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Digital imaging of natural scenes and optical phenomena present on them (such as shadows, 
twilights, and crepuscular rays) can be a very challenging task because of the range spanned by 
the radiances impinging on the capture system. We propose a novel method for estimating the 
set of exposure times (bracketing set) needed to capture the full dynamic range of a scene with 
high dynamic range (HDR) content. The proposed method is adaptive to scene content and to 
any cameraresponse and configuration, and it works on-line since the exposure times are 
estimated as the capturing process is ongoing. Besides, it requires no a priori information about 
scene content or radiance values. The resulting bracketing sets are minimal in the default 
method settings, but the user can set a tolerance for the maximum percentage of pixel population 
that is underexposed or saturated, which allows for a higher number of shots if a better signal-
to-noise ratio (SNR) in the HDR scene is desired. This method is based on the use of the camera 
response function that is needed for building the HDR radiance map by stitching together 
several differently exposed low dynamic range images of the scene. The use of HDR imaging 
techniques converts our digital camera into a tool for measuring the relative radiance outgoing 
from each point of the scene, and for each color channel. This is important for accurate 
characterization of optical phenomena present in the atmosphere while not suffering any loss 
of information due to its HDR. We have compared our method with the most similar one 
developed so far [IEEE Trans. Image Process. 17, 1864 (2008)]. Results of the experiments 
carried out for 30 natural scenes show that our proposed method equals or outperforms the 
previously developed best approach, with less shots and shorter exposure times, thereby 
asserting the advantage of being adaptive to scene content for exposure time estimation. As we 
can also tune the balance between capturing time and the SNR in our method, we have 
compared its SNR performance against that of Barakat’s method as well as against a ground-
truth HDR image of maximum SNR. Results confirm the success of the proposed method in 
exploiting its tunability to achieve the desired balance of total Δt and SNR. 

 

1. Introduction 

Natural scenes are usually composed by a wide variety of radiance signals outgoing from the objects in the scene, which are 

very different in magnitude. This fact makes their correct capture with a normal digital camera a nontrivial problem. Capturing 

a scene with high dynamic range (HDR) content with a single low dynamic range (LDR) image would cause loss of 

information in those regions of the scene where the light level reaching the sensor is too low or too high to be correctly 

registered with a single exposure time. The HDR imaging techniques solve this problem. 

Common imaging sensors suffer from limitations in the process of capturing the light. Usually, the dynamic range of the 

sensor (i.e., the ratio between the maximum and minimum irradiance impinging on the sensor that produces an effective 

response) is much lower than the dynamic range found in natural open air scenes. The dynamic range of these scenes (ratio 

between the maximum and minimum radiances emitted by the objects in the scene) can vary from 2 to 8 orders of magnitude 

depending on the season and scene content [1]. The human visual system can simultaneously adjust to a difference of up to 

3.73 orders of magnitude (or log units) [2] when adaptation is accomplished. However, most imaging and display devices can 

only account for barely 2 orders of magnitude in a single image (either for capturing or for displaying) [3,4]. 

There have been many techniques proposed [5–7] as well as sensor architectures [8,9] to achieve this goal. The most 

common techniques are based on building a HDR image from the information of a number of different LDR images. The 

difference between these LDR images is the exposure (i.e., the product of irradiance impinging in the sensor times the 

exposure time used to acquire the image). It is changed by varying either exposure time or the aperture. Usually, the former 

is adjusted since it does not affect the depth of field between different captures. These differently exposed versions of the 



 

same scene, when combined in the correct way, can be used to build an image that contains extended dynamic range 

information compared to just a single exposure [10]. 

When we use our camera to capture a digital image of a scene, we cannot know in advance which exposure times would 

be useful for composing the HDR image afterwards. We could just take a large number of images with different exposure 

times (or even all available ones in the camera), and then use all of these LDR images to compose the HDR image. But this 

option is often time consuming and very computationally demanding, so it is not always feasible. Commercial cameras usually 

have an auto-exposure mode that estimates an exposure time value based on some cues like the reading from a built-in 

photometer in high-end cameras that measures the average brightness value in certain regions of the image. 

