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The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems
with missing measurements and autocorrelated and cross-correlated noises. The stochastic uncertainties in the measurements
coming from each sensor (missing measurements) are described by scalar random variables with arbitrary discrete probability
distribution over the interval [0, 1]; hence, at each single sensor the information might be partially missed and the different sensors
may have different missing probabilities. The noise correlation assumptions considered are (i) the process noise and all the sensor
noises are one-step autocorrelated; (ii) different sensor noises are one-step cross-correlated; and (iii) the process noise and each
sensor noise are two-step cross-correlated. Under these assumptions and by an innovation approach, recursive algorithms for
the optimal linear filter are derived by using the two basic estimation fusion structures; more specifically, both centralized and
distributed fusion estimation algorithms are proposed. The accuracy of these estimators is measured by their error covariance
matrices, which allow us to compare their performance in a numerical simulation example that illustrates the feasibility of the
proposed filtering algorithms and shows a comparison with other existing filters.

1. Introduction

For a long time, the least-squares (LS) estimation problem
in linear stochastic systems from measurements perturbed
by additive noises has received considerable attention in the
scientific community due to its wide applicability in many
practical situations (e.g., video and laser tracking systems,
satellite navigation, radar and meteorological applications,
etc. [1]). As it is well known, one of the major contributions
made to solve this problem is the Kalman filter, which pro-
vides a recursive algorithm for the optimal LS estimator when
the additive white noises and the initial state are Gaussian
andmutually independent (or, equivalently, uncorrelated due
to the Gaussianity assumption) and, therefore, the optimal
LS estimator is the optimal LS linear estimator. From the
publication of the Kalman filter [2] in 1960, numerous results
and several solution methods have been reported in the
literature to address the state estimation problem from noisy
observations, which depend onmodels representing possible

relationships between the unknown state and the observable
variables and also on the noise processes assumptions.

Specifically, during the past decades, there has been an
increasing interest in the filtering problem in multisensor
systems, where sensor networks are used to obtain the whole
available information on the system state and its estimation
must be carried out from the observations provided by all
the sensors. A basic matter for this class of systems is how
to fuse the measurement data from the different sensors to
address the estimation problem. Commonly, two methods
are used to process the measured data coming from multiple
sensors: centralized and distributed fusion methods. In the
centralized fusionmethod all themeasured data from sensors
are communicated to the fusion center for being processed;
nevertheless, as is widely known, centralized estimators
have many computational disadvantages, which motivate
the research into other fusion methods. In the distributed
fusion method, each sensor estimates the state based on
its own single measurement data, and then it sends such



2 Mathematical Problems in Engineering

estimate to the fusion center for fusion according to a certain
information fusion criterion. Although the use of sensor
networks offers several advantages, the unreliable network
characteristics usually cause problems during data trans-
mission from sensors to the fusion center, such as missing
measurements, random communication packet losses and/or
delays. Taking into account these network uncertainties, the
models representing the relationships between the state and
measurements do not allow to apply the Kalman filter, and
modifications of conventional estimation algorithms have
been proposed (see e.g., [3–9] and references therein).

As in the Kalman filter, independent white noises are con-
sidered in all thementioned papers; however, this assumption
may not be realistic and can be a limitation in many real-
world problems in which noise correlation may be present.
This problem arises, for example, when a target is taking
an electronic countermeasure, for example, noise jamming
[10], or if the process noise and the sensor measurement
noises are dependent on the system state, then there may be
cross-correlation between different sensor noises and cross-
correlation between process noise and sensor noises. Also, if
all the sensors are observed in the same noisy environment,
the measurement noises of different sensors are usually
correlated.

For these reasons, the estimation problem in systemswith
correlated noises has received significant research interest in
recent years. For example, the optimalKalmanfiltering fusion
problem in systems with cross-correlated sensor noises is
addressed in [10], while [11, 12] study the same problem in
systems with cross-correlated process noises and measure-
ment noises; in these papers correlated noises at the same
sampling time are considered. In general, the assumption of
correlation and cross-correlation of the noise process and
measurement noises in different sampling times makes dif-
ficult the identification of optimal estimators; this limitation
has encouraged a wider research into suboptimal Kalman-
type estimation problems. In [13], a Kalman-type recursive
filter is presented for systems with finite-step correlated
process noises, and the filtering problem with multistep
correlated process and measurement noises is investigated in
[14]. The optimal robust nonfragile Kalman-type recursive
filtering problem is studied in [15] for a class of uncertain
systems with finite-step autocorrelated measurement noises
and multiple packet dropouts. The problem of distributed
weighted robust Kalman filter fusion is studied in [16] for
a class of uncertain systems with autocorrelated and cross-
correlated noises. In [17], a stochastic singular system with
correlated noises at the same sampling time is transformed
into an equivalent nonsingular system with correlated noises
at the same and neighboring sampling times. Also, in [18],
an augmented parameterized systemwith correlated noises at
the same and neighboring sampling times is used to describe
the sensor delay, packet dropout, and uncertain observation
phenomenons.

On the other hand, as noted above, the use of communi-
cation networks for transmittingmeasured datamotivates the
need of considering stochastic uncertainties. Missing mea-
surements have been widely treated due to its applicability
to model a large class of real-world problems, such as fading

phenomena in propagation channels, target tracking or, in
general, situations where there exist intermittent failures in
the observation mechanism, accidental loss of some mea-
surements, or inaccessibility of the data during certain times.
The state estimation problem from missing measurement
transmitted by multiple sensors has been studied based on
the assumption that all the sensors are identical (see, e.g.,
[19–22]); however, this assumption can be unreasonable
since some real systems usually involve multiple sensors
with different characteristics. Recently, the filtering problem
using missing measurements whose statistical properties are
assumed not to be the same in all the sensors has been
addressed by several authors under different approaches
and hypotheses on the processes involved (see, e.g., [23–
27]). In all the above papers, Bernoulli random variables
are used to model the missing measurements phenomenon,
and hence, it is assumed that the measurement signal
is either completely lost (if the corresponding Bernoulli
variable takes the value zero) or successfully transferred
(when the Bernoulli variable is equal to one). Recently, this
missing measurement model has been generalized consid-
ering any discrete distribution on the interval [0, 1], which
allows to cover some practical applications where only
partial information is missing (see [28, 29] and references
therein).

Motivated by the above considerations, our attention is
focused on investigating the optimal LS linear centralized
and distributed fusion estimation problems in multisensor
systems with missing measurements and autocorrelated and
cross-correlated noises. In each sensor, the missing measure-
ment phenomenon is governed by a scalar random variable
with arbitrary discrete probability distribution over the inter-
val [0, 1], and the different sensorsmay have differentmissing
probabilities. Assume that the process noise and all the sensor
noises are one-step autocorrelated; different sensor noises are
one-step cross-correlated; and the process noise and each
sensor noise are two-step cross-correlated. This paper makes
a twofold substantial novel contribution: (1) unlike most
previous results with correlated noises, in which suboptimal
Kalman-type estimators are proposed, in this paper optimal
LS linear estimators are obtained by using an innovation
approach, which provides a simple derivation of the estima-
tion algorithms due to the fact that the innovations constitute
a white process; and (2) our missing measurement model
considers at each sensor the possibility of observations con-
taining only partial information about the state, or even only
noise.

The paper is organized as follows. In Section 2 the system
model with autocorrelated and cross-correlated noises and
missing measurements coming from multiple sensors is
described. Also, the suitable properties on the state and
noise processes are specified and a brief description of the
innovation approach to the optimal LS linear estimation
problem is included. In Section 3 a recursive algorithm
for the centralized optimal linear filter is presented for
the considered model (the derivation has been deferred
to Appendix 6). Next, in Section 4, the local LS linear
filters and their corresponding error covariance matrices
between any two local estimates are provided, and then
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the distributed optimal weighted fusion estimators and
their error covariance matrices are obtained by apply-
ing the optimal information fusion criterion weighted by
matrices in the linear minimum variance sense. Finally, in
Section 5, a numerical simulation example is presented to
show the effectiveness of the estimation algorithms proposed
in the current paper, and some conclusions are drawn in
Section 6.

Notation. The notation used throughout the paper is stan-
dard. For any matrix 𝐴, the notation symbols 𝐴𝑇 and 𝐴

−1

represent its transpose and inverse, respectively; R𝑛 denotes
the 𝑛-dimensional Euclidean space and R𝑚×𝑛 is the set
of all real matrices of dimension 𝑚 × 𝑛. The shorthand
Diag(𝑎

1
, . . . , 𝑎

𝑟
) denotes a diagonal matrix whose diagonal

entries are 𝑎
1
, . . . , 𝑎

𝑟
. If the dimensions of matrices are not

explicitly stated, they are assumed to be compatible for
algebraic operations. 𝛿

𝑘−𝑠
is the Kronecker delta function,

which is equal to one, if 𝑘 = 𝑠, and zero otherwise.
Moreover, for arbitrary random vectors 𝛼 and 𝛽, we will
denote Cov[𝛼, 𝛽] = 𝐸[(𝛼 − 𝐸[𝛼])(𝛽 − 𝐸[𝛽])

𝑇
] and Cov[𝛼] =

Cov[𝛼, 𝛼], where 𝐸[⋅] stands for the mathematical expecta-
tion operator. Finally, 𝛼̂ denotes the estimator of 𝛼 and 𝛼̃ =

𝛼 − 𝛼̂ the estimation error.

2. Problem Formulation

Our aim is to obtain recursive algorithms for the optimal LS
linear filtering problem in a class of discrete-time stochastic
systems with missing measurements coming from multiple
sensors, by using centralized and distributed fusionmethods.
In this section, firstly the system model and the assumptions
about the state and noise processes are presented and, sec-
ondly, the optimal LS linear estimation problem is formulated
using an innovation approach.

2.1. Stochastic System Model. Consider a discrete-time linear
stochastic system with autocorrelated and cross-correlated
noises and missing measurements coming from 𝑟 sensors.
The phenomenon ofmissingmeasurements occurs randomly
and, for each sensor, a different sequence of scalar random
variables with discrete distribution over the interval [0, 1] is
used to model this phenomenon. Specifically, the following
system is considered:

𝑥
𝑘
= 𝐹
𝑘−1

𝑥
𝑘−1

+ 𝑤
𝑘−1

, 𝑘 ≥ 1, (1)

where 𝑥
𝑘

∈ R𝑛 is the state, {𝑤
𝑘
; 𝑘 ≥ 0} is the process

noise, and 𝐹
𝑘
, for 𝑘 ≥ 0, are known matrices with compatible

dimensions.
Consider 𝑟 sensors which, at any time 𝑘, provide scalar

measurements of the system state, perturbed by additive and
multiplicative noises according to the following model:

𝑦
𝑖

𝑘
= 𝜃
𝑖

𝑘
𝐻
𝑖

𝑘
𝑥
𝑘
+ V
𝑖

𝑘
, 𝑘 ≥ 1, 𝑖 = 1, 2, . . . , 𝑟, (2)

where {𝑦
𝑖

𝑘
; 𝑘 ≥ 1} are the measured data; {V𝑖

𝑘
; 𝑘 ≥ 1} are

measurement noises; {𝜃𝑖
𝑘
; 𝑘 ≥ 1} are scalar random variables

sequences; 𝐻𝑖
𝑘
, for 𝑘 ≥ 1, are known time-varying matrices

with compatible dimensions; superscript 𝑖 denotes the 𝑖th
sensor, and 𝑟 is the number of sensors.

