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Abstract: Hyperspectral imaging of effect coated samples can be challenging, mainly because of the large differences 

in irradiance that stem from the orientation distribution of the metallic flakes contained in the coating, and from 

the lightness variations from one sample to another. Besides, high spatial resolution is needed to sample the details 

of the texture (sparkle) typical of these samples. In addition, focus search strategy and image registration are 

essential to achieve high quality data for further analysis. In this work, we propose and fully validate a capture 

framework for measuring spectral reflectance of effect-coated samples with high spatial resolution in 45/0 geometry, 

using an LCTF (Liquid Crystal Tunable Filter) coupled with a monochrome camera. The main features of the 

proposed framework are an optimized focus search method based on object movement, a very precise alignment for 

the images captured in different bands (image registration), achieving sub-pixel accuracy, and a dynamic procedure 

that uses several white reference surfaces in exposure time estimation to cope with very dark or highly reflective 

samples. The proposed capture device produces spectral reflectance values comparable to a conventional 

spectroradiometer using the same observation/illumination geometry, with the additional advantage of achieving a 

spatial resolution more than two times higher than the human visual system. 
Keywords: Colorimetry; Color measurement; Multispectral and hyperspectral imaging. 

1. INTRODUCTION 1 

The term “effect coating” refers to metallic and pearlescent coatings, i.e. coatings containing flake-shaped pigments with a size of several 2 
micrometers that are highly reflective and/or show interference. An appealing aspect of the visual appearance of these effect coatings is 3 
that the color is not uniform over the coating surface, which is often referred to as visual texture or sparkle, and depends strongly on 4 
lighting conditions and viewing angle [1]. Effect coatings are gaining popularity in many fields of application, such as automotive 5 
manufacturing, cosmetics and graphics industry [2]. For industrial applications such as color quality control, it is important to accurately 6 
measure color properties and color differences between effect coatings, with a high correlation with visual assessment [3]. Since 7 
conventional spectrophotometers and spectroradiometers are not able to capture the spatial variation of reflectance properties, 8 
multispectral imaging devices may be of added value, because they can provide spectral reflectance information on a pixel-by-pixel basis. 9 

Nevertheless, only few studies have appeared related to this topic. In a study by Medina et al., Principal Component Analysis is used 10 
on hyperspectral images from metallic coatings, as a way to characterize these coatings [4]. Kim et al. use multispectral imaging from 11 
pearlescent coatings as a way to characterize angular dependent reflectance and texture functions (BRDF and BTF), thus resulting in a 12 
more accurate method for three-dimensional rendering of painted objects [5]. Ferrero et al. analyzed color gamut and color shifts produced 13 
when varying observation conditions in effect coatings, using spectroradiometric measurements [6]. Recently, Medina et al. characterized 14 
the sparkle of a reduced set of effect coated samples using fractal dimension of the distribution of colors obtained in CIELAB space [7]. 15 
Burgos et al. developed a gonio-hyperspectral capture system for automotive paintings, based on LED multiplexed illumination [8]. In 16 
previous studies, the main focus was on the analysis of material or texture properties, or building models describing the behavior of the 17 
samples under different illumination/observation conditions. Relatively little importance was given to the capture process of spectral data 18 
per se, i.e. exposure time and focus settings, complete description of the capture framework and post-processing steps. 19 

Most investigations focused on one of the captured bands and used the same focus settings for all the others [9], or used manual 20 
focusing, which is not reproducible [4, 7]. Automatic focus search algorithms have been developed for different lens systems and capture 21 
devices [10] [11] [12], although they were not tested in multispectral imaging devices until recently [13]. In previous studies, the exposure 22 
time was usually set for the effect coated sample and the same exposure was used for the reference white used to obtain spectral 23 
reflectance.  This poses prospective problems for very dark or very light samples, as we will illustrate in this work. However, we have not 24 
found any mention about these limitations in previous studies, very likely because a restricted set of selected samples was used. 25 

The significant difference in radiance between sparkles and background can cause problems when attempting to find the correct 26 
exposure. For many samples, the metallic flakes, which produce the texture effect, are oriented randomly, and the camera unavoidably 27 
captures specularities that increase the dynamic range in the scene. Besides, the different substrates can vary from very dark to very 28 
light for different samples, and the capture system should cope with this variability as well. 29 
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In this context, high-resolution images are promising for enabling exhaustive texture analysis. Thus, usually a relatively short distance 30 
between camera and sample is used, and this can accentuate both the problem of defocus for some bands when only one focal position is 31 
used for all of them, and misalignment caused by the residual chromatic aberration of the lens. In addition, for accurate measurements 32 
care must be taken to ensure that the focal settings are reproducible for the sample and the white reference captures. We should point 33 
out that in previous studies there was no mention of the registration of the images captured in different spectral bands. Besides, if the 34 
different bands are not properly aligned (registered), some artifacts such as color fringes or blurring may occur in a color-rendered spectral 35 
image when very small objects (e.g. metallic flakes) are imaged at short distance from the camera lens. 36 

Summarizing, a poor capture workflow design can be a critical limitation for measuring spectral reflectance of effect coatings. 37 
Particularly, some care should be taken to avoid problems with the exposure settings, focus and registration of the images at different 38 
spectral bands. In the current study, we propose a novel workflow for high-resolution spectral image acquisition, based on the usage of a 39 
liquid-crystal tunable filter (LCTF), and specifically aimed at samples of effect coatings, with the purpose of overcoming the previously 40 
mentioned limitations. We propose an optimal focus search strategy based on object movement instead of lens movement, together with 41 
an accurate registration of the images in the different spectral bands, and an improved exposure-time estimation procedure, which can 42 
cope with the high dynamic range problem caused by very dark or very light base pigments, or by the orientation of metallic flakes, and/or 43 
by significant absorption in some wavelength bands, for example when highly saturated colors are used as base pigments. 44 

The paper is organized as follows. In section 2 we describe aspects of the spectral image acquisition method, such as the opto-mechanical 45 
set-up and the acquisition procedure. We discuss the acquisition process in detail, describing also how optimal exposure time is estimated, 46 
and how optimal focus position search is carried out. In section 3 we describe the image post-processing and image registration procedures, 47 
and the method for obtaining the spectral reflectance factor image. In section 4 we describe several experiments designed to test and 48 
evaluate the proposed set-up and framework. Besides, as a direct application of the proposed framework, we evaluate the spectral and 49 
color accuracy as compared to conventional instrumental approaches for color measurement. The main conclusions from this investigation 50 
are summarized in section 5. 51 

