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A B S T R A C T

The construction sector is undergoing a digital transformation that aims to increase productivity, improve
processes and take advantage of the new advances in digitalization. Urban planning is particularly susceptible
of benefiting from these advances due to its complexity and the large amount of data and disciplines that
come together. In this paper, we propose a novel methodology that aims to enhance current urban planning
design methods, which are mainly designed by a planner, to an optimized process where the planner interacts
with a software that automates many of the tasks. This methodology based on generative design principles,
develop urban design solutions by subdividing a given plot and assigning different housing typologies on it.
Our proposed software requires 3D urban models datasets as a reference to create solutions within a specific
shape, style, proportions, among others, as well as input from the planner to guide the program according to
project requirements and existing local norms. Higher automation in the design process eases project changes
and allows for more and varied design testing, which in the end, contributes to better analysis and decision
making. We tested our proposal in a case study in the city of Vienna to illustrate the design process, obtain
several urban planning solutions and validate our methodology.
. Introduction

In recent years, the construction industry has been forced to adapt
o a new reality that has brought a revolution to the sector in order to
espond to an increasingly demanding market (Manyika, 2016). This
ransformation is taking place on two levels: on one hand, innovation
n business models thanks to digitalization, and on the other hand,
mprovement in operating processes and efficiency in production by
mplementing new technologies. Due to the complexity of the construc-
ion process that involves different actors, elements phases and takes
nto account a large amount of documents in a variety of formats,
he construction sector is benefiting greatly from these transforma-
ions (Martínez-Rojas et al., 2018; Zaqout et al., 2022; Kanapeckiene
t al., 2010). This could potentially tackle the low productivity that
he construction industry has.

Urban planning is a top-down process that goes from the scale of
he generation of a city to the regulatory framework on a specific
arcel. Therefore many disciplines intertwine and connect on different
evels generating a big amount of requirements and dependencies that
igitalization can handle more efficiently. Current research in urban
lanning range from previous analysis to the design, to posterior anal-
sis and data collection of existing urban areas, and the actual process
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of design, which addresses different aspects at various scales: territorial,
city (Van Nes and Yamu, 2021), parcel (Nagy et al., 2018) and building
scale. For the length of this paper, we are going to focus on the design
process of the parcel scale, as a specific zoom in this urban planning
process.

The traditional design process for this scale in urban planning
follows a similar pattern in most cases. First, designer, stakeholders and
engineers sit together to formulate the project, then the urban designer
starts the process by analyzing the study area based on his or her ex-
perience and expertise, and then proposes initial design options. When
several variants are mature enough, he/she enters into dialogue with
other planers, engineers, stakeholders and ultimately the municipality
to discuss, decide, refine and finally give green light to a final proposal.
As each actor has a different focus, communication and change making
plays a big role in the whole design process.

In this paper, we propose a methodology for exploring plots of land,
where different types of dwellings are automatically assigned to plots
in an interaction between a software and a user who, by introducing
the desired parameters, controls the whole process. The methodology
is based on the principles of generative design, which consist on an
iterative loop in search of an optimal solution for a given scenario. This
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proposal highlights the local urban fabrics in the process to ensure that
the proyected solution properly integrates with the existing city and
falls within the directions proposed from the current general urban
plan. The workflow looks as follows: A tool generates urban design
options based on a parametric model that contains urban planning
logics and relationships, then a user enters certain values into the
tool, after that, the parametric model is optimized based on the user
inputs and referenced urban areas, and as a result, a best performing
urban model and values related are generated. If changes are required,
the planner only needs to enter new values to generate new good
performing urban solutions.

To determine the validity of our proposal, we tested our method-
ology in a case study in the city of Vienna. This case study helped
us to understand, validate and evaluate each step of the process, to
better explain the user’s interaction with the software and to high-
light the advantages of this methodology over current urban planning
workflows.

Comparing our methodology to current urban planning processes,
we argue that our method offers a great advantage because it automates
the planning process to a greater extent and allows the planner to
quickly test and compare a larger number of options. This leads to bet-
ter analysis and also helps to make quick changes when stakeholders,
municipalities, engineers, and urban planners bring their requirements
at different design stages. By using local urban fabrics as references,
local history and urban styles are taken into consideration in contrast
of other generative design models based mainly in objectives unrelated
to local growth.

The remainder of this manuscript is divided as follows: Sections 2
and 3 gives an overview of the state of the art in the construction indus-
try and urban planning, and shows where our proposal stands. Section 4
explains in detail the implementation of the proposed methodology for
automatic urban generation. Section 5 presents the results of applying
our proposal to a specific plot of land in the city of Vienna. Finally,
conclusions and future work are presented in Section 6.

2. Digital transformations in AEC

In this section, we will examine breakthroughs in AEC to understand
the potential of our proposal beyond a specific urban design problem.
By taking a step back and looking at the construction industry as a
whole, we aim to find the sweet spot to not only solve an urban design
problem, but to define a methodology that can be extrapolated to other
areas of the construction industry.

The construction industry has been forced to adapt and undergo
several transformations to keep up with an increasingly demanding
market, but at the same time, the inherent complexity of the sector
has slowed down these transformations, if we compare them with the
transformation’s rhythms in other industrial sectors (Manyika, 2016;
Martínez-Rojas et al., 2018; Zaqout et al., 2022; Kanapeckiene et al.,
2010). In this Section, we specifically analyze the digital breakthroughs
that AEC has faced so far to understand where we stand today and also
to identify trends, failures, and successes of each major transformation
to better address current challenges. That helps us to place our proposal
in context and justify it, and to show how the proposed changes of
today may trigger major upheavals in the near future.

In Fig. 1 we have illustrated major changes in the past, present and
also those future upheavals that could derive from today′s transforma-
tions. The 𝑌 -axis shows, from top to bottom, the most important digital
breakthroughs of the last decades, the current state and the changes
expected in the near future. On the 𝑋-axis, from left to right, are the
different phases that a project goes through, from funding to the design
phase to construction and maintenance.

