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Abstract

A semiclassical phase-space perspective of band- and topological-insulator regimes

of 2D Dirac materials and normal- and superradiant phases of atom-field interacting

models is given in terms of delocalization, entropies, and quantum correlation mea-

sures. From this point of view, the low-energy limit of tight-binding models describ-

ing the electronic band structure of topological 2D Dirac materials such as

phosphorene and silicene with tunable band gaps share similarities with Rabi-Dicke

and Jaynes-Cummings atom-field interaction models, respectively. In particular, the

edge state of the 2D Dirac materials in the topological insulator phase exhibits a

Schrödinger's cat structure similar to the ground state of two-level atoms in a cavity

interacting with a one-mode radiation field in the superradiant phase. Delocalization

seems to be a common feature of topological insulator and superradiant phases.
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1 | INTRODUCTION

Until quite recently, the Landau theory constituted the usual paradigm to describe phase transitions occurring at a critical point of some control parameters.

Roughly speaking, this is based on the concept of “order parameter” (related to different organizations of the atoms or particles in the materials) that is finite

in a broken symmetry phase. Different orders correspond to different symmetries in the organization of the constituent atoms (liquids, crystals, etc.). Gapless

excitations (often called Goldstone modes) are a well-known consequence of the spontaneous symmetry breaking of a continuous underlying symmetry;

for example, the spontaneous breakdown of the continuous translation symmetry of a liquid to the discrete symmetry of a crystal in solidification.

The Landau theory can be generalized to describe quantum-phase transitions (QPT), which are driven by quantum fluctuations as they take

place at zero temperature. Examples of physical systems undergoing a QPT are: superconductor-insulator transitions, ferromagnets, radiation-

matter interaction models, etc.[1,2] In this article, we shall pay attention to paradigmatic atom-field models displaying a superradiant phase above

some critical value of the external electric field, for example, Rabi, Dicke, and Jaynes-Cummings (JC) models.[3,4] The JC model is a theoretical

model of great interest to atomic physics, quantum optics, solid-state physics, and quantum information circuits, both experimentally and theoret-

ically. It also has applications in coherent control and quantum information processing (see Greentree et al.[4] for a recent reference reviewing the

physics of the JC model). Basically, it describes the system of a two-level atom interacting with a quantized mode of an optical cavity (a bosonic

field) that can cause spontaneous emission and absorption. It was originally developed to study the interaction of atoms with the quantized elec-

tromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.
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Investigation of quantum critical phenomena beyond the Landau paradigm leads to topological-phase transitions (TPTs), which represent a

new class of quantum critical phenomena. In fact, it is usually said that TPTs cannot be described within the usual framework of the Landau theory

because they constitute a new kind of order that is beyond the usual symmetry description. Such is the case of chiral spin textures (in high-

temperature superconductivity) and quantum Hall states with the same symmetry but different “topological order.” In this article, we shall concen-

trate on 2D topological insulators (see References [5–7] for extensive reviews and Spencer and Morishita[8] for the special case of silicene), which

are examples of “symmetry-protected topological order” (that respect time-reversal symmetries). Topological insulators have gapless boundary

(edge) conducting states that are symmetry protected and dispersionless (robust against impurities and perturbations), similar to the quantum Hall

effect. We shall concentrate on 2D materials of the graphene family, particularly silicene and phosphorene. They are two-dimensional allotropes

of silicon and black phosphorus, respectively, with a hexagonal honeycomb structure similar to that of graphene but with a buckled structure that

gives them a tunable band gap by applying external electric fields. They are also called Dirac materials because their low-energy (long wave length)

effective electron dynamics can be described by a Dirac equation of electrons moving at the Fermi velocity. Unlike graphene, silicene and pho-

sphorene can develop edge currents due to a nonzero spin-orbit coupling (nonzero Dirac mass gap), which plays the role of an “intrinsic”

(vs external) magnetic field (when compared to the quantum Hall effect). These edge currents can be controlled by tuning the band gap (Dirac

mass) by means of a perpendicular electric field applied to the material sheet, thus inducing transitions from a band (standard) insulator (BI) to a

topological (edge conducting) insulator (TI) phase. TI-BI transitions can be characterized by the inversion of band together with a level crossing

(edge states) at critical values of control parameters, and these topological phases are characterized by topological charges such as Chern num-

bers.[8] Their particular structure confers on Dirac materials interesting physical properties. In particular, it has been proposed that phosphorene

can be used as a photodetector material[9] and in nanoelectronics within the framework of field effect transistor applications[10–12] because of its

properties at room temperature. These are the band gap (up to 2 eV) and high carrier mobility (1000 cm2V−1s−1). Actually, electronic devices have

been manufactured using phosphorene with considerable success and good performance.[13–16]