Next, the statistical properties assumed about the initial
state and noise processes involved in (1) and (2) are specified.

(i) The initial state 𝑥
0
is a random vector with𝐸[𝑥

0
] = 𝑥
0

and Cov[𝑥
0
] = 𝑃
0
.

(ii) The process noise, {𝑤
𝑘
; 𝑘 ≥ 0}, and the measurement

noises, {V𝑖
𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, . . . , 𝑟, are zero-mean

sequences with covariances and cross-covariances:

Cov [𝑤
𝑘
, 𝑤
𝑠
] = 𝑄
𝑘, 𝑘

𝛿
𝑘−𝑠

+ 𝑄
𝑘,𝑠
𝛿
𝑘−𝑠+1

+ 𝑄
𝑘,𝑠
𝛿
𝑘−𝑠−1

,

Cov [V𝑖
𝑘
, V
𝑗

𝑠
] = 𝑅
𝑖𝑗

𝑘, 𝑘
𝛿
𝑘−𝑠

+ 𝑅
𝑖𝑗

𝑘,𝑠
𝛿
𝑘−𝑠+1

+ 𝑅
𝑖𝑗

𝑘,𝑠
𝛿
𝑘−𝑠−1

,

Cov [𝑤
𝑘
, V
𝑖

𝑠
] = 𝑆
𝑖

𝑘, 𝑘
𝛿
𝑘−𝑠

+ 𝑆
𝑖

𝑘,𝑠
𝛿
𝑘−𝑠+1

+ 𝑆
𝑖

𝑘,𝑠
𝛿
𝑘−𝑠+2

.

(3)

(iii) The multiplicative noises {𝜃𝑖
𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, . . . , 𝑟,

are white sequences of scalar variables with discrete
distribution over the interval [0, 1], with 𝐸[𝜃

𝑖

𝑘
] = 𝜃

𝑖

𝑘

and Var[𝜃𝑖
𝑘
] = 𝑉
𝜃
𝑖

𝑘
.

(iv) The initial state 𝑥
0
and the multiplicative noises

{𝜃
𝑖

𝑘
; 𝑘 ≥ 1}, for 𝑖 = 1, 2, . . . , 𝑟, are mutually

independent, and they are independent of the additive
noises {𝑤

𝑘
; 𝑘 ≥ 0} and {V𝑖

𝑘
; 𝑘 ≥ 1}, for 𝑖 = 1, 2, . . . , 𝑟.

Remark 1. From assumption (ii) the following correlation
properties of the additive noises are easily deduced.

(1) The noise vectors 𝑤
𝑘
and 𝑤

𝑠
are correlated at consec-

utive sampling times, |𝑘 − 𝑠| = 1, and independent
otherwise; the covariance matrices of 𝑤

𝑘
with 𝑤

𝑘−1
,

and 𝑤
𝑘+1

are 𝑄
𝑘, 𝑘−1

, and 𝑄
𝑘, 𝑘+1

, respectively.

(2) For 𝑖, 𝑗 = 1, 2, . . . , 𝑟, the measurement noises V𝑖
𝑘
and

V𝑗
𝑠
are cross-correlated at the same sampling time and

at consecutive sampling times, |𝑘 − 𝑠| = 0, 1, and
independent otherwise; the cross-covariances of V𝑖

𝑘

with V
𝑗

𝑘
, V𝑗
𝑘−1

and V
𝑗

𝑘+1
are 𝑅

𝑖𝑗

𝑘, 𝑘
, 𝑅𝑖𝑗
𝑘, 𝑘−1

and 𝑅
𝑖𝑗

𝑘, 𝑘+1
,

respectively.

(3) For 𝑖 = 1, 2, . . . , 𝑟, the measurement noises V𝑖
𝑘

are correlated with the noise vectors 𝑤
𝑠
, for 𝑠 =

𝑘, 𝑘 − 1, 𝑘 − 2, and independent otherwise; the cross-
covariance matrices of V𝑖

𝑘
with 𝑤

𝑘
, 𝑤
𝑘−1

and 𝑤
𝑘−2

are
𝑆
𝑖

𝑘, 𝑘
, 𝑆𝑖
𝑘−1, 𝑘

and 𝑆
𝑖

𝑘−2, 𝑘
, respectively.

The correlation conditions of the process noise and the
measurement noises considered in this paper are the same as
those in [16]. Systems with only finite-step correlated process
noises or multistep correlated process and measurement
noises are considered in [13–15], among others. The current
study can be extended to more general systems involving
finite-step autocorrelated and cross-correlated noises with no
difficulty, except for a greater complexity in themathematical
derivations.
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Remark 2. From the state equation (1) and assumptions (ii)
and (iv), it is easy to deduce that𝐷

𝑘
= 𝐸[𝑥

𝑘
𝑥
𝑇

𝑘
] is recursively

calculated by

𝐷
𝑘
= 𝐹
𝑘−1

𝐷
𝑘−1

𝐹
𝑇

𝑘−1
+ 𝑄
𝑘−1, 𝑘−1

+ 𝐹
𝑘−1

𝑄
𝑘−2, 𝑘−1

+ 𝑄
𝑘−1, 𝑘−2

𝐹
𝑇

𝑘−1
, 𝑘 ≥ 2,

𝐷
1
= 𝐹
0
𝐷
0
𝐹
𝑇

0
+ 𝑄
0,0
, 𝐷

0
= 𝑃
0
+ 𝑥
0
𝑥
𝑇

0
.

(4)

Also, it is easy to see that the state 𝑥
𝑘
is correlated with

the measurement noises V𝑖
𝑘
, for 𝑖 = 1, 2, . . . , 𝑟, and the

expectations 𝐸𝑖
𝑘
= 𝐸[𝑥

𝑘
V𝑖
𝑘
] satisfy

𝐸
𝑖

𝑘
= 𝐹
𝑘−1

𝑆
𝑖

𝑘−2, 𝑘
+ 𝑆
𝑖

𝑘−1, 𝑘
, 𝑘 ≥ 2; 𝐸

𝑖

1
= 𝑆
𝑖

0,1
. (5)

Remark 3. According to assumption (iii), the scalar random
variables 𝜃𝑖

𝑘
take values over the interval [0, 1] and they can

satisfy any arbitrary discrete probability distribution over
such interval, for instance, a Bernoulli distribution. Usually,
Bernoulli random variables have been used to model the
phenomenon of missing measurements (see, e.g., [25] and
references therein), with 𝜃

𝑖

𝑘
= 1 meaning that the state

𝑥
𝑘
is present in the measurement 𝑦𝑖

𝑘
coming from the 𝑖th

sensor at time 𝑘, while 𝜃
𝑖

𝑘
= 0 means that the state is

missing in the measured data at time 𝑘 or, equivalently, that
such observation only contains additive noise V𝑖

𝑘
. However,

in practice, the information transmitted at a sampling time
can usually be neither completely missing nor completely
successful, but only part of the information can go through;
in such situations, only partial information is missing and the
proportion of missed data at one moment is a fraction other
than 0 or 1 (see, e.g., [28, 29] and references therein).

2.2. Stacked Measurement Equation. As noted above, our
aim is to solve the optimal LS linear estimation problem
of the state 𝑥

𝑘
based on the measurements {𝑦𝑖

1
, 𝑦
𝑖

2
, . . . , 𝑦

𝑖

𝑘
},

for 𝑖 = 1, 2, . . . , 𝑟, by using centralized and distributed
fusion methods to process the measured sensor data. The
centralized fusionmethod considers that all themeasurement
data coming from 𝑟 sensors are transmitted to a fusion center
for being processed; for this purpose and to simplify the
notation, the measurement equation (2) is rewritten in a
stacked form as follows:

𝑦
𝑘
= Θ
𝑘
𝐻
𝑘
𝑥
𝑘
+ V
𝑘
, 𝑘 ≥ 1, (6)

where 𝑦
𝑘
= (𝑦
1

𝑘
, . . . , 𝑦

𝑟

𝑘
)
𝑇
, V
𝑘
= (V1
𝑘
, . . . , V𝑟

𝑘
)
𝑇, 𝐻
𝑘
= (𝐻
1𝑇

𝑘
, . . .,

𝐻
𝑟𝑇

𝑘
)
𝑇, and Θ

𝑘
= Diag(𝜃1

𝑘
,. . . , 𝜃𝑟

𝑘
).

The following properties of the noises in (6) are easily
inferred from the model assumptions (ii)–(iv) previously
stated.

(i) The additive noise {V
𝑘
; 𝑘 ≥ 1} is a zero-mean process

satisfying:

Cov [V
𝑘
, V
𝑠
] = 𝑅
𝑘, 𝑘

𝛿
𝑘−𝑠

+ 𝑅
𝑘,𝑠
𝛿
𝑘−𝑠+1

+ 𝑅
𝑘,𝑠
𝛿
𝑘−𝑠−1

,

Cov [𝑤
𝑘
, V
𝑠
] = 𝑆
𝑘, 𝑘

𝛿
𝑘−𝑠

+ 𝑆
𝑘,𝑠
𝛿
𝑘−𝑠+1

+ 𝑆
𝑘,𝑠
𝛿
𝑘−𝑠+2

,
(7)

where 𝑅
𝑘,𝑠

= (𝑅
𝑖𝑗

𝑘,𝑠
)
𝑖,𝑗=1,2,...,𝑟

and 𝑆
𝑘,𝑠

= (𝑆
1

𝑘,𝑠
, . . . , 𝑆

𝑟

𝑘,𝑠
).

(ii) The state vector 𝑥
𝑘
and the measurement noise vector

V
𝑘
are correlated with 𝐸

𝑘
= 𝐸[𝑥

𝑘
V𝑇
𝑘
] satisfying

𝐸
𝑘
= 𝐹
𝑘−1

𝑆
𝑘−2, 𝑘

+ 𝑆
𝑘−1, 𝑘

, 𝑘 ≥ 2, 𝐸
1
= 𝑆
0,1
. (8)

(iii) The random matrices {Θ
𝑘
; 𝑘 ≥ 1} satisfy 𝐸[Θ

𝑘
] =

Θ
𝑘

= Diag(𝜃
1

𝑘
, . . . , 𝜃

𝑟

𝑘
) and 𝐸[(Θ

𝑘
− Θ
𝑘
)
2
] =

Diag(𝑉𝜃
1

𝑘
, . . . , 𝑉

𝜃
𝑟

𝑘
); also, denoting 𝜃

𝑘
= (𝜃
1

𝑘
, . . . , 𝜃

𝑟

𝑘
)
𝑇,

it is clear that Cov[𝜃
𝑘
] = Diag(𝑉𝜃

1

𝑘
, . . . , 𝑉

𝜃
𝑟

𝑘
).

Moreover, for any random matrix 𝐺 independent of
{Θ
𝑘
; 𝑘 ≥ 1}, it is easily deduced that

𝐸 [(Θ
𝑘
− Θ
𝑘
)𝐺 (Θ

𝑘
− Θ
𝑘
)] = Cov [𝜃

𝑘
] ∘ 𝐸 [𝐺] , (9)

where ∘ denotes the Hadamard product [23].
(iv) The initial state 𝑥

0
and {Θ

𝑘
; 𝑘 ≥ 1} are independent,

and they are independent of {𝑤
𝑘
; 𝑘 ≥ 0} and {V

𝑘
; 𝑘 ≥

1}.