Specifically, the phases are as follows: 1. Fundamentals (funding,
program design and site selection), 2. Preliminary design (analysis,
sketches, design concepts, distribution of volume on the site), 3. De-
sign (design refinement, administrative approvals, costs, materials). 4.
 f

2

Execution plan (detail plans, exact costs, construction schedules). 5.
Manufacturing (production of building elements), 6. Construction (on
site) and 7. Maintenance (use and maintenance of the building). On
the diagram on the right, there are circular diagrams representing the
level of digitalization and the data flow (DD) of each of the digital
transformations. By data flow, we mean that the information generated
in one phase is passed on to the next one without barriers, interfaces,
or data loss.

CAD appeared as a software solution to the slow and demanding
and-drawn 2D drawings, digitalized these drawings and allowed un-
imited changes without the need to redraw each time. In addition, the
peed, accuracy, and digital storage of data that allows for reprocessing
f information are some of the benefits that have made CAD popular
ince the early 2000s (Björk and Laakso, 2010).

A second round of digitalization began to become popular in the
010s through the use of BIM, which solves some of the problems
f CAD. Instead of different files for different disciplines or design
hases, there is only one file that contains all the information as a
entralized 3D digital model. More information is incorporated into
his 3D model, such as costs (BIM 4D) or construction schedules (BIM
D) (Hardin and McCool, 2015; Azhar et al., 2012) and Fig. 1 shows,
IM reduces information loss by avoiding to redraw the same elements

n two construction phases, the design and the execution plan, which
ere separated in CAD times.

BIM 3D models are modeled manually by BIM modelers, who spend
ours fulfilling attributes and parameters. The need for these special-
zed modelers who have mastered the technology has forced firms to
pskill their staffs and introduce new positions such as BIM managers
r specialists, ultimately reducing the design cost gains achieved by
he advantages of BIM over CAD. In search of the productivity gains
ew tools and technologies such as computational design (Caetano
t al., 2020) are emerging to automate certain steps in the creation of
eometries. Computational Design (CD) (Anon, 2020b) was originally
ntroduced in AEC to describe buildings with specific requirements
hat could not be designed, planned, or built using standardized pro-
edures (Körner et al., 2021; Tracy et al., 2021). Computational Design
ransfers design rules into a parametric model (Stavric and Marina,
011), a model based on a set of pre-programmed rules or algorithms
nown as ‘parameters’, and Generative Design (GD) (Nagy et al., 2017;
üße et al., 2022), a field within CD, introduces a technology that
terates a parametric model to produce a variety of alternatives or an
ptimal solution of this model for a given design case. This technology
ncreases automation as the models are generated rather than modeled.
ike any early stage technology, GD is still immature and the models
enerated are not detailed enough unless the building is designed in a
odular manner. Therefore, GD is first used in early design stages, as
ighlighted in dark blue in Fig. 1.

In the near future, CD and BIM will merge further, enabling the
utomatic generation of more detailed BIM models and thus increas-
ngly reducing manual input. The stage in which BIM and CD merge
s referred in the diagram as CD-BIM (Ma et al., 2021; Singh and
u, 2012; Aish and Bredella, 2017). Once a building is constructed, a
IM model on a server can continuously collect information to ensure
he optimal usability of the building in many aspects, such as climate
omfort, heating, distribution of occupancy, and so on. This technology
s called Digital Twin (Pan and Zhang, 2021; Martínez-Rojas et al.,
021; Lu et al., 2019) and is also represented in Fig. 1.

In a possible next round of digitalization, CD-BIM will eventually
enerate detailed BIM models, and also provide the information needed
o control a robotized construction process (Gharbia et al., 2020;
ggarwal et al., 2022). In the parametric model, the constraints of the
obotized construction can be included, and the information needed to
teer robots can be generated. Early design decisions will consider also
onstruction process variables, which leads to a better decision making,
educe planning costs, since 2D drawings will not be needed anymore

or construction workers and potentially errors in construction will be
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Fig. 1. Digital Breakthroughs in the construction industry.
minimized, since these parameters are included from the beginning (Ng
and Hall, 2019). In the end, the whole process from early design phases
to maintenance will be fully digitalized and the information tracked in
any direction (Kusimo et al., 2019).

This Section shows a clear trend toward increasing automation,
i.e., reducing manual input, increasing digitalization, and connecting
disciplines and design phases to ensure that information does not need
to be redrawn or entered multiple times. In particular, CD will evolve
from the current state of the art to a phase in which it merges with
BIM and other disciplines such as robotic fabrication, construction
processes, building maintenance, etc. Taking these trends into account,
we should plan and envision CD workflows in the right areas and
therefore allow for faster integration of these changes.

3. Literature review

Examining the state of the art in urban planning and in particular
in the research area concerning the automation of the design process,
different methods can be identified depending on which stage of the
urban planning process is approached.

• Previous to the design:

– Information about the functioning of an area is gathered to
allow specialists to reach conclusions in order to enhance
the aspects considered on the study area. Some current
approaches verse about the improvement of the quality
of life of citizens (Protocol, 2011), democracy in urban
decisions (Geekiyanage et al., 2021) and circular economy
and sustainability in cities (Fratini et al., 2019). This is a
research area with strong socio-political implications, and
it is still poorly digitalized.

– Data collection may come from city registers, IoT, or other
systems, and this allows an AI to process this data and
suggest improvements in the functioning of the study area.
Some examples cover subjects about smart cities and big
Data (Allam and Dhunny, 2019), traffic pollution analysis
regressions (Briggs et al., 2000), etc. Nevertheless, auto-
matic data collection is still insufficient and AI decision
making is still vague.

• Design process:

– In recent years, automatic generation of urban spaces is
feasible thanks to new techniques such as agent based sys-
tems, machine learning, or generative design. The aspects
3

considered in different urban scales are different, and also
the processes proposed. From bigger to smaller scale, here
is a small overview of the subjects covered:

∗ Territorial-scale: City growth (Chen et al., 2017), ur-
ban and land distribution (Huang et al., 2020), infras-
tructures, population densities, etc.

∗ City-scale: socioeconomic aspects, infrastructures, mo-
bility, city hubs distribution, urban fabric (Van Nes
and Yamu, 2021; Karimi, 2012), etc.

∗ Parcel-scale: subdivision of a parcel in sub-parcels, al-
location of building typologies (Moscovitz and Barath,
2022), distribution of uses, massing studies, solar (Nagy
et al., 2018; Smart, 0000), wind, noise, and views
simulation (Mukkavaara and Sandberg, 2020), sus-
tainability (Moscovitz and Barath, 2022), etc.