Although topological and symmetry-breaking (Landau-like) quantum phases are different in nature, one can still identify some similarities

between them, and this is one of the purposes of this article. We shall show that an information-theoretical analysis in the phase space of topo-

logical and standard quantum phases reveals a similar structure around the critical points, especially between edge and ground states. Actually,

localization, entropy, and entanglement measures of Hamiltonian eigenstates have proven to be good markers of the QPT for the Dike model of

matter-radiation interaction,[17–20] vibron model of molecules,[21–23] the ubiquitous Lipkin-Meshkov-Glick,[24–27] Bose-Einstein condensates,[28]

bilayer quantum Hall effect,[29–31] etc. As shown in,[32] these entropic measures are even capable of identifying the order of the corresponding

QPT. Inverse participation ratio and several kinds of entropies have also turned out to be useful to visualize the TI-BI transition in phosphorene[33]

and silicene,[34–37] where entropy-based Chern-like numbers distinguishing TI and BI phases have been defined. In this article, we pay special

attention to phosphorene, which has been less explored. We shall demonstrate that the low-energy (long wavelength) limit of tight-binding

models of phosphorene and silicene share some similarities with traditional Rabi-Dicke and Jaynes-Cummings atom-field interaction models,

respectively. There is a clear correspondence between the TI (resp. BI) regime of phosphorene and silicene and the superradiant (resp. normal)

quantum phase of Rabi-Dicke and Jaynes-Cummings models. In particular, the edge state of the 2D Dirac materials in the topological insulator

phase exhibits a Schrödinger's cat structure similar to the ground state of atom-field models in the superradiant phase. Therefore, delocalization

seems to be a common feature of both kinds of phase transitions, and the extensive knowledge on Rabi-Dicke and Jaynes-Cummings models can

help to better understand phosphorene and silicene, respectively.

The contribution is organized as follows: In Section 2, the low-energy Hamiltonian describing the properties of phosphorene in the presence

of electric and magnetic fields is introduced together with the corresponding Hamiltonian for the better-known case of silicene. In Section 3, the

eigenvalue problem for both Hamiltonians is solved, numerically for phosphorene and analytically for silicene, computing Landau levels and edge

states and classifying them according to their symmetries (namely, parity). In Section 4, we introduce coherent states and the so-called Husimi

function of pure states and reduced density matrices, which allows a visualization of quantum states in phase-space across the TI-BI transition in

the vicinity of a critical point. We restrict ourselves in this case to phosphorene (silicene has been analyzed in[34]). In Section 5, we use information

measures (moment of the Husimi distribution and Renyi-Wehrl entropy), which are good markers and descriptors of the TI-BI transition. In Sec-

tion 6, we compare phosphorene and silicene with Rabi-Dicke and Jaynes-Cummings spin-boson models using the framework of coherent states.

In particular, we show that edge states exhibit a Schrödinger's cat structure in the topological insulator phase, similar to the ground-state structure

of atom-field systems in the superradiant phase. Finally, Section 7 is devoted to final conclusions.

2 | LOW-ENERGY MODEL HAMILTONIANS

We shall start discussing the less-known case of phosphorene. Phosphorene is a two-dimensional crystal of black phosphorus, similar to graphene,

with a very stable orthorhombic structure (see Figure 1). This material has been studied both from an experimental and a theoretical point of view,

and it has also been synthesized in a laboratory.[13,38–45]

A tight-binding Hamiltonian to describe the phosphorene electronic band structure has been proposed in Rudenko and Katsnelson[46] in the form

2 of 13 CALIXTO ET AL.



~H=
X
i, jh i
tijc

†
i cj , ð1Þ

where, as usual, tij is the transfer energy between lattice sites i and j, and c†i , ci are the creation and annihilation operators of electrons at position

i, respectively. This model gives a band gap Eg = 4t1 + 2t2 + 4t3 + 2t5 for the five hopping links t1, …, t5 of Figure 1.