 52 
2. SPECTRAL IMAGE ACQUISITION 53 

2.1 Opto-mechanical set-up 54 
The set-up for image capturing that we developed is formed by the following elements, as shown in Fig. 1: 55 

a) Monochrome camera model Retiga SRV, by QImaging Ltd, Canada. The 2/3" sensor captures images with 12 bit intensity resolution, 56 
a spatial resolution of 1392 x 1040 pixels, and has a pixel size of 6.5 x 6.5 m. 57 

 58 

Fig. 1. Opto-mechanical set-up. 59 

b) Navitar Zoom 7000 Lens, with a focal range of 18-108 mm. We set the focal length to 108 mm to achieve high spatial resolution in 60 
the captured images. The lens aperture was set to the intermediate position in the aperture wheel of the lens. 61 

c) Liquid Crystal Tunable Filter (LCTF) model Varispec VIS-10-20, from Perkin Elmer Corp., US. The filter can be tuned to 62 
wavelengths from 400 to 720 nm, with a 10 nm bandwidth. It has a 20 mm wide aperture, with an angle of acceptance of 7.5°. We captured 63 
spectral images in the range from 400 nm to 700 nm, with a sampling interval of 10 nm (31 bands). The filter was attached directly to the 64 
Navitar Lens with a special adapter to avoid stray light. 65 

d) Linear Stage with sample holder. A sample holder was mounted on a motorized linear stage Model LTM 80-100, by OWIS GmbH, 66 
Germany. The linear stage has a travel distance of 95 mm, with maximum speed of 1 cm/s and positioning error less or equal than 25 67 
m.  68 



 69 

Fig. 2. Spectral Power Distribution of our light source (Cermax Xe Lamp PE-300BFA). 70 

e) Xenon Lamp Cermax PE300BFA by Excelitas Tech Corp, US, driven by a power source model XL2000, by Perkin Elmer Corp., US. 71 
The lamp emits 50 W radiant total output, with a peak intensity of 515000 cd, 300 W input electrical power, and a beam opening half-72 
angle of 6°. Fig. 2 shows the Spectral Power Distribution (SPD) of this light source, measured by a PhotoResearch Spectrascan PR-745 73 
spectroradiometer, using a reference white SphereOptics Zenith Lite of 95% reflectance. 74 

The illumination/observation geometry for all measurements is with the lamp oriented at an angle of 45° with respect to the plane of 75 
the sample holder (see Fig. 1), while the LCTF, lens and camera were placed at 0° observation geometry to resemble most closely the 76 
standard CIE 45/0 illumination/observation geometry, recommended for spectral reflectance measurements [14]. 77 

2.2 Acquisition procedure 78 

2.2.1 Overview of the proposed acquisition work-flow 79 
The work-flow consists of two main procedures: a calibration step in which optimal exposure time and focus positions are determined for 80 
each spectral image band, and a capture step, in which spectral image cubes are captured. The block diagram in Fig. 3 shows the capture 81 
procedure including the calibration step and the capture step. 82 

 83 

Fig. 3. Block diagram of the capture process including the calibration and capture procedures. 84 

In the calibration step, the main reason for the need of focus position search at each spectral band is chromatic aberration, which 85 
produces un-sharp images for different spectral bands, unless they are correctly focused and aligned (registered). Exposure time 86 
estimation and optimal focus position search do not require storing the acquired spectral cubes, but only optimal exposure time and focus 87 
position settings. This calibration data remains valid unless there are significant changes in the lamp spectral power distribution, or 88 
mechanical changes introduced in the set-up that affect the relative distances between the light source and the sample holder and/or the 89 
camera and the sample holder. 90 

In the capture step, several image cubes are acquired: a dark cube to perform dark image subtraction, a white reference cube for 91 
performing flat-field correction (as explained in section 3.1), a geometrical calibration cube, which consists of a checkerboard pattern 92 
printed on white paper, to be used for registration purposes, and finally the sample cube. In the white reference, geometrical calibration 93 
and sample cubes’ capture, the optimal exposure times and focus positions, previously determined in the calibration step, are used. We 94 
do not use the optimal focus positions for acquiring the black cube, since the aperture is closed during its capture.  95 

2.2.2 Exposure time estimation 96 
For estimating the exposure time in the calibration procedure, we initially used a Color Checker Passport reference white (X-Rite, US). 97 
Additionally, we also used two more reference surfaces for a modified exposure time estimation procedure for very dark or very light 98 
samples, which will be explained below. For each spectral band, we implemented a simple iterative procedure that relies on the 99 
assumption that the camera response is linear with exposure time. This assumption holds acceptably well for our set-up conditions, since 100 
we avoided the upper and lower portions of the total range of camera responses for the captures used in exposure time estimation. This 101 
was done to prevent either saturated or underexposed pixels appearing in the area of interest for the capture. 102 



We set the initial exposure time, t1, for the 400 nm band to 30 s, a value heuristically found to be suitable to our acquisition conditions, 103 
and which did not compromise the linearity of the camera responses with exposure time. Then, we acquired an image with this initial 104 
exposure time, and computed the mean camera response value Cm of a manually selected central Region of Interest (ROI) in the captured 105 
image. A target camera response Ct was set at 80% of the maximum of the response range, i.e. Ct=0.8(212–1) for a 12-bit camera. As shown 106 
in Eq. (1), Cm is compared with Ct with a tolerance range, set at ±2%, i.e. 0.02(212–1): 107 
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where te is the current exposure time, and ti+1 is a new exposure time estimated in iteration i. The exposure time estimation procedure 109 
runs until Cm is within the tolerance range or te exceeds 30 s. This is to avoid very long exposure times and non-linearities of the camera. 110 

Following the iterative process of successive exposure time estimation and image acquisition, exposure times are found for each spectral 111 
band, while adjusting the initial exposure time to the previous image band as a first guess.  112 

Fig. 4a shows estimated exposure times in a typical capture as a function of central wavelength of each band. We can observe that the 113 
exposure time curve is concave, with a central minimum and increasing values for short, and in a lesser degree, for long wavelengths. 114 
This is expected, given that the camera and lens responsivity, LCTF transmittance and the light source SPD (Fig. 2) are at their lowest 115 
in the extremes of the wavelength range. It can also be seen that for the 400 nm band the maximum exposure time of 30 s was reached 116 
(see Fig. 4a), without the signal of the white reference reaching its target value (Ct) as shown in Fig. 4b.  117 

