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Abstract: Saliency detection has been an important topic during the last decade. The main 
goal of saliency detection models is to detect the most relevant objects in a given scene. Most 
of these models use RGB images as an input because they mainly focus on applications where 
features (e.g. faces, textures, colors or human silhouettes) are extracted from color images and 
there are many labeled databases available for RGB-based saliency data. Nevertheless, the 
use of RGB inputs clearly limits the amount of information from where to extract the salient 
regions since spectral information is lost during the color image recording. On the contrary, 
multispectral systems are able to capture more than three bands in a single capture and can 
retrieve information from the full spectrum at a pixel. The main aim of this study is to 
investigate the advantages of using multispectral images instead of RGB images for saliency 
detection within the framework of unsupervised models. We compare the performance of 
several unsupervised saliency models with both RGB and multispectral images, using a 
specific dataset of multispectral images with ground-truth data extracted from observers’ 
fixation patterns. Our results show a general improvement when multispectral information is 
taken into account. The saliency maps estimated by using the multispectral features are closer 
to the ground-truth data, with the simplest Graph-based (GBVS) and Boolean Map-based 
(BME) models showing good relative gain compared with other approaches.

1. Introduction
The human visual system is able to detect the relevant or important information out of all the 
amount of data that enters the eye. This cognitive process known as visual attention is 
complex and its complete understanding and simulation have been widely explored. Back in 
1998, Itti et al., [1] proposed the first completely functional saliency model, which tried to 
simulate where the human visual system would focus its attention on a given RGB image. 
After Itti’s revolutionary work, many other models were to come which attempted to improve 
the results. In order to extract salient information, most models utilize some specific features, 
from the more basic intensity, color and orientation to the more advanced features like: 
motion, optical flow, flicker, multiple superimposed orientations (crosses or corners), texture 
contrast [2]. 

All the previously cited features use trichromatic images as an input. These are the more 
common types of images (RGB color images), which try to simulate how the human visual 
system responds to light and extracts color information. The human eye, and therefore most 
conventional cameras, have three kinds of channels or photoreceptors, sensitive to different 
parts of the visible light spectrum. Consequently, when capturing an image, the incoming 
light recorded by the camera sensor is encoded with three numbers (R-, G-, and B-digital 
values or L-, M- and S-cone responses) and thus the spectral information is lost. Nevertheless, 
such spectral information might be useful for certain applications. In recent years there has 
been a growing interest in devices (more and more affordable) able to capture all this extra 
information, not only with a better spectral resolution in visible light but also being able to 
capture light in other areas of the spectrum such as the ultraviolet, infrared and thermal. The 
increase in the availability of these multispectral and hyperspectral cameras has facilitated 
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huge advances in fields such as robotics, remote sensing, satellite imaging, medicine, food 
control and even object detection [3-5].

In this study, we analyze the advantages of using multispectral images with the aim of 
salient object detection using some of the more known saliency models and adapting them to 
receive and take advantage of spectral information. The topic of saliency detection and 
prediction is described in general at an introductory level in the review/book by Li and Gao. 
[6]. The idea is to compare the original models developed for RGB images with their adapted 
multispectral versions by using the most common evaluation metrics and investigate whether 
there is an improvement or not. Although multispectral images go beyond what the human 
vision can perceive, multispectral saliency detection does not imply a perfect simulation of 
bottom-up visual attention, but rather a broader detection of objects that stand out spectrally 
from their neighbors, which can also be related to knowledge and task associated visual 
attention, the so called top-down visual attention. Specific Visual Attention Models (VAM) 
have been developed for spectral images [7-9] (see section 2), but in these studies the 
comparison between RGB and multispectral images was not addressed specifically. Our study 
aims to tackle this issue using the least favourable situation for multispectral images, which is 
using models that have been specifically developed with RGB images in mind. Two specific 
fields of application that can benefit from the results shown in this paper could be: 
surveillance and security field (to detect objects or events of interest in urban scenes using 
modified camera surveillance devices to make them multispectral), and a second one could be 
the active monitorization of the state of preservation of the elements present in urban scenes.

This paper is organized as follows: Section 2 reviews some of the more relevant related 
studies modeling visual attention; Section 3 describes the methodology and the framework of 
the research, Section 4 analyzes the results obtained, and the conclusions are in Section 5.

