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Abstract: In this paper we introduce an innovative parameter which allows us to evaluate the 
so-called “relevant colors” in a painting, in other words the number of colors that would stand 
out for an observer when just glancing at a painting. These relevant colors allow us to 
characterize the color palette of a scene and on this basis those discernible colors which are 
colorimetrically different within the scene. We have tried to carry out this characterization of 
the chromatic range of paints according to authors and styles. We have used a collection of 
4,266 paintings by 91 painters, from which we have extracted various parameters which are 
exclusively colorimetric in order to characterize the range of colors. After this refinement of 
the set of selected colors our algorithm obtained an average number of 18 relevant colors, which 
partially agreed with the total 11 to 15 basic color names usually found in other categorical 
color studies. 

 

1. Introduction 
Millions of colors are usually accepted as being the order of magnitude of the number of 
discernible colors in natural images1. It is obvious that an observer will not be able to 
differentiate such a great number of colors when they are looking at either a natural or an 
artificial scene. Although several color naming approaches have been introduced to catergorize 
color names and their corresponding color ranges2-5, the link between the number of discernible 
colors (NDC) and a more realistic estimation of these colors which are simultaneously 
perceived in a scene has not been fully studied and remains a conundrum.  

There are very few studies which deal with the colorimetric characterization of the relevant 
colors which appear in a scene. From a graphic design point of view it would be interesting to 
previously know the most adequate palette of colors for each scene so algorithms have been 
designed to extract the so-called “color themes”6-7. Contrary to our proposal where the 
determination of the relevant colors algorithm is adapted to the chromatic content of each 
image, the algorithm proposed by Lin and Hanraban6 allows the automatic extraction of the 
thematic colors but with a limit of 5 per image. A similar extraction of perceptually plausible 
color themes from fabric color images8 has also been tried. These authors used salience maps 
of textured samples to locate the dominate colors thus allowing them to characterize the hue 
distribution in textile samples. But once again the algorithm limits the extracted colors to just 
5 (even the psychophysical experiment which is designed to confirm the model is limited to 5 
extracted colors which the observers can choose as being the descriptive ones in each sample). 
Recently, Rafegas et al.9 have proposed a color representation of images that achieves color 
contrast enhancement by using more than three channels, if required, and by maximizing the 
contrast with respect to the most representative color of each channel. The authors grouped 
RGB image colors by extracting local maxima of the histogram and defined the “color pivots” 
as the most predominant colors in the image. In a previous paper we heuristically touched on 
the study of those colors which may attract visual attention during the observation of natural 
scenes and we introduced the term “remarkable salient colors” which defined the discernible 
colors that were salient10. As the colors were salient a plausible set of locations describing how 
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observers tend to perceive a scene was not clearly connected with a presumably small fraction 
of the huge number of discernible colors.  

Various spatial parameters, such as the fractal dimension, the power spectrum, entropy and 
complexity, have been studied in depth in the computational analysis of paintings11-13.  As far 
as color distribution and color ranges in paintings are concerned, Graham and Redies14 point 
out that there is a lack of research in this field. Mureika15 has studied the fractal dimension of 
paintings by Pollock and has established that the best system for studying the representation of 
color is CIELAB. Marchenko et al.16 used the concepts of the temperature of colors, color 
contrast and color palette to distinguish the differences between modern art and medieval art. 
Pinto et al.17 have analyzed the influence of color temperature of the illuminants in the color 
gamut of paintings. Kim et al.18 have found variations in the number of colors found in medieval 
art and in the rest of the posterior styles, with medieval art having the least number. Montagner 
et al.19 have compared the color gamut found in a group of natural scenes and in 44 paintings 
by various painters. Their results show differences in the calculated slopes of the ellipses used 
to characterize the color gamut in the CIELAB color space. Nascimento et al.20 have shown 
that the color gamuts painters use tends to coincide with the aesthetic preferences of the 
observers of the paintings.  Lee et al.21 have analyzed the chromatic contrast in large number 
of paintings and have found an increased diversity in the chromatic contrast in the last two 
centuries. Romero et al.22, have compared the color gamuts of Renaissance and Baroque 
painters and have found certain differences in the color volume, in the number of discernible 
colors and in the average L* value, with these differences being greater for the Renaissance 
painters. 