All of these cases aim just for finding one exposure time that works well for correctly imaging most parts of the scene. 

However, whether we would be able to find it or not, there is not a single value of exposure time that could make all pixels 

in one shot be correctly exposed for most common natural scenes. 

The aim of this paper is not to explain how to merge LDR images into a HDR radiance map. The process we used for this 

is very well explained in the literature [11]. It is rather to present a method for the selection of a set of exposure times 

(bracketing set) to use in order to retrieve useful information from all pixels (or at least from most of them). This is very 

important for the study of optical phenomena present in the atmosphere and open air natural scenes with shadows, twilights, 

clouds, crepuscular rays, and so forth [12], all of which have HDR content that cannot be captured with a single shot of a 

commercial digital camera. Thus, a digital camera can be a useful tool for composing a HDR radiance map of these 

phenomena in order to study them. Of course, if the scene captured has very dark regions that need long exposure times to be 

correctly exposed, then it is important that there is no relative movement between the camera and scene content during the 

capturing time. If small movements happen, there are ghosting-compensation techniques to correct for artifacts [13]. 

We aimed for a method that is blind (no information from the scene content is known a priori), adaptive (adapts to scene 

content dynamically by adjusting required exposure times), universal (works for any camera that we have tested so far), and 

on-line (the exposure times are calculated as the capturing process is ongoing and every single shot acquired is used in the 

HDR radiance map generation). It will also give as default output the minimal bracketing set (the bracketing set that has the 

minimum number of shots, yet recovers the full dynamic range of the scene), but it can be tuned to yield longer exposure 

times with a higher signal-to-noise ratio (SNR). This tunability is introduced as a method that controls the amount of 

overlapping between consecutive exposures to increase the SNR in the resulting HDR image at the cost of increasing the 

number of shots taken, and hence the capturing time. We have also introduced a method to control the percentage of pixel 

population that we can accept to be useless. 

The remainder of this paper is organized as follows. Section 2 summarizes the state-of-the-art technology for estimating 

exposure times for HDR imaging. Section 3 explains the details of the method we propose. Section 4 explains the experiments 

made to compare our method with the most advanced method of those described in Section 2, as well as the results obtained. 

Finally, Section 5 draws the main conclusions of this work. 

2. State of the Art 

Several approaches have been proposed in the literature for solving the problem of finding the exposure time values for HDR 

image capture via multiple exposures. Chen and Gamal [14] proposed scheduling for capture times. They were assuming a 

known illuminant in the scene, which in practice is a rather non-realistic assumption, especially for optical open air 

phenomena. Grossberg and Nayar [15] proposed a method to simulate the response of any camera (linear, logarithmic, gamma 

function, etc.) using a single camera with a known camera response function (CRF) by just selecting a set of exposure times. 

So their aim was not to find a minimum bracketing set for radiance map generation. Stumpfel et al. [16] proposed a method 

for capturing HDR images of the sun and sky. They threshold the images and check if there are saturated and/or underexposed 

pixels. If any, they add new shots by increasing or decreasing the exposure by a fixed amount of three-stops. This approach 

is not adaptive to the scene content and could lead to situations where the exposure times are not well fitted to cover the full 

dynamic range of the scene. Bilcu et al. [17] proposed a method for overcoming the limitations of mobile devices for HDR 

imaging. Their proposal was also done by iteratively trying every available value of exposure time and afterwards deciding 

which is the correct one. Therefore, many images need to be taken before a bracketing set is selected. 