2. Visual attention modelling

During the last decade it has been of great interest to look for appropriate answers about 
what determines in the end where and why an observer aims their gaze to particular locations 
in a scene. When some areas in an image attract the visual attention and the point of gaze of 
an observer it is said that these regions show high saliency, (i.e. specific low-level visual 
features are attracting the observers’ interest), and thus the saliency map is a biologically 
plausible model for bottom-up attention as proposed by Koch and Ullman (1985) [10]. Their 
definition of saliency relied on center-surround principles considering that points in the visual 
scene are salient if they differ from their neighbors. There are many features characterizing a 
visual scene, amongst which we could cite edges, contrast, luminance and color as the main 
visual features defined at different scales. Classical bottom-up visual models get relatively 
good results when they use these features to localize the highly salient features in a scene, 
both for natural and artificial images. Latterly, including task-dependent constraints within 
the saliency algorithms has been found to improve the derived salient maps [11]. These kinds 
of models, which operate at higher visual levels (i.e. top-down models) use a prior knowledge 
to get visual attention. Eye tracking systems are usually employed to record observers’ gaze 
paths as they view a collection of images. After discarding saccade fixation locations, the 
corresponding fixation map can be obtained. 

As explained in the previous section, the most influential attempt to create a complete 
saliency model was made by Itti et al. [1] inspired by the theoretical work of Treisman et al. 
[12] in the feature integration theory (FIT) where three basic features that influence to the 
visual attention were proposed: intensity, color and orientation. The Itti model proposes how 
to extract these three features from a digital color image based on bottom-up scene-based 
properties by selecting pre-attentively computed simple features and combining all of them 
into a conspicuity map for each channel. Doing this to different sizes of the same image 
through a Gaussian blur pyramid, center-surround difference at each feature simulates the 
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neuronal receptive fields found in the human visual system. Finally, after obtaining the 
relative saliency contribution of each feature, a linear combination, resulting in the final 
saliency map is produced. Moreover, as established by Tatler et al. [13] there are differences 
between visual features in attended and non-attended spatial locations in an image. To be 
more specific, these differences are determined by various contrasts, luminances, 
chromaticity, energy and orientation. Nevertheless, doubt on these findings has been cast by 
Braddely and Tatler [14] who found that a fixation map is dominated by high-frequency 
edges; the authors argue that contrast does not contribute to saliency and that the other 
features are “behaviorally irrelevant”. 

Later on, many models appeared improving different assets of this initial approach: the 
use of a log-spectrum in the input image [15], using the information theory to extract salient 
information [16], using high level features [17] and supervised learning trained by large eye-
tracking datasets [18]. Recently the majority of leading benchmark models have been based 
on convolutional networks and deep learning techniques [19].

In this section we describe first the RGB-based models used in our study, and then some 
models developed specifically for multispectral images. 

2.1. RGB-based saliency prediction

Out of all the existing models we have selected five and adapted them to receive 
multispectral images as input. This selection was done taking into account their impact, their 
accuracy, and the feasibility of adapting them to multispectral images. 

(1) ITTI: Itti’s model [1] has been selected due to its influence on salience detection 
research and the many times it has been used in previous studies. As we have explained, Itti 
uses center-surround differentiation over three main features: intensity, color and orientation.

(2) GBVS: Harel et al. [20], proposed the graph based visual saliency, a modification of 
Itti’s model; whilst using the same feature extraction, it proposes new activation, 
normalization and combination steps based on graph computation. Activation and 
normalization are achieved by implementing a Markovian approach: a fully connected graph, 
with a weight assigned to each edge connecting one node of the feature map to all the other 
nodes except itself. Therefore, by adding these two graph-based approaches to the steps of 
activation and normalization, and using the feature extraction already proposed by Itti, and a 
linear concatenation of normalized activation maps, they were able to significantly improve 
both the performance and the accuracy of the other existing saliency methods.

(3) RARE: Published in 2012 by Riche et al. [21], it proposes finding salient 
information by looking at the rarity of the different features. Rarity is calculated by using co-
occurrence matrices of a given pixel or region; giving high values to pixel that has values that 
are less frequent. It uses principal component analysis (PCA) over the RGB images in order 
to find higher discriminations; it also uses Gabor filters to analyze different orientations. 

(4) BMS: Boolean map saliency, proposed by Zhang and Sclaroff in 2013 [22]. The idea 
is to binarize the different channels of the image by using random thresholding, and extract 
the salient information by analyzing their topological structure. This model is quite simple 
and using low-cost processing it reaches high scores when compared to other models.