After a second-order expansion around the Γ point of the Brillouin zone (kx, ky) and a minimal coupling to a perpendicular magnetic field

B = (0, 0, B) to the phosphorene sheet [in the Landau gauge A = (−By,0,0)], one arrives at the simplified Hamiltonian model (we refer the reader to

References [33, 46–48] for more information)

bHB = ℏωγ ba+ba†� �
σx +

Ec +ℏωc ba†ba+1=2� �
2

σ0 + σzð Þ

+
Ev−ℏωv ba†ba+1=2� �

− ba2 +ba†2� �
ℏω0

2
σ0−σzð Þ,

ð2Þ

written in terms of Pauli matrices σx, y, z plus identity σ0 (two-band Hamiltonian) and the annihilation (and creation ba†) operator
ba= ffiffiffiffiffiffiffiffiffiffiffiffiffi

mcyωc

2ℏ

r
y−y0 + i

bpy
mcyωc

� �
, ð3Þ

associated with the Landau sector and written in terms of an effective mass mcy, the cyclotron frequency ωc = eB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcxmcy

p
, the center y0 = ℓ

2
Bkx ,

the magnetic length ℓB =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ= eBð Þp

, the coordinate y, and the momentum bpy (see References [33, 48] for more information). Moreover, ωγ, ωc, ωv,

and ω
0
are some effective frequencies (see Zhou et al.[48] for their values), and Ec = 0.34 eV and Ev = −1.18 eV are the conduction and valence

energies, respectively, which give an energy gap of Eg = Ec− Ev = 1.52 eV.

In addition, we shall consider the application of a perpendicular electric field to the phosphorene sheet in the usual form bHΔ =Δσz , with Δ

being the electric potential. Therefore, the total phosphorene Hamiltonian will be

bHP = bHB + bHΔ: ð4Þ

The electric field will be important in this problem as it provides a tunable band gap.

Similarly, the low-energy regime of a tight-binding model describing the electronic band structure of silicene under a perpendicular magnetic

and electric field is reported by the 2D Dirac Hamiltonian (for simplicity, we restrict ourselves to the linear expansion around the K point of the

Brillouin zone, and the fully polarized spin 1/2 case).[49–52]

bHS =Δgσz +ℏω baσ + +ba†σ−

� �
, ð5Þ

where σ� = 1
2 σx + iσyð Þ , ω= v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB=ℏ

p
is the cyclotron frequency (v = 5×105m/s is the Fermi velocity), and the “Dirac mass” Δg = 1

2Δ+ 1
2Δso pro-

vides a band gap, written in terms of the spin-orbit coupling Δso’4meV and the electric potential Δ. Later, in Section 6, we will comment on

some similarities between the phosphorene bHP and silicene bHS low-energy Hamiltonians and the Rabi-Dicke and Jaynes-Cummings models for

atom-field interaction, respectively.

F IGURE 1 Phosphorene top view. Red (orange) thick points
represent phosphorus atoms placed in the lower (upper) layer. The in-
plane bond length is a=2:22Å, and the in-plane bond angle is
θ = 96.79o. We represent the primitive vectors ax =3:32Å and
ay =4:38Å by dashed arrows. The five solid arrows represent the first
five neighbor hopping sites tj necessary to describe phosporene,
according to Rudenko and Katsnelson.[46]
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3 | DIAGONALIZATION: PARITY SYMMETRY, LANDAU LEVELS, AND EDGE STATES

The basis states of the Hamiltonian (2) can be denoted by the ket jkx, n, si, indicating the momentum kx (the eigenvalue of bpx ), the Landau Level

n (the eigenvalue of bn=ba†ba), and s = ±1 indicating the conduction and valence bands (the eigenvalues of σz). In the Landau gauge A = (−By,0,0),

the eigenvectors can be written by

xyjkx,n+h i= eikx xffiffiffiffiffi
Lx

p ϕn ycð Þ,0ð ÞT ,

xyjkx,n−h i= eikx xffiffiffiffiffi
Lx

p 0,ϕn yvð Þð ÞT ,
ð6Þ

with

yc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcyωc=ℏ

q
y−y0ð Þ, yv =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mvyωv=ℏ

q
y−y0ð Þ,

where ϕn are the wave functions of the harmonic oscillator. In the following analysis, we disregard the eigenvectors kx of the momentum operatorbpx.
Due to the parity symmetry of Hamiltonian (2), bHP commutes with the parity operator bΠ= eiπbnσ , with

bnσ =bn+ σz + σ0ð Þ=2,

implying that the matrix Hamiltonian is divided into two blocks associated with the even and odd parity solutions. Therefore, the k-th eigenstate

(Landau level) is denoted by

jψki=
X
n,s

c kð Þ
n,s j n,si, ð7Þ

where the labels n and s of the expression are constrained to have π(n, s) = ± 1; for conduction band, k < 0; and for valence band, k > 0. The

matrix Hamiltonian for each sector is truncated to n ≤ N to achieve convergent results for the eigensystem for the given values of the magnetic

and electric fields. Of course, the diagonalization of the matrices allows us to obtain the coefficients c kð Þ
n,s .

