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Abstract
Neurodegenerative diseases represent a growing healthcare problem, mainly related to an aging population worldwide and 
thus their increasing prevalence. In particular, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are leading neu-
rodegenerative diseases. To aid their diagnosis and optimize treatment, we have developed a classification algorithm for 
AD to manipulate magnetic resonance images (MRI) stored in a large database of patients, containing 1,200 images. The 
algorithm can predict whether a patient is healthy, has mild cognitive impairment, or already has AD. We then applied this 
classification algorithm to therapeutic outcomes in PD after treatment with deep brain stimulation (DBS), to assess which 
stereotactic variables were the most important to consider when performing surgery in this indication. Here, we describe 
the stereotactic system used for DBS procedures, and compare different planning methods with the gold standard normally 
used (i.e., neurophysiological coordinates recorded intraoperatively). We used information collected from database of 72 
DBS electrodes implanted in PD patients, and assessed the potentially most beneficial ranges of deviation within planning 
and neurophysiological coordinates from the operating room, to provide neurosurgeons with additional landmarks that may 
help to optimize outcomes: we observed that x coordinate deviation within CT scan and gold standard intra-operative neuro-
physiological coordinates is a robust matric to pre-assess positive therapy outcomes- “good therapy” prediction if deviation 
is higher than 2.5 mm. When being less than 2.5 mm, adding directly calculated variables deviation (on Y and Z axis) would 
lead to specific assessment of “very good therapy”.
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Introduction

The evolution and increasing complexity of medical instru-
ments can be associated with greater difficulties in subse-
quent data interpretation. Thus, biomedical engineering has 
become one of the main research areas to explore ways to 
optimize data processing and thus improve diagnosis and 
treatment options for different diseases.

One focus in healthcare research is on neurodegenera-
tive diseases such as the cognitive disorder Alzheimer’s dis-
ease (AD) and the movement disorder Parkinson’s disease 

(PD). Both are associated with aging, and their prevalence is 
increasing worldwide. For example, EURODEM estimates 
that 53.7% of all dementia cases correspond to AD (Alzhei-
mer’s Disease International (ADI), 2018), while about 0.3% 
of the population are currently suffering from PD (Rocca, 
2018). The causes of these diseases are not widely defined, 
and their evolution directly affects cognitive, functional, psy-
chological and social functions.

The diagnosis of AD is currently based on clinical tests 
and is only confirmed by anatomopathological exam within 
the brain. The importance of identifying the type of demen-
tia, in addition to the increase in evidence about earlier 
stages treatment, makes the identification of diagnose mark-
ers key for this field (Livingston et al., 2020). Similarly, 
PD presents motor difficulties symptoms such as tremor, 
rigidity, bradykinesia and postural instability. These motor 
symptoms significantly impair daily living and quality of life 
and are a high burden on both patients and their caregivers. 
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Better classification tools are required in PD to assess which 
is the best target for therapies such as deep brain stimulation 
(DBS).

DBS is a surgical procedure used to treat the motor symp-
toms of various neurological diseases, but mainly movement 
disorders such as PD (Fisman et al., 2006). Stereotactic tech-
niques are used to implant the leads in the brain, using mag-
netic resonance imaging (MRI) or computed tomography 
(CT) to identify the correct area of the brain (thus defining 
the coordinates) to be targeted for stimulation, usually the 
subthalamic nucleus (STN), thalamus or globus pallidus. 
Different methodologies are available to choose the final 
placement coordinates of the lead, which can add to the 
already complex intraoperative decision-making regard-
ing the optimal resource to use for imaging, microelectrode 
recording (MER), intraoperative clinical outcomes, etc.

Both AD and PD affect different structures within the 
central nervous system, which translates to identifiable neu-
ropsychological patterns that are specific to each disease. 
The brain alterations do not affect all areas equally. Each 
brain structure is influenced differently, depending on the 
neurodegenerative disorder, and can be identified by the 
different mental patterns using neuroimaging techniques. 
Some indicators are still unknown, however; therefore, pre-
diagnosis and treatment optimization using automatic algo-
rithms could be key for treatment, or at least help to control 
its evolution.