∗ Building-scale: a building on its urban context, inter-
nal use distributions, sun, wind, noise, energy (Zhang
et al., 2021), and thermal simulation (Rodrigues et al.,
2015), typology variations, construction system (Wei
et al., 2022), zoning plan, etc.

The focus of these references mostly solve a specific problem
at a specific urban scale with a specific technique. It is
still unclear which approach has more advantages over the
others, as in most cases, these new techniques are still
trying to prove that they can generate urban solutions as
good as an urban designer would do. As the approaches are
mostly technical, the integration of them into current design
processes is only vaguely addressed.

4. Methodology for urban planning via generative design

In this paper, we propose a methodology based on the principles of
Generative Design for exploring plot of lands and create urban planning
models. This is implemented through a software that automates most
of the tasks and a user who, by introducing the desired parameters,
controls the whole process. In this Section we explain in detail the soft-
ware and its functionalities and in Section 5, the interaction between
the user and the software on an specific case study. This methodology
is structured in four main steps:

I The first step consist on the generation of a 3D parametric
model, which contains encoded urban planning know-how and
deals with two main tasks: first the subdivision of a plot into
smaller parcels and later the allocation of different housing units
into these parcels. This is explained in more detail in Section 4.1.
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II The second step deals with the collection of parameter val-
ues such as zoning plan constraints, planer design objectives,
and other parameters obtained from a referenced 3D urban
model. The pipeline for collecting this information is through
a user interface. Further description of this part is provided
in Section 4.2.

III The third step deals with the combination of the input parame-
ters into fitness functions. To achieve a correct combination,
a correlation analysis between the parameters is performed.
Section 4.3.

IV Finally, the optimization (Karimi and Siarry, 2012) of the para-
metric model is performed based on the values of the fitness
functions. Urban variants are obtained as the optimization result.
See Section 4.4.

Fig. 2 illustrates these steps and the rotating arrows around the
enter represent the iterative process on which Generative Design is
ased.

The software that automates the above mentioned tasks and there-
ore enables the proposed methodology is implemented as a plug-in in
cNeel Rhinoceros 3D (Kim and Rhee, 2019). Rhinoceros 3D offers an

pen API (Application Programming Interface) and a visual scripting
nterface called Grasshopper, which also includes many third-party plug-
ns that extend its functionality. Converting our plugin to another more
IM oriented software, like Autodesk Revit, is also feasible (Pawlik,
022).

.1. Parametric model

The first step consist on the creation of a 3D parametric model, and
s shown in Fig. 3, it performs two main tasks: first, the subdivision
f the parcel into sub-areas and second, the election and assignment of
ousing typologies to these sub-areas.

.1.1. Plot subdivision
Instead of trying to subdivide a building outline, as is common in

pace planning, we will subdivide parcels. Space planning, a process

f analyzing how space, structures and spaces are used, has been a

4

esearch topic for quite some time and therefore there are several
pproaches to address this topic, such as: graphs based (Schaffranek,
015), Bayesian networks based (Merrell et al., 2010), recurrent net-
orks based (Yamanaka and Nakano, 2013), recursive trees (Jackins
nd Tanimoto, 1983), etc. The algorithm implemented at the end for
he subdivision is a binary tree that adds new subplots by recursion and
he parameters that intervene in the subdivision are:

• 𝑛: number of subplots
• 𝑑𝑖𝑟: direction (𝑛 − 1)[0, 1] → whether the subdivision should be

parallel, (0), or perpendicular, (1), to the longest side of the
subplot

• 𝑙𝑒𝑛: percentage (𝑛 − 1)[0.0 − 1.0] → proportion of one subdivided
area size towards another

• 𝑠𝑝𝑙𝑖𝑡: splits (𝑛−2)[0, 1] → determine which subplot will be further
subdivided

Fig. 4 shows the subdivision of a sample plot and input parameter
values for a better understanding.

4.1.2. Typologies allocation
Typologies. Each clime or culture has developed over centuries certain
typologies that responds adequately to certain climatic or social re-
quirements (Berkebile and McLennan, 2004). In our proposed method-
ology, we incorporate housing typologies that are more present in
template climes and western cultures. The study carried out by the
University of Munich (Winter et al., 2019) describes and groups hous-
ing typologies and its main driven parameters in four main typologies
depicted in Fig. 5.

Allocation. There are different algorithms for assigning typologies on
the subdivided plots and these range from non-deterministic approac-
hes, where each house is considered as an agent that can move freely on
the plot (Stieler et al., 2022), to a more deterministic approach, where
the methods of allocation types are predefined and the optimization
algorithm determines which type throws better results. Due to the
complexity and computational time required to achieve reasonable

results with agent-based approaches, a deterministic approach would
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Fig. 3. 3D parametric model parts.
Fig. 4. Plot subdivision on a sample plot.
Fig. 5. Housing Types conceptualized by the Technical University of Munich:
(I) Central staircase surrounded by corridors and housing units, (II) Staircase at the central corner of the building and corridors on the facade. (III) Corridor in the center,
distributing access to the housing units on both sides of the corridor. (IV) Direct access to the residential units from the staircases; no corridors.
be preferred. In Fig. 6 are illustrated five ways of distributing housing
typologies on subplots.

Three main parameters are implemented to control the parametric
model: building unit length, building width and height, which controls
roportionally the street width parameter. Fig. 7 graphically illustrates
ow these parameters influence the parametric model.

.2. Objectives

This second step consist of the selection of the parameters that
ill later be part of the optimization. Those parameters are called
bjectives and are chosen from the parametric model whose values
rive the optimization by trying to maximize, minimize, or approach
he parameter value to a specific target value. There are parameters
hat can be measured with traditional units and others that are more
ubjective. The constraints of the zoning plan and the target parameters
et by the user, such as the maximum cost, the desired built-up area,
he percentage of use of the buildings, etc., can be easily measured.
ubjective parameters such as beauty, optimal proportions, style, etc.
eed to be integrated in the optimization. In current design methods, an
rban planning team integrates its subjective style through its expertise
nd intuition, but to integrate these aspects into a software, we propose
o take values, relationships and ratios from 3D model datasets and
se them as targets in our optimization. In the next subsections, we
xplain the pipeline for integrating parameters from zoning plans and

ubjective parameters from 3D datasets.