 
Color is always the fundamental aspect in execution of a painting, with each painter having 
their own characteristic color gamut. So, for example painting styles such as impressionism or 
fauvism remain clearly in our minds due to the use of vivid colors of high clarity and 
saturation23. With other styles, such as the Baroque, the colors used in a painting are 
fundamental to the composition. Nevertheless, various authors have shown that color is not 
sufficient in itself as a means of automatically categorizing a painting style24-25. In any case, as 
Graham and Field26 have explained “color plays a crucial role in the creation of art and a 
complete theory of how the regularities in art are related with the human visual system must, 
without any doubt, include color”. 
 
Computer vision algorithms have tried, from both the theoretical and practical points of views, 
to extract the colors which describe an image. The most commonly used have been based on 
clustering techniques such as k-means and fuzzy logic27; although the implementation of these 
algorithms is simple they are not efficient as they need to somehow pre-estimate the number of 
clusters or colors from the start in order to function well. The analysis of maximum peaks of 
the frequency histograms for values which describe the chromatic characteristics of an image, 
such as hue, saturation and value, has also been used to determine those pixels which have a 
greater relevance and associate them with significant regions in the color of the image2,28. The 
color quantization algorithms also attempt to extract the representatives of the colors of the 
image. However, generally speaking, these color quantization proposals are focused more on 
achieving the compression of the image without altering the quality and good reproduction in 
different devices29-30. It is also worth pointing out that algorithms known as “color naming 
algorithms”, which attempt to establish a discrete color characterization of the number of colors 
which appear in an image, are based on the “basic color term” concept introduced by Berlin 
and Kay31. From then on it has been found that, depending on the color lexicon, between 11 
and 15 are the color names which are needed to define all the linguistic color categories32-34. 
More recently, Griffin and Mylonas35 have collected an impressive 20,000 unconstrained 
names for 600 colour stimuli. By introducing a categorical measurement of the distance 
between two close colours, they have estimated that 27 categorically-distinct regions can be 
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fitted within the RGB colour space. That number agrees with the use of only around 30 colour 
names in spoken English36, and or the 50 distinct categorical territories in colour space found 
early by Chapanis37. Nevertheless, as pointed out by Witzel38 “the origin of color 
categories…and observed patterns may result from the complex interaction of multiple 
constraints and determinants”. 

The aim of this study is to estimate a reliable color palette of a painting based on the novel 
notion of “relevant colors”, which will be defined as the categorically discernible colors 
describing the chromatic diversity of that painting. The computational algorithm is tested with 
a public image dataset that contains thousands of paintings from different painters and styles. 
The derived color palettes are also compared with a color naming approach. Besides the average 
gamut found in all paintings, we have also analyzed the number of discernible and relevant 
colors, and the chromatic gamut ellipses.  
 

 

2. Methods 
2.1 Image dataset 

We have used a collection of 4,266 paintings by 91 painters from the public data base of Khan 
et al.25. This collection is a good selection of the most relevant painters in western art and covers 
painting styles from the Renaissance (XV-XVI centuries) to Abstract Expressionism (XX 
century). All the images are publicly available on request at 
http://www.cat.uab.cat/~joost/painting91.html. The images were used as they were included in 
the original database which means that no additional calibration and/or post-processing was 
used. Other larger collections with public access have been used by other authors such as Sigaki 
et al.39, nevertheless we consider the collection we have used to be sufficient for our aims.  