Therefore, the first objective of our study was to design 
and validate an automated classification algorithm to iden-
tify different groups in AD according to the disease evolu-
tion, through indicators such as anatomical landmarks from 
MRI images or mathematical variables, using a database of 
1,200 patients. Our second objective was to apply this clas-
sification algorithm to a database of 72 implanted electrodes 
for DBS to treat PD using stereotactic systems. We wanted 
to be able to define in advance whether surgery of this kind 
would be successful by identifying different patterns of coor-
dinate deviations within the CT scans or MRI in relation to 
the ‘gold standard’ currently used in the operating room, 
i.e., neurophysiological coordinates. We have also specified 
a maximum deviation range calculated during the planning 
stage of surgery, to help increase the chances of successful 
therapy after implantation.

Common framework seems clear when applying to neuro-
degenerative diseases in which imaging plays a big role for 
diagnose or treatment. Indeed, AD is also being treated with 
DBS (Leoutsakos et al., 2018), which would lead us to have 
an integral approach to this disease thanks to this manu-
script, as we are proposing the management of the disease 
from early pre-diagnosis to therapy outcomes optimization. 
To assess the feasibility of this method for DBS, Parkinson’s 
Disease was used as it is a more widely used indication; 
however, as same therapy approach will be applicable to 

AD, methodology framework gets sense for both indications 
in this paper.

Material and Methods

Database Analysis and Algorithm Design

Database

Our first objective was to design a more efficient and accu-
rate classifier to distinguish normal, mild cognitive impair-
ment (MCI) and AD, using MRIs obtained from a large 
database- Other studies have been exploring the diagnose 
of AD in relation with classifiers and variables extracted 
from medical imaging (Sun et al., 2018; Liu et al., 2014). 
Our work is adding value as it uses not only anatomical vari-
ables but also mathematical variables that could be of inter-
est for the pre-diagnosis of the disease, this increases the 
possibilities of potential correlation within groups of study, 
and open a new path of study as only pure anatomical vari-
ables had been used so far for these purposes. We examined 
around 2,000 MR images/files of different patients, and 1200 
were used in our study (requiring approximately 240 GB 
of storage). We used the database of the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (http:// adni. loni. usc. 
edu/ about/), whose main goal is “to define the progression 
of Alzheimer’s Disease”. Each file is a three-dimensional 
(3D) representation of the information contained within the 
brain of a patient. Using different cuts/planes or values of 
variables X, Y, Z to analyze the 3D images, it is possible 
to obtain three projections of two-dimensional (2D) images 
in different areas of the brain, which can then be analyzed 
separately (Fig. 1).

Spatial Normalization

In studies that involve images of many patients, it is often 
useful (and in our project necessary) to co-register a brain 
image of a patient to another subject or a standard template 
– a process known as spatial normalization. To normalize 
our MR images, we used the “SPM12” toolbox for MAT-
LAB (https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12/). 
Statistical Parametric Mapping (SPM) entails the construc-
tion of spatially-extended statistical processes to the test 
hypotheses regarding regionally specific effects. The maps 
generated by SPM are image processes with voxel values 
that are, under the null hypothesis, distributed according to 
a known probability density function, usually the Student's 
T or F distributions (i.e., T- or F-maps). The success of sta-
tistical parametric mapping is due largely to the simplicity 
of the idea. Essentially, each voxel is analyzed using any 
standard (univariate) statistical test. The resulting statistical 
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parameters are assembled into an image, the SPM. Due to 
the considerable number of images involved in our study, 
we have developed a method to normalize images (Fig. 2).

Medical Images and Slides Selected

15 slides were extracted from every MRI image. The rea-
sons why these specific slides were chosen for the AD 
diagnosis was because of the information, as hippocam-
pus atrophy, that could be extracted comparing normal and 
abnormal MRI (Fig. 3). These specific set of slides were 
agreed within a panel of experts that included neurologist, 
neuro-radiologist and neurosurgeon. These are the standard 
slides considered when diagnosing AD in medical practice  
as standard of care (SoC): the SoC defines hippocampus 

atrophy as the main marker together with the corresponding 
“ex-vacuo” dilatation of ventricles.