In order to study the effect of a band inversion (TPT), we consider electric potentials around Δ ’ − Eg = − 1.52 eV, that is, we analyze the

range for the electric field interaction −1.9 ≤ Δ ≤ − 1.0 and for a magnetic field of B = 20T. The convergence is obtained for N = 210, and we

have found that N must grow with jΔj for Δ < − 1.9 (TI region) in order to achieve convergence. For other values of the magnetic field, similar

qualitative results are obtained.

In Figure 2, the electronic band structure of phosphorene and silicene as a function of the electric potential Δ are exhibited for the first

13 low-energy LLs k = − 6, …, 0, …, 6. There are six valence states (even and odd), six conduction states (even and odd), and the edge state k = 0

(black solid line). The edge state k = 0 suffers a band inversion around the critical value taken for the electric potential Δc = − Eg for phosphorene,

while the value Δc = − Δso for silicene. In both cases, one demonstrates that a topological transition occurs from a band insulator (BI) phase

(Δ > Δc) to a topological insulator (TI) phase (Δ < Δc).

Note that the diagonalization of the Hamiltonian bHS in Equation (5) for silicene is easier and can be done analytically. This is so because the

Hamiltonian possesses a larger symmetry, which makes the model integrable. Indeed, not only the parity bΠ= eiπbnσ but also the “total number of

excitations” bnσ =bn+ σz + σ0ð Þ=2 commute with bHS . Therefore, bHS and bnσ can be jointly diagonalized, with the corresponding Hamiltonian eigen-

values being.[49–52]

En =
sgn nð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j n jℏ2ω2 +Δ2

g

q
, n≠0,

−Δg, n=0,

(
ð8Þ

and the Hamiltonian eigenvectors

jψni= − icn+ kn j −1,1i+ cn−kn j ,−1i, ð9Þ
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with coefficients

cn+ = sgn nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j En j + sgn nð ÞΔg

2 j En j

s
, n≠0, ð10Þ

cn− =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j En j −sgn nð ÞΔg

2 j En j

s
, n≠0, ð11Þ

and c0+ = 0, c0− = 1 for the edge state.

The structure of these first low-energy LLs for Silicene are displayed in Figure 2, where we have restricted ourselves to the even parity con-

duction k = 6 (solid blue) and valence k = − 6 (solid red) eigenstates, together with the edge state k = 0 (solid black), as odd parity states display a

similar behavior. We visualize the structure of these LLs in phase space, making use of the coherent state representation of jψki, that is, the
Husimi distribution function, and its moments, which turn out to be good markers of the BI-TI transition.

4 | COHERENT STATES, HUSIMI FUNCTION, AND REDUCED DENSITY MATRICES

Coherent states are usually obtained by applying a displacement operator (a unitary operation) on a highest/lowest weight state, namely,

jniN j si = j 0iN j − i. We have two kinds of coherent states associated with each sector. One is related to the oscillator or Landau sector

jαi= eαa†−�αa j0i= e− αj j2=2X∞
n=0

αnffiffiffiffi
n!

p j ni, ð12Þ

F IGURE 2 Low-energy spectra Ek of phosphorene (top panel, in
eV units) and silicene (bottom panel, in Δso = 4 meV units) as functions
of the electric field strength Δ for 13 LLs k = − 6, …, 0, …, 6 (B = 20 T
for phosphorene and B = 0.5 T for silicene). Valence (conduction) band
LLs k = − 6, …, − 1 (k = 1, …, 6) are represented in red (blue) color
(solid for even and dashed for odd parity). The edge state k = 0,
represented in solid black, suffers band inversion around the critical
electric potential Δc = − 1.52 eV for phosphorene and Δc = − Δso for
silicene (these transition points are marked with a vertical orange

gridline). Even and odd parity LLs for phosphorene degenerate in the
topological insulator region; in particular, the edge state degenerates
with the odd parity conduction band LL k = 1 for Δ < Δc
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where α = q + ip is a complex number. The other is related to the band (spin) sector

j θ,ϕi= eθ
2 eiϕσ + −e− iϕσ−ð Þ j −i

= cos
θ

2
j −i+ eiϕsinθ

2
j + i,

ð13Þ

where σ� = 1
2 σx� iσyð Þ, and (θ,ϕ) are the polar and azimuthal angles on the Bloch sphere, respectively. These are the usual spin-12 SU(2) coherent

states (the N-band case would require SU(N) coherent states, in principle).