Barakat et al. [18] proposed a method for finding minimal bracketing sets for HDR capture. Firstly, they studied how the 

camera responds to radiance using every available exposure time. Then, they select only those exposure times that completely 

cover the full dynamic range of the camera with certain overlap. This is the so-called minimal system bracketing set (MSBS), 

and whatever the content of the scene being imaged is, using all these exposures will always cover the full radiance range 

that the camera can effectively acquire. To adapt this MSBS to scene content, they proposed to select a subset of it called the 

minimum image bracketing set (MIBS) by capturing a first shot with an intermediate exposure time (that belongs to the 

MSBS) and checking if there are saturated or underexposed pixels. If so, they add the next exposure time included in the 

MSBS until the full dynamic range is covered. Though the underlying idea in this method is similar to the one proposed in 

this work, it is still not totally adaptive to scene content since they limit the exposure times selected to those belonging to the 



  

MSBS. We believe that the same scenes could be captured with less shots and shorter exposure times, yet covering their full 

dynamic range, and we have demonstrated this by comparing the results of our method with Barakat et al.’s insightful 

algorithm using their MIBS approach. 

Granadosetal.[19] proposed a method assuming the known mean HDR irradiance histogram of the scene being captured. 

Besides, their method only works for linear cameras, and they used a greedy algorithm, iteratively capturing the same scene 

many times until they obtained the optimal SNR solution. Thus, their method is not on-line. Hirakawa and Wolfe [20] used a 

mathematical method based on training for HDR exposure time selection. They assumed linear sensor response and known 

noise sources in the capture, which is not always a realistic scenario. They did not really aim for defining minimum bracketing 

sets, but for optimal SNRs instead. Gelfand et al. [21] adapted HDR imaging to mobile devices as well. They merge LDR 

images iteratively two by two. If there are still saturated or underexposed pixels, they keep adding the next available exposure 

time that the camera offers. Hasinoff et al. [22] proposed a method to calculate a bracketing set that is optimal in terms of the 

SNR but not minimal (they just try to fit it within a given time budget) by varying both the exposure time and the ISO (i.e., 

sensitivity) settings of the camera. Besides, their method assumes linear raw sensor responses only and known information 

about scene radiance content. 

Gallo et al. [23] proposed a method for taking advantage of mobile phone camera APIs (application programming 

interfaces). They programmed the automatic histogram calculation in mobile phones to construct a reduced HDR histogram 

of the scene, which will be the target to be captured. This is however not possible if the camera used for the captures does not 

feature this automatic process. Besides, if the scene imaged has very dark regions, the long exposures needed to create this 

histogram make the process slow. Moreover, the method is not on-line. After this histogram is calculated, they capture several 

exposures of the scene and then study many possible combinations of them until the optimal one is selected. 

Guthier et al. [24] followed the lines previously proposed by Kang et al. [25], who implemented a method for sequentially 

adjusting the exposure for real-time HDR video. Both are iterative and limited to only two shots for building the HDR image. 

Finally, Gupta et al. [26] proposed a Fibonacci-series-based bracketing set determination algorithm in which each exposure 

time is the sum of the previous two. This technique does not aim for full dynamic range recovery though, but image 

registration for HDR video. 

3. Proposed Method 

We drove our Canon EOS 7D camera from our laptop via the USB (universal serial bus) port using the open-source libraries 

called GPhoto2 from our algorithm implemented in Matlab R2014a and working on-line. 

The method proposed in this paper is full range because it finds a bracketing set that covers the full dynamic range radiance 

map of the scene. This HDR radiance map would be potentially useful for studying the behavior of light in HDR open air 

phenomena. 

Our method uses the CRF to compute the relative irradiance impinging on the sensor, which corresponds to a certain 

population of pixels in the image (using its cumulative histogram). Then, a new exposure time is calculated in order to shift 

the camera responses to this irradiance to a different value. This way, the cumulative histogram is shifted and the new shot 

would capture a different range of irradiances, which are contiguous to the range captured in the previous shot. 

The CRF is a function that relates the response of the camera, in digital counts (DC), with the exposure that the sensor 

receives. This function depends on each camera, and it even can be different for different settings of the same camera (e.g., a 

camera working in raw mode or in jpeg mode). Knowing the CRF of our camera is a key factor to build the radiance map. A 

detailed explanation of how to calculate the CRF is given in [11]. The calculated CRF of the camera used for the experimental 

part in this work is shown in Fig. 1. It is clearly not linear. 