 

2.2 Color analysis 

By using a digital image of a painting we have been able to convert its RGB values into 
CIELAB values with the D65 illuminant. We have thus obtained three values for every pixel 
in the image in a colorimetric representation (L*, a*, and b* components) which is widely 
accepted and easily connects with the perceptive attributes and mechanisms of color vision. L* 
represents lightness, a* the relative red/green content and b* the relative yellow/blue content 
of the corresponding colors. Moreover, the a* and b* values are able to deduce the hue values, 
h* and the chroma values C*, related to the perceptive attributes of the same name. In previous 
papers Kim et al.18 and Lee et al.21, worked directly with the RGB values of each pixel, thus 
avoiding the fact that color is an attribute of human vision and that its evaluation needs precise 
psychophysical measures, such as those used in a representation of color as in CIELAB. Firstly, 
we averaged the L*, a*, b* values in each painting and then computed an ellipse that contains 
95% of the pixels19. From this ellipse we determined its orientation, area and semi-axe ratio 
which allowed us to obtain a good characterization of the distribution and gamut of colors in 
each painting. This is a good starting point for the future analysis of influence of painter and 
styles.  We also determined the percentage of dark colors in each painting, considering those to 
be colors with an L* value of less than 30. This fact is important as many painters have 
frequently used lightness and darkness to define their work and some authors have even related 
the number of black pixels in different image subsections to homogeneity39. 

 

2.3 Computing the relevant colors of paintings 

http://www.cat.uab.cat/%7Ejoost/painting91.html
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As previously commented, although millions of colors are the order of magnitude of the color 
diversity in natural images, it is implausible that an observer would be able to differentiate such 
a huge number of colors in a complex image. Even observing complex images spatially and 
chromatically, observers will tend to count and/or describe only a small fraction of the huge 
number of potentially discernible colors. It should be clarified that the eye is capable of 
perceiving color changes in really complex scenarios with high degree of resolution; Aldaba et 
al.40 have shown that observers are able to discriminate between original and deliberately 
modified images with CIELAB color differences of about only 2.2 ΔE*ab units. However, this 
does not mean that observers will able to count all colors producing that ΔE*ab error. In a 
previous paper10 we linked the term discernible colors and the salient areas in an image but only 
from a heuristic-based computational model. But how can we estimate the number of relevant 
colors which appear in or describe a color image?  

Firstly, as far as the number of discernible colors in a painting is concerned, this has been 
determined by using the method of Linhares et al.1, which divides the CIELAB color space into 
cube units of different colors and counts those cubes which contain colors corresponding to the 
pixels in the image. The number obtained is the number of discernible colors in the painting, 
understanding as such those colors which are placed side by side in an isolated way and may 
be discriminated by the observer with normal color vision. This detail is worth pointing out as 
this situation is rarely found in a painting if we exclude some paintings with a very simple 
abstract composition with a very small number of geometric objects and a very uniform color 
(e.g. Piet Mondrian masterpieces). With this method values which can be understood as “very” 
high (order of thousands) can be obtained; we can see in Figure 1 an example of the chromatic 
diversity for one of the paintings containing as many as 18,829 discernible colors (compared to 
just 28 with our algorithm as we will see further on). Therefore, we might wonder if the number 
discernible colors thus obtained would correspond to that which an observer might determine 
with a simple visual inspection of a painting if we asked which were the main colors in a 
painting.  Probably the observer would respond by indicating a reduced number of colors, less 
than one or two dozen. As we mentioned above, in a previous paper when we used natural 
images10 we touched on this problem and we studied how the visual salience may be a filter 
which limits the number of colors a on which an observer can fix their attention. The study, 
which was just computational, showed how the number of “significant” colors was 40% -55% 
less than the number of discernible colors according to the classic definition, which gives a 
much higher number of colors. Therefore, in this study we have developed a method which 
determines, at least colorimetrically, the number of colors which an observer would consider 
to be relevant in an image. 