It is well known (see, eg, Perelomov[53]) that coherent states form an overcomplete set of the corresponding Hilbert space and fulfill the clo-

sure relations or resolutions of the identity:

1L =
1
π

ð
ℝ2
d2α j αihα j , d2α= dqdp,

1B =
1
2π

ð
R
sinθdθdϕ j θ,ϕihθ,ϕ j , R= 0,π½ �× 0,2π½ �,

ð14Þ

in the Landau (L) and band (B) sectors, respectively. The coherent state, or phase space, representation of a basis state jn, si is then given by:

φn,s α;θ,ϕð Þ= njαh i sjθ,ϕh i= e−
αj j2
2 αnffiffiffiffi
n!

p tan θ
2e

iϕ
� �1+ s

2

sec θ
2

: ð15Þ

The Husimi or Q-function of a normalized state jψki like (7) is defined as

Qψk
α;θ,ϕð Þ= j hα;θ,ϕ ψkij j2X

n,n0

X
s,s0

c kð Þ
ns �c

kð Þ
n0s0φn,s α;θ,ϕð Þ�φn0 ,s0 α;θ,ϕð Þ, ð16Þ

and normalized according to:

ð
ℝ2 ×R

Qψk
α,θ,ϕð Þd

2αsinθdθdϕ
2π2

= 1: ð17Þ

We are interested in visualizing the Landau and band sectors separately. Therefore, we shall define the reduced density matrices of the Lan-

dau sector

ρLψk
=
X
n,�n

X
s

c kð Þ
ns �c

kð Þ
�ns j nih�n j ð18Þ

and of the band sector

ρBψk

� �
=

ϱ + + ϱ + −

ϱ− + ϱ− −

� �
=

P
n c kð Þ

n+

			 			2 P
nc

kð Þ
n+�c

kð Þ
n−P

n�c
kð Þ
n+ c

kð Þ
n−

P
n c kð Þ

n−

			 			2
0B@

1CA: ð19Þ

Parity symmetry implies that ϱ−+ = ϱ−+ = 0. In Figure 3, we plot the populations ϱ++ and ϱ−− of three Landau levels k = − 6,0,6 as a function

of the electric potential Δ. The plot reflects the fact that ϱ++ + ϱ−− = 1, and therefore, they are symmetric with respect to the value 1/2. In the BI

region (Δ � − 1.52 eV), the band populations of Hamiltonian eigenstates are polarized: ϱ−− ’ 1 for edge and valence bands, and ϱ++ ’ 1 for con-

duction band states, whereas in the TI region (Δ � − 1.52eV), we have ϱ−− ’ ϱ++ (balanced populations).

We are also interested in visualizing the corresponding “marginal” or reduced Husimi functions QL
ψk

αð Þ= αjρLψk
jα

D E
and

QB
ψk

θ,ϕð Þ= θ,ϕjρBψk
jθ,ϕ

D E
. In Figure 4, the phase-space behavior of the Landau levels is exhibited by the Husimi function QL

ψk
αð Þ . One can see a

transition from a bimodal regime to a unimodal regime. In addition, from the BI to the TI phases, there is a continuous delocalization of the Landau

levels in phase space. We see in Figure 4 that the edge state k = 0 displays a “Schrödinger's cat structure” structure, that is, a quantum superposi-

tion of quasiclassical, macroscopically distinguishable (no overlapping) states (also called “parity-adapted coherent states”). This structure is shared
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by the ground state of atom-field systems in the superradiant phase, as we show in Section 6. This delocalization property is quantified later on in

Figure 6 by using the Husimi function second moment.

In Figure 5, we represent QB
ψk

θ,ϕð Þ that, for Hamiltonian eigenvalues with defined parity, turns out to be independent of ϕ. We find that

QB
0 θð Þ’0:5 in the TI region, that is, the Husimi band distribution of the edge state, is quite uniform between the north (θ = 0) and the south

(θ = π) poles of the Bloch sphere. This is consistent with Figure 3, where we found that ϱ−−’ ϱ++ (balanced populations) for the edge state in the

TI region. The analysis QB(θ) for the BI phase and for the valence and conduction states is also consistent with the results of the band populations

in Figure 3.

