=1

m∑

i=1

Cbk
qjb

k
pi

(Rk,k)ji (p, q = 1, 2, . . . , r),

(
E[B̃kET

k,kH̃
T
k ]

)
pq

=
m∑

j=1

n∑

i=1

Cbk
qjh

k
pi

(ET
k,k

)
ji

(p, q = 1, 2, . . . , r).

3.6 Filtering algorithm: computational procedure and advantages

The optimal LS linear filtering algorithm is constituted by equations (9)-(13) and (17)-(20), and
the computational procedure can be summarized as follows:

i) The matrices Wk, Ek,k, Ek,k−1 and Vk,k−1 are computed by expressions (3)-(5). We then
recursively compute Dk by (6) and thus Gk,k−1 by (7); with the matrices Ek,k−1, Vk,k−1

and Gk,k−1, we can compute Ψk,k−1 by (16). The matrices E[B̃kET
k,kH̃

T
k ], E[H̃kDkH̃

T
k ] and

E[B̃kRk,kB̃
T
k ] are also computed in order to obtain the innovation covariance matrix Πk.

Note that all these matrices depend only on the system model information and can be
obtained before the observations are available.

ii) At the sampling time k, when the (k − 1)th iteration is finished and the new observation
yk is available, the proposed filtering algorithm operates as follows (Figure 1):

1) By (18), we compute Xk,k−1 = F k−1Xk−1,k−1 +Wk−1 and, from this, Xk,k by (19):

Xk,k = Pk/k−1H
T
k + Ek,kB

T
k −Xk,k−1Π−1

k−1Ψ
T
k,k−1.

2) The innovation µk and its covariance matrix Πk are computed by (17) and (20),
respectively:

µk =yk −Hkx̂k/k−1 −Ψk,k−1Π−1
k−1µk−1,

Πk =E[H̃kDkH̃
T
k ] + E[B̃kRk,kB̃

T
k ] + E[B̃kET

k,kH̃
T
k ] + E[H̃kEk,kB̃

T
k ] + BkRk,kB

T
k

+ HkXk,k + X T
k,kH

T
k −HkPk/k−1H

T
k −Ψk,k−1Π−1

k−1Ψ
T
k,k−1.

3) The filter x̂k/k and the filtering error covariance matrix Pk/k are computed by (9) and
(13), respectively:

x̂k/k = x̂k/k−1 + Xk,kΠ−1
k µk,

Pk/k = Pk/k−1 −Xk,kΠ−1
k X T

k,k.

9
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4) To implement the above steps at time k + 1, we must:
– Compute the state predictor by (10): x̂k+1/k = F kx̂k/k +WkΠ−1

k µk.

– Compute Jk = Qk−1,k−Xk,kΠ−1
k WT

k by (12), and from this, the prediction error
covariance matrix Pk+1/k by (11):

Pk+1/k = F kPk/kF
T
k + E[F̃kDkF̃

T
k ] + Qk,k + F kJk + J T

k F
T
k −WkΠ−1

k WT
k .

Figure 1. Optimal LS linear filtering algorithm.

The proposed algorithm has the following advantages: 1) the filter is globally optimal in the
linear LS sense; 2) the filter structure is recursive, very simple computationally and suitable for
online applications; 3) the algorithm takes into account both the influence of the correlation
of the random parameter matrices and that of the noises; 4) the algorithm, obtained by an
innovation approach, does not require any transformation of the original system into one with
deterministic parameter matrices; 5) the proposed filter can be applied to multi-sensor systems
with correlated missing measurements considering at each sensor the possibility of observations
containing only partial information about the state (Section 4); 6) the proposed filter can be
applied to multi-sensor systems with randomly delayed measurements correlated at consecutive
sampling times (Section 5).