(5) LDS: Continuing with the same idea as RARE, learning discriminative subspaces on 
random contrasts [23] tries to project the images into more discriminative sub-spaces that 
allow targets to pop out. It calculates the principal components using a big set of image 
patches and by maximizing the contrast between target and background it learns what sub-
spaces are more suited to show this differentiation. 

2.2. Spectral-based saliency prediction
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Although the previously cited models are able to predict salient information with a 
high accuracy (although lower than supervised models), they extrapolate all the information 
from an RGB image. The idea of using multispectral or hypersepctral images in order to 
predict salient information is not new and there have been several attempts to create spectral-
image-based saliency models. Most of them adapted Itti’s model to receive different features 
such as: 

- Using space transformation methods such as Principal Component Analysis (PCA) [8] or 
Non-negative Matrix Factorization (NMF) [9] in order to reduce the dimensionality of the 
multispectral images and get a higher contrast of the more distinguishable objects.

- Computing spectral differentiation metrics between the different pixels, to more easily 
compute spectral differences between center and surround [9, 24].

- Taking advantage of the higher spectral resolution to more accurately select the blue-
yellow (BY), and red-green (RG) vectors extracted from the corresponding group of spectral 
bands [9]. 

All the above studies were presented as complete saliency models instead of an adaptation 
of previous models, so it was difficult to distinguish whether the performance of these models 
is related specifically to the usage of multispectral or hyperspectral information. In our case, 
we use models specifically developed for RGB images and adapt them to receive 
multispectral information as input. Our aim is to investigate if there is an improvement in the 
models’ performance when they use a more complete source of information to obtain the 
saliency prediction. 

We are aware that the selected models are not among the best performing since the advent 
of convolutional neural networks (CNN-based saliency prediction approaches [25-26]). 
However, supervised models would require a high amount of labeled spectral images to 
produce acceptable results, since they would per force have to be re-trained if spectral images 
are to be used as input.  Currently, there are no labeled spectral images’ databases of more 
than four channels for saliency detection. We think it is worth investigating if using spectral 
information can provide a significant improvement in unsupervised saliency prediction before 
tackling the huge task of capturing and labelling a sufficient amount of spectral data to test 
with supervised approaches for saliency prediction. Besides, finding efficient ways to adapt 
existing models to receive different input data has also an intrinsic interest. 

3. Methods

3.1 Image dataset and ground-truth data

We have used a set of nine multispectral images of urban scenes and their corresponding 
RGB version, three of them containing people, to test RGB vs Multispectral images saliency 
prediction performance. The results of this study are applicable to saliency detection in any 
framework, though the scenes captured in this work have only urban content (buildings, 
vehicles, urban furniture, people, plants…). The images were recorded using the PixelTeq 
(Halma, UK) SpectroCam VIS camera [27] which is composed of a monochrome silicon 
sensor with spatial resolution of 2456 x 2058 pixels, sensitive to wavelengths between 370 
and 1100 nm (see Fig. 1 left).  We are aware that more advanced sensors like InGaAs-based 
ones are sensitive to spectral regions beyond this range (i.e. up to 1700 or 2500 nm). This 
could certainly yield interesting results since we could explore different spectral regions with 
maybe interesting information for the saliency detection task. However, this would highly 
increase the cost of the imaging systems. In this regard, silicon-based sensors offer an 
affordable and easy to find solution yet presenting good performance for saliency detection. A 
filter wheel with 8 slots is placed between the lens and the sensor, and rotated to sequentially 
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capture the images corresponding to each band. The exposure time for each channel was 
determined independently to ensure that the scene was correctly exposed for the 
corresponding band. 

We selected a range of filters with specific transmittances to cover the whole visible and 
near infrared (NIR) regions of the spectrum. In Fig. 1 right, the spectral responsivities of the 
channels are shown. Channels 1 to 5 have their responsivities within the visible range 
(roughly from 400 to 750 nm), channels 7 and 8 are sensitive in the NIR range (from 750 to 
1000 nm), and channel 6 is both sensitive in the visible and NIR ranges. Of course, a higher 
number of channels with spectrally narrower sensitivities could help improving the saliency 
detection task by offering a higher amount of data. However, this would also increase the cost 
and complexity of the imaging system and the image data processing. For specific 
applications, an optimized filter selection could be carried out [28]. However, in this study, 
the available filters were meant for the general spectral imaging task, thus covering the whole 
visible and NIR range with certain overlap.