5 | INFORMATION-THEORETIC ANALYSIS AND BI-TI TOPOLOGICAL TRANSITION

We have visualized the structure in phase space of the reduced density matrices ρLψk
and ρBψk

across the critical point Δc, observing a higher delo-

calization of the corresponding Husimi distributions in the TI phase. Now, we want to quantify this delocalization by using the ν-th moments of

the reduced Husimi distributions of a state ψ

ML,ν
ψ =

ð
ℝ2

d2α
π

QL
ψ αð Þν,

MB,ν
ψ =

ð
R

sinθdθdϕ
2π

QB
ψ θ,ϕð Þν:

ð20Þ

When ψ = ψk is a Hamiltonian eigenstate, then the moments acquire an intrinsic dependence on the electric potential ML Bð Þ,ν
ψk

Δð Þ and will play

the role of an order parameter for the TPT occurring at Δc = − Eg = −1.52 eV, from the BI Δ>Δc to the TI Δ<Δc regime. The definition of the

moment is not restricted to integer values of ν. Once ML Bð Þ,ν
ψ are known for all integers ν, there is a unique analytic extension to complex (and

therefore real) ν. The “classical” (vs quantum von Neumann) Rényi-Wehrl entropy is then defined as:

WL Bð Þ,ν
ψ =

1
1−ν

ln ML Bð Þ,ν
ψ

� �
, ð21Þ

which tends to the Wehrl entropy

WL Bð Þ
ψ = −

ð
dμL Bð ÞQL Bð Þ

ψ lnQL Bð Þ
ψ ð22Þ

when ν ! 1, where dμL = d2α/π and dμB = sinθdθdϕ/(2π). Among all moments, we shall single out the so-called “inverse participation ratio” (IPR)

ML Bð Þ,2
ψ , which somehow measures the inverse of the area (localization) occupied by QL Bð Þ

ψ in phase space. It is also related to the purity P = tr(ρ2)

(the trace of the squared reduced density matrix) of the state and measures how entangled they are in the band (B) and the Landau (L) sectors

across the TPT. The purity is related to the linear entropy by S = 1− P. The maximum values of ML,2
max =

1
2 andMB,2

max =
2
3 are attained when jψi is itself

a coherent state jα0
; θ

0
, ϕ

0i (minimal area). This is related to the Wehrl-Lieb's conjecture.[54,55] For the sake of convenience, we shall normalize the

second moments in the Landau and band sectors according to PLψ �2ML,2
ψ and PBψ � 3

2M
B,2
ψ , respectively, in order to set the maximum IPR values to

F IGURE 3 Diagonal components ϱ++ (red) and ϱ−− (blue) of the
reduced density matrix ρBψk

� �
for three Landau levels, k = −6 (valence

band, dotted), k = 0 (edge state, solid), and k = 6 (conduction band,
dashed), as a function of the electric potential Δ. The critical point
Δc = −1.52 eV, separating the band (Δ>Δc) from the topological
insulator (Δ<Δc) regime, is marked with a vertical grid line
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1 in both sectors. Performing the integrals (20) for a Hamiltonian eigenstate (7), we arrive at an explicit formula for the normalized IPR in the Lan-

dau sector

PLk =
X
n,�n

n0 ,�n0

X
s,s0

n+ n0ð Þ!c kð Þ
ns �c

kð Þ
�ns c

kð Þ
n0s0�c

kð Þ
�n0s0

2n+ n0 n!�n!n0!�n0!ð Þ1=2
δn+ n0 ,�n+ �n0 ð23Þ

F IGURE 4 (Color online) 3D plot of the reduced Husimi distribution QL
ψk

αð Þ, as a function of α = q+ ip, for the edge state k = 0 (right column)
and the even-parity valence band state k = −6 (left column) for different values of the electric potential Δ (from top to bottom): Δ = −1.8
(topological insulator region), Δ = −1.52 (critical), and Δ = −1 (band insulator region)
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and in the band sector

PBk = ϱ
2
+ + + ϱ2− − + ϱ+ + ϱ−− + ϱ+ −j j2 ð24Þ

where ϱ±± are the components of ρBψk

� �
in Equation (19). In Figure 6, we plot PLk and PBk as a function of the electric potential strength Δ. Notice

that the maximum delocalization (minimal IPR, high entanglement) of the energy eigenvectors in phase space occurs in the TI phase (Δ<

−1.52 eV), whereas in the BI phase (Δ< −1.52 eV), the corresponding wave functions are highly localized (maximum IPR, low entanglement). This

behavior is also shared with silicene.[34,36] In fact, delocalization and entanglement in phase space turns out to also be a common feature of

QPTs.[32] In fact, in the next section, we analyze the phase-space structure of normal and superradiant phases of two paradigmatic spin-boson

systems (Rabi-Dicke and Jaynes-Cummings), comparing them with band and topological insulator phases of phosphorene and silicene,

respectively.