5

4.2.1. Zoning plans
Zoning plans set restrictions on the parametric model, such as

maximum height, maximum built area, minimum distance between
buildings, etc. In general, zoning maps are not easily available online,
and when they are available, each city, county, or municipality has
different methods for providing this information. Due to unstructured
and opaque access to zoning plans information, this pipeline has not
been yet automated. Our methodology proposes that the user must find
this information on local government plans, reads through them, and
manually incorporates these values into the parametric model. Our tool
includes an user interface through which these parameters can be easily
entered.

There are also some examples of software enterprises offering a
solution where a parametric model automatically incorporates local
zoning plans; in USA www.medium.com/envelopecity and in Australia
www.archistar.ai. This proves that the automation of this step is fea-
sible if this information is well structured and available online, which
was not the case in the areas we studied in Central Europe.

4.2.2. Datasets and parcel clustering
The datasets work as 3D models of referred neighborhoods that can

be downloaded from various servers such as OpenStreetMaps (Marsudi,
2019). This platform is a collaborative project to create a freely editable
geographic database of the world and allows the processing of *.osm
files that can be translated into other CAD software. The OSM data

structure is not exactly 3D data, but rather a sliced representation of

http://www.medium.com/envelopecity
http://www.archistar.ai
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Fig. 6. Allocation types:
(I) Raw of buildings on each side of the plot, (II) Raw of buildings on the longest side of the plot, (III) Unattached buildings, (IV) Block buildings with inner yard and (V)
Unattached family houses with backyard.
Fig. 7. Illustration of the main parametric model parameters: (I) Increase in Building Height, (II) Increase in Building-unit length, (III) Increase in Building width.
c
f

Fig. 8. Parcel parameters:
(I) Plot area – 𝑚2, (II) Plot perimeter – 𝑚, (III) Plot longest side – 𝑚 (thick black line at
he plot outline), (IV) Total volume of buildings – 𝑚3, (V) Average distance of building
entroids to plot centroid – 𝑚 (red line), (VI) Average distance of building centroids
o plot outline – 𝑚 (blue line), (VII) Average building volume in each plot – 𝑚3.

he geometry that includes footprint and heights, but is sufficient to
btain the information sought.

We refer to a parcel as the area bounded by public streets and
ith no public streets within. The downloaded datasets contain many
arcels that differ in size, proportion, area, volume, internal distribu-
ion, etc. Royall and Wortmann (2015), but the software is based on the
ssumption that we want to assign a particular parcel type to a specific
rea so that this area is populated with the same style. In order to obtain
ifferent types of parcels on the same plot, this plot must be previously
ivided into different subareas. Parcels with similar characteristics will
e grouped and this way, the values obtained from these groups within
he datasets will better represent a particular style. This is used to
etermine subjective parameter values such as optimal style, beauty,
roportions between buildings, streets, and green spaces, etc.

The clustering or grouping of parcels in datasets can be done by
n algorithm or manually, allowing a user to personally select those
arcels that better represent the style to be imitated. As this would
ot only reduce the level of automation, but ultimately increase the
rror rate, as humans tend to make mistakes in repetitive tasks and
lgorithms are better suited for this, we therefore propose an algorithm-
ased method, which the user has the ability to intervene and control
he algorithm.

The algorithm used for the clustering is K-means (Ezugwu et al.,
022; Golalipour et al., 2021), a machine learning method that aims
6

to divide a set of multidimensional data points into 𝑛 clusters. These
data points are the parameter values shown in Fig. 8. The user can
intervene in the process to control the algorithm by specifying the
number of clusters and, if necessary, assigning a weight to each of the
parameters so that some parameters have more relevance than others
in the grouping process.

4.3. Fitness functions

Fitness functions lead the optimization to desired results by as-
sociating objectives. This function yield a value that is optimized in
the optimization loop. When there is only an objective or a fitness
function that groups several objectives, it is called single objective
optimization 𝑆𝑂𝑂. If there are more than two functions, then it is called
multi-objective optimization 𝑀𝑂𝑂.

4.3.1. Moo vs SOO
In both urban planning and architectural design, many different pa-

rameters are involved, and thus many studies use 𝑀𝑂𝑂 for most of the
optimization cases. Although treating each parameter independently
allows for all possible solutions in the design landscape, overlook other
disadvantages of choosing 𝑀𝑂𝑂 over 𝑆𝑂𝑂. First, 𝑀𝑂𝑂 does not allow
convergence to a single optimal solution, but to a set of optimal solu-
tions represented in the so-called ‘‘Pareto front’’. This is not a problem
at first, but as the number of objectives grows exponentially, the com-
plexity of the optimization also increases, and this can lead to important
convergence problems (Wortmann and Fischer, 2020; Guillén-Gosálbez,
2011). Moreover, 𝑆𝑂𝑂 optimizations are mathematically underpinned,
while 𝑀𝑂𝑂 are based more on empirical experience, such as biological
evolution.

Fig. 9 shows a decision tree to combine objectives and thus reduce
the number of functions to avoid this undesired problems caused by
a 𝑀𝑂𝑂 with many objectives. To determine if two parameters can be
ombined into a single objective function or not, we should answer the
ollowing questions displayed in Fig. 9:

1. Do we need to understand the trade-off?
To understand the Pareto front between two parameters, we
need to perform 𝑀𝑂𝑂. It makes no sense to combine two parame-
ters into one function if we want to know their trade-off.

2. Are they correlated?
The degree of correlation can be high or low, positive or nega-
tive. For highly correlated parameters, the Pareto front is near
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Fig. 9. Multi-objective decision tree for SOO or MOO.
a line; if they are highly and positively correlated, when the
value of the first parameter increases, the second also increases.
If they are highly and inversely correlated, the value of the
first target increases and the value of the second decreases. For
two parameters that are low correlated, the trade-off is more
complicated and can only be understood after performing a
𝑀𝑂𝑂. If two parameters are highly correlated, they can be combined
into a single function (Wortmann and Fischer, 2020; Ortner et al.,
2022).