2.3. Innovation Approach to the Optimal LS Linear Esti-
mation Problem. To address the optimal LS linear estima-
tion problem of the state 𝑥

𝑘
based on the measurements

{𝑦
𝑖

1
, 𝑦
𝑖

2
, . . . , 𝑦

𝑖

𝑘
}, 𝑖 = 1, 2, . . . , 𝑟, the centralized and distributed

fusion methods will be used. In both cases, recursive algo-
rithms for the LS linear estimators will be established using an
innovation approach and the orthogonal projection Lemma
(OPL); more specifically we have the following.

Centralized Fusion Estimation Problem. Our aim is to obtain
the optimal LS linear filter, 𝑥

𝑘/𝑘
, of the state 𝑥

𝑘
based on

the measurements {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
}, given in (6), by recursive

algorithms.
As known, the LS linear filter 𝑥

𝑘/𝑘
is the orthogonal

projection of the state 𝑥
𝑘
over the linear space spanned by

{𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
}. These observations are generally nonorthog-

onal vectors, but the Gram-Schmidt orthogonalization pro-
cedure allows us to substitute them by a set of orthogonal
vectors, called innovations, defined as the difference between
each observation and its one-stage predictor. Due to the
orthogonality property of the innovations and since the
innovation process is uniquely determined by the observa-
tions, the LS linear filter, 𝑥

𝑘/𝑘
, can be calculated as linear

combination of the innovations; namely,

𝑥
𝑘/𝑘

=

𝑘

∑
𝑠=1

X
𝑘,𝑠
Π
−1

𝑠,𝑠
𝜇
𝑠
, 𝑘 ≥ 1, (10)

where 𝜇
𝑠
= 𝑦
𝑠
− 𝑦
𝑠/𝑠−1

are the innovation vectors, with 𝑦
𝑠/𝑠−1

the one-stage observation predictor, Π
𝑠,𝑠

= 𝐸[𝜇
𝑠
𝜇
𝑇

𝑠
], and

X
𝑘,𝑠

= 𝐸[𝑥
𝑘
𝜇
𝑇

𝑠
].

Distributed Fusion Estimation Problem. To address the dis-
tributed fusion estimation problem, firstly, recursive algo-
rithms to obtain local LS linear filters, 𝑥𝑖

𝑘/𝑘
, for 𝑖 = 1, 2, . . . , 𝑟,

and the error cross-covariance matrices between any two
local estimates, are derived. Secondly, the distributed fusion
filter, 𝑥𝐷

𝑘/𝑘
, is established by applying the optimal information
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fusion criterion weighted by matrices in the linear minimum
variance sense [30].

Analogously to (10), denoting 𝜇
𝑖

𝑠
= 𝑦
𝑖

𝑠
− 𝑦
𝑖

𝑠/𝑠−1
, Π𝑖𝑖
𝑠,𝑠

=

𝐸[𝜇
𝑖

𝑠
𝜇
𝑖

𝑠
], andX𝑖

𝑘,𝑠
= 𝐸[𝑥

𝑘
𝜇
𝑖

𝑠
], the local filter 𝑥𝑖

𝑘/𝑘
is expressed

as

𝑥
𝑖

𝑘/𝑘
=

𝑘

∑
𝑠=1

X
𝑖

𝑘,𝑠
(Π
𝑖𝑖

𝑠,𝑠
)
−1

𝜇
𝑖

𝑠
, 𝑘 ≥ 1. (11)

3. Optimal LS Linear Centralized
Fusion Estimation

In this section a recursive algorithm for the centralized
optimal (under the LS criterion) linear filter, 𝑥

𝑘/𝑘
is derived.

Such algorithm is deduced using (10) and the OPL, and it is
presented inTheorem 5. Firstly, in order to simplify the proof
of Theorem 5, the following lemma is established.

Lemma 4. Under assumptions (i)–(iv), the following results
hold:

W
𝑘, 𝑘

= 𝐸 [𝑤
𝑘
𝜇
𝑇

𝑘
] = 𝑄

𝑘, 𝑘−1
𝐻
𝑇

𝑘
Θ
𝑘
+ 𝑆
𝑘, 𝑘

, 𝑘 ≥ 1, (12)

V
𝑘, 𝑘−1

= 𝐸 [V
𝑘
𝜇
𝑇

𝑘−1
] = 𝑆
𝑇

𝑘−2, 𝑘
𝐻
𝑇

𝑘−1
Θ
𝑘−1

+ 𝑅
𝑘, 𝑘−1

, 𝑘 ≥ 2.

(13)

Proof. Since𝑤
𝑘
is independent of 𝑦

1
, . . . , 𝑦

𝑘−1
, 𝐸[𝑤
𝑘
𝑦
𝑇

𝑘/𝑘−1
] =

0 and hence W
𝑘, 𝑘

= 𝐸[𝑤
𝑘
𝑦
𝑇

𝑘
]. Now, using (1) and (6), W

𝑘, 𝑘

can be calculated as follows:

W
𝑘, 𝑘

= 𝐸 [𝑤
𝑘
(Θ
𝑘
𝐻
𝑘
𝑥
𝑘
+ V
𝑘
)
𝑇
]

= 𝐸 [𝑤
𝑘
𝑥
𝑇

𝑘
]𝐻
𝑇

𝑘
Θ
𝑘
+ 𝑆
𝑘, 𝑘

= 𝐸 [𝑤
𝑘
(𝐹
𝑘−1

𝑥
𝑘−1

+ 𝑤
𝑘−1

)
𝑇
]𝐻
𝑇

𝑘
Θ
𝑘
+ 𝑆
𝑘, 𝑘

= 𝑄
𝑘, 𝑘−1

𝐻
𝑇

𝑘
Θ
𝑘
+ 𝑆
𝑘, 𝑘

.

(14)

Taking into account that V
𝑘
is independent of 𝑦

1
, . . . , 𝑦

𝑘−2
, the

calculation ofV
𝑘, 𝑘−1

is similar to that ofW
𝑘, 𝑘

, and hence the
proof is omitted.

Theorem 5. For the systemmodel (1) andmeasurement model
(6), under assumptions (i)–(iv), the optimal LS linear filter 𝑥

𝑘/𝑘

is obtained as

𝑥
𝑘/𝑘

= 𝑥
𝑘/𝑘−1

+X
𝑘, 𝑘

Π
−1

𝑘, 𝑘
𝜇
𝑘
, 𝑘 ≥ 1, 𝑥

0/0
= 𝑥
0
, (15)

where the state predictor, 𝑥
𝑘/𝑘−1

, satisfies

𝑥
𝑘/𝑘−1

= 𝐹
𝑘−1

𝑥
𝑘−1/𝑘−1

+W
𝑘−1, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
𝜇
𝑘−1

, 𝑘 ≥ 2,

𝑥
1/0

= 𝐹
0
𝑥
0/0

.

(16)

The innovation, 𝜇
𝑘
, is given by

𝜇
𝑘
= 𝑦
𝑘
− Θ
𝑘
𝐻
𝑘
𝑥
𝑘/𝑘−1

−V
𝑘, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
𝜇
𝑘−1

, 𝑘 ≥ 2,

𝜇
1
= 𝑦
1
− Θ
1
𝐻
1
𝑥
1/0

.

(17)

The matrixX
𝑘, 𝑘

= 𝐸[𝑥
𝑘
𝜇
𝑇

𝑘
] is calculated by

X
𝑘, 𝑘

= 𝑃
𝑘/𝑘−1

𝐻
𝑇

𝑘
Θ
𝑘
+ 𝐸
𝑘
−X
𝑘, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
V
𝑇

𝑘, 𝑘−1
, 𝑘 ≥ 2,

X
1,1

= 𝑃
1/0

𝐻
𝑇

1
Θ
1
+ 𝐸
1
,

(18)

whereX
𝑘, 𝑘−1

= 𝐸[𝑥
𝑘
𝜇
𝑇

𝑘−1
] satisfies

X
𝑘, 𝑘−1

= 𝐹
𝑘−1

X
𝑘−1, 𝑘−1

+W
𝑘−1, 𝑘−1

, 𝑘 ≥ 2. (19)

The prediction error covariance matrix, 𝑃
𝑘/𝑘−1

, is obtained by

𝑃
𝑘/𝑘−1

= 𝐹
𝑘−1

𝑃
𝑘−1/𝑘−1

𝐹
𝑇

𝑘−1
+ 𝑄
𝑘−1, 𝑘−1

+ 𝐹
𝑘−1

J
𝑘−1

+J
𝑇

𝑘−1
𝐹
𝑇

𝑘−1

−W
𝑘−1, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
W
𝑇

𝑘−1, 𝑘−1
, 𝑘 ≥ 2,

𝑃
1/0

= 𝐹
0
𝑃
0/0

𝐹
𝑇

0
+ 𝑄
0,0
,

(20)

whereJ
𝑘
= 𝐸[𝑥

𝑘/𝑘
𝑤
𝑇

𝑘
] is calculated by

J
𝑘
= 𝑄
𝑘−1, 𝑘

−X
𝑘, 𝑘

Π
−1

𝑘, 𝑘
W
𝑇

𝑘, 𝑘
, 𝑘 ≥ 1. (21)

The filtering error covariance matrix, 𝑃
𝑘/𝑘

, is given by

𝑃
𝑘/𝑘

= 𝑃
𝑘/𝑘−1

−X
𝑘, 𝑘

Π
−1

𝑘, 𝑘
X
𝑇

𝑘, 𝑘
, 𝑘 ≥ 1, 𝑃

0/0
= 𝑃
0
. (22)

The innovation covariance matrix, Π
𝑘, 𝑘

, satisfies

Π
𝑘, 𝑘

= Cov (𝜃
𝑘
) ∘ (𝐻

𝑘
𝐷
𝑘
𝐻
𝑇

𝑘
) + 𝑅
𝑘, 𝑘

+ Θ
𝑘
𝐻
𝑘
X
𝑘, 𝑘

+X
𝑇

𝑘, 𝑘
𝐻
𝑇

𝑘
Θ
𝑘
− Θ
𝑘
𝐻
𝑘
𝑃
𝑘/𝑘−1

𝐻
𝑇

𝑘
Θ
𝑘

−V
𝑘, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
V
𝑇

𝑘, 𝑘−1
, 𝑘 ≥ 2,

Π
1, 1

= Cov (𝜃
1
) ∘ (𝐻

1
𝐷
1
𝐻
𝑇

1
) + 𝑅
1,1

+ Θ
1
𝐻
1
X
1,1

+X
𝑇

1,1
𝐻
𝑇

1
Θ
1
− Θ
1
𝐻
1
𝑃
1/0

𝐻
𝑇

1
Θ
1
.

(23)

The matrices 𝐷
𝑘
, 𝐸
𝑘
, W
𝑘, 𝑘

, and V
𝑘, 𝑘−1

are given in (4), (8),
(12), and (13), respectively.

Proof. See Appendix 6.