 

Secondly, we have increased the dimensions of the cubes in which we divide the CIELAB color 
space, and we have established a dimension whilst also setting as the parameter the minimum 

Fig. 1: Example of the distribution of discernible colors and the relevant colors (solid red dots) obtained in the 
CIELAB color space. 
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threshold of colors in each cube, i.e. the minimum percentage of colors compared to the total 
that should be within the cube. We have taken the division of the space into cubes of 20 units 
in every CIELAB direction as the criteria to follow, which allows us to divide the CIELAB 
space into approximately 125 cubes, setting a threshold of 3% for the total pixels in the cube in 
order to consider the cube to be relevant. We were aware that certain high chroma or high 
luminosity remained unconsidered as relevant colors. Milojevic et al.41 found that the most 
saturated colors can act as predictors of how an observer would categorize the color distribution 
of natural objects. Thus, so we also considered cubes which had less than 3% total pixels and 
at least 0.3% (3/8%) of the pixels included had the L* value higher than 80, or a C* value above 
the 50 percentile of the image. The colors considered as relevant colors are determined as by 
the average values of the colors of the pixels in each selected cube.  

Once the relevant colors which appear in a painting have been determined, the algorithm 
assigns each pixel in the image with a relevant color (depending on the Euclidean distance 
between this relevant color and the color that should be assigned to the original pixel). The 
pseudocode in Figure 2 summarizaes all steps of the algorithm and at the end how to segment 
the image depending on its relevant colors, that is to say what we could understand to be the 
colors of the “palette” used by the painter. 

 

2.4 Color naming 

We have compared our results with those obtained by applying the classic color naming 
algorithm used by Parraga et al.42. (which is available online at 
http://www.cat.uab.cat/~maria/download/download.php). Color naming predefines 11 basic 
colors31, which correspond in English to the following terms and their associated RGB digital 
values: ‘Black’ [0,0,0], ‘Blue’ [0,0,1], ‘Brown’ [0.5, 0.4, 0.25], ‘Grey’ [0.5, 0.5, 0.5], ‘Green’ 
[0,1,0], ‘Orange’ [1, 0.8, 0], ‘Pink’ [1, 0.5, 1], ‘Purple’ [1,0,1], ‘Red’ [1,0,0], ‘Yellow’ [1,1,0], 
and ‘White’ [1,1,1]. After applying a color naming-based segmentation, we will compare the 

Fig. 2: Pseudocode of the proposed algorithm to get the number of relevant colors. Thr means the threshold of 
3% for the total pixels in the cube in order to consider the cube to be relevant (full details in the text). 

http://www.cat.uab.cat/%7Emaria/download/download.php
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relevant colors found using our proposal with the fundamental colors derived from this color 
naming approach. 

  

3. Results  
3.1 Influence of the cube grid size in the computation of relevant colors 

We have first analyzed the influence of the CIELAB partitions (i.e. cube grid size) in the 
number of both discernible and relevant colors found. To do this we have selected different 
values of the cube grid size (from 10 to 40 CIELAB units) and have checked how the total 
number of cubes containing a color and the number of relevant colors (NRC) changes. The 
results suggest that the influence of the grid size in the number of non-empty cubes is negligible 
above 20-25, with a maximum of relevant colors found for grid sizes of 10-20 (see Fig. 3(a)-
(b)). Thus, we decided to choose 20 as the optimum grid size to be used in the following 
computations. 
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3.2 Influence of L* and Chroma values in the computation of relevant colors 

Fig. 3: (a) Total number of cubes containing a color, and (b) number of relevant colors obtained 
for different grid sizes; (c) number of relevant colors derived for different L* thresholds (as shown 
in the inset) and different C* percentiles limiting the chroma values of each pixel. 
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Once the value of 20 had been selected as the reference cube size for counting colors, we then 
analyzed the influence of the L* and chroma values in the selection of the color palette of each 
painting. Figure 3(c) shows an example of the number of NRC obtained for different threshold 
values of L* (L*< 25, 50, 80, 90, or 95) according to the percentile selected which limits the 
chroma value of each pixel (once the threshold value has been pre-set at 0.3% for the counting 
of the pixels within each cube).). For threshold values of L*= 25 we can see how, independently 
of the value of the chroma, the NRC value is higher and practically the same as the cubes once 
the value of the 20 grid had been set (see the previous section regarding the grid values). On 
the other hand we can see that percentiles for the chroma of between 25-50 do not modify the 
NRC so we finally decided to select a threshold value for L* of 80 and a percentile level of 50 
for the chroma as the reference for the algorithm.   
 

