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ABSTRACT
The Variance Inflation Factor and the Condition Number are measures traditionally
applied to detect the presence of collinearity in a multiple linear model. This paper
presents the relation and the difference between both measures from theoretical and
empirical perspectives by using Monte Carlo simulations and taking special interest
in the computational techniques.
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1. Introduction

The presence of high collinearity in a multiple linear regression model implies that
the conclusions of the analysis can be questioned, for example, because of a lack
of accuracy of the estimations due to the high variances of the estimators. Thus, the
detection of collinearity has to be a compulsory first step in every econometric analysis.

The measures most applied to detect collinearity are the Variance Inflator Factor
(VIF) and the Condition Number (CN), although they are based on concepts not in-
cluded in the most accepted definitions of collinearity given by [1]: “k variables are
collinear or nearly dependent, if one of them lies almost in the space spanned by the
remaining (k − 1) variables, that is, if the angle between one and its orthogonal pro-
jection on the others is small”. What happens is that “collinearity evidently implies
different things to different people. Some associate collinearity primarily with numeri-
cal problems and sensitivity, while others concentrate on variance inflation and related
statistical concerns”, [2].
Thus, given the following linear model with n observations and p exogenous variables,

y = Xβ + u, (1)

where the first column of X is composed of ones and u represents the random
disturbance (that is supposed to be spherical), the VIF for every exogenous variable
in model (1) is obtained from the following expression:

V IF (i) =
var

(
β̂i

)
var

(
β̂oi

) =
1

1−R2
i

, i = 2, . . . , p, (2)



being β̂ the OLS estimator of model (1), β̂
o

the OLS estimator of model (1) supposing
that the exogenous variables are orthogonal and R2

i is the coefficient of determination
of the following auxiliary regression:

Xi = X−iδ + w,

where X−i is equal to the matrix X after eliminating the variable Xi for all i = 2, . . . , p.
Since 0 ≤ R2

i ≤ 1, it is verified that V IF (i) ≥ 1, ∀i.
Because the VIF is obtained as the ratio between the observed variance and the vari-

ance that will be obtained if Xi is uncorrelated with the rest of the exogenous variables,
it shows how much the variance of the estimator is inflated as a consequence of the lin-
ear relation between the regressors. However, it should be noted that collinearity may
not be related to the correlation. There can be multicollinearity between explanatory
variables without there being high correlation between pairs of these variables, [3] and
[4]. Belsley [1] summarized this idea with the following statement: “low VIFs do not
guarantee low collinearity”.

On the other hand, given the linear model (1), the condition number
(CN) is defined as:

K(X) =
µmax
µmin

, (3)

where µmax and µmin are the minimum and maximum singular values of
matrix X, respectively.

From the decomposition of the singular values of matrix X given by X =
UDVt where UtU = I, VtV = I being I the identity matrix (with adequate
dimensions) and D = diag(µ1 . . . µp), with µi, i = 1, . . . , p, the eigenvalues of
matrix X, then:

XtX = VDUtUDVt = VD2Vt. (4)

In this case, the eigenvalues of the matrix XtX coincide with the square
of the singular values of matrix X, that is, ξi = µ2

i for i = 1, . . . , p. Then,
expression (3) is equivalent to:

K(X) =

√
ξmax
ξmin

, (5)

where ξmax and ξmin are, respectively, the maximum and minimum eigenvalues of
matrix XtX, [5], [6], [1], [7], [8] and [9]. Note that data should have unit length, that is
to say, the data should be divided by the square root of the sum of its squared elements.
It is a measure related to the ill-conditioning of matrix XtX from a numerical point of
view. Steward [10] noted that “one problem is that while the condition number can be
very useful as a multicollinearity indicator, it may not be specific enough for statistical
applications since it distils a large amount of information into a single number”.