3. Do they scale similarly?
If two parameters can be scaled similarly, it is because their
maximum and minimum values can be predicted, therefore they
can be normalized to a scale from 0% to 100%. If correlated pa-
rameters can be scaled similarly, they can be combined by summing
them in weighted sums. Weights are parameters that can be used
to express the relative importance between parameters. And in
a weighted sum, parameters are multiplied by their weights.
When correlated parameters cannot be scaled in a similar way, these
parameters can be combined by multiplication in weighted products.
In this case, the weights can be expressed as exponents of their
parameters (Wortmann and Fischer, 2020).

4. Can be considered as a constraint?
Two conflicting objectives may not lead necessarily to a 𝑀𝑂𝑂 if
any of them has a limiting character. When a parameter satisfy
the design requirements by just staying within a desired range
of values it is simpler to use it as a constraint (Wortmann and
Fischer, 2020; Ortner et al., 2022).

.3.2. Defining the fitness function
The parameters that are going to be involved in the objective

unctions are:

• Parameters considered in the referenced cluster of parcels. These
parameters are depicted in Fig. 8 and are the following: 𝑃𝐴
(Plot area), 𝑂𝐿 (Plot perimeter), 𝐿𝑆 (Plot longest side), 𝐵𝑉
(Total volume of buildings), 𝐵𝐶 (Average distance of building′s
centroids to plot), 𝐵𝑉 𝑎𝑣 (Average building volume in each plot),
𝐵𝑂 (Average distance of building′s centroid to plot outline).

• Zoning plan parameters. 𝑀𝑎𝐻 (Maximum building height), 𝑀𝑖𝐻
(Minimum building height), 𝑀𝑎𝑊 (Maximum building width),
𝑀𝑖𝑊 (Minimum building width), 𝑀𝑎𝐿 (Maximum building len-
gth), 𝑀𝑖𝐿 (Minimum building length).
7

Due to the big number of parameters considered, we apply the
decision tree in Fig. 9 to reduce the number of objectives in a 𝑀𝑂𝑂
to avoid convergence and computational issues that would derive from
performing a 𝑀𝑂𝑂 with 13 objectives.

4.3.3. Do we need to understand the trade-off?
There are two main group of parameters in our optimization: those

used to generate urban geometries that mimic the referenced clusters of
parcels, and those used to comply with the zoning plan. Subsection Sec-
tion 4.2.1 explains why zoning plans can be considered as constraints.
Thus, there is no need to understand the conflicting parameters in the
trade-off.

4.3.4. Are they correlated?
To ensure the validity of the results, we calculate three types of

correlations: the Pearson, the Spearman, and the Kendall-Tau correla-
tion (Muñoz-Pichardo et al., 2021). For these types of correlations, the
values range from −1 to 1. If the value is close to −1 or 1, it is a high
correlation; if the value is close to 0, it is low. Wortmann et al. (2022).

To assess whether the parameters are correlated, we generate many
different and arbitrary urban solutions on a sample plot and store the
objective values of each urban solution in a table, which we then use
to compute the Pearson, Spearman, and Kendall correlations for the
objectives shown in Fig. 10.

Fig. 10 shows that all parameters are directly correlated with each
other, as there are no negative values and from a correlation range
between 𝑅 = −1.0 to 𝑅 = 1.0, most parameters are above 𝑅 = 0.4,
which means that all these parameters are highly correlated (Wortmann
et al., 2022). Exceptionally, the correlation value 𝑅 between 𝐿𝑆 and
𝐵𝑉 is 𝑅 = 0.36 for Pearson, 𝑅 = 0.5 for Kendall, and 𝑅 = 0.54 for
Spearman. Similarly, the 𝑅 values between 𝐿𝑆 and 𝐵𝑂. If we had the
need to examine these parameters separately and visualize them in a
Pareto trade-off, we could consider 𝑀𝑂𝑂. However, we would rather
converge to a single solution that best mimics the referenced cluster
of plots. Because of the high degree of correlation and the need to
converge to a single best solution, we combine these parameters into a
single function.

4.3.5. Do they scale similarly?
The parameters 𝑃𝐴, 𝑂𝐿, 𝐿𝑆, 𝐵𝑉 , 𝐵𝐶 and 𝐵𝑉 𝑎𝑣 describe both the

parametric model and the referenced cluster of parcels. To distinguish
them, an R’ is added to the parameters of the reference cluster of parcels
(𝑃𝐴𝑟, 𝑂𝐿𝑟, 𝐿𝑆𝑟, 𝐵𝑉 𝑟, 𝐵𝐶𝑟, 𝐵𝑉 𝑎𝑣𝑟) and a P’ is added to the parameters
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f the parametric model (𝑃𝐴𝑝, 𝑂𝐿𝑝, 𝐿𝑆𝑝, 𝐵𝑉 𝑝, 𝐵𝐶𝑝, 𝐵𝑉 𝑎𝑣𝑝). The P’
arameters can be scaled in a similar way, i.e. they can be normalized,
ecause the range of values over which R’ varies is known, and since
he urban planning solution is meant to simulate the referenced group
f parcels, the range of the R’ parameters applies to P’. As P’ can be
caled in a similar way, they can be added up in a weighted sum
unction (Ortner et al., 2022).

The normalized parameters of the parametric model are signalized
y an N’ at the end (𝑃𝐴𝑛, 𝑂𝐿𝑛, 𝐿𝑆𝑛, 𝐵𝑉 𝑛, 𝐵𝐶𝑛, 𝐵𝑉 𝑎𝑣𝑛). The range

in which R’ parameters oscillate are determined by a maximum value
Rma’, a minimum value Rmi’ and the average value Ra’. If the value
of P’ is equal to Ra’, then N’ is equal to 0.0. If P’ is equal to Rma’ or
Rmi’ (whichever comes first), then N’ is equal to 100.0. With these two
anchor values, N’ values are determined by interpolation.

If the cluster of parcels has the desired proportions, forms, distri-
butions, etc., but the scale does not perfectly fit the study area, the
user may have to scale it up or down. For this purpose, the parameter
‘‘factor’’ was introduced, which is applied to multiply the parameters
Rma’, Rmi’ and Ra’. The value of the ‘‘factor’’ is determined by the
user’s design intention, but it is expected to lie between 0.5 and 1.5,
otherwise the user may have better chosen another cluster to mimic.