The exposure axis is in relative units, and it is normalized so that the center of the DC values (128 DC for the 8-bits case) 

corresponds to a relative exposure value of 1. The function is the same for the three color channels R, G, and B of the camera, 

since it is a property of the sensor. Therefore, we process the three color channels together like the technique in [23]. For each 

LDR image we capture, we know the Δt used as well as the DC values for each pixel and channel. Therefore, by using the 

CRF we can easily work out the relative irradiance (E) by computing the simple ratio shown in Eq. (1): 

 

The subindex i accounts for the pixel index, k accounts for the color channel, and e accounts for the exposure index (or 

number of shots). Thus, once we have captured an initial image with a known exposure time Δt0, the CRF relates H0 with 

DC0 as shown in Eq. (2): 



 

 

Therefore, we can work out the relative irradiance value of a point of the image [E0, calculated as shown in Eq. (3)] by 

knowing the CRF, the Δt, and its DC value in the first shot (Δt0 and DC0, specifically): 

 

where CRF−1 refers to the inverse CRF function that always exists since CRF is a monotonically increasing function. Then, 

to shift the sensor responses DC0 to this same irradiance value E0 into a new value DC1, we just have to workout which new 

exposure time Δt1 is needed for a new shot, like shown in Eq. (4): 

 

 If our camera has only a limited set of values from which to choose the exposure time, we can select the available value that 

is closest to the calculated one. We already have a tool to control the values of sensor responses, which is done by tuning the 

exposure time used to acquire the images. Now, we explain how to use it for our purpose of optimizing HDR capture. For 

this aim, we propose a method based on cumulative histograms of the scene inspired by Grossberg and Nayar [27], who 

originally applied it to pixel selection for CRF computations. If the scene content does not change, then the same value for 

the percentile of population in the cumulative histogram will correspond to the same areas in the image. In Fig. 2, we can see 

a plot where several cumulative histograms of the same scene differently exposed are drawn together. 

If a given percentile is below some exposure value for a given exposure time, then, for a different exposure time, the same 

percentile of population will correspond to a different exposure value but they will still keep its location within the scene. 

Therefore, the points where the horizontal lines in Fig. 2 intersect the histograms report information corresponding to the 

same areas of the scene. Our idea is to shift sensor responses by calculating exposure times to control the sensor responses to 

pixel populations of key percentile values. As a starting point, we calculate the cumulative histogram of the image captured 

with the automated exposure of the camera. But in principle, any image can be used as starting point as long as it has some 

pixels that are neither saturated nor underexposed. 

We are going to sample the scene’s radiance using the CRF of the camera between two DC levels. Unless the scene has a very 

reduced dynamic range, there will be pixel values below and above these DC values. Since in the default version of the 

algorithm we aim for minimum bracketing sets, we have set the low level (LO) to 3 DC and the high level (HI) to 252 DC 

for considering a pixel to be underexposed or saturated, respectively, when it is out of these bounds. Thus, whatever pixel 

population is above the HI level or below the LO level, we will sample it using a different exposure time. Here, we introduce 

two novel features of our method. One is the possibility of setting a tolerance for the percentage of useless pixels. If we 

choose 0% tolerance, the algorithm will look for longer or shorter exposure times if at least one pixel is underexposed or 

saturated, like Barakat et al. [18] proposed. However, for some scenes we can set a different tolerance threshold to renounce 

to a certain percentage of the population to be properly exposed [e.g., when we directly image the sun and our region of 

interest (ROI) is in a different area]. 

The other novelty involves controlling the LO and HI values of the CRF. Setting values very close to the extremes (0 and 255 

DC for 8 bits) will result in a lower number of shots at the cost of a lower SNR. In contrast, if we set values further from 

these extremes, we will sample the scene’s radiance with more overlap between contiguous shots and therefore the SNR will 

increase, at the cost of a higher number of shots. This shows how our algorithm can be tuned to adapt to different requirements 

regarding the SNR of the captured HDR. 