Unfortunately, both measures are not a statistical contrast to detect collinearity. [11]
questioned the Chi-square test for the existence of multi-collinearity, modified by [12].
A consequence of the skepticism developed here is a return to the position of treating
multicollinearity as a numerical problem, i.e., with generally accepted thresholds. By
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following [13] “commonly a VIF of 10 or even one as low as 4 have been
used as rules of thumbs to indicate excessive or serious collinearity” [14–
18]. In relation to condition number, [6] stated that values of K(X) between “the
range 0−10 indicate weak near dependencies, 10−30 indicate moderately strong near
dependencies, 30−100 strong near dependencies, and indices in excess of 100 are very
strong”. However, this should always be examined in context, [13], as there are cases
where even a very high VIF (or CN) does not require corrective action, [18].

[19] distinguished between high correlation among regressors which, under certain
conditions, gives rise to systematic volatility, and a numerical issue (the regressor
data matrix XtX is ill-conditioned), which gives rise to erratic volatility. Holland
[20] detailed the connection between ill-conditioning and multicollinearity: “Moreover,
the terms ill-conditioning and collinearity are also sometimes used interchangeably,
though ill-conditioning describes any effect in a data matrix that causes large changes
in the regression estimates, due to a small change in the data, so does not involve
multicollinearity alone [1]. However, multicollinearity is the primary cause of such
behaviour in regression models”.

From this idea, the condition number can be inserted into the problem of the sta-
bility of the XtX matrix, from a numerical analysis point of view, while the VIF is
inspired by a statistical point of view based on the correlation between the regressors.
Both parameters, although not directly related to collinearity, attempt to measure the
presence of collinearity in the estimation of a linear model. This paper attempts to
clarify what is measured by the VIF and the CN and to find a relation between them
from a conceptual or purely arithmetical point of view. In the case that there is some
kind of relationship between them, there should also be some relation between their
thresholds.

This is not the first time this question has been raised. [21] stated that the VIF and
the CN are related, establishing the following inequality for standardized data:

max
i=2,...,p

V IF (i) ≤ K(Z)2 < (p− 1) ·
p∑
i=2

V IF (i), (6)

where ZtZ is the matrix of correlations, that is to say, the data are standardized (its
mean is zero and its variance is equal to 1 divided by the number of observations). As
consequence, the square of CN is a upper bound of the maximum VIF. Thus, the
CN may include information about the grade of collinearity that is not detected by
the VIF.

In the case of standardized data with p = 3, the following is verified:

ZtZ =

(
1 ρ
ρ 1

)
,

1

V IF
= 1− ρ2 = det(ZtZ) = ξ1 · ξ2 = (1− ρ) · (1 + ρ),

where ρ is the coefficient of correlation between the exogenous variables1, then sup-
posing that ρ > 0:

K(Z) =
1

1− ρ
·
√

1

V IF
= (1 + ρ) ·

√
V IF . (7)

Note that if V IF = 10 then ρ2 = 0.9. Consequently, V IF > 10 is equivalent

1Note that the constant term disappears after the standardization of the data.
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to K(Z) > 6.162.
Both relations (6) and (7) are established when the data are standardized. However,

for the calculation of the CN, the data should be expressed in unit length.
The structure of the paper is as follows: after presenting the notation in

Section 2, Section 3 presents a relation between the CN and the VIF for standardized
data as an alternative to the relation established by [21]. This relation’s adequateness
for unit length data is also analyzed by using Monte Carlo simulations. Analogously to
the relation showed by [21], the square of CN is a upper bound of the VIF. Based on
this conclusion, Section 4 analyzes if there is a relation between the regressors that is
captured by the CN and not by the VIF. In section 5, we use Monte Carlo simulations
to analyze whether the functional relation shown in (7) is verified for p = 3, 4, 5.
Finally, the main contributions of the paper are summarized in section 6.