Remark 6. In conventional estimation problems in systems
with missing measurements and uncorrelated additive white
noises, the one-stage state and observation predictors are
calculated as 𝑥

𝑘/𝑘−1
= 𝐹
𝑘−1

𝑥
𝑘−1/𝑘−1

and 𝑦
𝑘/𝑘−1

= Θ
𝑘
𝐻
𝑘
𝑥
𝑘/𝑘−1

,
respectively. However, this is not true for the problem at hand
since, due to the correlation assumption (ii), the noise esti-
mators𝑤

𝑘−1/𝑘−1
and V̂
𝑘/𝑘−1

must be taken into account for the
derivation of the predictors. Besides the fact of considering
missing measurements, this is the main difference between
the optimal estimators proposed in the current paper and the
suboptimal Kalman-type ones proposed in [16], where the
noise estimators are considered to be equal to zero.
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4. Distributed Fusion Estimation

One of the main disadvantages of the centralized fusion
estimators derived in Section 3 is that they may have a
high computational cost due to augmentation. Moreover,
as is widely known, the centralized approach has several
other drawbacks, such as fault detection, isolation, poor
reliability, and so forth. To overcome these disadvantages,
our aim in this section is to address the optimal distributed
fusion estimation problem, in which each single sensor
provides its local LS linear estimator and their estimation
error covariance matrices, and then these local estimators
along with the covariances and cross-covariance matrices of
the estimation errors between any two sensors are sent to
the fusion center for fusion based on the matrices-weighted
fusion estimation criterion in the linear minimum variance
sense [30].

4.1. Local LS Linear Filtering Algorithms. For each single sen-
sor subsystem of systems (1) and (2), the following theorem
provides recursive formulas for the local LS linear filters, 𝑥𝑖

𝑘/𝑘
,

and their corresponding error covariance matrices, 𝑃𝑖𝑖
𝑘/𝑘

.

Theorem 7. For the 𝑖th sensor subsystem of systems (1) and
(2) under assumptions (i)–(iv), the local LS linear filter, 𝑥𝑖

𝑘/𝑘
, is

calculated by

𝑥
𝑖

𝑘/𝑘
= 𝑥
𝑖

𝑘/𝑘−1
+X
𝑖

𝑘, 𝑘
(Π
𝑖𝑖

𝑘, 𝑘
)
−1

𝜇
𝑖

𝑘
, 𝑘 ≥ 1, 𝑥

𝑖

0/0
= 𝑥
0
,

(24)

where the local LS linear predictor, 𝑥𝑖
𝑘/𝑘−1

, satisfies

𝑥
𝑖

𝑘/𝑘−1
= 𝐹
𝑘−1

𝑥
𝑖

𝑘−1/𝑘−1
+W
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

𝜇
𝑖

𝑘−1
, 𝑘 ≥ 2,

𝑥
𝑖

1/0
= 𝐹
0
𝑥
𝑖

0/0
,

(25)

withW𝑖
𝑘, 𝑘

= 𝜃
𝑖

𝑘
𝑄
𝑘, 𝑘−1

𝐻
𝑖𝑇

𝑘
+ 𝑆
𝑖

𝑘, 𝑘
, 𝑘 ≥ 1.

The innovation, 𝜇𝑖
𝑘
, is given by

𝜇
𝑖

𝑘
= 𝑦
𝑖

𝑘
− 𝜃
𝑖

𝑘
𝐻
𝑖

𝑘
𝑥
𝑖

𝑘/𝑘−1
−V
𝑖𝑖

𝑘, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

𝜇
𝑖

𝑘−1
, 𝑘 ≥ 2,

𝜇
𝑖

1
= 𝑦
𝑖

1
− 𝜃
𝑖

1
𝐻
𝑖

1
𝑥
𝑖

1/0
,

(26)

withV𝑖𝑖
𝑘, 𝑘−1

= 𝜃
𝑖

𝑘−1
𝑆
𝑖𝑇

𝑘−2, 𝑘
𝐻
𝑖𝑇

𝑘−1
+ 𝑅
𝑖𝑖

𝑘, 𝑘−1
, 𝑘 ≥ 2.

The vectorX𝑖
𝑘, 𝑘

= 𝐸[𝑥
𝑘
𝜇
𝑖

𝑘
] is calculated from the following

expression

X
𝑖

𝑘, 𝑘
= 𝜃
𝑖

𝑘
𝑃
𝑖𝑖

𝑘/𝑘−1
𝐻
𝑖𝑇

𝑘
+ 𝐸
𝑖

𝑘
−X
𝑖

𝑘, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

V
𝑖𝑖

𝑘, 𝑘−1
,

𝑘 ≥ 2,

X
𝑖

1,1
= 𝜃
𝑖

1
𝑃
𝑖𝑖

1/0
𝐻
𝑖𝑇

1
+ 𝐸
𝑖

1
,

(27)

whereX𝑖
𝑘, 𝑘−1

= 𝐹
𝑘−1

X𝑖
𝑘−1, 𝑘−1

+W𝑖
𝑘−1, 𝑘−1

, 𝑘 ≥ 2.

The local prediction error covariance matrix, 𝑃𝑖𝑖
𝑘/𝑘−1

, is
obtained by

𝑃
𝑖𝑖

𝑘/𝑘−1
= 𝐹
𝑘−1

𝑃
𝑖𝑖

𝑘−1/𝑘−1
𝐹
𝑇

𝑘−1
+ 𝑄
𝑘−1, 𝑘−1

+ 𝐹
𝑘−1

J
𝑖

𝑘−1
+J
𝑖𝑇

𝑘−1
𝐹
𝑇

𝑘−1

−W
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

W
𝑖𝑇

𝑘−1, 𝑘−1
, 𝑘 ≥ 2,

𝑃
𝑖𝑖

1/0
= 𝐹
0
𝑃
𝑖𝑖

0/0
𝐹
𝑇

0
+ 𝑄
0,0
,

(28)

where J𝑖
𝑘
= 𝑄
𝑘−1, 𝑘

−X𝑖
𝑘, 𝑘

(Π
𝑖𝑖

𝑘, 𝑘
)
−1

W𝑖𝑇
𝑘, 𝑘

, 𝑘 ≥ 1, and 𝑃
𝑖𝑖

𝑘/𝑘
, the

filtering error covariance matrix, is given by

𝑃
𝑖𝑖

𝑘/𝑘
= 𝑃
𝑖𝑖

𝑘/𝑘−1
−X
𝑖

𝑘, 𝑘
(Π
𝑖𝑖

𝑘, 𝑘
)
−1

X
𝑖𝑇

𝑘, 𝑘
, 𝑘 ≥ 1, 𝑃

𝑖𝑖

0/0
= 𝑃
0
.

(29)

The innovation variance, Π𝑖𝑖
𝑘, 𝑘

, satisfies

Π
𝑖𝑖

𝑘, 𝑘
= 𝑉
𝜃
𝑖

𝑘
𝐻
𝑖

𝑘
𝐷
𝑘
𝐻
𝑖𝑇

𝑘
+ 𝑅
𝑖𝑖

𝑘, 𝑘
+ 𝜃
𝑖

𝑘
𝐻
𝑖

𝑘
X
𝑖

𝑘, 𝑘
+ 𝜃
𝑖

𝑘
X
𝑖𝑇

𝑘, 𝑘
𝐻
𝑖𝑇

𝑘

− (𝜃
𝑖

𝑘
)
2

𝐻
𝑖

𝑘
𝑃
𝑖𝑖

𝑘/𝑘−1
𝐻
𝑖𝑇

𝑘
− (V
𝑖𝑖

𝑘, 𝑘−1
)
2

(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

,

𝑘 ≥ 2,

Π
𝑖𝑖

1, 1
= 𝑉
𝜃
𝑖

1
𝐻
𝑖

1
𝐷
1
𝐻
𝑖𝑇

1
+ 𝑅
𝑖𝑖

1,1
+ 𝜃
𝑖

1
𝐻
𝑖

1
X
𝑖

1,1

+ 𝜃
𝑖

1
X
𝑖𝑇

1,1
𝐻
𝑖𝑇

1
− (𝜃
𝑖

1
)
2

𝐻
𝑖

1
𝑃
𝑖𝑖

1/0
𝐻
𝑖𝑇

1
.

(30)

The matrix 𝐷
𝑘
and the vector 𝐸

𝑖

𝑘
are given in (4) and (5),

respectively.

Proof. The proof, based on the innovation approach and the
OPL, is omitted for being analogous to that of Theorem 5.
Nevertheless, it should be indicated that, in this proof, the
Hadamard product is not used since, instead of the diagonal
stochastic matrixΘ

𝑘
, the scalar variable 𝜃𝑖

𝑘
is now involved in

the derivation of the estimators.

Remark 8. As indicated in Remark 6 for the centralized
estimators, it must be noted that, due to the correlation
assumption (ii) of the additive noises {𝑤

𝑘
} and {V𝑖

𝑘
}, the

estimators 𝑤𝑖
𝑘−1/𝑘−1

= W𝑖
𝑘−1, 𝑘−1

(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

𝜇
𝑖

𝑘−1
and V̂𝑖
𝑘/𝑘−1

=

V𝑖𝑖
𝑘, 𝑘−1

(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

𝜇
𝑖

𝑘−1
are not equal to zero, and hence the

optimal local state predictor, 𝑥𝑖
𝑘/𝑘−1

= 𝐹
𝑘−1

𝑥
𝑖

𝑘−1/𝑘−1
+𝑤
𝑖

𝑘−1/𝑘−1
,

and the observation predictor, 𝑦𝑖
𝑘/𝑘−1

= 𝜃
𝑖

𝑘
𝐻
𝑖

𝑘
𝑥
𝑖

𝑘/𝑘−1
+ V̂𝑖
𝑘/𝑘−1

,
are quite different from conventional filtering algorithms
with uncorrelated white noises. This issue, along with the
consideration of missingmeasurements at each single sensor,
constitutes the main difference between the current optimal
local estimators and the suboptimal local estimators pro-
posed in [16].

4.2. Cross-Covariance Matrices of Local Estimation Errors. To
apply the optimal fusion criterion weighted by matrices in
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the linear minimum variance sense, the filtering, 𝑃𝑖𝑗
𝑘/𝑘

, and
prediction, 𝑃𝑖𝑗

𝑘/𝑘−1
, error cross-covariance matrices between

local estimators of any two subsystems must be calculated.
For simplicity, besides the notation ofTheorem 7, for 𝑖 ̸= 𝑗,

𝑖, 𝑗 = 1, 2 . . . , 𝑟, we introduce the following notation:

𝐿
𝑖𝑗

𝑘
= 𝐸 [𝑥

𝑖

𝑘/𝑘−1
𝜇
𝑗

𝑘
] , Π

𝑖𝑗

𝑘, 𝑠
= 𝐸 [𝜇

𝑖

𝑘
𝜇
𝑗

𝑠
] ,

V
𝑖𝑗

𝑘, 𝑘−1
= 𝐸 [V

𝑖

𝑘
𝜇
𝑗

𝑘−1
] .

(31)

Also, in order to simplify the calculation of the error cross-
covariance matrices, the following lemmas are given.

Lemma 9. Under assumptions (i)–(iv), the following results
hold.