It was further observed that the image intensity was not evenly distributed within the selected ROI, which can be explained by the 118 
spatial non-uniformity of the illumination. Consequently, values larger and smaller than Cm occur in the ROI. Nevertheless, saturation 119 
could be prevented in the ROI regardless of the spatial non-uniformity because we set Ct to 80% of the maximum camera response. 120 

For a typical capture, the exposure time estimation step takes approximately 3 minutes (about 8% of the total capture time). 121 
Since our exposure time estimation procedure is based on imaging the white reference surface, it could lead to either saturation or 122 

underexposure for samples, or regions within the samples that are much lighter or much darker than the white reference. To avoid 123 
saturation, a very straightforward alternative solution would be to use a reference white with higher reflectance values. We have tried 124 
this modification introducing the SphereOptics white reference mentioned in section 2.1 as reference white. However, while it solved the 125 
problem of saturation, it also resulted in lower camera response values for all samples and increased the underexposure problem for the 126 
darker ones, yielding images with potentially unusable data due to the low signal-to-noise ratio. The main problem with the design 127 
described before stems from the high dynamic range considering the full set of sample scenes as well as the white reference scenes. 128 

 129 

Fig. 4. (a) Exposure time distribution for a typical capture, as a function of wavelength. (b) Average signal of the white reference cube in a 500 x 500 pixels 130 
central portion of the image. At the 400 nm band, the exposure is set at 30 s (maximum value allowed). Even with this setting, the signal in the ROI does 131 

not reach the required Ct level.  132 

To solve this problem, we have introduced an adaptive procedure for exposure time estimation, which is able to cope with this dynamic 133 
range problem by changing the white reference to improve the match between sample and white radiance signals, at the cost of increasing 134 
the temporal duration of the calibration step of the work-flow. We have called this procedure dual reference dynamic exposure time 135 
setting. It consists in using two different reference surfaces, and three different values of target camera response value (Ct) for the 136 
exposure time estimation. In this way, we dynamically select the reference surface and the signal level which produces camera response 137 
values that are neither saturated nor underexposed for a given sample and spectral band. To implement it, during the calibration 138 
procedure, we run the exposure time estimation algorithm six times, combining 2 reference surfaces with 3 target response values. The 139 
three target response values considered are 80%, 50%, and 20% of the maximum camera response value (3276, 2048, and 819 respectively 140 
for a 12-bit camera). The two reference surfaces are the SphereOptics white, and the dark grey (sample 23) of the X-Rite Color Checker 141 
24. Thus, we obtain six white reference cubes and six different exposure times for each capture band. 142 

During the acquisition procedure, first an image is captured with the central exposure time of the six available from the calibration 143 
procedure for each band. If the averaged camera response value of a manually selected ROI (Cm) contained in this image is below 15% or 144 



above 85% of the maximum value (4095 digital counts for a 12 bit camera), the exposure time is considered unacceptable. Thus, different 145 
exposure times are subsequently selected from the six available, either increasing or decreasing the initial exposure time, until we obtain 146 
average camera responses that fall within the acceptable range. Then, the image is captured with this exposure time and the procedure 147 
is applied to the next band. Afterwards, the image for each band is processed with the corresponding reference white image for the band, 148 
i.e. the reference white image captured with the same exposure time. 149 

The results of an experiment which validates this adaptive exposure time estimation procedure are presented in section 4.3. 150 

2.2.3 Optimal Focus Position Search 151 
As explained previously (see section 1 and 2.2.1), one of the main novel features of our acquisition setup is the focus strategy, which is 152 
achieved by moving the sample rather than by conventional lens focusing, and is applied for each spectral band. The method used can be 153 
classified into the category of passive focus-position search methods, in which image quality (sharpness-related) real-time measurements 154 
are used as cost function to determine the best focus position [15]. We have chosen this focus setting strategy because linear stages allow 155 
for very precise and reproducible movements, and are less costly than autofocus zoom lenses with the features required in our application. 156 

As described in [16], a typical passive focus-position search algorithm is composed of two main procedures: the building of the Focus 157 
Measurement (FM) curve, in which sharpness-related measurements are obtained for candidate focus positions, and the Focus Search 158 
(FS), in which the best candidate is selected. The FS procedure determines how the candidate focus positions are chosen, and so influences 159 
the FM curve building process, particularly, the temporal duration of this procedure, which is critical for cases when the exposure time is 160 
relatively long. 161 

For the building of the FM curve, we selected a commonly used sharpness index, S, computed as the cumulative sum of the squared 162 
modulus of the gradient of the image [17]: 163 
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where h and   are image height and width respectively for a manually selected central ROI of image I (which includes a focus target 165 
pattern), i=1,...,h ; j=1,..,v, and Gx, Gy are the horizontal and vertical gradient vector components. 166 

The focus pattern consists of nine rectangles printed with black toner, with low reflectance over the entire visible range of the spectrum 167 
(see Fig. 5). 168 

Our FS algorithm makes use of the Golden Section Search procedure (GSS, [18]), a well-known numerical extrema location technique. 169 
The GSS algorithm inserts new points in the FM curve ensuring that they are as equally spaced as possible from previous values of the 170 
search range. Our FM curve represents sharpness as a function of linear stage position. Initially, images are acquired at the starting 171 
position (Xi), and the extremes of the search interval placed at XL=(Xi–5) mm and XH=(Xi+5) mm. Then, we narrow the search interval by 172 
updating the extremes of the search range (which will be called XL,i and XH,i, where i is the iteration number) based on the parameter τ 173 
computed as shown in Eq. (3): 174 
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For the first iteration, XL,1 and XH,1 are computed as: 176 
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And two new images are captured. Then, in each successive iteration, i, the start and end positions of the search interval are updated 178 
following this rule: 179 
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This process is repeated until the search range │XH,i+1–XL,i+1│ is less than 0.25 mm, or 30 iterations are reached. 181 
A polynomial curve is then fit to the FM curve and evaluated at its maximum. The focus position corresponding to this maximum is 182 

considered optimal for the given spectral band. 183 
Fig. 5 shows two instances of FM curves with their corresponding polynomial fits. We can appreciate the typical GSS irregular spacing 184 

of the search positions (blue squares in Fig. 5). For Fig. 5a, in spite of the FM curve not being smooth, we still can locate a satisfactory 185 
optimal focus position using the polynomial fitting step. In other cases, the FM curve is closer to the fitted polynomial, as in Fig. 5b. 186 