3.3 Color statistical descriptors 

Figure 4 shows the frequency histogram for the different color descriptors in the analyzed 
paintings. Except, obviously, for the amount of dark pixels and the area of the discrimination 
ellipse obtained all the descriptors adjust to a Gaussian envelope. Chromaticity a* and b* 
distributions cluster around positive values, which are indicative of the large number of red, 
orange and yellow colors in the image dataset. The distribution of the angles of the longer axis 
of the fitted ellipses (with respect to the positive a* component) shows most values to be around 
50° to 100°; an average value of 74° is obtained, which indicates that, on average, the major 
axis of the ellipses are rotated to the right of the b* component. The distribution of the ratios 
between the major and minor axes of the ellipses varies from around 0.25 to 0.75 with an 
average of 0.45 with a relatively small standard deviation of 0.07. Finally the distribution of 
the areas of the ellipses of the clusters is below 1×104 CIELAB units, with maximum values of 
around 3,000-4,000 CIELAB units.  

Fig.  4: Histogram of frequencies for all paintings describing (upper row) the number of discernible colors 
(NDC), the number of relevant colors (NRC), percentage of dark pixels, (middle row) color components 
L*, a*, and b*, and (lower row) angle, axis ratio, and area for all adjusted chromatic ellipses. 
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Table 1 summarizes all the colormetric parameters obtained. The NRC average for all the 
paintings analyzed is 18 (with an SD of 6), significantly below the initial average 45 cubes 
obtained when counting those which contain a pixel (i.e. cubes with dimension 20 occupied 
with a pixel). As expected the number of relevant colors is clearly below the 17,444 discernible 
colors (with an SD of 9,000) on average obtained. All the chromaticity results (and the 
distributions of colors as shown in Figure 5) are quite similar to the corresponding ones 
obtained by Montagner et al.19 although our a* is slightly higher on average (5.5 versus 1 for 
the paintings analyzed by those authors). Data of the fitted ellipses are also similar to earlier 
results with the exception of the distribution of the areas of the ellipses, which show much 
higher values than the values from Montagner et al.19 These differences may originate from the 
very different painting datasets used, indicating a much richer chromatic diversity in our case.    
 

 

3.4 Color palettes of paintings derived from relevant colors 

Figure 6 shows examples of paintings in which we specify the number of relevant colors 
obtained for these paintings. This figure also shows the corresponding colors extracted which 
make up the palette for the painting  ̧this palette allows us to assign the relevant color in the 
areas occupied by all the pixels found within the cube.  In a way, we have managed to achieve 
a colorimetric segmentation of the image in question as far as the discernible categorical colors 
which appear in the image are concerned. Although the results presented here suggest a 
potential application of the algorithm for image segmentation this is not the main aim of this 
study. Yet, it could be argued that these categorical colors could not have subjective 
counterparts and are only related to purely colorimetric criteria.   

 Table 1. Summary about the colorimetric parameters analyzed: number of discernible colors (NDC), 
number of relevant colors (NRC), percentage of dark pixels, color coordinates L*, a*, and b*, angle, axis 
ratio and area of the corresponding gamut ellipse. 