  

After commenting on these functionalities, we describe now in detail how the exposure time search is done. With the 

information present in the cumulative histogram of the first shot captured, we check the percentile of the pixel population that 

is below the LO level. If it is higher than the maximum value set, then a longer exposure time is calculated. The same is done 

f the difference betwen 100 and the percentile of the pixel population above the HI level is higher than the tolerance threshold. 

In this case, a shorter exposure time will be calculated. 

  

Fig. 1.CRF of the Canon EOS 7D camera in jpeg mode. 

 

Fig. 2. Cumulative histograms of the same scene captured 
using different exposure times. 

 

To find a longer exposure time, we will use Eq. (4) to shift the camera response value from the LO level to HI level. Therefore, 

we use the HI level as DC1 and E0 is substituted by Eq. (3), where we use the LO level as DC0. Δt0 is the exposure time used 

to acquire the current image [see Eq. (5)]: 

 

In contrast, to find a shorter exposure time, we will use Eq. (4) to shift the camera response value from the HI level to LO 

level. Therefore, we use the LO level as DC1 and E0 is substituted by Eq. (3), where we use the HI level as DC0 [see Eq. (6)]: 

 

In this way, if the population that has a sensor response at the HI level in one shot shifts to the LO level in the next shot, 

we can cover the full dynamic range of the scene with certain overlap between contiguous shots. 

The process described here goes on checking the cumulative histograms of the longer and shorter exposure times until the 

tolerance requested is met or the system reaches its maximum or minimum available exposure times. 

4. Experiments and Results 

Our camera (Canon EOS 7D) allows the choice of only a discrete set of exposure times. We tuned the HI and LO levels 

(explained in Section 3) to get the minimum bracketing sets (lowest SNR). In the first experiment, we tested the default 

version of the adaptive exposure estimation (AEE) method (see Section 4.B.1); in the second experiment, we explored the 

tunability and evaluated the SNR performance (see Section 4.B.2). In all scenes tested, the method built a full dynamic range 

radiance map of the scenes. We implemented our proposed method as well as the only method found following the same 

philosophy, which is the MIBS method proposed by Barakat et al. [18] (hereafter termed BAR), to compare their 

performances. 

 



 

A. Bar Method and MSBS 

Regarding the BAR method, the MSBS found for our Canon camera, as explained in [18], using a 5.6 aperture setting, was 

composed by four exposure times for which the values were: 30 s, 300 ms, 1 ms, and 0.0125 ms. Sometimes, not all of these 

four shots were needed to record the full dynamic range of the scene. In these cases, a sub-set of the MSBS is used omitting 

some of its shots. This represents the MIBS. We could use as well as a first shot, the one chosen by the auto-exposure mode 

of the camera, as was done for the AEE method. However, we found that when doing so, we only got the same number of 

shots or even one more. So we did not use it. We see an example of this in Fig. 4. The exposure time chosen by the auto-

exposure mode of the camera was 66.7 ms (topcenter). It was used as first shot for the AEE method, since this method adapts 

to any exposure value chosen as first. However, this value was in between 300 and 1 ms (both belong to MSBS). Therefore, 

if we used it also as a first shot for the BAR method, it would mean that the capture of this scene would end up with five shots 

instead of four. 

 

 

 Fig. 3. LDR images and HDR radiance maps for some captured scenes. 

 

Also, if we change the aperture setting of the camera, as the CRF is not changing, the AEE method would work the same 

by adapting to the new exposure levels impinging in the sensor. However, for the BAR method we would need to calculate a 

new MSBS, since the same exposure times for a different aperture would not be valid any more. Thus, we fixed our aperture 

setting to 5.6 for both methods. 

B. Comparison between the AEE and BAR Methods 

For the first experiment (Section 4.B.1), we captured 30 scenes using both methods and we studied the number of shots taken, 

the total exposure time used, and the percentage of the pixel population that was not properly exposed. In this way, we 

assessed how efficiently did both methods recover the full dynamic range of the scene by comparing their resulting bracketing 

sets. 