 187 

Fig. 5. Typical GSS FM curve and polynomial fitting for band (a) 410 nm, (c) 420 nm. In the vertical axis, we see the sharpness metric, and in the 188 
horizontal axis, the linear stage position in mm. The figures (b) and (d) show the focusing target at the optimal focus position found. 189 

Since we are capturing a hyperspectral image, we need to run the focus position search procedure for each band of the hyperspectral 190 
image. The process is as follow: indicated in the flow chart in Fig. 6. We first set the LCTF wavelength to a central position (560 nm) and 191 
capture an image using the exposure time estimated previously for this band. Then, if the image looks un-sharp we adjust manually the 192 
focus of our camera lens to be able to select the ROI for the focus search. Afterwards, we run the GSS looping over all the bands. The GSS 193 
starting position (Xi) for each band is either taken from a previous set of optimal focus position data, or, if no previous data were available, 194 
set to the middle position of the step motor (50 mm). 195 

For a typical capture, the optimal focus position step with GSS takes around 24 min (60% of the total time including the calibration 196 
and capture procedures). 197 

In section 4.1 we present some validation experiments for our FS algorithm, and show running time and sharpness values reached 198 
when we compare with other FS procedures. 199 

 200 
3. IMAGE POST-PROCESSING 201 

In this section, we describe how the cubes acquired during the capture procedure are used to correct the spatial inhomogeneity of the 202 
illumination, the dark current signal level of the camera, and the misalignment between different spectral bands; illustrating thus in 203 
detail the process of obtaining the final spectral reflectance factor image cube for a given sample. 204 

3.1 Flat-field correction, dark image subtraction and reference reflectance normalization 205 
In order to recover the spectral reflectance information of the imaged samples, the SPD of the illumination (Fig. 2) has to be discounted, 206 
as well as the spectral sensitivity of the imaging system, and the spatial inhomogeneity of the illumination. This can be achieved in a 207 
single step by flat field correction, since we are capturing narrow spectral bands. 208 

There are several sources of noise in an imaging system [19, 20]. Among others, the impact of two of the most important ones, the dark 209 
current noise and the thermal noise, can be discounted by subtracting the so-called dark image, obtained by completely blocking the light 210 
impinging in the sensor. 211 

The flat field correction and dark image subtraction are performed as described in Eq. (6): 212 
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where Reflwhite is the known reflectance of the white reference sample used, and Sample, Dark and White are the images of band  for the 214 
cubes captured during the acquisition procedure. 215 

If the dual reference dynamic exposure time setting is used for exposure time estimation, then we use the corresponding reference 216 
image (previously stored in the calibration procedure) to perform the flat field correction of Eq. (6). 217 

3.2 Image registration 218 



Within the domain of multispectral imaging, registration can be defined as the procedure aiming to align spatially each image in the 219 
captured cube to a given reference image, which usually is one of the bands [21]. This essentially means that one of the bands, called 220 
reference band, (550 nm in our case) is unchanged by the process, while the rest of the bands are spatially transformed to achieve 221 
alignment on a pixel-by-pixel basis with this reference band. The required transformation is not the same for all bands, which means that 222 
we have to solve N–1 individual registration problems, with N being the number of captured bands. 223 

To register correctly each band with the reference image, we need to model the displacement pattern between the unregistered and 224 
registered images, and then move the pixels in the unregistered image to the “correct” location in which the reference band corresponding 225 
pixel is placed. Then, the problem can be solved for each band with a transformation in the spatial domain, usually followed by image re-226 
sampling, since the displacements found are not necessarily integer values. 227 

In registration problems, it is fairly important to have some previous knowledge about the type of distortions that could be present [22]. 228 
In Multispectral Imaging applications, often the distortions are caused by camera or object movements along the capture of the different 229 
bands, or geometrical aberrations of the lens.  In such cases, the registration problem can sometimes be solved by finding a global 230 
transformation, i.e., a transformation that is applied globally to all pixels in the unregistered image. In our case, distortions vary locally 231 
across the image. Besides, we aim for a very accurate registration result. Thus, we need to find a model for the image transform that can 232 
be different for different parts of the image, i.e. local transforms. Local transforms [23] are necessarily slower to apply and some care must 233 
be taken to stitch the different local functions seamlessly, to avoid causing artifacts in the registered image. One way to apply local 234 
polynomial transforms is to use a non-rigid model based, for instance, on B-splines interpolation techniques with local support [24]. 235 

The main causes of image misalignment for our image data are lens distortion, lens chromatic aberration, and a global image 236 
displacement resulting from moving the sample along an axis that is not the optical axis of the imaging system during the acquisition. 237 
This last problem can be reduced by careful setup, but, in practice, it is very hard to avoid entirely. These three factors combined result 238 
in local variations of the pixel displacements for each band with respect to the reference band. In addition, a slight tilting of the LCTF 239 
filter, in combination with the lens geometrical aberration, may cause local distortions as shown in [25] for a filter wheel multispectral 240 
system. Finally, the use of quasi-monochromatic light in spectral imaging can produce more noticeable effects of the chromatic aberration 241 
naturally occurring in the captured images. 242 

We have recently proposed a solution to a non-rigid registration problem for a Hyperspectral Imaging system based on Bragg gratings 243 
(V-EOS, Photon Etc., Canada) [26], using a free-form deformation model of multilevel refined uniform cubic B-splines. The method works 244 
by tracking the displacement of some key pixels in the scene, extracted from a checkerboard pattern, and fitting a B-splines model to the 245 
displacement field. We obtain the displacement value at any given pixel position by interpolation of the fitted model displacement surface. 246 
We have adapted this technique to our acquisition workflow, using a geometrical calibration cube (checkerboard pattern formed by 247 
squares of 1.66 mm) acquired in the capture process. 248 

In Fig. 6, we show the overlap of a zoomed area of the bands 430 nm and 550 nm, before (a) and after (b) the registration post-processing 249 
is applied. The before registration imaged was processed with Matlab to show the misalignment effect in an intuitive way. We can clearly 250 
observe such effect along the edges of the checker pattern sample, and how it is corrected after registration. 251 