4.3.6. Can be considered as a constraint?
The zoning plans parameters considered, (𝑀𝑎𝐻 , 𝑀𝑖𝐻 , 𝑀𝑎𝑊 ,
𝑖𝑊 , 𝑀𝑎𝐿 and 𝑀𝑖𝐿), can be represented as constraints, since our

im is to remain a within maximum or minimum value.
There are mainly two approaches to incorporate these constraints

nto the fitness function:

• Penalty functions: Penalize violations proportionally.
• Penalty constraints: Apply a hard but static penalization in each

violation.

Penalty functions are chosen for our methodology, because they
enalize proportionally and this eases convergence in the optimization
rocess.

The limitations defined in the zoning plans Z’ are the maximum
nd minimum building height, width and length (𝑀𝑎𝐻 , 𝑀𝑖𝐻 , 𝑀𝑎𝑊 ,
𝑖𝑊 , 𝑀𝑎𝐿, 𝑀𝑖𝐿). These parameters are expressed in metres and

epresent limits in the x,y,z dimensions of the buildings. The deviation
’ of the zoning plan parametric model Pz’ values from the limiting Z’

ange has similar magnitudes and can therefore be handled in a similar
ay: there is no penalty if Pz’ values are within the allowable range,
ut if they fall outside, the penalty is equal to the square of D’ plus
00.0. D’ is squared to make the penalty more severe the further Pz’ is
rom the limiting range. To signal penalties, a Pe’ is added to the end
𝑀𝑎𝐻𝑝𝑒, 𝑀𝑖𝐻𝑝𝑒, 𝑀𝑎𝑊 𝑝𝑒, 𝑀𝑖𝑊 𝑝𝑒, 𝑀𝑎𝐿𝑝𝑒, 𝑀𝑖𝐿𝑝𝑒).

As described in Section 4.3.5, the normalized N’ value of the para-

etric model parameters (𝑃𝐴𝑛, 𝑂𝐿𝑛, 𝐿𝑆𝑛, 𝐵𝑉 𝑛, 𝐵𝐶𝑛, 𝐵𝑉 𝑎𝑣𝑛) is equal t

8

o 100.0, if the value of these parameters is equal to the maximum or
inimum value of the referenced cluster of parcels’ parameters. The
enalization of zoning plans is applied similarly: if the parameters fall
utside the limiting range of the zoning plan, we add 100.0 to the
quared deviation. However, by squaring D’, Pe’ grow faster than N’
o ensure that the constraints are first met during the optimization.

.3.7. Fitness function
Following the decision flowchart in Fig. 9, the final equation results

n a single-objective optimization 𝑆𝑂𝑂.

(𝑥) = 𝑃𝐴𝑛 ∗ 𝑤1 + 𝑂𝑛𝐿 ∗ 𝑤2 + 𝐿𝑆𝑛 ∗ 𝑤3 + 𝐵𝑉 𝑛 ∗ 𝑤4 + 𝐵𝐶𝑛 ∗ 𝑤5

+ 𝐵𝑉 𝑎𝑣𝑛 ∗ 𝑤6

+ 𝐵𝑂𝑛 ∗ 𝑤7 +𝑀𝑎𝐻𝑝𝑒 +𝑀𝑖𝐻𝑝𝑒 +𝑀𝑎𝑊 𝑝𝑒 +𝑀𝑖𝑊 𝑝𝑒

+ 𝑀𝑎𝐿𝑝𝑒 +𝑀𝑖𝐿𝑝𝑒 (1)

The function 𝑓 (𝑥) contains the normalized parameters described in
ection 4.3.5 multiplied by weights 𝑤𝑛, and the zoning plan penalties
rom Section 4.3.6. The goal of the optimization is to minimize the
alue of 𝑓 (𝑥) to 0.0, i.e., the optimal solution would be reached if all
ummands are equal to 0.0, since there is no parameters with negative
alues.

The weights 𝑤𝑛 values range from 0.0 to 1.0 and are entered via
user interface to allow a user to define the relative importance of

ach normalized parameter. In order for the user to decide which value
o give to these weights, the following question must be answered:
hich features from the referenced group of parcels should be recreated

n the generated urban solution, and to which extent? The features
re represented by the parameters (PAn, OLn, LSn, BVn, BCn, BVavn,
On). If the user considers that some features need to be mimicked, a
eighting value close to or equal to 1.0 should be given. If a particular

eature is less important but should still be mimicked, the weight value
hould lie around 0.5. On the other hand, if the user does not want this
eature in the generated solution, weighting values close to or equal to
.0 should be entered. Section 5.2 case study provides an example of
his decision process.

.4. Optimization

This part deals with the optimization of the parametric model by

rying to achieve the best value of the fitness function.
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Fig. 11. Optimizer results:
0. Before optimization: referenced cluster of parcels and selected plot, 1. Direct Search, 2. Genetic Algorithm, 3. Simulated Annealing, 4. Covariance Matrix Adaptation Evolution
Strategy, 5. Radial Basis Function Optimization.
4.4.1. Optimization algorithms comparison
To select the most appropriate optimization algorithm for our

methodology, we compare the performance of the following black-box
optimization algorithms (Hansen et al., 2010; Ulum and Girsang, 2022)
that exist in the following three categories:

• 𝐷𝐼𝑅𝐸𝐶𝑇 𝑠𝑒𝑎𝑟𝑐ℎ(𝐷𝑆) (Audet, 2014). Deterministic and sequen-
tial.

• 𝑀𝑒𝑡𝑎ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠 (Yang, 2011). They come from biological analysis
rather than mathematical functions and due its stochastic and
population-based properties, cope relatively well with discontinu-
ities. The algorithms chosen are: 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 (𝑆𝐴), that
simulates a cooling metal atom, 𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐺𝐴) (Conkey
et al., 2012), based on the principles of evolution and relies
on population, mutation, and crossover and 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥
𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (𝐶𝑀𝐴 − 𝐸𝑆) (Igel et al., 2007), a
special type of strategy for numerical optimization.