In the second experiment (Section 4.B.2), we built an indoors HDR scene with controlled illumination conditions. We 

captured 10 HDR images of it using the AEE and BAR methods. Besides, for the AEE method we repeated the capture four 

times using different values for the LO and HI levels (see Section 3). Finally, we captured 10 ground-truth (GT) HDR images 

using all available exposure times in the camera. These GT images represent the highest SNR that our camera can achieve to 

record a scene without repeating shots with the same exposure. 

 



  

1. HDR Capturing Efficiency 

As mentioned before, we acquired 30 HDR scenes; 23 scenes were captured outdoors with natural illumination and 7 were 

captured indoors with artificial illumination. Outdoors, daylight cast HDR illumination over objects including clouds. Indoors 

we used a light booth and a fluorescent lamp oriented directly to the camera in a dark room to generate HDR content. To 

check the performance of both methods in terms of full range recovery, we plotted the cumulative histograms of all shots 

taken for each scene and checked that no irradiance gaps were left uncovered between consecutive shots. We set the maximum 

percentile allowed to be lost to 0%. In Table 1, we can see the results for 7 out of the 30 scenes captured. 

We observed how the number of shots is always equal or lower for the AEE method. The percentage of useless pixels is 

always the same for both methods. Many scenes had a percentage of lost pixels equal to 0, since both methods managed to 

retrieve the full dynamic range of the scene. For the rest of the scenes, the useless pixels were due to direct sunlight (like the 

case of scene 1). This made some pixels impossible to recover even for the shortest exposure time available in the camera. 

The total exposure time is always lower for the AEE method. The same trends commented on were found for the remaining 

23 scenes captured. In total, for the 30 scenes captured, the BAR method took a total of 96 shots using 218.734 seconds and 

the AEE method took a total of 81 shots using 139.869 seconds. This means that the number of shots was 15.63% less, and 

the exposure time was 36.06% less, for the AEE method. 

InFig. 3, you can see the LDR picturesand the tonemapped HDR radiance maps generated for some of the scenes. The tone-

mapping algorithm used was a contrast-limited adaptive histogram equalization, which was introduced by Ward [28] and 

implemented in Matlab R2014a. 

 

 
Fig. 4. Cumulative histograms of the same scene using the AEE method (top row) and BAR method (bottom row). The 
histograms are ordered by decreasing exposure time to observe their continuity. 

 

In Fig. 4, we plot an example of the cumulative histograms corresponding to both methods for scene number 7. The data-

tips in histograms for shots 2 and 3 for the BAR method highlight that there are still underexposed and saturated pixels in 

those exposures, although at first glance the histograms may seem to reach percentiles 0 and 100, respectively. 

We observed how both methods succeeded in recovering the full dynamic range of the scene. However, thanks to the 

adaptation of the AEE method, only three shots were needed instead of the four shots the BAR method used. Therefore, we 

can conclude with this experiment that the AEE method recovers the dynamic range of the scene as well as the BAR method 

does, but by using a more reduced bracketing set. 



 

 

2. Signal-to-Noise Ratio 

We did a second experiment to study the SNR behavior of our method. For the AEE method, we tested four different 

conditions named A (LO = 3 and HI = 253), B (LO = 16 and HI = 240),  C (LO = 56 and HI = 200), and D (LO = 106 and HI 

= 150). We compared all these AEE conditions with the BAR method and the ground-truth (GT) images. The dynamic range 

of the scene was measured using a spectroradiometer (Photo Research, PR-745) to measure the integrated radiances of both 

the brightest and the darkest points of the scene. The resulting dynamic range measured was 4.1 log units. For each pixel and 

each color channel of these HDR radiance maps, we calculated its average HDR value and its standard deviation across the 

ten images corresponding to each method. The average HDR value provides information about the signal level in the pixel, 

and the standard deviation provides information about the level of noise generated by all noise processes present in the HDR 

capture process. Thus, by computing the ratio of the average HDR value (Exy) over the standard deviation (σxy) as Eq. (7) 

shows, we obtain a SNR estimate [29]: 

 

The subindex xy stands for pixel position within the HDR radiance map. 