(a) The expectation 𝐸[𝑥
𝑖

𝑘/𝑘−1
𝜇
𝑗

𝑘−1
] satisfies

𝐸 [𝑥
𝑖

𝑘/𝑘−1
𝜇
𝑗

𝑘−1
] = 𝐹
𝑘−1

𝐿
𝑖𝑗

𝑘−1

+X
𝑖

𝑘, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘−1
, 𝑘 ≥ 2.

(32)

(b) The expectation 𝐸[𝑥
𝑖

𝑘/𝑘−1
V
𝑗

𝑘
] satisfies

𝐸 [𝑥
𝑖

𝑘/𝑘−1
V
𝑗

𝑘
] = X

𝑖

𝑘, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

V
𝑗𝑖

𝑘, 𝑘−1
, 𝑘 ≥ 2, (33)

whereV𝑗𝑖
𝑘, 𝑘−1

= 𝜃
𝑖

𝑘−1
𝐻
𝑖

𝑘−1
𝑆
𝑗

𝑘−2, 𝑘
+ 𝑅
𝑖𝑗

𝑘−1, 𝑘
.

(c) The expectation 𝐸[V𝑖
𝑘
𝜇
𝑗

𝑘
] satisfies

𝐸 [V
𝑖

𝑘
𝜇
𝑗

𝑘
] = 𝜃
𝑗

𝑘
𝐸
𝑖𝑇

𝑘
𝐻
𝑗𝑇

𝑘
+ 𝑅
𝑖𝑗

𝑘, 𝑘

−V
𝑖𝑗

𝑘, 𝑘−1
(Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

(𝜃
𝑗

𝑘
𝐻
𝑗

𝑘
X
𝑗

𝑘, 𝑘−1
+V
𝑗𝑗

𝑘, 𝑘−1
)
𝑇

,

𝑘 ≥ 2.

(34)

Proof. (a) From (25) for 𝑥𝑖
𝑘/𝑘−1

and (24) for 𝑥𝑖
𝑘−1/𝑘−1

, we have

𝐸 [𝑥
𝑖

𝑘/𝑘−1
𝜇
𝑗

𝑘−1
]

= 𝐹
𝑘−1

𝐸[𝑥
𝑖

𝑘−1/𝑘−1
𝜇
𝑗

𝑘−1
]+W
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘−1

= 𝐹
𝑘−1

𝐸 [𝑥
𝑖

𝑘−1/𝑘−2
𝜇
𝑗

𝑘−1
] + 𝐹
𝑘−1

X
𝑖

𝑘−1, 𝑘−1

× (Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘−1

+W
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘−1

= 𝐹
𝑘−1

𝐿
𝑖𝑗

𝑘−1
+ (𝐹
𝑘−1

X
𝑖

𝑘−1, 𝑘−1
+W
𝑖

𝑘−1, 𝑘−1
)

× (Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘−1
,

(35)

and sinceX𝑖
𝑘, 𝑘−1

= 𝐹
𝑘−1

X𝑖
𝑘−1, 𝑘−1

+W𝑖
𝑘−1, 𝑘−1

, expression (32)
is proved.

(b) Analogously, taking into account that 𝐸[𝑥𝑖
𝑘−1/𝑘−2

V
𝑗

𝑘
] =

0, we have

𝐸 [𝑥
𝑖

𝑘/𝑘−1
V
𝑗

𝑘
] = 𝐹
𝑘−1

𝐸 [𝑥
𝑖

𝑘−1/𝑘−1
V
𝑗

𝑘
]

+W
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

𝐸 [𝜇
𝑖

𝑘−1
V
𝑗

𝑘
]

=(𝐹
𝑘−1

X
𝑖

𝑘−1, 𝑘−1
+W
𝑖

𝑘−1, 𝑘−1
)(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

V
𝑗𝑖

𝑘, 𝑘−1
,

(36)

and expression (33) is immediately obtained. Finally, the
derivation of expression V

𝑗𝑖

𝑘, 𝑘−1
= 𝜃
𝑖

𝑘−1
𝐻
𝑖

𝑘−1
𝑆
𝑗

𝑘−2, 𝑘
+ 𝑅
𝑖𝑗

𝑘−1, 𝑘

is similar to that of (13) and hence it is omitted.
(c) Taking into account expression (26) for 𝜇𝑗

𝑘
, with (2)

for 𝑦𝑗
𝑘
, we have

𝐸 [V
𝑖

𝑘
𝜇
𝑗

𝑘
] = 𝜃
𝑗

𝑘
𝐸
𝑖𝑇

𝑘
𝐻
𝑗𝑇

𝑘
+ 𝑅
𝑖𝑗

𝑘, 𝑘
− 𝜃
𝑗

𝑘
𝐸 [V
𝑖

𝑘
𝑥
𝑗𝑇

𝑘/𝑘−1
]𝐻
𝑗𝑇

𝑘

−V
𝑖𝑗

𝑘, 𝑘−1
(Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

V
𝑗𝑗

𝑘, 𝑘−1
, 𝑘 ≥ 2,

(37)

and using (33) for 𝐸[V𝑖
𝑘
𝑥
𝑗𝑇

𝑘/𝑘−1
], expression (34) is obtained.

Lemma 10. Under assumptions (i)–(iv), for 𝑖 ̸= 𝑗, 𝑖, 𝑗 =

1, 2 . . . , 𝑟, the expectations 𝐿𝑖𝑗
𝑘

= 𝐸[𝑥
𝑖

𝑘/𝑘−1
𝜇
𝑗

𝑘
] are recursively

obtained by

𝐿
𝑖𝑗

𝑘
= 𝜃
𝑗

𝑘
(𝑃
𝑗𝑗

𝑘/𝑘−1
− 𝑃
𝑖𝑗

𝑘/𝑘−1
)𝐻
𝑗𝑇

𝑘
− 𝐹
𝑘−1

𝐿
𝑖𝑗

𝑘−1
(Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

V
𝑗𝑗

𝑘, 𝑘−1

+X
𝑖

𝑘, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

× (V
𝑗𝑖

𝑘, 𝑘−1
−V
𝑗𝑗

𝑘, 𝑘−1
(Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘−1
) , 𝑘 ≥ 2,

(38)

with initial condition 𝐿
𝑖𝑗

1
= 0.

Proof. Taking into account expression (26) for 𝜇𝑗
𝑘
, with (2) for

𝑦
𝑗

𝑘
, we have

𝐿
𝑖𝑗

𝑘
= 𝜃
𝑗

𝑘
𝐸 [𝑥
𝑖

𝑘/𝑘−1
𝑥
𝑇

𝑘
]𝐻
𝑗𝑇

𝑘
+ 𝐸 [𝑥

𝑖

𝑘/𝑘−1
V
𝑗

𝑘
]

− 𝜃
𝑗

𝑘
𝐸 [𝑥
𝑖

𝑘/𝑘−1
𝑥
𝑗𝑇

𝑘/𝑘−1
]𝐻
𝑗𝑇

𝑘

− 𝐸 [𝑥
𝑖

𝑘/𝑘−1
𝜇
𝑗

𝑘−1
] (Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

V
𝑗𝑗

𝑘, 𝑘−1
, 𝑘 ≥ 2.

(39)

From the OPL, 𝐸[𝑥𝑖
𝑘/𝑘−1

𝑥
𝑇

𝑘
] = 𝐸[𝑥

𝑖

𝑘/𝑘−1
𝑥
𝑖𝑇

𝑘/𝑘−1
]; then, taking

into account (32) for 𝐸[𝑥𝑖
𝑘/𝑘−1

𝜇
𝑗

𝑘−1
], and (33) for 𝐸[𝑥𝑖

𝑘/𝑘−1
V
𝑗

𝑘
],

it is enough to prove that

𝐸 [𝑥
𝑖

𝑘/𝑘−1
𝑥
𝑖𝑇

𝑘/𝑘−1
] − 𝐸 [𝑥

𝑖

𝑘/𝑘−1
𝑥
𝑗𝑇

𝑘/𝑘−1
] = 𝑃
𝑗𝑗

𝑘/𝑘−1
− 𝑃
𝑖𝑗

𝑘/𝑘−1
, (40)
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which is easily deduced since

𝐸 [𝑥
𝑖

𝑘/𝑘−1
𝑥
𝑗𝑇

𝑘/𝑘−1
]

= 𝑃
𝑖𝑗

𝑘/𝑘−1
− 𝐷
𝑘
+ 𝐸 [𝑥

𝑖

𝑘/𝑘−1
𝑥
𝑖𝑇

𝑘/𝑘−1
] + 𝐸 [𝑥

𝑗

𝑘/𝑘−1
𝑥
𝑗𝑇

𝑘/𝑘−1
] ,

𝐸 [𝑥
𝑗

𝑘/𝑘−1
𝑥
𝑗𝑇

𝑘/𝑘−1
] = 𝐷

𝑘
− 𝑃
𝑗𝑗

𝑘/𝑘−1
.

(41)

Lemma 11. Under assumptions (i)–(iv), for 𝑖 ̸= 𝑗, 𝑖, 𝑗 =

1, 2 . . . , 𝑟, the innovation cross-covariance Π
𝑖𝑗

𝑘, 𝑘
= 𝐸[𝜇

𝑖

𝑘
𝜇
𝑗

𝑘
]

satisfies

Π
𝑖𝑗

𝑘, 𝑘
= 𝜃
𝑖

𝑘
𝐻
𝑖

𝑘
(X
𝑗

𝑘, 𝑘
− 𝐿
𝑖𝑗

𝑘
) + 𝜃
𝑗

𝑘
𝐸
𝑖𝑇

𝑘
𝐻
𝑗𝑇

𝑘
+ 𝑅
𝑖𝑗

𝑘, 𝑘

−V
𝑖𝑖

𝑘, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘

−V
𝑖𝑗

𝑘, 𝑘−1
(Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

(𝜃
𝑗

𝑘
𝐻
𝑗

𝑘
X
𝑗

𝑘, 𝑘−1
+V
𝑗𝑗

𝑘, 𝑘−1
)
𝑇

,

𝑘 ≥ 2,

Π
𝑖𝑗

1, 1
= 𝜃
𝑖

1
𝐻
𝑖

1
X
𝑗

1,1
+ 𝜃
𝑗

1
𝐸
𝑖

1
𝐻
𝑗𝑇

1
+ 𝑅
𝑖𝑗

1,1
,

(42)

where Π𝑖𝑗
𝑘−1, 𝑘

= 𝐸[𝜇
𝑖

𝑘−1
𝜇
𝑗

𝑘
] is given by

Π
𝑖𝑗

𝑘−1, 𝑘
= 𝜃
𝑗

𝑘
(X
𝑖

𝑘, 𝑘−1
− 𝐹
𝑘−1

𝐿
𝑗𝑖

𝑘−1

−X
𝑗

𝑘, 𝑘−1
(Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

Π
𝑗𝑖

𝑘−1, 𝑘−1
)
𝑇

𝐻
𝑗𝑇

𝑘

+V
𝑗𝑖

𝑘, 𝑘−1
− Π
𝑖𝑗

𝑘−1, 𝑘−1
(Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

V
𝑗𝑗

𝑘, 𝑘−1
, 𝑘 ≥ 2.