Images were obtained by repository and stored in spe-
cific folders per category as defined by ADNI, these fold-
ers where then added to the code to go through images per 
group and normalized individually using “SPM12” toolbox 
as defined above.

We could indicate that according to the extracted features, 
there were two big groups: 322 morphological features per 
patient and 108 mathematical features per patient (Table 1).

Classification Methods

- Fuzzy Decision Tree: Decision trees based on fuzzy set 
theory combines the advantages of good comprehensibil-
ity of decision trees and the ability of fuzzy representation 
to deal with inexact and uncertain information (Janikow, 
1998). There are other classification methods as the ones 
listed below or more widely used currently such as SVM; 
however, we decided to choose these ones due to the clarity 
of the information provided.

- Linear Discriminant Analysis: Classification method 
that works finding a linear combination of features that char-
acterizes or separates two or more groups to be classified 
(Hastie et al., 2017).

- Quadratic Discriminant Analysis: More general version 
of the linear method. Separate measurements of two or more 
groups by a quadric surface (Hastie et al., 2017).

- Naïve Bayes: Bayes’ theorem describes how probable an 
event is, based on previous conditions related to that event. 
The Naïve Bayes classifier is a "probabilistic classifiers" 
based on applying Bayes' theorem with (naive) independ-
ence assumptions between the features (Hastie et al., 2017).

Fig. 1  Use of a graphical user interface to visualize the three planes 
of the brain using different values of X,Y,Z, obtaining different slides. 
Example shown: (X,Y,Z) = (63,106,24)

Fig. 2  Normalization method 
running through the three image 
folders that normalized all of 
them to the same format: voxel 
size was adapted from (2, 2, 
2) to (0.84, 0.84, 1.40) for all 
images
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Application to PD Patients Treated With DBS

The most common brain area for DBS in PD patients is 
the STN (Fisman et al., 2006), which is a very small brain 
nucleus (3–4 mm high × 2–3 mm wide). Stimulation of 
neighboring structures could lead to undesired side effects, 
and thus poor clinical results. Precision in electrode loca-
tion is critical during the surgical procedure. Therefore, a 
stereotactic coordinates system is used to identify the target 
structure and place the electrode in the right spot. These 
coordinates are applied using a stereotactic frame located in 
patient’s head. Medical images are then acquired (CT scan 
and MRI) to identify anterior and posterior commissures 
(AC-PC) and subsequently the target. These ‘target coordi-
nates’ are then translated and placed in the frame to perform 
the external adjustment, to enable the electrodes to be cor-
rectly placed deep within the brain.

At the Hospital Central de Asturias (HUCA), 72 elec-
trodes were implanted using planning through CT and 
MRI scans taken preoperatively (Fig. 4). The stereotactic 
coordinates were calculated by direct targeting of the STN 
and by manual calculation from AC-PC landmarks. Neuro-
physiological coordinates and target length (STN length) 
were calculated intraoperatively using a MER system, first 
targeting theoretical coordinates (calculated during plan-
ning phase) and then shifting according to the neurophysi-
ological and clinical response (Fig. 5). Patients were then 
treated with DBS using the stable combination, and medi-
cation (levodopa) was adjusted and minimized if possible. 
The Unified Parkinson’s Disease Rating Scale (UPDRS) 
part III, which assess motor symptoms, was used to assess 
the baseline level of disease and therapeutic outcomes. 
Other scales are also studied (e.g., UPDRS II or medica-
tion reduction), but we focused on the UPDRS III percent-
age of improvement because it is the most widely used. 
A meta-analysis of published articles for DBS in PD has 
determined the improvement in UPDRS III reported in tri-
als (Table 2). We observed that the maximum improvement 
in the average UPDRS III score was around 55%; however, 
recent studies have reported around 60% improvement due 
to new technologies (Hastie et al., 2017). Therefore, for 
the purposes of our study, patients with more than 60% 
improvement in the UPDRS III scale were classed as hav-
ing received ‘very successful therapy’ (Table 3). Overall, 
33% of the patients in the patient’s database analyzed were 
classified as very successful treatment, 37% as successful 
treatment, and 14% as not successful treatment.