 252 

Fig. 6. Overlap plot of a zoomed-in area of bands 430 nm (shown as green and black image) and 550 nm (purple and black image). (a) before registration 253 
and (b) after registration and post-processing. 254 

In section 4.2 we will show quantitative results of an experiment performed to evaluate the registration accuracy obtained using this 255 
method in our image acquisition process. 256 

 257 
4. EXPERIMENTS 258 

4.1 Optimal focus position search algorithm evaluation 259 
In this section, we describe an experiment aiming to validate the proposed GSS-based optimal focus position search procedure. We 260 
evaluate the maximal sharpness reached and total running time of the search procedure. 261 

We compare the GSS optimal focus position algorithm with two other approaches: the first one is not performing focus position search 262 
at all, called "Nothing" condition. The second one is running a more exhaustive search procedure in two steps, called “Coarse to Fine” 263 
(C2F) condition. 264 

In the C2F algorithm, the sharpness is computed at equally spaced focus positions, using the same starting point as in the GSS 265 
algorithm. The first step, Coarse Search, takes seven images from (Xi–15) mm to (Xi+15) mm sampling at 5 mm steps, where Xi is the 266 
starting position. After the images are captured, the FM curve is fitted with a third degree polynomial, and the position for maximum 267 
sharpness is found. This position is used as the starting position for the second step of the algorithm, Fine Search, in which the sharpness 268 



is measured for another seven images from (Xi–1.5 mm) to (Xi+1.5 mm), sampling at 0.5 mm steps. Then, another cubic polynomial is 269 
fitted to the data, and the maximum sharpness value and optimal focus position is obtained from this second FM curve, which has been 270 
sampled more finely at 0.5 mm intervals. Thus, in total the C2F method requires capturing 14 images for each band. 271 

To evaluate the performance of the three approaches, we captured an image cube with the focus target on the sample holder (see section 272 
2.1 and Fig. 3 for a description of this target) using the optimal focus positions found for GSS and C2F algorithms. To test the ‘Nothing’ 273 
approach, we acquired a cube using a fixed object plane position corresponding to the starting point of GSS and C2F for the 560 nm band. 274 

 275 

Fig. 7. Sharpness in the ROI as a function of wavelength, for the captured focusing target cubes in the three conditions tested. 276 

Then, we measured the sharpness in a ROI, which was the same for each cube, once the cubes were post-processed to ensure correct 277 
alignment of all pixels within this ROI for all the bands. In Fig. 7, we show the sharpness as a function of wavelength, evaluated for the 278 
three approaches. Please, note that the scale of sharpness values is different than in Fig. 5 because for Fig. 7 we have used post-processed 279 
cubes, so the range of image intensity values is [0,1], and the sharpness value depends on image intensity. This does not pose any problems 280 
for the FS strategy proposed in this study, since we evaluate sharpness independently for each band in different object positions, and all 281 
images compared have a very similar intensity distribution. From the results in Fig. 7, we can point out several interesting observations: 282 

a) The "Nothing" condition results in a steep decrease in sharpness in the bands far from the 560 nm reference. These images are 283 
unacceptably blurred and would provide useless data for further analysis. The results pinpoint the need for using a FS strategy within 284 
our capture framework. 285 

b) Both GSS and C2F algorithms provide very similar sharpness at the focus positions found. 286 
c) The lowest sharpness is found for the 400 nm band in all three conditions. We can explain this by the fact that the optimal exposure 287 

was longer than 30 s (maximum exposure time set within our capture framework). Therefore, the optimal signal value (Ct) was not 288 
reached for this band (see Fig. 4), and the images were somewhat underexposed, resulting in lower intensity values and so lower values 289 
of the sharpness metric. This does not mean that the images are more blurred for 400 nm, only that the sharpness metric, which is 290 
intensity dependent, has a different scale for this band. We could overcome this problem by setting a higher exposure time limit, but this 291 
would cause a significant increase in the capture time, and also potential failing of the linearity of the camera response with received 292 
radiance. 293 

As we can see from Figs. 5 and 8, the sharpness reached by both GSS and C2F algorithms is satisfactory, no blurring being visually 294 
perceptible in the images captured at the Optimal Focus Positions found. The main difference between GSS and C2F is found when we 295 
evaluate the performance in terms of running time (see Table 1). C2F running time is higher by approximately a factor of 2.4 compared 296 
to GSS, while providing similar optimal sharpness results. The percentage of total acquisition time taken by the FM step is similar for 297 
both algorithms, around 60%. This points out the importance of saving time in the FS step of our proposed framework. In total, GSS took 298 
21 min 38 s, while C2F took 51 min 38 s, representing a considerable amount of time saved in the calibration procedure. 299 

 300 
Algorithm Running Time 

(s) 

Percent of total 

capture time for 

calibration capture 

Percent of increase 

in time in the Focus 

Search step 

GSS 1297.70 60.30 0 

C2F 3097.58 57.42 238.7 

Table 1. Running time of C2F and GSS algorithms. 301 

If we examine the difference in the Optimal Focus Positions found by C2F and GSS in all the bands tested, we find in average 0.85 mm 302 
(with standard deviation of 0.21 mm). GSS tends to find positions slightly closer to the camera in all bands. These differences in position 303 
do not result in perceptible variations in sharpness. We think these differences lie within the depth of field of the camera, since the 304 
sharpness results are reflecting the fact that the images are equally sharp in both C2F and GSS optimal focus positions. 305 

4.2 Evaluation of registration performance 306 



We have evaluated the performance of the registration step of the proposed framework by using a metric based on displacement statistics 307 
of the geometrical calibration cube. We take as reference the spatial coordinates of all corners extracted in a central section of 15 x 11 308 
squares of the checkerboard pattern from the reference band (550 nm). Then, for each band, we extract corresponding corners, and 309 
compute the difference in x and y pixel coordinates positions with respect to the reference band. The 192 (16x12 corners) element vectors 310 
(two x and y displacement vectors for each of the 32 bands) are then analyzed in terms of first order statistics. 311 