2. Notation

For model (1), X denotes the information matrix for n observations and
p variables when natural units are used and a constant term is included.
This is to say, X = (1,X2, . . . ,Xp) where 1 = (1 . . . 1)t. Further, considering
that X = (xij) with i = 1, . . . , n and j = 1, . . . , p:

• Data are considered to be unit length when original uncentered data
are divided by the square root of the sum of every variable squared. In
this case, the information matrix is noted as U = (uij) with i = 1, . . . , n

and j = 1, . . . , p. Then, uij = xij

||Xj || , where ||Xj || =
√∑n

i=1 x
2
ij.

• If data are unit length, then:

Uj =
Xj

||Xj ||
, var (Uj) =

var (Xj)

||Xj ||2
, ||Uj || = 1.

• Data are considered to be typified when original centered data are di-
vided by their standard deviation. In this case, the information matrix

is noted as T = (tij) with i = 1, . . . , n and j = 1, . . . , p. Then, tij = Xij−X̄j√
var(Xj)

.

• If data are typified their mean is zero, Tj = 0, variance is equal to 1,
var (Tj) = 1, and the cross products matrix is equal to the correlation
matrix multiplied by the number of observations, TtT = n ·R, where
R is the correlation matrix obtained from X.
• Data are considered to be standardized when original centered data

are divided by their standard deviation multiplied by the square root
of the number of observations. In this case, the information matrix is

noted as Z = (zij) with i = 1, . . . , n and j = 1, . . . , p. Then, zij = Xij−X̄j√
n·var(Xj)

.

• If data are standardized their mean is zero, Zj = 0, variance is equal
to 1 divided by the number of observations, var (Zj) = 1

n , and the cross
products matrix is equal to the correlation matrix, ZtZ = R.

Note that the VIF is invariant to origin and scale transformations, [22].
Consequently, the same value is obtained using the expression 2 for origi-
nal, standardized, unit length or typified data. Contrarily, the value of the
CN depends on the data transformation [22] and [23]. Although it coincides
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with typified and standardized data, it differs in the rest of situations. Un-
less another indication is provided, in this paper the CN will be calculated
from expression (5) and with unit length data.

3. Relationship between the Variance Inflation Factor and eigenvalues of
XtX

Given the linear model (1) and considering that the data are standardized, the diagonal

elements of
(
ZtZ

)−1
are the VIF. By following [24] and parting from (4) we obtain:

V IF (i) =

p∑
k=2

v2
ik

ξk
,

where vik are the elements of the eigenvector corresponding to the eigenvalue ξk,
i, k = 2, . . . , p. In this case,

• since ξk ≤ ξmax for all k, it is verified that V IF (i) ≥ 1
ξmax

p∑
k=2

v2
ik = 1

ξmax
.

• since ξk ≥ ξmin for all k, it is verified that V IF (i) ≤ 1
ξmin

p∑
k=2

v2
ik = 1

ξmin
.

Then, it is verified that:

1

ξmax
≤ V IF (i) ≤ 1

ξmin
⇔ 1 ≤ ξmax · V IF (i) ≤ K(Z)2. (8)

If it is considered that the collinearity existing in model (1) is worrying when there
is a variable i that leads to a V IF (i) > 10, it will be verified in relation (8) when:

ξmax
ξmin

= K(Z)2 ≥ ξmax · V IF (i) > 10 · ξmax ⇒ ξmin < 0.1. (9)

Remark 1. Note that V IF (i) > 10 implies that ξmin < 0.1 but ξmin < 0.1 does
not imply that V IF (i) > 10. However, from expression (8) is observed that
ξmin > 0.1 implies V IF (i) < 10.

3.1. Monte Carlo simulation

To study if Remark 1 is also verified when working with original or unit length data2,
values are simulated for:

Xi =
√

1− γ2 ·Wi + γ ·Wp,

where i = 2, . . . , p with p = 3, 4, 5, Wi ∼ N(10, 100), γ ∈ {0, 0.05, 0.1, 0.15, . . . , 0.95}
and n ∈ {15, 20, 25, 30, . . . , 200}. This way of generating independent variables with
different grades of collinearity (γ is specified so that the correlation between any two
independent variables is given by γ2), as previously applied, for example, by [25–27].