Table 1  Morphological and mathematical features extracted from 
magnetic resonance images

Morphological features Mathematical features

Area
Centroid
Bounding box
Major axis length
Minor axis length
Eccentricity
Orientation
Convez area
Filled area
Euler number
Equivalent diameter
Solidity
Extent
Perimeter
Compactness
Rectangularity
Grey white and whole matter vol-

umes

Mean
Fourier transform coefficients
Cosine transform coefficients
Euclidean distance
Chebychev distance
Minkowsky distance
Spearman correlation
City block distance
Mahalanobis distance

Fig. 3  Medical images used for the classification of patients with 
Alzheimer’s disease (AD). Examples of variables extracted to build 
the pre-diagnose algorithm built to be used for the therapy assessment 
algorithm tool for PD
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Common Framework

AD and PD are both neurodegenerative diseases that are 
proven to respond better to therapy when diagnosed at earlier 
stages (Schuepbach et al., 2019). Also Deep Brain Stimula-
tion has been proven as an indicated therapy for PD, and it 
is being recently studied for AD (Leoutsakos et al., 2018), 
which leads to the idea for a common framework when 
approaching the diagnosis and treatment of these therapies 
with similar methodologies. The methodology applied in 
this study presents an early pre-diagnosed classification that 

could be explored for PD as imaging markers in this kind of 
neurodegenerative diseases are similar and in any case useful 
for the diagnosis of the disease; this methodology focused 
on classification methods to assess the potential outcomes 
of DBS therapy, which can be applied to AD treated with 
DBS also, as implant techniques are the same, as well as 
stereotactic frame coordinate system to be used for both.

Feature Selection Using Mutual Information

Feature selection using mutual information (MI) was used 
(Vergara, 2014). In pattern recognition theory, patterns are 
represented by a set of variables (features) or measures. 
Such pattern is a point in a n-dimensional features space. 
The main goal is to select features that distinguish uniquely 
between patterns of different classes. Normally, the optimal 
set of features is unknown and commonly has an irrelevant 
number or redundant features. Through a pattern recognition 
process, these irrelevant or redundant features are filtered 
out and the learning performance of classifiers is greatly 
improved.

Different criteria have been applied to evaluate the good-
ness of a feature. In this case, the proposed filter features 
selection method is based on mutual information as rele-
vance measure and redundancy between the features through 
minimal-redundancy-maximal-relevance criterion (mRMR). 
This method was applied folder by folder to go through all 
datasets.

Let X and Y two random continuous variables with mar-
ginal pdfs p(x) y p(y) respectively, and joint probability den-
sity function (pdf) p(x,y). The mutual information between 
X and Y can be represented as:

In the case of discrete variables, the integral operation is 
reduced to a summation operation. Let X and Y two discrete 
variables, marginal probabilities p(x) and p(y) respectively 
and a joint probability mass function p(x,y). The MI between 
X and Y is expressed as:

The mutual information (MI) has two principal properties 
that make it different from other dependency measures: 1) 
the capacity of measure any relationship between variables 
and 2) its invariance under space transformations.

For mRMR, we considered mutual information-based 
feature selection for both discrete and continuous data. The 
MI for continuous variables was estimated using Panzer 
Gaussian windows. Estimating the mutual information I(C, 

I(X, Y) = ∬ p(x, y)log
p(x, y)

p(x)p(y)
dxdy

I(X, Y) =
∑

x∈X

∑

y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
dxdy

Fig. 4  Deep Brain Stimulation electrode localization most commonly 
used for PD, using Subthalamic Nucleus (STN) as target. Image 
shows position of electrode in relation to functional areas of STN 
and their activation with a traditional monopolar stimulation on those 
areas

Fig. 5  Subthalamic nucleus microelectrode recording showing differ-
ent micro-electrode recordings depending on the functional area of 
the subthalamic nucleus
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S) between class variable C and subset of selected features, 
for minimizing the classification error in the incremental 
search algorithm, mRMR method is combined with two 
wrapper schemes. In a first stage, the method is used with 
the purpose to find the candidate feature set. In a second 
stage, backward and forward selections were applied in order 
to find the compact feature set through the candidate feature 
set that minimizes the classification error.