Each image has a resolution of 2456 x 2058 pixels x 8 different channels corresponding 
to the transmittance of each filter to the scene. In order to generate the RGB images from our 
multispectral data, we just selected three filters which were reasonably close to the standard 
peak wavelengths of R, G and B channels in a conventional RGB camera, and used them as 
the three channels of the RGB image. These filters were those corresponding to channels 5 
(680 nm), 3 (555 nm) and 1 (450 nm), respectively. At this point one might think that the 
comparison is not fair since the RGB images only cover the visible range, and the 
multispectral system used in this article also cover the NIR range up to 1000 nm. However, 
this advantage is a part of the potential assets of multispectral systems. Not only offering a 
higher number of spectral channels within the same spectral range, but also extending its 
spectral range. Specifically, the sensor used in this study is a silicon-based sensor like the 
ones used in common RGB imaging systems. Therefore, we could extend the potential of any 
silicon sensor by removing the IR cut-off filter and adding the same color filters with the 
filter-wheel. There is no need to use a more complex and costly InGaAs-based sensor for it 
[29].

We used the RGB images to generate the ground-truth data for testing our hypothesis. A 
total number of 6 different observers composed of 4 women and 2 men, with mean age of 24 
years were asked to look freely at the RGB version of the images while their eye movements 
were being recorded with an Eye-tracker device (Tobii II, from Tobii company, Sweden) 
[30]. The images were presented during 6 s. The objects with the highest number of fixations 
in each image (accumulating more than 70% of the fixation time), were marked as ground-
truth salient objects and manually segmented from the images to generate the ground-truth 
data (see Fig. 2).

3.2 Features analyzed

In this subsection, we describe the features extracted from the spectral images and later 
fed as input for the adapted version of the visual attention models. We have used a range of 
features that can be divided into three main groups:

(a) CIELab: in general, color information is used in most of the saliency models, 
which use color or RGB images as input. The raw RGB color information can 
be used directly by the model, or else the RGB can be transformed into a 
different color space which better emulates human perception. The CIELab 
color space [31] is quite widely used for this purpose. The information conveyed 
by the three channels of the Lab feature (L*, a* and b*) is then fed to the 
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adapted models as a 3-dimensional image. Therefore, the model processes each 
channel independently and the corresponding activation maps are concatenated.

(b) PCA: in spectral images, usually the information contained in each pixel is 
high-dimensional. Our hypothesis is that this extra amount of information can be 
useful in the prediction of saliency. Nevertheless, many spectra are smooth 
functions and this means that there will be some amount of correlation between 
adjacent spectral bands.  One way to exploit this correlation and try to keep the 
most relevant and distinctive features of the spectra is to use a dimensionality 
reduction technique such as PCA, which finds the best set of orthogonal 
components to represent the data while capturing the highest amount of their 
inner variance. PCA is also used as a feature in previously developed VAM for 
spectral images [24]. The principal component basis vectors are usually ranked 
by variance accounted for (VAF), and the number of principal component 
vectors used to represent the data is selected using a threshold criterion for 
accumulated VAF, usually ranking from 95 to 99%. For our data, we have 
checked that using three principal components we are able to account for at least 
95% of the variance, so we have decided to use the projections of our image 
data onto the first three principal components as an additional feature for the 
saliency models. The three projected images are fed independently to the 
models, and the activation maps are computed and then concatenated. We have 
computed the PCA decomposition individually for each single image, to 
preserve its distinctive characteristics as much as possible and since the images 
were of a size that produced a sufficiently high number of pixels to allow for 
this approach. 