In this experiment, for comparison, we have obtained the displacement vectors in three conditions: 312 
1) Before performing registration. 313 
2) After performing registration, from the same cube used to compute the registration transformation. We call this the "fitting" error. 314 
3) After performing registration, from a checkerboard target cube acquired later on, but corrected by the previously obtained 315 

registration transformation. We call this the "alignment" error. 316 
All the cubes captured in conditions 1, 2 and 3 share the same optimal focus positions. Please, note that the registration transformation 317 

is only valid for a particular set of focus positions and has to be refitted once these positions change. 318 

 319 
 1  

(Before registration) 

2  

(Fitting error) 

3 

(Alignment error) 

x coordinate    

Mean 1.4872 0.2146 0,6644 

STD 1.6992 0.1963 0,6982 

Max 10.4466 1.8039 3,9465 

95 Percentile 3.5475 0.6018 2,2706 

y coordinate    

Mean 1.4805 0.1721 0,1796 

STD 1.4922 0.1532 0,1819 

Max 7.8392 1.4398 2,2518 

95 Percentile 4.7806 0.4700 0,497 

Table 2. Fitting and alignment error for x and y coordinates. 320 

Table 2 shows the first order statistics corresponding to the fitting and alignment error displacement vectors for x and y coordinates in 321 
the three conditions described above. We can see that we reach sub-pixel registration accuracy for the fitting error, reducing the average 322 
displacement to around 0.2 pixels in both x and y coordinates. Both average and 95 percentile of the displacement vectors are below 1 323 
pixel, and the maximum value is of the same order as the average displacement in condition 1 (before registration). The alignment error 324 
is clearly higher than the fitting error, at any rate for the x coordinate and less clearly for the y coordinate. This might reflect a tendency 325 
to overfitting of the registration model, which is not worrying because we still reach on average sub-pixel accuracy in the alignment error. 326 

In Fig. 6, we show the overlap of the reference (550 nm) and 430 nm bands in condition 2. The rest of the bands show the same behavior, 327 
also in the cube used in condition 3. 328 



 329 
 330 

Fig. 8. Zoomed-out image of an effect coated sample in which we can see how the typical sparkle size exceeds one pixel. This illustrates the high spatial 331 
resolution achieved in the capture. 332 

Fig. 8 shows a zoomed-in area of a sample cube before (left) and after (right) the post-processing procedure was carried on. The spatial 333 
details are enhanced, and the sparkle color can be analyzed without the artifacts produced by the misalignment and defocus effects that 334 
appear in the left part of the Fig. 8. 335 

Thus, we can conclude that registration is performed accurately in our framework. 336 

4.3 Evaluation of spectral and color accuracy 337 
In this section, we describe two experiments performed to test the spectral and colorimetric accuracy of the proposed device and the 338 
acquisition work-flow for measuring the spectral reflectance of different types of planar samples, comparing with conventional 339 
instrumental approaches for color measurement. 340 

In both experiments, the spectral reflectance of the samples was computed over a ROI of 500x500 pixels, roughly equivalent to 1.7x1.7° 341 
of viewing angle subtended from the center of the LCTF. We also measured the spectral reflectance of the samples with two other devices 342 
operating in different illumination/observation conditions. The first device was a PR-745 spectroradiometer from SpectraScan (US), 343 
operating with 2° field of measurement. We averaged 5 spectral radiance measurement cycles to obtain the corresponding data for sample 344 
and reference white. The second device was a Minolta CM-2500d spectrophotometer, operating with d/8 geometry and with a 345 
measurement area spot of 10 mm. We are aware that the differences in geometry between PR-745 and CM-2500d devices do not allow 346 
direct comparison of the measurements, but we introduce the spectrophotometer results as a way to show the upper limit of inter-347 
instrument differences that we can expect for our set of samples. 348 

For both experiments, two sets of samples have been considered. 349 
a) The solid set, in which a flat metal substrate is covered by a high-gloss coating, consisting of conventional absorption pigments. The 350 

color of these samples is completely visually uniform. Therefore this set is used as a reference set for which the measurements provided 351 
by spectral imaging are expected to correlate well with point-measurement devices (eg. PR-745 and CM-2500d).  352 

b) The effect set contains samples with a variety of paints typical for different coating markets: powder coatings, architectural coatings 353 
for metal substrates, and coatings for the car repair industry and consumer electronics. The color of these effect samples is not uniform, 354 
as it varies at a spatial scale that differs for the various samples. In addition, the gloss level varies over this set of samples. Many of these 355 
coatings contain metallic and/or pearlescent flake-shaped pigments. Depending on the lighting conditions and viewing angle, sparkle or 356 
coarseness patterns are visible to a varying extent.  357 

The first experiment was performed on samples that do not contain very dark or light base pigments, considering 9 samples from the 358 
solid set and 17 samples from the effect set. 359 

For the second experiment, we chose 7 solid and 21 effect samples which resulted in extreme lightness values when viewed in our 360 
observation/illumination conditions. The spectral images of these samples were captured using the dual reference dynamic exposure time 361 
setting, specifically developed for these samples, as described in subsection 2.2.2. 362 

4.3.1 Comparison metrics 363 
In the experiments described in this section, we used one colrimetric and two spectral indices  to determine the degree of inter-instrument 364 
agreement. The spectral metrics are the Goodness-of-Fit coefficient (GFC), related also to the Pearson Distance [27], and the Root-Mean-365 



Square Error (RMSE). The colorimetric index is the CIEDE00 color difference formula [28]. For spectral indices, it is generally accepted 366 
that a GFC over 0.999 and RMSE below 0.02 give a reasonable degree of closeness between two reflectance measurements, although the 367 
criterion to determine an acceptable match between samples might depend on the particular application for the spectral data [29]. 368 

4.3.2 Experiment 1: Solid and effect coated samples not containing extreme lightness values 369 
Fig. 9 shows the spectral reflectance values measured by the three devices for two samples, which RMSE (a and b) or CIEDE00 differences 370 
(c and d) are near to the 95 and 5 percentiles in the respective distributions, as representative examples of the set used in Experiment 1. 371 

 372 
Fig. 9. Spectral reflectance factor for a sample with RMSE close to the 5 percentile (a), RMSE close to the 95 percentile (b), CIEDE00 373 
close to the 5 percentile (c) and CIEDE00 close to the 95 percentile (d) in the comparison between HRES and PR745 measurements for 374 
Experiment 1 in section 4.3. 375 