4. Application to multi-sensor systems with missing measurements

Over the past few decades, considerable research has been carried out into multi-sensor sys-
tems with missing measurements, due to the importance of this question and its applicability to
modelling a broad class of real-world problems. Most papers concerning systems with missing
measurements transmitted by multiple sensors assume that the missing probabilities in all the
sensors are identical (see Wang et al. (2006); Nakamori et al. (2005)). In recent years, however,
this situation has been generalized to address missing measurements whose statistical properties
are not assumed to be the same for all the sensors (see Hounkpevi and Yaz (2007a); Qu and Zhou
(2013))). Different missing probabilities have also been considered for some classes of nonlinear
systems in Wang et al. (2012) and Hu et al. (2013), where quantized H∞ control and filtering
problems are addressed, respectively. This is a realistic assumption in several application fields,
for instance, in networked communication systems involving heterogeneous measurement devices.
In Hounkpevi and Yaz (2007a), different sequences of independent Bernoulli random variables

10
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are used to describe the missing measurement phenomenon at each sensor. Caballero-Águila et
al. (2011) subsequently generalized these results, by weakening the independence restriction and
considering sequences of Bernoulli random variables correlated at consecutive sampling times.
This form of correlation covers practical situations where the state cannot be missing in two suc-
cessive observations (for example, transmission models with stand-by sensors in which any failure
in the transmission is detected immediately and the old sensor is then replaced). In all of the
above papers, it is assumed that the state measurement is either completely lost or successfully
transferred, and Bernoulli random variables are used to model the missing measurement phe-
nomenon. In a more recent study, this missing measurement model was generalized to consider
an arbitrary discrete distribution in the interval [0, 1], thus covering some practical applications
where only partial information is missing (see Hu et al. (2012); Caballero-Águila et al. (2013a)
and references therein).

Our aim in this section is to show that the observation model in multi-sensor systems with
missing measurements can be considered a special case of the observation model with random
measurement matrices (2). Hence, the proposed optimal LS linear filtering algorithm can be
applied to multiple missing measurement systems with correlated and cross-correlated noises,
when the missing measurement phenomenon at each sensor is described by different sequences
of correlated (at consecutive sampling times) scalar random variables with arbitrary discrete
probability distribution over the interval [0,1]. In particular, the proposed optimal LS linear
filtering algorithm extends the results in Luo et al. (2008), Caballero-Águila et al. (2011) and
Caballero-Águila et al. (2013a), among others.

Accordingly, consider the state equation given by (1), with {Fk}k≥0 and {wk}k≥0 verifying
the hypotheses (b) and (c), and r sensors which, at any time k, provide scalar measurements of
the state, perturbed by additive and multiplicative noises according to the following observation
model:

yi
k = θi

kC
i
kxk + vi

k, k ≥ 1, i = 1, 2, . . . , r, (21)

where {yi
k}k≥1 are the measured data from the i−th sensor, {Ci

k}k≥1, are known time-varying
matrices with compatible dimensions, {vi

k}k≥1 are zero-mean measurement noises, and {θi
k}k≥1

are different sequences of scalar discrete-time random variables over the interval [0, 1], with
E[θi

k] = θ
i
k. For i, j = 1, . . . , r, the following noise correlation assumptions are made:

Cov[θi
k, θ

j
s] = Kθij

k,kδk,s + Kθij

k,sδk,s−1 + Kθij

k,sδk,s+1,

Cov[vi
k, v

j
s] = Rij

k,kδk,s + Rij
k,sδk,s−1 + Rij

k,sδk,s+1,

Cov[wk, v
i
s] = Si

k,kδk,s + Si
k,sδk,s−1 + Si

k,sδk,s−2.

The observation model (21) can be rewritten as follows:

yk = Hkxk + vk, k ≥ 1,

where yk = (y1
k, . . . , y

r
k)

T is the r−dimensional observation vector, Hk = ΘkCk, with Θk =

Diag(θ1
k, . . . , θr

k) and Ck =
[
C1T

k | · · · | CrT
k

]T
, are r × n random parameter matrices, and

vk = (v1
k, . . . , v

r
k)

T is the r−dimensional noise vector. Hence, the observation model (21) is a
particular case of (2) with Bk = I, and clearly verifies that:

11
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• the additive noise {vk}k≥1 is autocorrelated and cross-correlated with {wk}k≥1, with

Cov[vk, vs] = Rk,kδk,s + Rk,sδk,s−1 + Rk,sδk,s+1,

Cov[wk, vs] = Sk,kδk,s + Sk,sδk,s−1 + Sk,sδk,s−2,

where Rk,s =
(
Rij

k,s

)
i,j=1,··· ,r

and Sk,s =
[
S1

k,s | · · · | Sr
k,s

]
.

• the random parameter matrices {Hk}k≥1 satisfy:

− E[Hk] = Hk = ΘkCk where Θk = E[Θk] = Diag
(
θ
1
k, . . . , θ

r
k

)
.