F IGURE 5 Reduced Husimi distribution QB
ψk

θð Þ for the valence-
band state k = −6, the edge state k = 0, and the conduction band state
k = + 6, for different values of the electric potential: Δ = −1.8
(topological-insulator region, dashed line), Δ = −1.52 (critical point,
solid line), and Δ = −1 (band insulator region, dotted line)
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6 | COMPARISON WITH RABI-DICKE AND JAYNES-CUMMINGS MODELS

In this section, we want to highlight some analogies between topological insulator and superradiant quantum phases. To this end, we shall discuss

some similarities between the effective Hamiltonian (2 and 4) for phosphorene and the well-known Rabi-Dicke Hamiltonian

bHR =ℏω0
σz
2
+ ℏωba†ba+ ℏΩ

2
ba+ba†� �

σ + + σ−ð Þ, ð25Þ

originally introduced in the context of nuclear magnetic spin resonance but later extended to modeling the interaction (with coupling strength Ω)

of a two-level system (spin, atoms, superconducting qubits, etc.) of transition frequency ω0 with a harmonic oscillator (electromagnetic field, reso-

nator, phonons, etc.) of cavity frequency ω. As for phosphorene, Rabi-Dicke Hamiltonian also conserves the parity π n,sð Þ= eiπns of the state jn, si,
with ns = n+ (s+1)/2, as the parity operator bΠ= eiπbnσ , with bnσ =bn+ σz + σ0ð Þ=2, also commutes with bHR . When quickly oscillating “counter-rotating”

terms ba†σ + and baσ− are ignored (“rotating-wave approximation”), the Rabi-Dicke Hamiltonian becomes the Jaynes-Cummings Hamiltonian

bHJC =ℏω0
σz
2
+ℏωba†ba+ ℏΩ

2
baσ + +ba†σ−

� �
, ð26Þ

which now also conserves the number of excitations bnσ =bn+ σz + σ0ð Þ=2, and not only the parity bΠ, just like the silicene Hamiltonian (5) does. This

conservation law leads to a U(1)-continuous symmetry. As for silicene, this case is far simpler, and the diagonalization can be done in the sub-

spaces ℋn = {jn, 1i, j n+1,−1i}, with the energy eigenvalues being

E�n =ℏω n+
1
2

� �
�1
2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 +Ω2 n+1ð Þ

q
, ð27Þ

where δ = ω0 − ω is the detuning parameter. The Hamiltonian eigenstates are

F IGURE 6 Normalized inverse participation ratios (IPRs) PLk and PBk
as a function of the electric potential strength Δ for the edge state
k = 0 (in blue) and the even-parity valence band state k = −6
(in orange). The critical point Δc = −1.52 eV, separating the band from
the topological insulator regime, is marked with a vertical grid line
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jψ�
n i= cos

φn

2
j n+ 1�1

2
, �1i� sin

φn

2
j n+ 1�1

2
,�1i, ð28Þ

where φn = arctan
Ω
ffiffiffiffiffiffiffi
n+1

p
δ . Note the similarities between this case and the silicene Hamiltonian eigenvalues (8) and eigenstates (9), although here,

n is restricted to nonnegative numbers, n≥0, due to the presence of ℏωba†ba in the Hamiltonian.

When we have an ensemble of N identical two-level atoms, the Rabi-Dicke Hamiltonian becomes the Dicke Hamiltonian by replacing σ� !
J�=

ffiffiffiffi
N

p
, where J± are angular momentum ladder operators for a pseudospin j = N/2. In the thermodynamic limit N!∞, and at a critical value

Ωc =
ffiffiffiffiffiffiffiffiffi
ω0ω

p
of the atom-field coupling strength Ω, this system undergoes a QPT from a normal (Ω<Ωc) to a superradiant (Ω>Ωc) phase. For finite

values of N, we still can observe precursors of this QPT.

Our two-band model of phosphorene shares many similarities with the Dicke model for N = 1, j = 1/2 (ie, the Rabi-Dicke model). Actually,

there is a parallelism between the TI phase of phosphorene and the superradiant phase of the atom-field system. In fact, the phase-space struc-

ture of edge states turns out to be similar to the ground-state structure of the atom-field system across the critical point. Coherent states prove

to be an excellent variational approximation of the ground state in QPTs. Let us denote for simplicity jzi = j θ, ϕi, z = tan(θ/2)eiϕ the coherent

state (13). Using the direct product jα, zi ≡ j αiN j zi as a ground-state ansatz for the Rabi-Dicke Hamiltonian (25), one can easily compute the

mean energy

H α,zð Þ= α,zjHjα,zh i

=ω αj j2 + jω0
zj j2−1

zj j2 + 1
+Ω α+ �αð Þ �z+ z

zj j2 + 1
,

ð29Þ

which defines a four-dimensional “energy surface.” Minimizing with respect to these four (two complex z, α) coordinates gives the equilibrium

points:

α0 =

0, ifΩ<Ωc,

−
ffiffiffiffiffiffi
ω0

ω

r
1

ΩΩc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω4−Ω4

c

q
, ifΩ≥Ωc

8><>:
z0 =

0, ifΩ<Ωc,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2−Ω2

c

Ω2 +Ω2
c

s
, ifΩ≥Ωc,

8>><>>:
ð30Þ

together with −α0 and −z0. Note that α0 and z0 are real and nonzero above the critical point Ωc (ie, in the superradiant phase). The existence of

two solutions, (α0, z0) and (−α0, −z0), indicates that the ground state is degenerate in the superradiant phase. This is related to the parity symmetrybΠ of the Hamiltonian (25). Therefore, the variational approximation to the ground state is a (even) parity-adapted coherent state

jψ0i=
jα0i

N j z0i+ j −α0i
N j −z0i

N α0,z0ð Þ , ð31Þ

where

N α0,z0ð Þ=
ffiffiffi
2

p
1 + e−2 α0j j2 1− z0j j2

1 + z0j j2
 !2j

0@ 1A1=2

ð32Þ

is a normalization factor. This parity-adapted coherent state is also called a “Schrödinger's cat state” in the literature, in the sense that it is a quan-

tum superposition of two quasiclassical, macroscopically distinguishable states.[56]

Taking into account the coherent state overlaps

αj�α0h i= e−1
2jαj−1

2α
2
0��αα0 ,

zj�z0h i= 1��zz0ð Þ2j

1+ zj j2
� �j

1+ z20
� �j , ð33Þ

the Husimi function for the variational ground states (31), Q0(α, z) = j hα, z|ψ0i|2, can be simply written as:
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Q0 α,zð Þ= j αjα0h i zjz0h i+ αj−α0h ihz −z0ij j2
N 2 α0,z0ð Þ

: ð34Þ

A plot of this function in the normal (Ω < Ωc) and superradiant (Ω < Ωc) phases and at the critical point (Ω = Ωc) can be seen in del Real et al.[20]

One can appreciate the similarities between this Husimi function and the reduced Husimi distribution QL
0 αð Þ of the edge state in Figure 4 (right

panel). The normal phase of the matter-radiation system (Ω<Ωc) corresponds to the band-insulator phase (Δ>Δc), where the Husimi distribution

is highly localized (a single hump), whereas the superradiant phase of the atom-field system (Ω>Ωc) corresponds to the topological-insulator phase

(Δ<Δc), where the Husimi distribution is delocalized (two humps), displaying a Schrödinger's cat structure.

The role of Landau and band sectors in 2D Dirac materials is now played by the field and the atom sectors in the spin-boson system. Refer-

ences [57–60] consider the entanglement between the atoms and the field in the ground state of the Dicke model, showing that the entangle-

ment sharply grows in the superradiant phase. In this sense, we also observe a clear analogy between the TI and the superradiant phases. Indeed,

in Figure 6, we represent the purity of the reduced density matrices in the band and Landau sectors for the edge state, which shows that the edge

state is far more entangled in the TI than in the BI phase. This reinforces the analogy between TI and superradiant phases.

7 | CONCLUSIONS

We have analyzed the low-energy regime of two 2D Dirac materials, phosphorene and silicene, under the influence of external perpendicular

magnetic and electric fields. The electric field is used to tune the band gap (Dirac mass) and to control the appearance of edge currents in the TI

phase. We visualize the structure of the edge and first Landau levels using different information-theoretic measures as a function of the electric

field in the vicinity of the TPT. In particular, we use a representation of edge and first LL states in terms of coherent states in phase space (the

Husimi function). We show that the entanglement between the band and Landau sectors is much higher in the TI phase. Under this perspective,

we evidence a close analogy between the TI phase of 2D Dirac materials (in particular, phosphorene and silicene) and the superradiant phase of

atom-field interaction systems (in particular, the Rabi-Dicke and Jaynes-Cummings models).

This semiclassical phase-space picture and information-theoretic analysis of quantum and TPTs offers a new and alternative vision that can

be extrapolated to general TIs and spin-boson systems. We believe that our approach is better than existing ones in describing the electronic

structure of 2D TIs in the sense that it reveals clear connections with standard QPTs, where the extensive literature and existing knowledge can

help to better understand the more novel topological case. These analogies can lead to propose experimental counterparts of relevant phenomena

observed in atom-field critical quantum systems, like wave packet revivals, superradiance, and—in general—about the temporal evolution of quan-

tum correlation measures. In addition, we also believe that this vision could provide a better understanding of the relevant experimental observa-

tions of topological phases reported so far from a different perspective. This is work in progress.
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