2Note that, when data are standardized, the VIF and CN coincide with the result obtained from typified data.
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The matrix X = [X1 X2 . . . Xp] is constructed such that X1 is a vector with
ones (representing the constant term in model (1)). Then, the maximum VIF and
the minimum eigenvalue are calculated considering that values are original (X) or
transformed to be unit length (U).

Since this calculation is repeated 1000 times, 760000 values are obtained from the
maximum VIF and minimum eigenvalue, as shown in Figure 3.1. It is observed that
Remark 1 is not verified when working with original data (first column) but it seems
to be verified for unit length data (second column).

4. Differences between the Variance Inflation Factor and Condition
Number

From expression (6), it can be concluded that the square of CN is a upper bound
of the VIF. For this reason, it could be interesting to analyze if the CN is able to
capture any kind of relation between the regressors that is ignored by the VIF. With
illustrative purpose, the following examples are developed3:

Example 4.1. The following table shows the VIF and CN for the variables that
compound the matrix given by X = [X1 X2 X3], where the variables X2 and X3 are
orthogonal, i.e., Xt

2X3 = 0:

X1 X2 X3 VIF(2) VIF(3) CN
1 1 -0.5 1 1 6.793 Original data
1 3 -0.5 1 1 5.095 Unit length data
1 2 1 1 1 1 Standardized data

First, it is observed that the VIF is invariant to origin and scale changes (property
inherited from the coefficient of determination), while the CN is not invariant, leading
to different results depending on the transformation of the data.

Second, since the values of VIFs are equal to 1, the orthogonality between X2

and X3 is fully detected in all cases, which occurs with the CN only when data are
standardized since in this case the constant term disappears.

Third, in the first two cases, the CN is different from 1, showing the relation
between X2 with X1 (note that Xt

1X2 = 6 and Xt
1X3 = 0).�

Example 4.2. From the previous example, it can be concluded that the VIF ignores
the relation between the constant term and the rest of the regressors, which does not
occur with the CN. In order to confirm this statement, the following table presents
the values of VIF and CN for the variables that compounds the matrix given by
X = [X1 X2 X3 X4], where all the variables are orthogonal, that is to say, XtX is a
diagonal matrix:

X1 X2 X3 X4 VIF(2) VIF(3) VIF(4) CN
1 1 1 -0.833 1 1 1 1.603 Original data
1 1 0 1.166 1 1 1 1 Unit length data
1 -2 0.5 0.166 1 1 1 1 Standardized data
1 0 -1.5 -0.5

Analogously to the previous example, the VIF captures the orthogonality between

3Note that these examples are not regression models since n = p.
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Figure 1. Dispersion diagram for the maximum VIF and the minimum eigenvalue for the 760000 simulated
cases: by columns, the transformation data (original or unit length data), and by rows, the number of variables
(p = 3, 4, 5). The vertical line shows V IF = 10, and the horizontal one shows ξmin = 0.1
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the regressors in all cases and the CN with data that are standardized or in unit length,
but not with the original data.

Thus, it is possible to conclude that i) a data transformation is required since the
CN can not be calculated from original data and ii) the standardization of the model
eliminates the constant term and, for this reason, unit length data should be used.�

Example 4.3. To obtain a independent variable linearly related to the constant term,
the independent variable must be almost constant, that is to say, with a very small
variance. For this purpose, the following example, previously applied by [3], is devel-
oped:

X1 X2 X3 VIF(2) VIF(3) CN
1 1 1 1 1 3160.47 Unit length data
1 1.001 1.003 1 1 1 Standardized data
1 1.002 1

In this case, there are two variables, X2 and X3, that are almost orthogonal (its
coefficient of correlation is equal to −6.4 · 10−14). Indeed, their VIFs are equal to 1.
However, both variables are almost constant (their quasivariances are equal to 10−6

and 3·10−6, respectively), and can be highly related to the constant term. This question
is confirmed with the value obtained for the CN with unit length data.