− Denoting θk = (θ1
k, . . . , θ

r
k)

T , we have Cov[θk, θs] = Kθ
k,kδk,s +Kθ

k,sδk,s−1 +Kθ
k,sδk,s+1,

where Kθ
k,s =

(
Kθij

k,s

)
i,j=1,··· ,r

.

− For any matrix A ∈ Rn×n, we have

E[H̃kAH̃T
s ] = E[(Θk −Θk)CkACT

s (Θs −Θs)] = Kθ
k,s ◦

(
CkACT

s

)
, s = k, k − 1.

• since Bk = I, we have B̃k = 0, ∀k, and consequently all the expectations in which B̃k or
B̃k−1 appears, are zero.

Thus, the proposed optimal filtering algorithm in this case of multi-sensor systems with missing
measurements is the following:

x̂k/k = x̂k/k−1 + Xk,kΠ−1
k µk, k ≥ 1; x̂0/0 = x0,

x̂k/k−1 = F k−1x̂k−1/k−1 +Wk−1Π−1
k−1µk−1, k ≥ 2; x̂1/0 = F 0x̂0/0,

Xk,k = Pk/k−1C
T
k Θk + Ek,k −

(
F k−1Xk−1,k−1 +Wk−1

)
Π−1

k−1Ψ
T
k,k−1, k ≥ 1,

µk = yk −ΘkCkx̂k/k−1 −Ψk,k−1Π−1
k−1µk−1, k ≥ 1,

Πk = Kθ
k,k ◦

(
CkDkC

T
k

)
+ Rk,k + ΘkCkXk,k + X T

k,kC
T
k Θk

−ΘkCkPk/k−1C
T
k Θk −Ψk,k−1Π−1

k−1Ψ
T
k,k−1, k ≥ 1,

where Ek,k, Dk and Pk/k−1 are given by (4), (6) and (11), respectively, and

Wk = Qk,k−1C
T
k Θk + Sk,k, k ≥ 1,

Ψk,k−1 = Kθ
k,k−1 ◦

(
Ck

(
F k−1Dk−1 + Qk−1,k−2

)
CT

k−1

)
+ Vk,k−1, k ≥ 2; Ψ1,0 = 0,

Vk,k−1 = ST
k−2,kC

T
k−1Θk−1 + Rk,k−1, k ≥ 2.

4.1 Numerical simulation example

Consider the following system with state-dependent multiplicative noise, and missing measure-
ments from two sensors, with different missing characteristics and noise correlation:

xk = (0.95 + 0.2εk−1)xk−1 + wk−1, k ≥ 1,

yi
k = θi

kxk + vi
k, k ≥ 1, i = 1, 2.

The initial state x0 is a zero-mean Gaussian variable with P0 = 1. The multiplicative state noise
{εk}k≥0 is a zero-mean Gaussian white process with unit variance. The additive noise processes
{wk}k≥0 and {vi

k}k≥1, i = 1, 2, are the same as those in Caballero-Águila et al. (2013a), i.e.,

12
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wk = 0.6(ηk + ηk+1) and vi
k = ci

k(ηk−1 + ηk), i = 1, 2, where c1
k = 1, c2

k = 0.5, and {ηk}k≥0 is a
zero-mean Gaussian white process with variance 0.5.

Two different independent sequences of random variables with a probability distribution over
the interval [0, 1] are used to model the missing phenomenon:

• In the first sensor, the missing phenomenon is modelled by a sequence {θ1
k}k≥1 of Bernoulli

random variables correlated at consecutive sampling times; specifically, θ1
k = 1− βk−1(1−

βk), where {βk}k≥0 is a sequence of independent Bernoulli random variables with P [βk =
1] = β. Since the variables βk and βs are independent, it is clear that θ1

k and θ1
s are

also independent for |k − s| ≥ 2. Moreover, if θ1
k = 0, then βk−1 = 1 and βk = 0, and

consequently θ1
k+1 = 1; hence, in the first sensor the state cannot be missing in two

successive observations.
• In the second sensor, the missing phenomenon is modelled by a sequence {θ2

k}k≥1 of inde-
pendent and identically distributed random variables with the following probability distri-
bution: P [θ2

k = 0] = 0.1, P [θ2
k = 0.5] = 0.5, P [θ2

k = 1] = 0.4.