 NDC NRC Dark 
Pixels 
(%) 

L* a* b* Angle 
(deg) 

Axis 
Ratio 

Area 

Mean 17444 18 64 44 5.5 14.5 74 0.45 3400 
SD 9000 6 17 11 3.7 4.4 8 0.07 2500 

 

Fig. 5: Encompassed relevant colors and their corresponding L*, a*, and b* color components for all paintings. 
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3.5 Color naming results 

Figure 7 shows a comparison of the color-naming algorithm results and those we propose in 
this paper. As we have already mentioned the average number of relevant colors obtained by 
our algorithm is 18 whilst the average number of colors obtained by using the color-naming 
algorithm for all the paintings is 7.0 (± 1.1 SD). Thus, the categorical number of color terms 
necessary to describe an image is below the NRC average. The great advantage of our method 
is that the relevant colors (the categorical discernible colors) derived are representative of the 
colors of each particular image, without being imposed and prefixed colors, as occurs with the 
color-naming algorithm (with 11 color categories being predefined for all the images). Lu et 
al.43 have tried to resolve this drawback by widening the number of colors to 39, showing that 
better results are obtained in applications related with segmentation for the classification of 

Fig. 6: Examples of segmentation according to the palette of relevant colors obtained. (Upper rows). The 
Annunciation (c.1432-4) by Fra Angelico, who is an Italian painter of the Early Renaissance (it contains 
20 relevant colors according to the porposed algorithm); and (lower rows) My Parents (c. 1977) by David 
Hockney, who is an English painter contributor to the pop art movement (it contains 24 relevant colors). 
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objects. This shows the limitations of color naming for this type of task, however this topic is 
not the aim of this study.  

3.6 Painting Style analysis 

Figure 8 shows the analysis of the number of relevant colors obtained for each of the 
categories/styles which the paintings the Khan database25 can be classified (according to the 
classification proposed by the authors). As we can see, all the styles are described by the number 

Fig. 7: (Upper plots) Examples of segmentation according to the color naming algorithm (which obtains 10 and 9 
colors for these painting), and (lower plot) comparison between the frequency histograms for the relevant colors 
and the number of colors selected via color naming for all the data base of Khan et al.25 
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of relevant colors around the average of 18 obtained for them all from the database (the broken 
red line in this figure). There are only two styles where the NRC number obtained seems to be 
distant from the average values; however, the difference is slight.  In the case of Abstract 
Expressionism the number of relevant colors obtained is 23 (± 9 SD) and therefore is higher 
than the average, not surprising when we consider that the paintings with this style are those of 
the works of Jackson Pollock and Willem de Kooning which have a greater chromatic space 

Fig. 8: Analysis by styles (the top two paintings are examples of Abstract Expressionism and the ones 
below are examples of Symbolism). 
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complexity. As far as the Symbolism style is concerned the opposite occurs, with 14 relevant 
colors being obtained (± 4 SD), somewhat lower than the global average; examples of this 
painting style are the paintings by Gustave Moreau and Gustav Klimt which would corroborate 
a greater chromatic simplicity in the artistic organization of the elements in their work. These 
results agree with the results of Kim et al.18 who found that almost all artistic periods analyzed 
displayed a significant coincidence except the medieval period (i.e. the color palette in the 
medieval age is significantly different from the other periods and with a preference for a small 
number of selected colors). Nevertheless, that medieval art period is not adequately covered in 
the image data set used here.  

 

4. Discussion and Conclussions 
After the refinement introduced in the computation of the categorical discernible colors, we 
have obtained an average number of 18 relevant colors that could be used to describe the color 
palettes of paintings. This represents a huge reduction in the number of colors in comparison 
with the initial average number of 17,444 discernible colors or the 43 threshold colors selected 
after a first constraint stage in the algorithm. The reduced number of only 18 relevant colors 
partially agrees with the total of 11 to 15 basic color names usually found in other categorical 
color studies31,34. Our method is able to derive different representative colors for each painting, 
is better adapted to the color content of every image and does not need the introduction of 
predefined color categories. The key difference between our ‘relevant color’ concept and the 
color naming approach is not the absolute number but the way we adapt the number of relevant 
colors to the chromatic content of each painting. The colors behind every basic color name are 
always the same independently of the analyzed scene (i.e. color naming can select the number 
of names to describe an image but choosing those names and colors from a fixed color palette). 
Moreover the algorithm can be used to extract the color palettes of paintings and then to 
automatically segment images according to their remarkable color content. 