Note that this example confirms the previous conclusion that the CN calculated
with standardized data ignores the relation between the exogenous variables and the
constant term since it has been eliminated.�

It has been shown that the VIF is invariant to data transformation while
the CN is not (See [22] and [23]). Thus, the CN should not be calculated
from the original data. A previous transformation is necessary as was rec-
ommended by [5]: transforms a data matrix X with mutually orthogonal
columns, the standard of ideal data, into a matrix whose condition indexes
could be all unity, the smallest (and therefore most ideal) condition indexes
possible. This goal is achieved by transforming the data to be unit length
or standardized. The great difference between both transformations is that
the standardization eliminates the constant term. For this reason, when
working with standardized data, the relation between the exogenous vari-
ables and the constant term is not captured, in contrast to what happens
with unit length data.

4.1. Monte Carlo simulation

The previous examples have shown that the difference between the VIF and the CN
is that the VIF ignores the relation of the exogenous variables with constant term, in
contrast to the CN calculated with unit length data. The constant term will be related
to an independent variable when this latter variable is almost constant, that is to say,
with a very small variance. However, the question is, how small does the variance of
the independent variable have to be to lead to a worrying relation with the constant
term?

To answer this question, values have been simulated for X2 ∼ N(1, σ), where
σ2 = 0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001 and n ∈ {15, 20, 25, 30, . . . , 200}. Then, the
following matrix has been developed X = [X1 X2], where X1 is a vector of ones with
the appropriate dimensions. Next, the matrix is transformed to have unit length (U),
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Table 1. Minimum, mean and maximum values for the maximum VIF and the CN with unit length data

VIF CN
σ2 Minimum Mean Maximum Minimum Mean Maximum
0.1 1 1 1 3.4306 6.596 15.971
0.01 1 1 1 12.464 20.4408 49.345
0.005 1 1 1 18.375 28.872 67.833
0.001 1 1 1 37.399 64.481 138.188
0.0005 1 1 1 58.978 91.1706 210.296
0.0001 1 1 1 107.352 203.7102 479.615

and the CN and the VIF are calculated. Since this operation is repeated 1000 times,
the values of Table 1 corresponds to the 38000 values of the VIF and the CN for every
case.

It is expected that the relation between X1 and X2 will become stronger as the
value of σ2 decreases. However, this expectation is not reflected in the VIF, which is
always equal to 1.4. What it is verified is that the CN increases as the variance of
the variable diminishes, capturing the relation between this independent variable and
the constant term.

Finally, taking into account the thresholds provided by Belsley [6] (and stated in
the introduction) for the values of the CN, it is possible to conclude that the linear
regression will be worrying when σ2 < 0.005.

5. Relationship between the Variance Inflation Factor and Condition
Number: Monte Carlo simulation

In the introduction section, a functional relation is established between the VIF and the
CN given by a squared root when p = 3 and the data are standardized; see expression
(7). In this section, we seek a relationship between the CN and maximum
VIF when p = 3, 4, 5 and for standardized and unit length data.

With this purpose, and similarly to section 3, values are simulated for

Xi =
√

1− γ2 ·Wi + γ ·Wp,

where i = 2, . . . , p with p = 3, 4, 5, Wi ∼ N(10, 100), γ ∈ {0, 0.01, 0.02, 0.03, . . . , 0.99}
and n ∈ {15, 20, 25, 30, . . . , 200}. Note that the variances of the simulated variables
are high, and consequently, it is expected that there is no linear relation between
them and the constant term.