Under these assumptions, for all k, the mean Θk and the covariances Kθ
k,s, s = k, k − 1, are

given by

Θk =

[
θ
1 0
0 θ

2

]
=

[
1− β(1− β) 0

0 0.65

]
,

Kθ
k,k =

[
θ
1(1− θ

1) 0
0 0.1025

]
and Kθ

k,k−1 =
[
−(1− θ

1)2 0
0 0

]
.

To analyze the effectiveness of the proposed estimator, one hundred iterations of the proposed
filtering algorithm were performed and the filtering error variances were calculated for different
values of the probability β, which provide different values of the probability θ

1 that the state
is not missing from the observations of the first sensor. Since θ

1 is the same if the value 1 − β

is considered instead of β, it is sufficient to consider β ≤ 0.5 (note that, in this case, θ
1 is

a decreasing function of β). Specifically, the values β = 0.1, 0.2, 0.3, 0.4 and 0.5 (leading to
θ
1 = 0.91, 0.84, 0.78, 0.76 and 0.75, respectively) are examined here.
Figure 2 shows that the filtering error variances become greater as β increases or, equivalently,

as θ
1 decreases. This means that, as the probability of only noise measurements (false alarm

probability) increases in the first sensor, worse estimations are obtained; note that for β =
0.3, 0.4, 0.5 the difference is smaller since the corresponding values of θ

1 are very close to each
other.

Finally, we present a comparative analysis of four filters: the Kalman filter in systems with
independent random parameter matrices and uncorrelated white noises (Luo et al. 2008); the
linear filter in systems with uncertain observations with correlated uncertainty and uncorrelated
white noises (Caballero-Águila et al. 2011); the centralized filter in systems with missing mea-
surements and correlated and cross-correlated noises (Caballero-Águila et al. 2013a); and the
filter proposed here. Using one thousand independent simulations of the mentioned algorithms,
the different filtering estimates were compared using the mean square error (MSE) criterion. The

filtering MSE at time k is calculated by MSEk =
1

1000

1000∑

s=1

(x(s)
k − x̂

(s)
k/k)

2, where {x(s)
k }1≤k≤100

denote the s-th set of artificially simulated data and x̂
(s)
k/k is the filter at the sampling time k

in the s-th simulation run. These values are shown in Figure 3, where it can be seen that: 1)
the performance of the filters with correlated uncertainty or with correlated and cross-correlated
noises is better than that of the Kalman filter with independent random parameter matrices

13
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and uncorrelated white noises, since this filter ignores any correlation assumption; 2) the pro-
posed filtering algorithm provides better estimations than other filtering algorithms reported
previously.
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Filtering error variances, β=0.2

Filtering error variances, β=0.3

Filtering error variances, β=0.4

Filtering error variances, β=0.5

Figure 2. Filtering error variances for β = 0.1, 0.2, 0.3, 0.4 and 0.5.
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Figure 3. Comparison of MSEk for different filters.

5. Application to multi-sensor systems with randomly delayed measurements

The estimation problem in multi-sensor systems with randomly delayed measurements is arous-
ing increasing interest due to its broad scope of application. In networked systems, time delays
are usually unavoidable, due to numerous causes including network congestion, random failures

14
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in the transmission mechanism or data inaccessibility at certain times. Since delays in mea-
surement arrivals often occur randomly, the standard estimation algorithms are not applicable
and several modifications have been proposed to incorporate the effects of randomly delayed
measurements (see Matveev and Savkin (2003); Sinopoli et al. (2004); Wang et al. (2004)).

Most papers on estimation in multi-sensor systems with randomly delayed observations assume
that all the sensors have the same delay characteristics. Nevertheless, such an assumption is
not realistic in many practical situations, where the information is gathered by an array of
heterogeneous sensors, and the delay probability at each individual sensor can be different from
the others. In recent years, this approach has been generalized in Hounkpevi and Yaz (2007b)
and Caballero-Águila et al. (2010) considering multiple delayed sensors with different delay
characteristics and assuming that the delays are mutually independent. Caballero-Águila et al.
(2013b), recently weakened this assumption of independence by considering different sequences of
Bernoulli variables correlated at consecutive sampling times to model the delays at each sensor.
Similarly to the case of missing measurements, this correlation model avoids the possibility of
two successive delayed observations, and so it can be applied to networked systems with stand-by
sensors for the immediate replacement of a failed unit.