• 𝑀𝑜𝑑𝑒𝑙 − 𝑏𝑎𝑠𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 (Bartz-Beielstein and Zaefferer, 2017).
They construct a regression model parallel to the optimization
called surrogated model, that predicts performance and replaces
or supplements time-consuming simulations. The algorithm cho-
sen is 𝑅𝑎𝑑𝑖𝑎𝑙 𝐵𝑎𝑠𝑖𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑅𝐵𝐹𝑂𝑝𝑡) (Costa and
Nannicini, 2018), where the surrogate model is generated by
interpolations.

Fig. 11 illustrates the optimization results after each algorithm has
een run 800 steps and two times. At first glance, all the results are
uite similar, except for the 𝐷𝑆 algorithm, which has a completely
ifferent result.

On the left chart in Fig. 12 is shown the convergence of the
lgorithms in the optimization process. On the 𝑥-axis is the number
f iterations reaching 250. On the 𝑦-axis is the value of the objective
unction, which ranges from 0 to 6000. By convergence we mean
hat the algorithm tries to converge to a given value, and in this
ptimization exercise, that value is 0. In this Figure can be seen that in
he first 25 iterations the solvers rapidly approaches the convergence
alue and later this convergence ratio decreases. The values at the 250
teration are close to 0, except for the DS algorithm, which does not go
elow 50. These values remain similar in following iterations.

On the right chart in Fig. 12 is shown the robustness of the al-
orithms. A solver is more robust if it gives similar results for the
9

same task but in different executions, which means that we can rely
on its results later. The graph compares the best results in iteration
number 800 for three different optimizations and for each algorithm,
and shows a bar where the range of each algorithm varies. RBFOpt is
the algorithm with the best obtained value, but CMA-ES is the most
robust, since the column range is very narrow. DS performs the worst
here since the range column is the largest. Our analysis is supported by
another, more detailed benchmarking for single-objective optimization
algorithms (Wortmann, 2019), where RBFOpt turns out to be the best
performing algorithm, which is why we use RBFOpt as the solver for
our methodology.

4.4.2. Optimization plugin
We incorporate 𝑅𝐵𝐹𝑂𝑝𝑡 into our optimization process by running

𝑂𝑝𝑜𝑠𝑠𝑢𝑚 (Wortmann, 2017), a plugin for 𝐺𝑟𝑎𝑠𝑠ℎ𝑜𝑝𝑝𝑒𝑟 that includes this
algorithm and provides a user interface to run, stop and visualize the
evolution of the fitness function value in a first tab, to set 𝑅𝐵𝐹𝑂𝑝𝑡
hyperparameters in a second tab and, finally, to review other expert
parameters in the last tab, as can be seen in Fig. 13.

5. Case study

In this Section, we apply our proposed methodology described in
Section 4 for the creation of urban layouts in a case study in the city of
Vienna. For this purpose, we first describe the study plot in Section 5.1
and then address two main aspects:

• The design workflow, which involves mainly the interaction be-
tween a software and a user, and is explained in Section 5.2.

• The evaluation of the methodology based on case study results in
Section 5.3.

5.1. Plot of study and dataset input

We select a green area with sport facilities in the 17th district of
Vienna, called Lidlpark, to test our methodology. Vienna is a historic
city in the center of Europe with a high quality of life (Hatz, 2008)
and a climate that allows the placement of the chosen housing ty-
pologies (Winter et al., 2019) in the parametric model. This area is
considered because it is large enough to generate different solutions and
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Fig. 12. Convergence and robustness.
Fig. 13. Opossum www.food4rhino.com/en/app/opossumoptimization-solver-surrogate-models.
because it is located in a central area of the city, and is surrounded by a
variety of different neighborhood styles. In this case study, we use the
surrounding neighborhoods as dataset inputs, and by doing so we are
in a sense extending the same type of city (Alexander, 1977). Fig. 14
shows the outline and location of Lidlpark.

5.2. Design’s workflow

Each part of the tool that assist the methodology requires user input
to be executed, and in this Subsection we explain this interaction, which
proceeds as follows:

1. Parametric model: the user draws a polyline in the Rhinoceros
3D software. This is shown in Fig. 15 as a black line and is the
required input for our tool for generating the parametric model
described in Section 4.1.

2. Objectives: as described in Section 4.2, the user chooses 3D
datasets to be referenced to control the style, form, propor-
tions, etc. of the generated areas. As described in Section 4.2.2,
datasets are downloaded from 𝑂𝑝𝑒𝑛 𝑆𝑡𝑟𝑒𝑒𝑡 𝑀𝑎𝑝𝑠. The clustering
of the parcels depends on number of clusters, a random seed that
determines the order in clustering, and each parameter defined
in Fig. 8 weighted from 0.0 to 1.0 to determine their relative
importance. See Fig. 16.

3. Fitness function: as explained in Section 4.3, this function com-
bines cluster objectives and also, incorporates the constraints of
the zoning plans. Fig. 17 shows on the left side a zoning plan
and on the right side the UI for the user to input zoning plans
parameters as described in Section 4.2.1. The input parameters
are the steering parameters of the parametric model defined in
Fig. 7; maximum and minimum values for building height, width
and length.
10
4. Optimization: Fig. 18 shows on the left side the best solution
generated at a certain iteration number and to the right side,
the UI and its input and output values. This UI is divided into
three sections: weight parameters, design solution parameter
values, and the optimizer Opossum (Wortmann, 2017) explained
in Section 4.4.2. In the UI, the weight parameters range from
0.0 to 1.0 and determine the influence of each objective in the
fitness function as shown in . The output values help the user
to evaluate the solutions in relation to certain values. At the
bottom of the Opossum plugin in Fig. 18 we read the iteration
number and the best value of the fitness function and if we
let the plugin optimize further, it will eventually find a better
value and thus a better design solution. When the Opossum
convergence graph becomes almost flat, it means that there is
almost no improvement and then we can stop the optimization
and accept the urban solution obtained as the best one for the
given inputs.
The user interface from Fig. 18 shows an example where we
are recreating the design process as designers. We set parameter
‘‘factor’’ to 0.8, to scale down 0.8 times the chosen referenced
cluster of parcels. The other inputs in the user interface are the
weight parameters. ‘‘Plot area’’, ‘‘Av. building centroid to Plot
Outline’’ and ‘‘AV. building volume each Plot’’ have a value
of 0.5, whereas the other weights have a value of 1.0. We,
as designers, have decided that these three features from the
referenced cluster should be emulated in the generated solution,
although they are less important than the other parameters with
value equal to 1.0. There is no weight with a value of 0.0, which
means that all features from the referenced cluster of parcels will
be included in the design solution.
The last design step consist on fine-tuning results. The user plays
around with the inputs for the cluster of parcels, the weights for
the fitness function, and the number of optimization iterations.