We can see the number of shots, the total exposure times, and the average SNR for each method in Table 2. 

 

 

 

As expected, setting the LO and HI values further from the extremes of the range in the AEE method yields a higher number 

of shots and also higher total exposure time, but the SNR increases as well. For condition D, we reached an average SNR 

only less than 2 dB below the ideal case (GT), yet using only about 40% of the total exposure time. The minimum bracketing 

set found was AEE A, with only three shots and 14.79 s of total exposure time, but this also had the lowest SNR. The BAR 

method needed the full MSBS to recover this scene using four shots. It had a better SNR than our minimum bracketing set, 

but we also had a second option (AEE B) using four shots with a shorter total exposure time (less than half) and a higher SNR 

than the BAR method. We can observe in Fig. 5 the SNR for each pixel of the radiance maps generated versus the signal 

level. We can also see how the AEE D has the most similar distribution compared with GT. Also, the BAR method has a very 

similar distribution compared with cases AEE A and AEE B, as expected. 



  

Figure 6 plots the SNR histograms for all methods. We can observe how for the AEE method, the main lobe gets narrower 

and shifts towards a higher mean SNR as we tune the LO and HI levels further from the extremes of the range. The AEE D 

is quite close to GT in position and shape. In contrast, the BAR method yields a histogram that is the mostly spread over a 

wide range of SNR values. 

 

Fig. 5. SNR versus average HDR signals present in the radiance maps. 

 
Fig. 6.Histograms of SNR values. 



 

 

5. Conclusions 

We present a new method for estimating the exposure times needed to recover the HDR radiance map from a scene via 

multiple exposures. We compared the performance of our method with that of the only method found in literature that aims 

for the same purpose (i.e., finding minimum bracketing sets) and performs under the same conditions (adapted to scene 

content with no a priori information about it and valid for any camera whether it is linear or not). 

Our proposed method is adaptive because it finds a bracketing set adapted to any HDR scene content, and it is universal 

because it works for any camera. We only need to calculate its CRF (which is needed anyway to build the radiance map). 

Moreover, the method is tunable, since we can decide if we prefer to find a minimum bracketing set at the cost of higher 

SNR or increase the SNR sampling the radiance of the scene with more overlapping between consecutive shots (increasin

g the number of shots and capturing time as well). For the minimum bracketing set case, the bracketing sets found were 

minimal in the 30 scenes tested. 

Futhermore, our method is blind, which means that no information about the content of the scene needs to be known a 

priori. The multiple LDR images are captured on-line as the process is ongoing, and every single shot taken is used to compose 

the HDR radiance map. 

We can also control the percentage of the total pixel population that we can assume is useless (underexposed or saturated). 

This way, we can find the minimum bracketing set only for our region of interest. 

We have applied the method for HDR imaging of natural scenes where partially cloudy skies were present in order to 

increase the dynamic range of the capture. We have successfully covered the full dynamic range of the 30 scenes imaged. We 

have shown how our method can find bracketing sets that are shorter than those found by the BAR method, yet keeping higher 

SNR levels in the HDR radiance map reconstructed from the multiple exposures. 

We studied the SNR performance of our method comparing it not only with the BAR method but also with an ideal-case 

ground-truth HDR image built using all available exposure times in the camera. We have demonstrated how we can tune our 

method to suit different requirements for the SNR at the cost of increasing the number of shots. 

The proposed method brings a solution for the blind acquisition of HDR images using multiple exposures, which can be 

used in any HDR imaging context: machine vision, sky imaging, daylight illuminated scenes, HDR photography, etc. And in 

particular, the proposed method may be useful for studying optical phenomena present in open air scenes where the 

illumination conditions are extreme (i.e., direct sunlight that might be surrounded by regions of interest like halos, clouds 

casting shadows, and rainbows, just to give a few examples). 

 

This work was funded by the Spanish Ministry of Economy and Competitiveness through the research project DPI2011-

23202. 
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