Table 3 shows first order statistics of the spectral and color metrics used to compare the three measurement devices. From this data, 376 
we make the following observations and conclusions related to inter-instrument differences: 377 

a) The HRES measurements are more similar to the PR745 measurements than to the Minolta cM25000d measurements. 378 
b) The PR745 measurements are more similar to the HRES measurements than to the Minolta cM25000d measurements. 379 
c) The Minolta CM2500d measurements are more similar to the PR measurements than they are to the HRES measurements. 380 
d) The Mean and Median values are markedly different in all inter-instrument comparisons, which indicates that there are samples 381 

that produce either very similar or very dissimilar results among different devices. 382 
 383 

 HRES-PR745 HRES-MINOLTACM2500D PR745-MINOLTACM2500D 

 RMSE GFC CIELAB CIEDE00 RMSE GFC CIELAB CIEDE00 RMSE GFC CIELAB CIEDE00 

Mean 0.0094 0.9996 1.844 1.130 0.0357 0.9991 5.679 3.785 0.0309 0.9995 5.138 3.341 

Median 0.0078 0.9997 1.790 1.130 0.0252 0.9997 4.012 2.748 0.0156 0.9999 3.284 1.952 

STD 0.0052 0.0003 0.898 0.529 0.0405 0.0014 4.455 2.695 0.0400 0.0010 4.600 2.829 

Max 0.0222 1.0000 4.1034 2.4814 0.1956 1.0000 18.2274 10.9527 0.1829 1.0000 18.5782 9.7252 

Min 0.0023 0.9990 0.3467 0.3202 0.0041 0.9945 0.1377 0.0947 0.0034 0.9953 0.6502 0.4017 

95 Percentile 0.0164 1.0000 3.1509 1.9109 0.1071 0.9999 15.2573 8.4248 0.1060 1.0000 14.0018 8.3680 

5 Percentile 0.0028 0.9991 0.4363 0.3559 0.0059 0.9957 0.9475 0.7006 0.0042 0.9977 1.054 0.7059 

Table 3. First order statistics for normal samples (Experiment 1). 384 

These results show that the spectral data obtained with the proposed framework (HRES) are very similar in average to the data 385 
obtained with the spectroradiometer (PR745), especially in the terms of the spectral metrics, RMSE and GFC. The measurement 386 
geometry used for measuring the HRES and PR745 data is quite similar, while both instruments are different in design and measurement 387 
geometry from the spectrophotometer (Minolta CM2500d). This probably explains most of the differences found for the group of samples 388 
analyzed in this experiment between PR745 and HRES when we compare with the Minolta results, given the markedly different behavior 389 
of effect and specular samples for different illumination/observation geometries [7]. 390 



Looking at the maximum and 95 percentile results, we can conclude that there are samples that produce large inter-instrument 391 
differences for the three devices. However, the maximum or 95 percentile results for the HRES-PR745 comparison are only slightly above 392 
the average results, which indicates a much more homogeneous group of measurements between the two 45/0 geometry devices. In 393 
addition, the effect coatings, that form a large part of the sample sets, present large spatial inhomogeneities in the reflected light pattern, 394 
with large reflection values concentrated on relatively small spots (sparkle). These sparkles contribute differently to the measured signals 395 
of the PR-745 and the HRES, because of the different ways the samples’ irradiance signals are spatially integrated in the device imaging 396 
sensors. Nevertheless, the resulting inter-instrument color differences between HRES and PR-745 as summarized in Table 3 can be 397 
considered relatively small. 398 

Based on these results, we conclude that the proposed framework for spectral image acquisition of effect coatings, at least for samples 399 
with lightness in the intermediate range in our observation/illumination conditions, can provide reflectance data with high spatial 400 
resolution and large colorimetric accuracy as compared to data obtained with a spectroradiometer operating in comparable illumination 401 
and detection geometry. 402 

4.3.3 Experiment 2: Solid and effect coated samples presenting extreme lightness values 403 
In this experiment, we analyze inter-instrument differences for a group of samples that are either very light or very dark, resulting in 404 
extreme lightness values in comparison with the samples included in Experiment 1. Thus, these samples produced either saturation or 405 
very low camera response values when measured using the proposed work-flow and the exposure times estimated using the Color 406 
Checker Passport white as reference. 407 

As explained in section 2.2.2, we have introduced some adaptations in our work-flow to be able to measure the extreme samples, called 408 
the dual reference dynamic exposure time setting adaptation. Thanks to this procedure, we could capture the 28 extreme samples in 409 
Experiment 2 with acceptable values of camera responses in all the cases, even for highly specular metallic surfaces with textured coating 410 
(effect set). For the lighter samples, the work-flow adaptation resulted in unsaturated average camera responses within the ROI. For the 411 
darker samples, it resulted in a signal-to-noise ratio (SNR) increase of 27.7%: from 44.4 dB to 56.63 dB on average for the bands with 412 
signal below 15% of the maximum, if we compare with using the SphereOptics white for exposure time estimation without the dual 413 
reference dynamic procedure. Please note that SNR is computed as the logarithm of the ratio between the mean camera response of the 414 
samples and the mean camera response of the dark. 415 

Fig. 10 shows plots of reflectance values for samples that have RMSE (a and b) or CIEDE00 values (c and d) close to the 95 and 5 416 
percentiles, as representative examples of the set used in Experiment 2. 417 

 418 
Fig. 10. Spectral reflectance factor for a sample with RMSE close to the 5 percentile (a), RMSE close to the 95 percentile (b), CIEDE00 419 
close to the 5 percentile (c) and CIEDE00 close to the 95 percentile (d) in the comparison between HRES and PR745 measurements for 420 
Experiment 2 in section 4.3. We have modified the scale in the left column figures to allow for better appreciation of the differences 421 
between measurement devices. 422 

Table 4 shows the inter-instrument comparison data for the Experiment 2. The data from Table 4 supports the observations already 423 
presented in the previous subsection. For the samples used in Experiment 2, however, the group is less homogeneous, as indicated by 424 
larger standard deviation values for all metrics. The average and median inter-instrument differences are also higher than for the samples 425 
used in Experiment 1. 426 

These differences with respect to Experiment 1 results can be explained if we consider that the samples in Experiment 2 are less 427 
homogeneous as a group in terms of lightness values. This tends to enhance the inter-instrument differences obtained. Nevertheless, we 428 
still conclude that the results obtained with the HRES are within the range of usual inter-instrument differences, especially if we compare 429 
devices that use different measurement geometry. 430 