In this last step, several variants are tested by simply changing

http://www.food4rhino.com/en/app/opossumoptimization-solver-surrogate-models
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Fig. 14. Case study plot.
Fig. 15. Plot outline polyline.
these inputs, and from these tests a clearer design strategy can
be determined. Each solution consists of a 3D model and its
associated parameters values, such as built-up area, heights,
typologies used, etc.

5.3. Evaluation of the results

The evaluation of the results of the case study is crucial for the
validation of our methodology. We can verify, first, that each step
of our process behaves as desired, and second, that the methodology
as a whole produces the expected results. The following subsections
describe these evaluations in detail:

5.3.1. Evaluation of the urban planning tool
To confirm whether the software is yielding the desired results and

is behaving as expected, we exam the following points:

I That the parametric model subdivides the plot and allocates
housing typologies accordingly. New typologies, new parameters
11
for the plot subdivision and more possibilities on the allocation
of typologies on plots can be always extended and refined, but
the tool does its job when it has the required inputs, as described
in Section 5.2.

II That the input parcels strongly influence the generated urban
models and that they resemble each other. Explained further in
Section 5.3.2.

5.3.2. Comparison between referenced parcels and optimization results
We investigate the influence of 3D urban model datasets on the op-

timization process and for this purpose, we have chosen three different
clusters as reference and compared the obtained results.

In Figs. 19–21, there are three examples, that depict in blue the
chosen 3D geometries taken as reference, and in red the urban models
generated in the optimization process. A visual comparison of the
results shows the following:

• Fig. 19 generates geometries that mimic the input neighborhoods
colored in blue, by creating parcels with courtyards and similar
parcel sizes.
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• Fig. 20 produces geometries that also mimic the inputs colored
by producing long or rectangular buildings even though the sub-
divided plot sizes are smaller.

• Fig. 21 also emulates inputs by its shape and the size of the
parcels.

We therefore conclude that the referenced neighborhoods have a
trong influence on the generated results as they are indeed quite
 g

12
imilar. This validates our approach and underpins an important point
f our proposal.

.3.3. Evaluation of the methodology
The goal of this validation is not only to confirm that our software

roposal performs as envisioned in each of the steps of the process, as
lready shown, but also that the entire methodology serves its purpose
nd enhance current design workflows in urban planning and generate
ood urban solutions. In order to verify that the methodology shows
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Fig. 19. Input parcels 01.
Fig. 20. Input parcels 02.
Fig. 21. Input parcels 03.
the necessary consistency, several and different study cases by other
urban planners must be assessed. This could be achieved by:

I Participating in an urban planning competition pitting a group
of planners against another group of planners equipped with our
tool and comparing results.

II Letting the tool be used as a free beta version on the open market
to gather user experience, comments and remarks.

Although these validations for the methodology are postponed as
they need a wither range of results to be properly addressed, since each
13
of the steps of this process was proven successful for our case study,
as stated in Section 5.3.1, our method should be ready to generate
valid results. As indicated in Section 5.3.2, the generated city plans are
similar to the input dataset of parcels, but with different recent housing
typologies, which is in some sense a confirmation that the generated
areas should at least be acceptable and buildable.

6. Conclusions

In this paper, a methodology based on generative design has been
proposed to enhance automation in urban planning for residential
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areas, where a user interacts with a software. This software is composed
by four main parts: the first consist on the creation of a 3D parametric
model that subdivides a plot into parcels and assigns housing typologies
on them. The second part is about the selection of parameter values
obtained from reference datasets. The third consist on the combination
of these parameters and zoning plans constraints into a fitness function.
And the last step deals with the optimization of the parametric model
based on adjusting fitness functions values.

Our proposal is framed in the design process of a parcel-scale
and the subjects we have tackled are those that correspond with this
urban-scale: plot subdivision, massing studies, and typology allocation.
To illustrate the proposed design process and to obtain some design
solutions to be evaluated, a case study was conducted in a study area
in the city of Vienna. The evaluations shows that each of the software
parts works as expected, especially the aspect that the input data of
quarters influence the optimization to the extent that the generated
geometries mimic these inputs in terms of forms, proportions, housing
distribution within each parcel, etc. The case study also serves to
evaluate the methodology as a whole, and it shows that different urban
planning solutions can be created with just a few user inputs because of
automation increases, which reduces planning costs and eases changes
and also improves interaction between planners and stakeholders. It
can also increase variability as the software tests thousands of solutions,
and that can lead to a better analysis and therefore, a better decision
making.

After the analysis of the current state of the art in Section 3, we
conclude that we contribute to it in the following aspects:

– We have added concepts of machine learning, whose algorithmic
decisions are data driven, to a typical generative design process,
based on the optimization of a parametric model. This had given
us the chance to incorporate parameters such as style or pro-
portions, that usually are not considered in generative design
processes.

– Based on the concepts of Thomas Wortmann (Wortmann and
Fischer, 2020), we have challenged the tendency of applying
multi-objective optimization for architectural design.

– We have addressed the design process, including the role of the
urban designer.

A future possibility would be to extrapolate the proposed process
to another fields or disciplines such as landscape, fashion or furniture
design. In particular, when applied to other AEC disciplines, we could
expand our software functionalities so that it would eventually range
from large scale urban design to smaller scales such as building, bridge
and interior design and also include other disciplines like cost estima-
tions (Fragkakis et al., 2011; Babalola et al., 2019), sustainability (Süße
et al., 2022; Anon, 2020a), embedded CO2 calculations (Arama et al.,
2020), etc. In this future scenario, where these aspects are interlinked,
changes in one scale or discipline would affect all other disciplines,
parameters and scales, facilitating changes in the search for the optimal
solution. The advantages of the generative design already mentioned
plus the possibility of linking different domains, justify the energy
invested in defining, improving and updating the parametric model on
which the methodology is based.
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