(c) SAM-SID: When comparing spectral data to analyze differences between them, 
it is good practice to not only compare them channel by channel, but to also 
consider the spectrum as a whole. In the case of spectral images, since each 
pixel has N spectral components, the image can be considered as an array of 
signals and each pixel can be compared with the mean signal in the image, 
which could be a way to identify which are the most distinctive regions. There 
are different metrics used to numerically discriminate spectral signals, for 
instance Root Mean Square Error (RMSE) computes the square root of the mean 
of the channel-wise differences to the square, or Goodness-of-Fit Coefficient 
(GFC) which is the cosine of the angle between two spectral signals 
(considering them as vectors on a Hilbert space [32]). In our case we use the so-
called SAM-SID distance [33] which is a combination of both the spectral angle 
mapper (SAM) and the spectral information divergence (SID). SAM is defined 
as the angle between two spectral signatures s and s', (and so the cos-1 of the 
GFC value) as expressed in the following formula:

 (1)𝑆𝐴𝑀(𝑠,𝑠′) = 𝑐𝑜𝑠 ―1(
< 𝑠,𝑠′ >

∥ 𝑠 ∥⋅∥ 𝑠′ ∥ )

Meanwhile, SID is the discrepancy between the uncertainty of two spectral 
signatures, s and s', which is computed using their respective probability 
density distributions p and q:

(2)𝐷(𝑠 ∥ 𝑠′) =
𝐿
∑

𝑗 = 1
𝑝𝑗𝑙𝑜𝑔(

𝑝𝑗

𝑞𝑗
)

(3)𝐷(𝑠′ ∥ 𝑠) =
𝐿
∑

𝑗 = 1
𝑞𝑗𝑙𝑜𝑔(

𝑞𝑗

𝑝𝑗
)
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(4)𝑆𝐼𝐷(𝑠,𝑠′) = 𝐷(𝑠 ∥ 𝑠′) + 𝐷(𝑠′ ∥ 𝑠)

Then the combination of both SAM and SID is done as the sinus of the angle by 
the information divergence:

  (5)𝐷𝑆𝐴𝑀 ― 𝑆𝐼𝐷(𝑐,𝑠) = sin [𝑆𝐴𝑀(𝑐,𝑠)] × 𝑆𝐼𝐷(𝑐,𝑠)

The advantage of this metric is that it combines sensitivity to differences in 
spectral amplitude distribution (SID) with sensitivity to differences in spectral 
shape (SAM). By taking the product of these two measures, the spectral 
discriminability of the SID-SAM mixed metric is increased because it makes 
two similar spectral signatures even more similar and two dissimilar spectral 
signatures more distinct [31]. Therefore, a one-channel feature is introduced as 
input to the saliency models, showing the SAM-SID difference between each 
pixel and the mean spectra of the scene. This feature is activated by the model 
and saliency is predicted.

Both PCA and SAM-SID are features that can only be extracted from multi-spectral 
images; nevertheless, the color information is already used as a feature in most saliency 
models. In Fig. 3, we show one scene (original scene), its segmentation ground truth, and the 
corresponding feature images (PCA, SAM-SID and Lab). The salient objects tend to have 
high intensity in some of the feature images, which can be useful for improving the 
performance of the VAM.

3.3 Model Adaptations

In this section we explain the adaptations carried out on the existing visual saliency 
models to enable them to receive spectral features as inputs. Since the different models have a 
completely different architecture, we have designed different ways of adapting them to accept 
the spectral features as inputs.

Fig. 4, summarizes the work-flow of the experiment performed for each of the models 
selected, with the aim of establishing if the use of spectral features as input produces an 
increase in the performance of the models. We first used RGB images as input for the model, 
and obtained the corresponding saliency map. Then, we used the adapted version of the model 
with the spectral feature images as input, and obtained the spectral-based saliency map. 
Finally, we used the ground truth and the set of metrics described in section 3.4 to compare 
the performance of the model in the two situations (RGB or spectral features as input).

Itti and GBVS use intensity, color and orientation as the main features and then the 
activation maps are computed. For these two models, we have substituted intensity and color 
for the CIELab features, and we have used the L* image to compute the orientation maps. 
Then, we added both PCAs (sequentially for each PCA component) and SAM-SID as extra 
features, leaving the models with a total of 4 feature global classes to be activated and 
combined. We have merged the activation maps with equal weights for all the features. Both 
RARE and LDS use PCAs to find a space which increases the differences between the 
objects. In this case we substitute the 3-dimensional input image by a 7-dimensional one, 
composed of the 3 CIELab channels, the first 3 principal components, and the SAM-SID 
image. We then run the model with the corresponding space transformations, and the final 
saliency map is obtained. The BMS model applies random thresholding to the different 
channels of the input image. In this case, instead of applying threshold to 3 different channels 
(RGB), we have used the random thresholding for the 7 different maps (CIELab + PCA + 
SAM-SID).
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3.4 Validation