(43)

Proof. Taking into account expression (26) for 𝜇𝑖
𝑘
, with (2) for

𝑦
𝑖

𝑘
, we have

Π
𝑖𝑗

𝑘, 𝑘
= 𝜃
𝑖

𝑘
𝐻
𝑖

𝑘
𝐸 [𝑥
𝑘
𝜇
𝑗

𝑘
] + 𝐸 [V

𝑖

𝑘
𝜇
𝑗

𝑘
] − 𝜃
𝑖

𝑘
𝐻
𝑖

𝑘
𝐸 [𝑥
𝑖

𝑘/𝑘−1
𝜇
𝑗

𝑘
]

−V
𝑖𝑖

𝑘, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

𝐸 [𝜇
𝑖

𝑘−1
𝜇
𝑗

𝑘
]

= 𝜃
𝑖

𝑘
𝐻
𝑖

𝑘
(X
𝑗

𝑘, 𝑘
− 𝐿
𝑖𝑗

𝑘
) + 𝐸 [V

𝑖

𝑘
𝜇
𝑗

𝑘
]

−V
𝑖𝑖

𝑘, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘
, 𝑘 ≥ 2,

(44)

and, from (34) for 𝐸[V𝑖
𝑘
𝜇
𝑗

𝑘
], expression for Π𝑖𝑗

𝑘, 𝑘
is clear.

Analogously, taking into account expression (26) for 𝜇𝑗
𝑘
,

with (2) for 𝑦𝑗
𝑘
, we have

Π
𝑖𝑗

𝑘−1, 𝑘
= 𝜃
𝑗

𝑘
𝐸 [𝜇
𝑖

𝑘−1
𝑥
𝑇

𝑘
]𝐻
𝑗𝑇

𝑘
+ 𝐸 [𝜇

𝑖

𝑘−1
V
𝑗

𝑘
]

− 𝜃
𝑗

𝑘
𝐸 [𝜇
𝑖

𝑘−1
𝑥
𝑗𝑇

𝑘/𝑘−1
]𝐻
𝑗𝑇

𝑘

− 𝐸 [𝜇
𝑖

𝑘−1
𝜇
𝑗

𝑘−1
] (Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

V
𝑗𝑗

𝑘, 𝑘−1
,

= 𝜃
𝑗

𝑘
(X
𝑖

𝑘, 𝑘−1
− 𝐸 [𝜇

𝑖

𝑘−1
𝑥
𝑗𝑇

𝑘/𝑘−1
])𝐻
𝑗𝑇

𝑘
+V
𝑗𝑖

𝑘, 𝑘−1

− Π
𝑖𝑗

𝑘−1, 𝑘−1
(Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

V
𝑗𝑗

𝑘, 𝑘−1
, 𝑘 ≥ 2,

(45)

and, from (32) for 𝐸[𝜇
𝑖

𝑘−1
𝑥
𝑗𝑇

𝑘/𝑘−1
], expression for Π

𝑖𝑗

𝑘−1, 𝑘
is

immediately derived.

In the following theorem, recursive formulas to calculate
the filtering and prediction error cross-covariance matrices,
𝑃
𝑖𝑗

𝑘/𝑘
and 𝑃

𝑖𝑗

𝑘/𝑘−1
, respectively, are derived.

Theorem 12. Under assumptions (i)–(iv), the cross-covariance
matrices, 𝑃𝑖𝑗

𝑘/𝑘
, of the filtering errors between the 𝑖th and the 𝑗th

sensor subsystems are recursively computed by

𝑃
𝑖𝑗

𝑘/𝑘
= 𝑃
𝑖𝑗

𝑘/𝑘−1
+X
𝑖

𝑘, 𝑘
(Π
𝑖𝑖

𝑘, 𝑘
)
−1

Π
𝑖𝑗

𝑘, 𝑘
(Π
𝑗𝑗

𝑘, 𝑘
)
−1

X
𝑗𝑇

𝑘, 𝑘

− (X
𝑗

𝑘, 𝑘
− 𝐿
𝑖𝑗

𝑘
) (Π
𝑗𝑗

𝑘, 𝑘
)
−1

X
𝑗𝑇

𝑘, 𝑘

−X
𝑖

𝑘, 𝑘
(Π
𝑖𝑖

𝑘, 𝑘
)
−1

(X
𝑖

𝑘, 𝑘
− 𝐿
𝑗𝑖

𝑘
)
𝑇

, 𝑘 ≥ 1,

𝑃
𝑖𝑗

0/0
= 𝑃
0
,

(46)

where 𝑃
𝑖𝑗

𝑘/𝑘−1
, the cross-covariance matrix of the prediction

error between the 𝑖th and the 𝑗th sensor subsystems, satisfies

𝑃
𝑖𝑗

𝑘/𝑘−1
= 𝐹
𝑘−1

𝑃
𝑖𝑗

𝑘−1/𝑘−1
𝐹
𝑇

𝑘−1
+ 𝑄
𝑘−1, 𝑘−1

+ 𝐹
𝑘−1

J
𝑖

𝑘−1

+J
𝑗𝑇

𝑘−1
𝐹
𝑇

𝑘−1
+W
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘−1

× (Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

W
𝑗𝑇

𝑘−1, 𝑘−1

−G
𝑖𝑗

𝑘−1
(Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

W
𝑗𝑇

𝑘−1, 𝑘−1

−W
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

G
𝑗𝑖𝑇

𝑘−1
, 𝑘 ≥ 2,

𝑃
𝑖𝑗

1/0
= 𝐹
0
𝑃
𝑖𝑗

0/0
𝐹
𝑇

0
+ 𝑄
0,0
,

(47)

whereG𝑖𝑗
𝑘
= W
𝑗

𝑘, 𝑘
+𝐹
𝑘
(X
𝑗

𝑘, 𝑘
−𝐿
𝑖𝑗

𝑘
−X𝑖
𝑘, 𝑘

(Π
𝑖𝑖

𝑘, 𝑘
)
−1

Π
𝑖𝑗

𝑘, 𝑘
), 𝑘 ≥ 1.

The vectors 𝐿𝑖𝑗
𝑘
and the innovation cross-covariances Π𝑖𝑗

𝑘, 𝑘
are

given in Lemmas 10 and 11, respectively.

Proof. By using (24) for 𝑥𝑖
𝑘/𝑘

and 𝑥
𝑗

𝑘/𝑘
, we have

𝑃
𝑖𝑗

𝑘/𝑘
= 𝑃
𝑖𝑗

𝑘/𝑘−1
+X
𝑖

𝑘, 𝑘
(Π
𝑖𝑖

𝑘, 𝑘
)
−1

Π
𝑖𝑗

𝑘, 𝑘
(Π
𝑗𝑗

𝑘, 𝑘
)
−1

X
𝑗𝑇

𝑘, 𝑘

− 𝐸 [(𝑥
𝑘
− 𝑥
𝑖

𝑘/𝑘−1
) 𝜇
𝑗𝑇

𝑘
] (Π
𝑗𝑗

𝑘, 𝑘
)
−1

X
𝑗𝑇

𝑘, 𝑘

−X
𝑖

𝑘, 𝑘
(Π
𝑖𝑖

𝑘, 𝑘
)
−1

𝐸 [𝜇
𝑖

𝑘
(𝑥
𝑘
− 𝑥
𝑗

𝑘/𝑘−1
)
𝑇

] .

(48)

Taking into account that 𝐸[𝑥
𝑘
𝜇
𝑗

𝑘
] = X

𝑗

𝑘, 𝑘
and 𝐸[𝑥

𝑖

𝑘/𝑘−1
𝜇
𝑗

𝑘
] =

𝐿
𝑖𝑗

𝑘
, the recursive expression for the cross-covariancematrices

of the local filtering errors is immediately deduced.
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Following an analogous reasoning, using now (25) and
taking into account that 𝐸[(𝑥

𝑘
− 𝑥
𝑖

𝑘/𝑘
)𝑤
𝑇

𝑘
] = J𝑖

𝑘
and

𝐸[𝜇
𝑖

𝑘
𝑤
𝑇

𝑘
] = W𝑖𝑇

𝑘, 𝑘
, it is easy to see that

𝑃
𝑖𝑗

𝑘/𝑘−1
= 𝐹
𝑘−1

𝑃
𝑖𝑗

𝑘−1/𝑘−1
𝐹
𝑇

𝑘−1
+ 𝑄
𝑘−1, 𝑘−1

+ 𝐹
𝑘−1

J
𝑖

𝑘−1

+J
𝑗𝑇

𝑘−1
𝐹
𝑇

𝑘−1
+W
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘−1

× (Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

W
𝑗𝑇

𝑘−1, 𝑘−1

− (W
𝑗

𝑘−1, 𝑘−1
+ 𝐹
𝑘−1

𝐸 [𝑥
𝑖

𝑘−1/𝑘−1
𝜇
𝑗

𝑘−1
])

× (Π
𝑗𝑗

𝑘−1, 𝑘−1
)
−1

W
𝑗𝑇

𝑘−1, 𝑘−1

−W
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

× (W
𝑖

𝑘−1, 𝑘−1
+ 𝐹
𝑘−1

𝐸[𝑥
𝑗

𝑘/𝑘
𝜇
𝑖

𝑘−1
])
𝑇

.

(49)

Finally, using again (24) for 𝑥
𝑖

𝑘−1/𝑘−1
, and since

𝐸[𝑥
𝑖

𝑘−1/𝑘−2
𝜇
𝑗

𝑘−1
] = 𝐿
𝑖𝑗

𝑘−1
, we have

𝐸 [𝑥
𝑖

𝑘−1/𝑘−1
𝜇
𝑗

𝑘−1
]

= X
𝑗

𝑘−1, 𝑘−1
− 𝐿
𝑖𝑗

𝑘−1
−X
𝑖

𝑘−1, 𝑘−1
(Π
𝑖𝑖

𝑘−1, 𝑘−1
)
−1

Π
𝑖𝑗

𝑘−1, 𝑘−1

(50)

and the expression for the cross-covariance matrices of the
local prediction errors is easily obtained.

4.3. Distributed Fusion Filtering Estimators. Once the local
LS linear filtering estimators 𝑥𝑖

𝑘/𝑘
and their error covariance

matrices 𝑃𝑖𝑖
𝑘/𝑘

, given inTheorem 7, along with the error cross-
covariance matrices, 𝑃𝑖𝑗

𝑘/𝑘
, given in Theorem 12, are available,

the distributed optimal weighted fusion estimators and their
error covariance matrices are obtained by applying the
optimal information fusion criterion weighted by matrices in
the linear minimum variance sense [30].