To further validate the proposed work-flow adaptation, we have measured the extreme samples using the SphereOpticcs white as 431 
reference for exposure time estimation and without the dual reference dynamic exposure time setting procedure. The results obtained 432 
were markedly more dissimilar to the PR745 measurements in average, with an increase of RMSE of 55.5%, and a 27.77% increase in 433 
CIEDE00 color difference. The maximum and 95% values supported this conclusion as well. 434 

In Fig. 9 (b and d), we can observe how the work-flow adaptation that we have introduced produces spectral reflectance curves which 435 
are slightly less smooth, very likely due to the changes in the reference reflectance values used for different bands, which can be abrupt 436 
between adjacent bands in some cases. 437 

 438 

 HRES-PR745 HRES-MINOLTACM2500D PR745-MINOLTACM2500D 

 RMSE GFC CIELAB CIEDE00 RMSE GFC CIELAB CIEDE00 RMSE GFC CIELAB CIEDE00 

Mean 0.0162 0.9991 2.287 1.546 0.0326 0.9968 5.115 3.321 0.0243 0.9969 4.665 2.798 

Median 0.0129 0.9995 1.963 1.300 0.0163 0.9995 2.409 1.734 0.0084 0.9999 2.244 1.840 

STD 0.0179 0.0013 1.767 0.946 0.0599 0.0075 5.829 3.512 0.0565 0.0900 5.887 3.459 

Max 0.0617 0.9999 8.643 4.786 0.2607 0.9999 22.915 15.106 0.2722 1.0000 23.563 15.424 

Min 0.0004 0.9935 0.573 0.431 0.0007 0.9707 0.894 0.754 0.0006 0.9624 0.195 0.231 

95 Percentile 0.0526 0.9998 5.080 2.984 0.1601 0.9988 18.183 9.626 0.1138 1.0000 17.634 8.923 

5 Percentile 0.0006 0.9971 0.614 0.650 0.0012 0.9783 0.955 0.777 0.0007 0.9779 0.442 0.374 

Table 4. First order statistics for extreme samples (Experiment 2). 439 

4.4 Estimation of the spatial resolution achieved 440 
Finally, we have also computed an estimation of the spatial resolution achieved by our capture device. The known side length in mm of 441 
the checkerboard pattern and the corresponding pixel length extracted from its image were used to estimate an approximate image 442 
resolution of 29.8 m/pixel. This spatial resolution is enough to adequately resolve the smallest spatial detail of the sparkle patterns 443 
analyzed, so that a typical sparkle point subtends more than 1 pixel always, as we show in Fig. 11. 444 

 445 

Fig. 11. RGB rendered image of an effect coated sample before (left) and after (right) applying the post-processing steps 446 

At the usual working distance of 250 mm, the human eye would achieve a spatial resolution of 72.7 m, assuming the typical angular 447 
resolution limit of 1 arc minute. This shows that our capture device outperforms the human eye in terms of spatial resolution and makes 448 
it suitable to effect-coatings sample measurements. 449 

 450 
5. SUMMARY AND CONCLUSIONS 451 

A novel and complete framework specially designed for high-resolution spectral imaging of effect-coated samples has been presented and 452 
validated. We have produced a comprehensive set of experiments to assess the proposed framework performance, something that to our 453 
knowledge has not been reported before within the context of spectral imaging of effect-coated samples. 454 

For these specific samples, a high-resolution image is essential to deal with the flake-shaped pigments, called sparkle, with a size of 455 
several micrometers. An approximate image resolution of 29.8 m/pixel is achieved with the proposed device and framework. Because of 456 
the high spatial resolution, the distance from sample to camera is short enough to make necessary both- a focus search strategy (band by 457 
band) and an image registration procedure. We have coped with the focus search problem by shifting the object, mounted on a linear 458 
stage, instead of moving the lens. This approach allows for very precise movements for low cost as compared with autofocus lens systems. 459 
The proposed GSS-based strategy is able to achieve a significant reduction in running time while preserving sharpness in the optimal 460 



focus positions found. The importance of correctly registering the images captured for different spectral bands has also been demonstrated, 461 
applying a multi-level B-spline based registration technique which achieves sub-pixel accuracy in the registered images. 462 

Hyperspectral measurements of effect-coated samples also have to deal with the high dynamic range produced by these samples, which 463 
exhibit extremely high and/or extremely small values of lightness. These extreme values may be due to very dark or very light base 464 
pigments, or to specific orientation of the metallic flakes. In addition, they can also be caused by significant absorption in some wavelength 465 
bands, for example, when highly saturated colors are used as base pigments. A dual reference dynamic exposure time setting has been 466 
introduced in the framework and tested extensively. This procedure improves the match between sample and white radiance signals 467 
using combinations of two reference white samples with tree target camera-response values, at the cost of increasing the temporal 468 
duration of the calibration step of the work-flow. 469 

The final goal of the setup, to obtain reflectance measurements pixel by pixel, has been tested and it has been proven that the proposed 470 
framework is able to produce spectral reflectance measurements that are comparable to conventional point-based measurement devices 471 
if we average our spectral data over an area of similar size and position. It should be highlighted that the proposed device offers the 472 
additional advantage of providing high spatial resolution in the spectral cubes captured. The spectral and color accuracy validations of 473 
the framework have been performed using the most extensive set of effect-coated samples tested so far in hyperspectral imaging, to our 474 
knowledge, including solid colors (coatings with uniform color) and effect colors, and samples with and without extreme values for 475 
lightness. 476 

We can identify as one limitation of our framework that it is not able to cope with the within-sample high dynamic range problem 477 
produced by the specular nature of the metallic flakes usually present in the effect-coated samples. One likely solution would be to adapt 478 
existing high dynamic range capture techniques to the proposed framework. We are contemplating this possibility for future work, 479 
although we are aware of the fact that this solution would make the work-flow running time unavoidable longer. 480 

As prospective applications for which the proposed framework can be of interest, we can mention classification of pixels into sparkle or 481 
base pigment, color quality assessment of sparkle patterns, designing of color-difference formulae based on spectral texture information 482 
that can achieve better agreement with the human observer’s color difference assessment, and (if the capture framework is extended to 483 
include different illumination/observation geometries) accurate rendering of effect coated samples in virtual reality environments.  484 

 485 
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