Given class variable C, the initial set of features F, an 
individual feature fi ∈ F and a subset of selected features, 
S∁F , the mRMR criterion for the first order incremental 
search can be expressed as the optimisation of the follow-
ing condition:

The mRMR criterion, for the first-order incremental 
search algorithm, tries to optimize the following condition:

where |S| is the cardinality of the selected feature set 
S, fs ∈ S . This filter mRMR method is a fast and efficient 
method because its incremental nature, showing better fea-
ture selection and accuracy in classifier including wrapper 
approach. In this work, mRMR criterion method was used 
as filter algorithm with the purpose to obtain the relevance 
of proposed features.

I(C;f ) =
∑

x∈X

∑

y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
dxdy

I
(
C;fi

)
−

1

|S|
∑

fS∈S

I(fS;fi)

Cross Validation

For the classifier training and validation, 750 patients were 
used, and then, 450 different patients were chosen to test the 
efficiency of the method.

Also, we performed several experiments with different 
number of features selected using the mRMR (75%, 25% 
and 10% of all the possible features), applying the mRMR 
methodology.

Also as an important part of the cross-validation scheme 
followed, we analyzed the confusion matrix of each group to 
validate the proper selection of features. For example, for class 
1 belonging to the best outcomes, the class 2 to the medium ones 
and the class 3 to the worst outcomes for diagnose or therapy 
(Class 1 to “healthy group”, Class 2 to “MCI group” and Class 
3 to “AD group” within the AD task; and Class 1 to “very good 
therapy”, Class 2 to “good therapy” and Class 3 to “no major 
improvements” within the PD task) we observed the outcome in 
those 450 patients chosen to assess the robustness of the feature 
selection process. In total we could get 150 true positives per 
class, but we got around 100 true positives per class in the sce-
nario in which only 10% of the total variables included in each 
dataset were chosen, which represents an efficiency of around 
70%. This is a good number if we consider that we are doing 
classification between three different classes and that we are only 
using few variables (10% of the total as mentioned).

Table 2  Summary table of previous clinical trial of deep brain stim-
ulation for Parkinson’s disease patients (Hastie et  al., 2017; Goetz 
et  al., 2019; Deuschl et  al., 2006; Follett et  al., 2010; Fraix et  al., 

2006; Rodriguez-Oroz, 2005; Gervais-Bernard et  al., 2009; Moro 
et al., 2010; Vitek et al., 2020)

Author N Design Time Follow-up Results

Deuschl et al. (2006) 78 Randomized pairs trial 6 months 41% improvement in UPDRS III
Follett et al. (2010) 299 Multi-center, randomized, blinded 24 months 25,3% improvement in UPDRS III
Fraix et al. (2006) 95 Prospective, multi-center 12 months 57% improvement in UPDRS III
Rodriguez-Oroz (2005) 69 Blinded, multi-center study 3–4 years 50% improvement in UPDRS III with STN 

and 39% improvement in Gpi
Gervais-Bernard et al. (2009) 42 Prospective, single-center 5 years 55% improvement in UPDRS III
Moro et al. (2010) 51 non randomized prospect, blinded, multi-

center study
5–6 years 20% (GPI) to 45% (STN) improvement in 

UPDRS III scores
Vitek et al. (2020) 157 multicentre, double-blind, randomised, 

sham-controlled study
1 year 46% (STN) improvement in UPDRS III 

scores
Timmermann et al. (2015) 40 non-randomised, prospective, multicentre, 

open-label study
1 year 62,6% (STN) improvement in UPDRS III 

scores

Table 3  Comparison groups, depending on clinical outcomes due to deep brain stimulation versus preoperative scores

Very successful treatment Successful treatment Not successful treatment

 > 60% UPDRS III improvement 35–60% UPDRS III improvement  < 35% UPDRS III improvement
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Results

Classifier Technique

We decided that the best technique of classification for our pro-
ject was the Fuzzy Decision Tree, followed by the QDA. The 
Fuzzy Decision Tree was chosen because of its high efficiency, 
even when just few features were used for the diagnosis, and 
because from the point of view of interpretability it can be very 
useful for human expert diagnosis (Janikow, 1998).