Theorem 13. For the system model (1) and measurement
model (2), under assumptions (i)–(iv), the distributed optimal
fusion filter, 𝑥𝐷

𝑘/𝑘
, is given by

𝑥
𝐷

𝑘/𝑘
= 𝐴
1

𝑘
𝑥
1

𝑘/𝑘
+ ⋅ ⋅ ⋅ + 𝐴

𝑟

𝑘
𝑥
𝑟

𝑘/𝑘
, 𝑘 ≥ 0, (51)

where the local estimators 𝑥
𝑖

𝑘/𝑘
, 𝑘 ≥ 0 (𝑖 = 1, 2 . . . , 𝑟) are

calculated by the recursive algorithm established inTheorem 7.
The optimal matrix weights 𝐴

𝑖

𝑘
(𝑖 = 1, 2, . . . , 𝑟) are

computed by

𝐴
𝑘
= Σ
−1

𝑘/𝑘
𝑒(𝑒
𝑇
Σ
−1

𝑘/𝑘
𝑒)
−1

, (52)

where the matrices𝐴
𝑘
= [𝐴
1

𝑘
, . . . , 𝐴

𝑟

𝑘
]
𝑇 and 𝑒 = [𝐼, . . . , 𝐼]

𝑇 are
both 𝑛𝑟 × 𝑛matrices, and

Σ
𝑘/𝑘

= 𝐸 [(𝑥
1

𝑘/𝑘
, . . . , 𝑥

𝑟

𝑘/𝑘
) (𝑥
1

𝑘/𝑘
, . . . , 𝑥

𝑟

𝑘/𝑘
)
𝑇

]

= (𝑃
𝑖𝑗

𝑘/𝑘
)
𝑖,𝑗=1,2,...,𝑟

(53)

is an 𝑛𝑟 × 𝑛𝑟 positive definite symmetric block matrix, whose
𝑛 × 𝑛matrix entries 𝑃𝑖𝑗

𝑘/𝑘
are given in Theorems 7 and 12.

The error covariance matrices of the distributed weighted
fusion filtering estimators are computed by

𝑃
𝐷

𝑘/𝑘
= (𝑒
𝑇
Σ
−1

𝑘/𝑘
𝑒)
−1

, 𝑘 ≥ 0, (54)

and the following inequality holds: 𝑃𝐷
𝑘/𝑘

≤ 𝑃
𝑖𝑖

𝑘/𝑘
, 𝑖 = 1, 2, . . . , 𝑟.

Proof. The proof is omitted because it follows directly from
the optimal information criterionweighted bymatrices in the
linear minimum variance sense [30].

Remark 14. The proposed distributed optimal LS linear
fusion filter requires the computation of an 𝑛𝑟 × 𝑛𝑟 inverse
matrix, with 𝑛 the dimension of the system state and 𝑟

the number of sensors. Consequently, the proposed dis-
tributed fusion method has a computational complexity
of 𝑂[(𝑛𝑟)

3
], equal to that of the distributed Kalman-type

filter in [16] and less than that of the distributed fusion
filters based on the state augmentation approach. Hence, our
distributed fusion method is superior to the filter proposed
in [16] (since it has the same computation burden but
better accuracy) and also to the distributed fusion filters
based on state augmentation (since it has less computational
complexity).

5. Numerical Simulation Example

In this section, a numerical simulation example is presented
to illustrate the effectiveness of the centralized anddistributed
filtering algorithms proposed in this paper. Consider a
scalar first-order autoregressive model with missing mea-
surements coming from two sensors with autocorrelated
and cross-correlated noises. According to the proposed
observation model, two different independent sequences
of random variables with a certain probability distribution
over the interval [0, 1] are used to model the missing phe-
nomenon. Specifically, the following model is considered as
follows:

𝑥
𝑘
= 0.95𝑥

𝑘−1
+ 𝑤
𝑘−1

, 𝑘 ≥ 1

𝑦
𝑖

𝑘
= 𝜃
𝑖

𝑘
𝑥
𝑘
+ V
𝑖

𝑘
, 𝑘 ≥ 1, 𝑖 = 1, 2,

(55)

where the initial state 𝑥
0
is a zero-mean Gaussian variable

with variance 𝑃
0
= 1. The noise processes {𝑤

𝑘
; 𝑘 ≥ 0} and

{V𝑖
𝑘
; 𝑘 ≥ 1}, 𝑖 = 1, 2, are defined by

𝑤
𝑘
= 0.6 (𝜂

𝑘+1
+ 𝜂
𝑘+2

) ,

V
𝑖

𝑘
= 𝑐
𝑖
(𝜂
𝑘
+ 𝜂
𝑘+1

) , 𝑖 = 1, 2,
(56)

where the sequence of variables {𝜂
𝑘
; 𝑘 ≥ 1} is a zero-mean

Gaussian white process with variance 0.5. Clearly, according
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to assumption (ii), the additive noises {𝑤
𝑘
} and {V𝑖

𝑘
} are one-

step autocorrelated and two-step cross-correlated with

𝑄
𝑘, 𝑘

= 0.36, 𝑄
𝑘, 𝑘+1

= 0.18,

𝑆
𝑖

𝑘, 𝑘
= 0.3𝑐

𝑖
, 𝑆

𝑖

𝑘−1, 𝑘
= 0.6𝑐

𝑖
, 𝑆

𝑖

𝑘−2, 𝑘
= 0.3𝑐

𝑖
,

𝑅
𝑖𝑖

𝑘, 𝑘
= 𝑐
2

𝑖
, 𝑅

𝑖𝑖

𝑘, 𝑘+1
= 0.5𝑐

2

𝑖
,

𝑅
𝑖𝑗

𝑘, 𝑘
= 𝑐
𝑖
𝑐
𝑗
, 𝑅

𝑖𝑗

𝑘, 𝑘+1
= 0.5𝑐

𝑖
𝑐
𝑗
.

(57)

The phenomenon of missing measurements for each sensor
is described as follows.

(1) In the first sensor, a sequence of independent
and identically distributed (i.i.d.) random variables,
{𝜃
1

𝑘
; 𝑘 ≥ 1}, is considered, with probability distribu-

tion given by

𝑃 [𝜃
1

𝑘
= 0] = 0.1, 𝑃 [𝜃

1

𝑘
= 0.5] = 0.5,

𝑃 [𝜃
1

𝑘
= 1] = 0.4.

(58)

If 𝜃1
𝑘
= 0, which occurs with probability 0.1, the state

𝑥
𝑘
is missing and the observation 𝑦

1

𝑘
contains only

noise V1
𝑘
; if 𝜃1
𝑘
= 0.5, only partial information of the

state𝑥
𝑘
ismissing in such observation,which happens

with probability 0.5; and, finally, the state is present in
the observation 𝑦

1

𝑘
with probability 0.4 when 𝜃

1

𝑘
= 1.

The mean and variance of these variables are easily
calculated, being 𝜃

1

𝑘
= 0.65 and 𝑉

𝜃
1

𝑘
= 0.1025, for all

𝑘.
(2) In the second sensor, a sequence of i.i.d. Bernoulli

random variables, {𝜃2
𝑘
; 𝑘 ≥ 1}, is considered, with

𝑃[𝜃
2

𝑘
= 1] = 𝑝; in this case, if 𝜃2

𝑘
= 1 the state

𝑥
𝑘
is present in the measurement 𝑦2

𝑘
with probability

𝑝, whereas if 𝜃2
𝑘
= 0 such observation only contains

additive noise, V2
𝑘
, with probability 1−𝑝. So, no partial

missing information is considered in this sensor.
Clearly, for all 𝑘, 𝜃

2

𝑘
= 𝑝 and 𝑉

𝜃
2

𝑘
= 𝑝(1 − 𝑝).

To illustrate the feasibility and effectiveness of the pro-
posed estimators we ran a program in MATLAB, in which
fifty iterations of the proposed algorithms have been per-
formed considering different values of 𝑐

𝑖
and 𝑝. Using simu-

lated values of the state and the corresponding observations,
both distributed and centralized filtering estimates of the state
are calculated, as well as the corresponding error variances,
which provide a measure of the estimation accuracy.

Firstly, for 𝑝 = 0.8, the local, centralized, and distributed
filtering error variances are displayed in Figure 1 considering
the values 𝑐

1
= 1 and 𝑐

2
= 0.5. According to Theorem 13,

this figure corroborates that the optimal fusion distributed
filter performs quite better than each local filter, but lightly
worse than the centralized filter. Nevertheless, although the
distributed fusion filter has a bit lower accuracy than the
centralized one, both filters perform similarly and provide
good estimations. Moreover, this slight difference is compen-
sated because the distributed fusion structure is in general
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0.4
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Iteration 𝑘

First sensor local filtering error variances
Second sensor local filtering error variances
Distributed fusion filtering error variances
Centralized fusion filtering error variances

Figure 1: Local, centralized, and distributed fusion filtering error
variances.
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0.4

0.45

Iteration 𝑘

𝑝 = 0.8𝑝 = 0.6𝑝 = 0.2

Distributed fusion filtering error variances
Centralized fusion filtering error variances

Figure 2: Centralized and distributed fusion filtering error vari-
ances for 𝑝 = 0.2, 0.6, 0.8, when 𝑐

1
= 1, 𝑐
2
= 0.5.

more robust, reduces the computational cost, and improves
the reliability due to its parallel structure. For these reasons,
the distributed filter is generally preferred in practice.

Next, to analyze the performance of the proposed esti-
mators versus the probability that the state 𝑥

𝑘
is present in

the measurements of the second sensor, the centralized and
distributed filtering error variances have been calculated for
𝑐
1

= 1, 𝑐
2

= 0.5 and different values of the probability
𝑝 = 0.2, 0.6 and 0.8. The results are displayed in Figure 2;
analysis of this figure reveals that as 𝑝 increases (or, equiv-
alently, the probability 1 − 𝑝 that the state is missing in
the observations from the second sensor decreases), the
filtering error variances become smaller and, hence, better
estimations are obtained. Also, this figure shows that, for
all the considered probability values, the error variances
corresponding to the centralized filter are always less than
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Distributed fusion filtering error variances
Centralized fusion filtering error variances

Figure 3: Centralized and distributed fusion filtering error vari-
ances for 𝑐

1
= 0.25, 0.5, 0.75, 1, when 𝑐

2
= 0.5 and 𝑝 = 0.8.

those of the distributed filter. Analogous results are obtained
for other values of 𝑐

1
, 𝑐
2
and the probability 𝑝.

On the other hand, to compare the performance of
the estimators for different degrees of correlation between
the state and the observation noises, the centralized and
distributed filtering error variances have been calculated
considering 𝑐

2
= 0.5, 𝑝 = 0.8 and different values of 𝑐

1
,

specifically, 𝑐
1
= 0.25, 0.5, 0.75, and 1. These values provide

different correlations between the noise process {𝑤
𝑘
} and

the first sensor observation noise {V1
𝑘
} and, consequently,

different correlations, 𝐸1
𝑘
, between the state and the first

sensor observation noise.The error variances are displayed in
Figure 3, fromwhich it is inferred that the error variances are
smaller (and, consequently, the performance of the estimators
is better) as the value 𝑐

1
is greater; these results were expected,

since the correlation between the state and observations
increases with 𝑐

1
. Analogous results are obtained for different

values of 𝑐
2
and other values of the probability 𝑝.