In this section we show that the current observation model with random measurement matrices
(2) includes the observation model in multi-sensor systems with correlated random delays as a
particular case; thus the current study generalizes the above results (Hounkpevi and Yaz (2007b);
Caballero-Águila et al. (2010, 2013b)).

Assume that the state equation is given by (1), with {Fk}k≥0 and {wk}k≥0 verifying hypotheses
(b) and (c), and consider that zi

k, i = 1, . . . , r, are scalar sensor outputs perturbed by zero-mean
additive noises vi

k; namely,

zi
k = ci

kxk + vi
k, k ≥ 1, i = 1, . . . , r. (22)

For i, j = 1, . . . , r, it is assumed that Cov[vi
k, v

j
s] = Rij

k δk,s and Cov[wk, v
i
s] = Si

k,kδk,s+Si
k,sδk,s−1.

Consider that, at the initial time k = 1, the ith sensor outputs, zi
1, are always available for

the estimation but, at time k ≥ 2, the ith sensor measurement, yi
k, may be randomly delayed by

one sampling time according to different delay characteristics, due to possible failures in data
transmission. Therefore, the measurement model is described by

yi
k = (1− γi

k)z
i
k + γi

kz
i
k−1, k ≥ 2; yi

1 = zi
1, i = 1, . . . , r, (23)

where
{
γi

k

}
k≥2

, i = 1, . . . , r, denote sequences of Bernoulli variables with P
[
γi

k = 1
]

= pi
k and

Cov[γi
k, γ

j
s ] = Kγij

k,kδk,s + Kγij

k,s δk,s−1 + Kγij

k,s δk,s+1.

By denoting zk =
(
z1
k, . . . , zr

k

)T, Ck =
[

c1T
k | · · · | crT

k

]T
, vk =

(
v1
k, . . . , v

r
k

)T, and Γk =

Diag
(
γ1

k , . . . , γr
k

)
, (22) and (23) can be rewritten as:

zk = Ckxk + vk, k ≥ 1,

yk = (I − Γk)zk + Γkzk−1, k ≥ 2; y1 = z1,
(24)

and, from the correlation assumptions of the noises, it is clear that Cov[vk, vs] = Rkδk,s and

Cov[wk, vs] = Sk,kδk,s+Sk,sδk,s−1, where Rk =
(
Rij

k

)
i,j=1,··· ,r

and Sk,s =
[
S1

k,s | · · · | Sr
k,s

]
. More-

over, by denoting γk =
(
γ1

k , . . . , γr
k

)T , we have Cov[γk, γs] = Kγ
k,kδk,s + Kγ

k,sδk,s−1 + Kγ
k,sδk,s+1,

where Kγ
k,s =

(
Kγij

k,s

)
i,j=1,··· ,r

.

Now, as in Hounkpevi and Yaz (2007b), equations (1) and (24) are rewritten as follows, with
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random parameter matrices:

Xk+1 = FkXk + Wk, k ≥ 1,
yk = HkXk + BkVk, k ≥ 2,

(25)

where

Xk =
[

xk

xk−1

]
, Wk =

[
wk

0

]
, Vk =

[
vk

vk−1

]
, Fk =

[
Fk 0
I 0

]
,

Hk =
[

(I − Γk)Ck | ΓkCk−1

]
, Bk =

[
I − Γk | Γk

]
.

It is clear that the random parameter matrices and noise processes of system (25) verify the
hypotheses to apply the algorithm proposed in this paper. Specifically, we have:

• E[Fk] = Fk =
[

F k 0
I 0

]
, Hk =

[
(I − Γk)Ck | ΓkCk−1

]
and Bk =

[
I − Γk | Γk

]
,

where Γk = Diag
(
p1

k, . . . , p
r
k

)
.

• The process noise, {Wk}k≥1, and the measurement noise, {Vk}k≥2, are zero-mean sequences
with covariances and cross-covariances:

Cov[Wk,Ws] = Qk,kδk,s +Qk,sδk,s−1 +Qk,sδk,s+1,
Cov[Vk, Vs] = Rk,kδk,s + Rk,sδk,s−1 + Rk,sδk,s+1,
Cov[Wk, Vs] = Sk,kδk,s + Sk,sδk,s−1 + Sk,sδk,s−2,

where

Qk,k =
[
Qk,k 0

0 0

]
, Qk,k−1 =

[
Qk,k−1 0

0 0

]
, Rk,k =

[
Rk 0
0 Rk−1

]
, Rk,k−1 =

[
0 0

Rk−1 0

]
,

Sk,k =
[
Sk,k 0
0 0

]
, Sk−1,k =

[
Sk−1,k Sk−1,k−1

0 0

]
, Sk−2,k =

[
0 Sk−2,k−1

0 0

]
.