Our proposal for the determination of relevant colors present in a scene is close to being the 
result of a task-driven process (i.e. a top-down process) so that we are simulating how observers 
look towards those areas in a scene that are the most relevant, not only for being 
colorimetrically discernible but which also describe the palette (chromatic diversity) of the 
scene. New concepts about salient discernible colors and remarkable salient colors were 
introduced in an earlier paper10 to be used to automatically create segmented images according 
to their salient chromatic diversity. The current proposal does not need to determine those areas 
which are visually salient in scene and this will be the subject of future research. We plan to 
analyze the relationship between these salient areas, their number and extension and the number 
of colors that really attracts the attention of an observer. Obviously, the number of discernible 
colors (as defined in early studies1,19) would not be the colors that an observer would use to 
describe an image in terms of its main colors. By looking into a picture of a painting it is far-
fetched to imagine that an observer is able to differentiate (and to locale into the painting) the 
millions/thousands of colors predicted by the chromatic diversity of that painting. Although the 
study of the number of discernible colors has produced a large number of papers, so far little 
attention has been paid to the influence of the task of the observer regarding the determination 
of the number of colors. The majority of the theories of the recognition of patterns suggest that 
our visual system must have some type of specific mechanism for carrying out the visual 
analysis of a scene. To put it in another way, only once the basic components of visual structure 
or image have been processed can the structure or visual pattern be identified.  

Regarding the number of discernible colors and the number of surfaces reliably discerned by 
an observer, Marín-Franch and Foster44 have shown that this number of discernible surfaces is 
much less than the number associated to the discernible colors, at least in natural scenes. 
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Nevertheless, this number of 7,300 which they estimate continues to be much higher than that 
which an observer would estimate for the relevant colors in a painting from a simple visual 
inspection. We have determined that the equivalent, in numbers, of these discernible surfaces 
which would be relevant colors, is some 18 colors (or 40 if we relax the model and only consider  
those cubes which contain a pixel), which would be a plausible number to be considered by an 
observer to determine the palette that appears in the painting If we take into account the 
relationship between the number of discernible colors and the expanded volume of the 
distribution of the colors found by Foster and Amano45 (equation num. (15) in reference [45]), 
together with the 20 dimension for the discriminable cube used in our algorithm, we would 
obtain a comparable result to the predicted according to information theory. This is in 
agreement with our hypothesis of introducing the “relevant color” as a reduced number to 
describe the palette of a painter. 
Various authors have explicitly expressed the opinion that there is a gap in the wide range of 
studies on the gamut of colors used in painting. Although it has been recognized that the use of 
color cannot be the only resource for identifying a style of painting within the history of art, it 
is clear that each painter has used a preferred palette of colors depending on the themes chosen, 
the materials used, the techniques employed and the personal artistic preferences of the painter. 
A wider revision has recently been carried out by Van Geert and Wagemans46 showing that the 
complex and diffuse inter-relationship between the subjective measures associated with the 
aesthetic apperception of a painting and the various objective ways which try to quantify these 
visual aesthetics. 
Do the results which we present in this paper presuppose that the concept of “relevant colors” 
should be linked to a categorical perception of color vision? Not necessarily, but recent 
neurophsyological studies47-48 have identified as such the Middle Frontal Gyrus in both cortex 
hemispheres as the human ventral V4 y VO1 areas which exhibit categorical clustering of 
neural representation of color and activation to identify color category and hue differences, 
which supports our hypothesis. Whether the color palettes derived here reproduce the subjective 
color terms used to describe a painting or their psychophysical counterparts is still an open 
question. 
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