Now, completing the results of the two previous figures,
the performance of the filters is analyzed when 𝑐

2
= 0.5,

the probability 𝑝 is varied from 0.1 to 0.9, and the values
𝑐
1

= 0.25, 0.5, 0.75, 1, 1.25, and 1.5 are considered. It must
be noted that in all the cases examined, the error variances
present insignificant variation froma certain iteration on and,
consequently, only the values at a specific iteration (viz., 𝑘 =

50) are shown. The results are presented in Figure 4 which,
for the sake of clarity, only displays the distributed filtering
error variances. Agreeing with the comments about Figures
2 and 3, this figure shows that, for a fixed value of 𝑐

1
, the

performance of the estimators improves as𝑝becomes greater,
and for a fixed value of 𝑝, also more accurate estimations
are obtained as 𝑐

1
increases. Hence, from this figure it is

gathered that, as 𝑐
1
or 𝑝 decreases (which means that the

correlation between the state and the first sensor observation
noise decreases or the probability that the state is present
in the second sensor measurements decreases, resp.), the
filtering error variances become greater and, consequently,
worse estimations are obtained.
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Distributed fusion filtering error variances

Figure 4: Distributed fusion filtering error variances versus 𝑝, with
𝑐
1
= 0.25, 0.5, 0.75, 1, 1.25, 1.5, when 𝑐

2
= 0.5.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration 𝑘

Kalman filter [2]
Filter [16]
Filter [22]

Proposed distributed filter
Proposed centralized filter

Figure 5: Comparison of MSE for different filters.

Finally, a comparative analysis is presented between
the classical Kalman filter [2], the Kalman-type filter with
correlated and cross-correlated noises given in [16], the filter
proposed in [23] for systems with different failure rates in
multisensor networks, and the centralized and distributed
filters proposed in this paper. For the comparison, the same
parameter values as in Figure 1 are considered (𝑐

1
= 1, 𝑐

2
=

0.5, and 𝑝 = 0.8).
On the basis of one thousand independent simulations

of the mentioned algorithms, a comparison between the
different filtering estimates is performed using the mean
square error (MSE) criteria. For 𝑠 = 1, . . . , 1000, let {𝑥(𝑠)

𝑘
, 𝑘 =

1, . . . , 50} denote the 𝑠th set of artificially simulated data
(which is taken as the 𝑠th set of true values of the state), and
𝑥
(𝑠)

𝑘/𝑘
the filtering estimate at the sampling time 𝑘 in the 𝑠th

simulation run. For each algorithm, the filtering MSE at time
𝑘 is calculated by MSE

𝑘
= (1/1000)∑

1000

𝑠=1
(𝑥
(𝑠)

𝑘
− 𝑥
(𝑠)

𝑘/𝑘
)
2.

The values MSE
𝑘
, for 𝑘 = 1, . . . , 50, are displayed in

Figure 5 which shows that, for all 𝑘, the proposed centralized
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and distributed filters have approximately the same MSE
𝑘

values, which in turn are smaller than the MSE
𝑘
values of

the filter in [23] and considerably less than those of the
filters [2, 16]. Hence, we can conclude that, according to
the MSE criterion, the proposed filtering estimates perform
significantly better than other filters in the literature.

6. Conclusions

The LS linear estimation problem from missing measure-
ments has been investigated for multisensor linear discrete-
time systems with autocorrelated and cross-correlated noises.
The main contributions are summarized as follows.

(1) Using both centralized and distributed fusion meth-
ods to process the measurement data from the dif-
ferent sensors, recursive optimal LS linear filtering
algorithms are derived by an innovation approach.

(2) At each sensor, the possibility of missing measure-
ments (i.e., observations containing only partial infor-
mation about the state or even only noise) ismodelled
by a sequence of independent random variables tak-
ing discrete values over the interval [0, 1].

(3) The multisensor system model considered in the
current paper covers those situations where the sen-
sor and process noises are one-step autocorrelated
and two-step cross-correlated. Also, one-step cross-
correlations between different sensor noises is con-
sidered. This correlation assumption is valid in a
wide spectrum of applications, for example, in tar-
get tracking systems with process and measurement
noises dependent on the system state, or situations
where a target is observed by multiple sensors and
all of them operate in the same noisy environment.
Nevertheless, the current study can be extended to
more general systems involving finite-step autocor-
related and cross-correlated noises with no difficulty,
except for a greater complexity in the mathematical
expressions.

(4) The applicability of the proposed centralized and dis-
tributed filtering algorithms is illustrated by a numer-
ical simulation example, where a scalar state process
generated by a first-order autoregressive model is
estimated from missing measurements coming from
two sensors with autocorrelated and cross-correlated
noises. The results confirm that centralized and dis-
tributed fusion estimators have approximately the
same error variances, with a slight inferiority of the
distributed one which is compensated by a reduced
computational burden and reduced communication
demands for the sensor networks. Also, compared
with some existing estimationmethods, the proposed
algorithms provide better estimations in the mean
square error sense.

Appendix

Proof of Theorem 5

From (10), expression (15) for the state filter 𝑥
𝑘/𝑘

in terms of
the one-stage predictor 𝑥

𝑘/𝑘−1
is immediately clear.

Expression (16) for the state predictor 𝑥
𝑘/𝑘−1

is obtained
as follows:

𝑥
𝑘/𝑘−1

=

𝑘−1

∑
𝑠=1

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑠
]Π
−1

𝑠,𝑠
𝜇
𝑠

=

𝑘−1

∑
𝑠=1

𝐸 [(𝐹
𝑘−1

𝑥
𝑘−1

+ 𝑤
𝑘−1

) 𝜇
𝑇

𝑠
]Π
−1

𝑠,𝑠
𝜇
𝑠

=

𝑘−1

∑
𝑠=1

𝐹
𝑘−1

𝐸 [𝑥
𝑘−1

𝜇
𝑇

𝑠
]Π
−1

𝑠,𝑠
𝜇
𝑠

+ 𝐸 [𝑤
𝑘−1

𝜇
𝑇

𝑘−1
]Π
−1

𝑘−1, 𝑘−1
𝜇
𝑘−1

= 𝐹
𝑘−1

𝑥
𝑘−1/𝑘−1

+W
𝑘−1, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
𝜇
𝑘−1

, 𝑘 ≥ 2,

(A.1)

and clearly, 𝑥
1/0

= 𝐸[𝑥
1
] = 𝐹
0
𝐸[𝑥
0
] = 𝐹
0
𝑥
0/0

.
Now we show expression (17) for the innovation, 𝜇

𝑘
=

𝑦
𝑘
−𝑦
𝑘/𝑘−1

, for which it is enough to obtain an expression for
𝑦
𝑘/𝑘−1

. A similar reasoning to that used to prove (16) leads to

𝑦
𝑘/𝑘−1

=

𝑘−1

∑
𝑠=1

𝐸 [𝑦
𝑘
𝜇
𝑇

𝑠
]Π
−1

𝑠,𝑠
𝜇
𝑠

=

𝑘−1

∑
𝑠=1

𝐸 [(Θ
𝑘
𝐻
𝑘
𝑥
𝑘
+ V
𝑘
) 𝜇
𝑇

𝑠
]Π
−1

𝑠,𝑠
𝜇
𝑠

= Θ
𝑘
𝐻
𝑘

𝑘−1

∑
𝑠=1

𝐸 [𝑥
𝑘
𝜇
𝑇

𝑠
]Π
−1

𝑠,𝑠
𝜇
𝑠
+ 𝐸 [V

𝑘
𝜇
𝑇

𝑘−1
]Π
−1

𝑘−1, 𝑘−1
𝜇
𝑘−1

= Θ
𝑘
𝐻
𝑘
𝑥
𝑘/𝑘−1

+V
𝑘, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
𝜇
𝑘−1

, 𝑘 ≥ 2,

(A.2)

with 𝑦
1/0

= 𝐸[𝑦
1
] = Θ
1
𝐻
1
𝐸[𝑥
1
] = Θ
1
𝐻
1
𝑥
1/0

. Hence,

𝑦
𝑘/𝑘−1

= Θ
𝑘
𝐻
𝑘
𝑥
𝑘/𝑘−1

+V
𝑘, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
𝜇
𝑘−1

, 𝑘 ≥ 2,

𝑦
1/0

= Θ
1
𝐻
1
𝑥
1/0

(A.3)

and expression (17) for the innovation is clear.
Next, expression (18) for the matrix X

𝑘, 𝑘
= 𝐸[𝑥

𝑘
𝑦
𝑇

𝑘
] −

𝐸[𝑥
𝑘
𝑦
𝑇

𝑘/𝑘−1
] is derived. From (6) and the independence

assumption, it is clear that

𝐸 [𝑥
𝑘
𝑦
𝑇

𝑘
] = 𝐷

𝑘
𝐻
𝑇

𝑘
Θ
𝑘
+ 𝐸
𝑘
, 𝑘 ≥ 1. (A.4)
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From expression (A.3) for 𝑦
𝑘/𝑘−1

and the OPL, 𝐸[𝑥
𝑘
𝑦
𝑇

𝑘/𝑘−1
] is

calculated as follows:

𝐸 [𝑥
𝑘
𝑦
𝑇

𝑘/𝑘−1
]
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]𝐻
𝑇

𝑘
Θ
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𝜇
𝑇
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]Π
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]𝐻
𝑇

𝑘
Θ
𝑘
+X
𝑘, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
V
𝑇

𝑘, 𝑘−1

= (𝐷
𝑘
− 𝑃
𝑘/𝑘−1

)𝐻
𝑇

𝑘
Θ
𝑘
+X
𝑘, 𝑘−1

Π
−1

𝑘−1, 𝑘−1
V
𝑇

𝑘, 𝑘−1
,

𝑘 ≥ 2,

𝐸 [𝑥
1
𝑦
𝑇

1/0
] = (𝐷

1
− 𝑃
1/0

)𝐻
𝑇

1
Θ
1
.

(A.5)

By substraction of the above expectations, expression (18)
for X

𝑘, 𝑘
= 𝐸[𝑥

𝑘
𝑦
𝑇

𝑘
] − 𝐸[𝑥

𝑘
𝑦
𝑇

𝑘/𝑘−1
] is obtained. From (1),

expression (19) forX
𝑘, 𝑘−1

= 𝐸[𝑥
𝑘
𝜇
𝑇

𝑘−1
] is immediately clear.

Expression (20) for the prediction error covariance
matrix, 𝑃

𝑘/𝑘−1
is easily obtained by using (1) and (16); and,

from (1) and (15), expression (21) for J
𝑘

= 𝐸[𝑥
𝑘/𝑘

𝑤
𝑇

𝑘
] =

𝐸[𝑥
𝑘
𝑤
𝑇

𝑘
] − 𝐸[𝑥

𝑘/𝑘
𝑤
𝑇

𝑘
] is also obvious. Expression (22) for the

filtering error covariance matrix, 𝑃
𝑘/𝑘

, is immediately derived
by using (15).

Finally, we prove expression (23) for the innovation
covariance matrix Π

𝑘, 𝑘
= 𝐸[𝑦

𝑘
𝑦
𝑇

𝑘
] − 𝐸[𝑦
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(6) and using (9), we have that
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(A.6)

Using now (A.3) for 𝑦
𝑘/𝑘−1

and property (9), and taking into
account that, from the OPL, 𝐸[𝑥

𝑘/𝑘−1
𝜇
𝑇

𝑘−1
] = 𝐸[𝑥

𝑘
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] =

X
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, the following identity holds:
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(A.7)

From the above expectations and after some manipula-
tions, expression (23) for the innovation covariance matrix
Π
𝑘, 𝑘

is obtained.
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Caballero-Águila, and A. Hermoso-Carazo, “Signal estimation
based on covariance information from observations featuring
correlated uncertainty and coming from multiple sensors,”
Signal Processing, vol. 88, no. 12, pp. 2998–3006, 2008.
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