As can be observed in Table 4, the QDA classifier 
also reaches higher efficiency values, even higher than 
80%. However, when the features were reduced to get a 

diagnosis in a simpler way (to make it easier for the user), 
the efficiency decreased too much, reaching values under 
50% in some cases. For this reason, the Fuzzy Decision 
Tree classifier was the method that better fit the require-
ments of our project, because the accuracy obtained using 
morphological features (that can be easily understood by 
a neurologist) is sufficient.

Algorithm Application to PD Patients With DBS

Similar classification methods have been applied to other 
medical applications such as Deep Brain Stimulation for PD. 
The aim of these publications was to optimize the surgical 
process by finding the “gold standard” to choose the final 
coordinates for the procedure (Timmermann et al., 2015; 
Bermudez et al., 2019). However, none of them classifies 
and select the most important coordinates calculation to pre-
dict the most optimal therapy in advanced.

By applying the algorithm from AD patients to PD 
patients treated with DBS, we observed that STN length 
recorded through the MER system was within similar range 
in all three groups ([4.36, 4.50] mm) (Figs. 6 and 7) and was 
not of significant value to define better clinical outcomes.

The direct target coordinates calculation showed the highest 
difference compared with the gold standard neurophysiological 
coordinates, with major deviation in the Z axis (dev. > 2.3 mm). 
There was a similar pattern in the calculated coordinates from 
the CT and MRI scans compared with gold standard for the 
X and Y axes. However, MRI-scan coordinates differed 

Table 4  Efficiency obtained for the classification of magnetic reso-
nance images for three classes: healthy, mild cognitive impairment 
and Alzheimer disease patients

LD, linear dependence; QDA, Quadratic Discriminant Analysis

Efficiency Fuzzy Decision Tree QDA

Mix Matrix 75% 0.94 LD
Mix Matrix 25% 0.87 0.82
Mix Matrix 10% 0.75 0.67
Morphological Matrix 75% 0.89 0.73
Morphological Matrix 25% 0.68 0.56
Morphological Matrix 10% 0.68 0.48
Mathematical Matrix 25% 0.81 0.71
Mathematical Matrix 10% 0.67 0.64

Fig. 6  Decision tree classification including medication as variable of study. It shows how variable 2 (L-dopa medication) and 4 (deviation on X 
coordinate within MRI planned coordinates and neurophysiological election) are the main variables to assess PD treatment success
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significantly more than the CT-scan coordinates when compar-
ing the Z axis (Figs. 6 and 7). The deviation average compared to 
the gold standard neurophysiological coordinates showed no sig-
nificant value to determine better outcomes, as the three control 
groups showed similar results for deviations in each coordinate 
and modality (Figs. 6 and 7).

The variables studied and their corresponding classification 
assigned (from X1 to X15) are outlined in Table 5. The decision 
tree classification analysis was performed using these 15 clini-
cal variables as input. Classification output was obtained after 
training the classification method with the different subject’s 
sub-groups (and 15 clinical variables per subject). The results 
were studied following two different methodologies, either by 
considering initial medication or by not taking it into account, 
and the main highlights are presented below.

Variables Classification Taking Medication Into 
Account

Medication level is a key indicator for the success of 
DBS therapy, with ‘no major improvement’ for patients 
with preoperative levodopa < 850 mg. This makes sense 
initially, as most of the eligible patients for DBS ther-
apy are usually advanced PD patients who are already 
receiving a high dose of medication. In our study, we 
were able to observe that in cases when DBS was per-
formed even when patients were not yet taking high doses 
of medication, DBS did not provide major improvement. 

We observed that the higher the preoperative medication 
level, the greater the percentage improvement in UPDRS 
III. We also observed that the deviation between the MRI 
coordinates and neurophysiological coordinates when 
comparing the X axis provided better outcomes when the 
deviation was higher. This means that when trying to find 
the STN intraoperatively, neurosurgeons should consider 
that correct deviation should be taken in the X axis rather 
than the Y axis.