Once a model detects the main salient regions in an image, it is necessary to validate its 
performance over ground-truth data. There are several metrics commonly used in this field 
and standardized so different models can be compared, although consistent results cannot 
always be obtained [34]. Depending on the application and the kind of data used for 
validation, some metrics can be more appropriate than others. We decided to use the 
following three metrics for our experiment:

(a) Area under curve (AUC): this is computed from the receiving operator 
characteristic (ROC) curve. For different values of threshold in the saliency map 
produced by the model, true positives and false positives are computed by using 
the ground-truth data. Two main implementations of the AUC metrics are used: 
AUC-Borji [35] and AUC-Judd [18]. Another version of this metric was created 
in order to compensate the well-known center bias, the shuffled AUC [24], which 
was the one we used to validate our data. The main drawback of AUC metric is 
that low-valued false positives are not penalized [36]. This means that if the 
saliency map is predicting objects as salient that are not truly salient according to 
the ground truth, it could still reach high values of AUC. In other words, diffuse 
saliency maps in which many areas are highlighted with not very extreme values 
of saliency are not considered as poor quality. 

(b) Normalized Scan-path Saliency (NSS): this is computed as the averaged 
normalized saliency at the ground-truth location. Chance level is assigned zero 
value, and a positive value would mean above chance results. This method solves 
the issue of not penalizing low-valued false positives, by assigning the highest 
score to a map that would detect all the pixels in the ground-truth salient regions 
as salient, and would have zero values in all the rest of the pixels in the image. 
[37] 

(c) Information Gain (IG): this is a metric designed to compare two saliency maps 
taking into account the similarity of the probabilistic distribution with the 
ground-truth data [38]. Therefore, this metric is well suited to directly compare 
between two different saliency methods, computing the gain or loss in 
information with respect to the ground-truth data for the two maps that are 
compared.

Although there are many more different metrics for saliency benchmarking, most of them 
can be highly correlated with one of the three metrics that we have chosen; these three metrics 
are good representatives of different strategies in the definition of quality of saliency 
prediction.  

4. Results

As we explained in the previous section, for each of the 9 multispectral images we calculated 
their saliency maps predicted by the 5 different models when using both the original features 
and the spectral ones. An example of these saliency maps can be seen in Fig. 4. 

For each of the saliency maps the scores of the three different metrics described in 
section 3.4 were calculated. Table 1 shows the average and standard deviation over the 9 
images for each of the models using both original and spectral features and each of the 
metrics, and also the relative difference between both inputs’ scores. In the case of AUC and 
NSS, the difference between the original and the spectral features is shown, meaning positive 
a better score of the spectral features. The relative gain for the use of spectral features with 
respect to RGB features is also shown in the table. In the case of IG, since it already compares 
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the two maps, only the average over the images is shown; a positive result shows better 
accuracy of the spectral features over the original RGB-based features.

Analyzing the results in Table 1 we can observe some differences between the different 
models and also between the different metrics. We can see how both ITTI and GBVS models 
have one of the highest scores in AUC whilst the NSS score found is below the average 
across the models. One of the reasons of this noticeable difference between AUC and NSS in 
the ITTI and GBVS models might be the large amount of high (or salient) values in the maps; 
having a lot of false positives is penalized by NSS but not by AUC. Now looking at the 
RARE results, this is the model scoring the highest in AUC and second highest in NSS. We 
can appreciate in Fig. 5 how the resulting maps tend to contain high values in the salient 
object regions, and generally low values for non-salient regions. The BMS and LDS models 
are amongst the worst performing overall, having relatively low AUC and NSS scores both 
for RGB and multispectral images. 

Now, we analyze the models’ performance when we use the spectral features as input, 
which is the main aim of our experiment. Except for the RARE model in the IG metric, we 
have found that there is an improvement in the models’ performance when used with spectral 
features. This improvement is much more marked for the NSS and IG metrics than for the 
AUC metric. For the Itti and GBVS models, there is a clear improvement in NSS values, 
which reach a level comparable to other models for the spectral features, while the 
performance is much poorer if we use the RGB image as input. For the RARE model, we can 
see the least improvement in AUC, the second smallest in NSS and even a decrease in the 
accuracy in IG.