Then, it is clear that

− Dk = E[XkX
T
k ] =

[ Dk Gk,k−1

GT
k,k−1 Dk−1

]
, E

[
F̃kDkF̃T

k

]
=

[
E[F̃kDkF̃

T
k ] 0

0 0

]
and Gk+1,k =

E[Xk+1X
T
k ] =

[GT
k+1,k F kGk,k−1

Dk Gk,k−1

]
, where Dk and Gk,k−1 are given by (6) and (7), respec-

tively.
− Analogously to (3) and (4), we have

Wk = E[Wky
T
k ] = Qk,k−1H

T
k + Sk,kB

T
k , k ≥ 1,

Ek,k = E[Xkv
T
k ] = Fk−1Sk−2,k + Sk−1,k, k ≥ 2; E1,1 = S0,1,

Ek,k−1 = E[Xkv
T
k−1] = Fk−1Ek−1,k−1 + Sk−1,k−1, k ≥ 2.
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− For arbitrary matrices A1 ∈ R2n×2n, A2 ∈ R2r×2r and A3 ∈ R2r×2n, we have

E[H̃kA1H̃
T
s ] = Kγ

k,s ◦
(
[−Ck | Ck−1]A1 [−Cs | Cs−1]

T
)

, s = k, k − 1,

E[B̃kA2B̃
T
s ] = Kγ

k,s ◦
(
[−I | I ]A2 [−I | I ]T

)
, s = k, k − 1,

E[B̃kA3H̃
T
s ] = Kγ

k,s ◦
(
[−I | I ]A3 [−Cs | Cs−1]

T
)

, s = k, k − 1.

By applying the above expressions, we obtain E[H̃kDkH̃
T
k ], E[B̃kRk,kB̃

T
k ] and E[B̃kET

k,kH̃
T
k ],

which are necessary to calculate the innovation covariance matrices. We also have

Vk,k−1 = Γk (Ck−1Sk−2,k−1 + Rk−1)
T (

I − Γk−1

)−Kγ
k,k−1 ◦ (Ck−1Sk−2,k−1 + Rk−1)

T ,

Ψk,k−1 = Kγ
k,k−1 ◦

(
[−Ck | Ck−1]

(
Gk,k−1 [−Ck−1 | Ck−2]

T + Ek,k−1 [−I | I ]T
))

+ Vk,k−1.

Hence, the proposed optimal filtering algorithm for multi-sensor systems with randomly de-
layed measurements is:

X̂k/k = X̂k/k−1 + Xk,kΠ−1
k µk, k ≥ 1,

X̂k/k−1 = Fk−1X̂k−1/k−1 +Wk−1Π−1
k−1µk−1, k ≥ 2; X̂1/0 =

[
F 0x0

x0

]
,

Xk,k = Pk/k−1H
T
k + Ek,kB

T
k −

(Fk−1Xk−1,k−1 +Wk−1

)
Π−1

k−1Ψ
T
k,k−1, k ≥ 1,

µk = yk −HkX̂k/k−1 −Ψk,k−1Π−1
k−1µk−1, k ≥ 1,

Πk = E[H̃kDkH̃
T
k ] + E[B̃kRk,kB̃

T
k ] + E[B̃kET

k,kH̃
T
k ] + E[H̃kEk,kB̃

T
k ] + BkRk,kB

T
k

+ HkXk,k + X T
k,kH

T
k −HkPk/k−1H

T
k −Ψk,k−1Π−1

k−1Ψ
T
k,k−1,

Pk/k = Pk/k−1 −Xk,kΠ−1
k X T

k,k, k ≥ 1,

Pk/k−1 = Fk−1Pk−1/k−1FT
k−1 + E[F̃k−1Dk−1F̃T

k−1] +Qk−1,k−1 + Fk−1Jk−1 + JT
k−1FT

k−1

−Wk−1Π−1
k−1W

T
k−1, k ≥ 2;

P1/0 =

[
F 0P0F

T
0 + E[F̃0D0F̃

T
0 ] + Q0,0 F 0P0

P0F
T
0 P0

]
,

Jk = Qk−1,k −Xk,kΠ−1
k WT

k , k ≥ 1.