Variable’s Classification Not Considering Medication

As we defined previously, direct coordinates are the ones 
adding higher deviation compared to the gold standard neu-
rophysiological coordinates; therefore, these should not be 
considered primarily when comparing to MRI and CT scan 
coordinates and analyzing results.

When we analyzed the decision tree classification after 
extracting preoperative medication from the variables stud-
ied, “very good outcomes” were observed when the X-axis 
deviation with the CT scan compared to the intraoperative 
neurophysiological coordinates was less than 2.5 mm and 
the Z-axis deviation was almost zero (< 0.5 mm).

Considering both of these analyses (i.e., with or with-
out preoperative medication), we observed that potentially 
a deviation of > 1.5 mm from the MRI coordinates calcu-
lated should be taken into account when trying to find the 
target intraoperatively, but also that neurosurgeons should 

Fig. 7  Decision Tree classification without including medication 
as variable of study showing variable 3 (deviation on X coordinate 
within CT planned coordinates and neurophysiological election) as 

the most important one to assess therapy success and combination of 
specific ranges of variables (3, 10, 5, 13) or (3, 10, 5, 9) to predict a 
“Very Good Therapy” response
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not deviate further than 2.5 mm from the CT scan X axis 
coordinates calculated during the planning step.

Discussion

We present a new methodology based on a large data set 
that is able to classify three different categories of MR brain 
images using features than can be easily understood by a 
human expert (i.e., a neurologist rather than a computer) and 
can aid decision making, thus being of added value for neuro-
surgeons and neurologist for the final placement of the leads, 
critical for a positive outcome from DBS therapy. This pow-
erful tool uses the same methodology as other classification 
processes related to imaging with any other variables (such 
as dystonia, essential tremor or any other indication with its 
specific targets defined). However, it is important to remember 
the variability within patients; thus, it is impossible to assess a 
general and standard methodology for all treated cases.

As we could see, classification methodology was vali-
dated and optimized by checking the minimum sufficient 
number of variables to be selected following mRMR fea-
ture selection. Selected feature selection methodology was 
applicable and tested for both tasks, in which three different 
classes were used (very good, good or no major improve-
ment for therapy and three groups also for the diagnostics 
task). For both, 10% of total size of features were selected 

being anatomical/morphological variables the ones with 
higher weight; thus, also confirming the proper use of these 
imaging techniques in SoC for medical practice nowadays.

For application in PD, it is important to note that neu-
rophysiological length of the STN recorded does not affect 
clinical outcomes if it is within range (> 4 mm). Our results 
indicate that CT-scan calculations are the most accurate 
when planning for DBS. Direct calculation should be 
avoided, as major deviation in the Z axis was observed, 
which could be even dangerous during surgical procedure, 
leading to hemorrhages or undesired stimulation.

Limitations of these dataset need to be mentioned, as hav-
ing a limited dataset for the PD algorithm to assess potential 
outcomes of DBS therapy focus on data from one center 
only might be a bias for general application in other centers, 
in which the DBS procedure might vary in specific steps of 
the process. We could assess that this algorithm is valid for 
centers with the standardized DBS procedure flow followed 
in the center studied: use of stereotactic planning through 
direct/anatomical planning of coordinates using imaging, 
neurophysiological intraoperative assessment of coordinates 
and finales verification using computer tomography (CT) 
scan. Also, although comparison and common framework 
within algorithm application has been demonstrated above, a 
potential limitation on the common framework might be the 
fact that additional biomarkers in addition to the main ana-
tomical and mathematical ones considered in this study are 
being used for each indication, such as behavioral patterns 
or cognitive scales; further studies using all these datasets 
per indication could potentially led to different weights on 
the different variables studied when creating decision trees.

The main advantage of comparing our data to others in 
the same line of investigation is the big database available. 
Also, there are no similar studies applying this kind of deci-
sion algorithms to compare DBS coordinates and assess the 
most important deviations when assessing the success of 
the therapy. The fact that only one center data was studied 
when applying the algorithm to DBS outcomes assessment 
is also positive as no deviations in the surgical workflow are 
to be considered, which could potentially bias the results; 
thus allowing for a proper validation or comparison within 
the different techniques when deciding the best coordinates 
to be used within the DBS procedure.