The RARE model looks for rarity instead of center-surround difference for computing 
the saliency map, so its strategy is markedly different from the first two models analyzed. The 
model is already performing quite well (compared with the others) when using the RGB 
image as input, and the adaptations we have introduced might not be able to add enough value 
to the spectral features. Regarding BMS and LDS, they both improve the accuracy when 
spectral information is used: around 0.6 in NSS and 0.5 in IG, with BMS reaching the highest 
IG score. This considerable improvement in performance might be due to a more successful 
adaptation strategy when introducing the spectral features. The average relative gain for all 
five models is 9.2% for AUC and 61.2% for NSS. Finding precisely the factors that result in 
the observed improvement when using multispectral scenes as input for the visual attention 
models tested is not a straightforward task. One factor is related to the new features 
introduced (PCA and SAM-SID), that in some instances clearly highlight the salient objects, 
as can be seen in Figure 3 and also in Figure 6. The remaining factors are linked to the 
specific way each model uses the input features to extract the saliency maps, and a detailed 
discussion would be excessively long considering the number and diversity of the models 
presented here, and the fact that for some of them it is not easy to sequentially analyze each 
step and its relationship with the final saliency map delivered by the model.

5.  Conclusions and future work

We have used AUC, NSS and IG metrics to assess the performance of five well-known 
visual attention models with multispectral and conventional RGB color images. Our results 
suggest that the saliency maps produced by using the multispectral features are closer to the 
ground-truth data. The higher gain for NSS is quite significant since this metric has 
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advantages over AUC. In fact, NSS will be adopted as gold standard quite soon in the VAM 
most popular benchmarks [39]. 

Saliency prediction performance has improved dramatically during the last three years 
after the outbreaks of the deep learning algorithms. Our promising results point out the fact 
that a CNN-based model, adequately trained using our specific spectral features, will improve 
the detection of the salient regions. A potential CNN-based Spectral saliency detection 
method will carry out a prediction of the salient regions analyzing in parallel all the spectral 
bands of an input image. This higher amount of information compared to RGB images, will 
allow the CNNs finding more complex features to detect saliency. Typically, we would need 
over 1,000 images to get a decent accuracy in image classification on the cross-validation set 
(or even more if a transfer learning on an already-trained model is not used). However, in the 
absence of such number of multispectral images adapted for a saliency task it would be 
difficult to hazard even a guess at the final spectral performance. After the results found in 
this study, a new multispectral image database is being built, together with its ground truth 
data. It is a matter for further studies to implement a CNN-based spectral saliency model, 
adequately trained with  this labelled multispectral image dataset.
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Table 1: Average and standard deviations over the 9 images for (rows) each model using both original and 
spectral features, and (columns) each of the metrics. 

AUC
Relative 

AUC 
variation

NSS
Relative 

NSS 
variation

IG

RGB 0.792 (0.114) 1.176 (0.440)
GBVS

Hype 0.868 (0.064)
9.7%

2.272 (1.348)
93.2% 0.526 (0.547)

RGB 0.843 (0.080) 1.359 (0.535)
ITTI

Hype 0.904 (0.064)
6.7%

2.356 (1.147)
62.4% 0.480 (0.441)

RGB 0.631 (0.125) 1.093 (0.809)
BMS

Hype 0.761 (0.128)
20.6%

1.861 (1.237)
70.4% 0.551 (1.143)

RGB 0.569 (0.144) 0.763 (0.604)
LDS

Hype 0.609 (0.087)
7.0%

1.302 (0.714)
70.6% 0.465 (0.230)

RGB 0.895 (0.087) 2.121 (1.081)
RARE

Hype 0.914 (0.049)
2.1%

2.320 (1.007)
9.4% -0.053 (0.333)
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Fig. 1. Left: PixelTeq SpectroCam VIS camera. Right: spectral responsivity of the eight channels used by the 
Spectrocam VIS camera, computed as the product of the spectral transmittance of each filter by the spectral 

responsivity of the monochrome sensor. 
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Fig. 2. Original scene (left), fixation map (center) and segmented ground-truth image (right) for one of the 
scenes. 
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Fig. 3. RGB scene and corresponding feature images fed as input to the VAM tested. 
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Fig. 4. Illustration of the Work-flow of our experiment. The procedure is repeated for each of the models 
tested. 
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Fig. 5. An example of the saliency maps for each model using both original and spectral features of different 
images; ground truth (GT) is also shown for comparison 
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Fig. 6: An example of one of the images (original RGB), with its segmentation ground truth, and its feature 
images corresponding to principal components 2 and 3 (PCA 2 and 3), and SAM-SID. 
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