5.1 Numerical simulation example

In this example, it is assumed that the state {xk}k≥0 is generated by the same model as that
in Section 4.1, and we consider measured outputs coming from two sensors, zi

k = xk + vi
k, k ≥

1, i = 1, 2, where the additive noises are defined by v1
k = ηk and v2

k = 0.5ηk.
According to the proposed observation model, it is assumed that, at any sampling time k ≥ 2,

the measured output from the ith sensor, zi
k, can be randomly delayed by one sampling period

during network transmission; thus, the measurement model is described by

yi
k = (1− γi

k)z
i
k + γi

kz
i
k−1, k ≥ 2; yi

1 = zi
1, i = 1, 2.
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Figure 4. Comparison of MSEk for different filters.

As in Caballero-Águila et al. (2013b), it is assumed that the delays are correlated at consecutive
sampling times, which guarantees that two successive observations cannot be delayed; specifically,
the variables γi

k are defined by γi
k = αi

k+1(1−αi
k), where {αi

k}k≥1, i = 1, 2, are two independent
sequences of independent Bernoulli variables with probabilities P [α1

k = 1] = 0.5 and P [α2
k =

1] = 0.1, respectively.
To illustrate the accuracy of the proposed algorithm in comparison with other estimation

methods that have been proposed, one thousand independent simulations were considered and
one hundred iterations of each algorithm performed to compute the filtering MSE at each time
instant k. A comparative analysis was carried out between the suboptimal Kalman-type filter for
systems with independent random delays (Hounkpevi and Yaz 2007b), the optimal linear filter
using covariance information for systems with one-step correlated random delays (Caballero-
Águila et al. 2013b), and the current filter for multi-sensor systems with randomly delayed
measurements. The results of this comparison are shown in Figure 4, where it can be seen that
the proposed filter performs better than the other two. The difference with respect to Hounkpevi
and Yaz (2007b) is greater since the correlation assumption on the delays and the noises is not
taken into account and moreover the estimator in Hounkpevi and Yaz (2007b) is suboptimal.

6. Conclusions

This paper reports a study of the optimal LS linear filtering problem for discrete-time linear
systems with random parameter matrices and correlated additive noise. The main contributions
of this approach are:

(1) The current system model includes independent random state transition matrices and
one-step correlated and cross-correlated random parameter matrices in the observation
equation. The process and measurement noises are assumed to be one-step autocorrelated
and two-step cross-correlated.

(2) An optimal LS linear recursive filtering algorithm with a simple computational procedure
is derived by an innovation approach.

(3) The proposed optimal LS linear filtering algorithm was applied to systems with multiple
missing measurements with correlated and cross-correlated noises, when the missing mea-
surement phenomenon in each sensor is described by different sequences of scalar random
variables with arbitrary discrete probability distribution over the interval [0,1] correlated
at consecutive sampling times. This kind of multi-sensor system is found in various real-

18



September 19, 2013 International Journal of Systems Science ByN˙Revised-TSYS-2013-SIP-WANG-0518

world problems, such as transmission models with stand-by sensors or situations involving
the partial loss of measurements.

(4) Multi-sensor systems with randomly delayed measurements, correlated at consecutive sam-
pling times, with correlated and cross-correlated noises are also treated as a particular case
of the model described in this paper. These models cover the situations in which two suc-
cessive observations cannot be delayed. This kind of delay frequently occurs, in situations
such as network congestion, random failures in the transmission mechanism or data inac-
cessibility at certain times.

(5) For both particular cases, the feasibility of the proposed filtering algorithm is analyzed by
two numerical simulation examples, which show that the proposed filter performs better
than others that have been reported.

(6) A similar study to that performed in this paper would allow us to generalize the current
results by considering correlation between random state transition matrices and the random
matrices in the observation equation. This extension would cover systems with multiple
packet dropouts as a particular case, and would constitute an interesting research topic.

(7) Another interesting future direction would be to complement the current study with a
detailed analysis of the convergence and computational complexity of the proposed filtering
algorithm.

(8) The filtering methodology proposed in this paper can be applied to other, related problems,
such as fault detection or control systems, which constitute interesting and challenging
topics for future research (Dong et al. (2012a), Dong et al. (2012b), Wang et al. (2012)).
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