As further advantages of the use of these datasets we 
could consider that similarities within both indications in 
terms of brain atrophy as one of the main anatomical bio-
markers for diagnostic could lead us to potential use of the 
diagnostic algorithm of AD for PD patients with cognitive 
impairment related to PD, or to future use of the algorithm 
when treating AD patients with DBS as mentioned above.

Other positive point of these datasets is the fact that the 
standard of care of both indications for healthcare pro-
fessionals currently use anatomical biomarkers through 

Table 5  Clinical variables studied with their corresponding classifica-
tion variable assigned for the study

control, postoperative computed tomography (CT) scan image-based 
coordinate; ct, CT scan image-based coordinate; dir, direct coordinate 
decided by specialist by pointing it directly in the image; mri, MRI 
scan image-based coordinate; nph, intra-operative micro-electrode 
recording validated coordinates (‘gold standard’ neurophysiological 
recording); STN, subthalamic nucleus

Variable Definition

X1 Neurophysiological STN length (mm.)
X2 L-Dopa medication in mg. (pre-op)
X3 Deviation coordinates Xct vs Xnph (mm.)
X4 Deviation coordinates Xmri vs Xnph (mm.)
X5 Deviation coordinates Xdir vs Xnph (mm.)
X6 Deviation coordinates Xcontrol vs Xnph (mm.)
X7 Deviation coordinates Yct vs Ynph (mm.)
X8 Deviation coordinates Ymri vs Ynph (mm.)
X9 Deviation coordinates Ydir vs Ynph (mm.)
X10 Deviation coordinates Ycontrol vs Ynph (mm.)
X11 Deviation coordinates Zct vs Znph (mm.)
X12 Deviation coordinates Zmri vs Znph (mm.)
X13 Deviation coordinates Zdir vs znph (mm.)
X14 Deviation coordinates Zcontrol vs Znph (mm.)
X15 L-Dopa medication in mg. (post-op, stim ON)

773Neuroinformatics (2022) 20:765–775



1 3

imaging as one of the most relevant indicators for diagnosis 
and therapy outcomes validation; this big database confirms 
that hypothesis and current medical practice, and adds a 
more clear and automatized pattern to consider and filter 
the main landmarks when taking clinical decisions for both 
diagnose and assessment of potential therapy outcomes, key 
when deciding on potential surgical interventions for the 
treatment of a specific pathology.

Further analysis is needed to assess a specific landmark 
as key indicator for successful therapy, meanwhile the use 
of these classification methods could result in more insights 
about the minimum variables needed to correctly place the 
lead, thus optimizing the current DBS methodology in cent-
ers where micro-electrode recording is being used as gold 
standard, as well as proving this algorithm as useful when 
diagnosing these neurodegenerative diseases, confirming 
that anatomical biomarkers, as currently use in standard 
medical practice, have enough wight or importance to allow 
for clinical decisions considering them.

Conclusion

As technology advances, the need for algorithms to optimize 
the time of the clinical team is becoming more important. 
Preoperative algorithms will lead to optimization for operat-
ing room timings, and allow functional units using DBS to 
better understand and estimate potential positive outcomes 
for many patients. It is also of great utility for pre-diagno-
sis of other indications, which is key in neurodegenerative 
diseases such as AD and PD. Our study shows promising 
results in classification for pre-diagnosis of AD and for DBS 
cases in PD, allowing physicians to start treating neurode-
generative diseases earlier to avoid a faster evolution of the 
disease and to optimize the decision of final placement of 
leads in DBS. More research and development on preop-
erative algorithms to potentially assess DBS for PD out-
comes are needed, but our study demonstrates that CT scan 
images are the most accurate and should be chosen as the 
initial method when manually planning coordinates for DBS. 
This is increasingly changing as automatic fusion and plan-
ning algorithms are being introduced to calculate planning 
using fewer calculations. In contrast to previous beliefs, our 
results indicate that the recorded STN length in DBS for PD 
is not the best indicator for a better trajectory and shows less 
weight with better clinical outcomes.
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