Then, the matrix X = [X1 X2 . . . Xp] is developed where X1 is a vector of ones
with the appropriate dimensions and the maximum VIF and CN are calculated for
standardized (Z) and unit length (U) data. Since this operation is repeated 1000 times,

4Denoting X1 = 1, the auxiliary regression to calculate the VIF is expressed as X2 = γ1 + w,

where it is verified that γ̂ = X2 and, consequently, SSR =
n∑

i=1
(X2i −X2)2 = SST . In this case, it is

always verified that R2
aux = 1.

The version of the previous regression with unit length data is given by X2,lu = γ1lu + w where

X2,lu = X/
√
a with a =

n∑
i=1

X2
2i and 1lu = 1/

√
n. In this case, γ̂ =

√
n
a
· X2 and, then, SSR =

1
a

n∑
i=1

(X2i −
√
n ·X2 · 1√

n
)2 = SST . Thus, this situation will be similar to the initial one.
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Table 2. Coefficient of determination for regressions (10) to (13), taking into account the number of simulated

variables and the nature of the data.

log(maxV IF )
√
maxV IF

p Data Regression (10) Regression (12) Regression (11) Regression (13)
3 Standardized 0.9358 0.959 0.9925 0.987
4 Standardized 0.8963 0.9478 0.9969 0.9937
5 Standardized 0.868 0.9308 0.9984 0.9953
3 Unit length 0.9404 0.972 0.9411 0.955
4 Unit length 0.9309 0.9627 0.9742 0.9792
5 Unit length 0.9099 0.9465 0.9857 0.9871

Figure 2 displays the 3800000 values for the maximum VIF and the CN. From the
observation of Figure 2, we consider appropriate to analyze the following
relations:

To analyze the adequateness of both relations, the following regressions are esti-
mated:

CN = β1 + β2 · log(maxV IF ) + β3 · n+ ε, (10)

CN = β1 + β2 ·
√
maxV IF + β3 · n+ ε, (11)

CN = α1 · log(maxV IF ) + α2 · n+ ε, (12)

CN = α1 ·
√
maxV IF + α2 · n+ ε, (13)

where the effect of the small sample on the relation between both measures has been
included. The CN is analyzed as a function of the VIF (and not vice versa),
since the interpretation of the threshold of the VIF seems to be more
understandable due to it is based on the linear relation of one of the in-
dependent variables as function of the rest. Table 2 presents the coefficient of
determination for the above regressions, taking into account the number of simulated
variables and the nature of the data.

It is observed that the highest coefficient of determination corresponds to the rela-
tion as a function of the squared root. For this reason, the regression (11) and
(13) are estimated from the simulated values (see Table 3 and Table 4).
From these tables, it is possible to conclude that:

• All coefficients are individually significant with a significance level of 5%. All
models are globally significant with the same level of significance.
• By considering the threshold usually established for the VIF to consider high

collinearity (V IF = 10), it is possible to calculate a equivalent bound for the
CN for a determined sample size. Alternatively, an interested reader could
easily substitute by V IF = 4).
• Since in all cases, the coefficient associated with the sample size is negative, the

bound equivalent between the VIF and the CN diminishes as the sample size
increases.
• Since in all cases, the coefficient associated with the maximum VIF is positive,

the CN increases with the VIF.
• Taking into account the bounds and the relation obtained, values of maximum

VIF higher than 10 imply values of CN higher than 5 in both proposed trans-
formations. Note that Table 4 shows that the minimum CN is 5.034. Thus, by
following the decision rule usually accepted for the VIF, the grade of collinearity
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Figure 2. Dispersion diagram of the maximum VIF and the CN for the 3800000 simulated cases: data

transformation in columns (unit length and standardized data) and number of variables in rows (p = 3, 4, 5).
The vertical line V IF = 10 is included.
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Table 3. Estimation of the regression (11) and the minimum and maximum bounds equivalents for the VIF

and CN

p Data β̂1 β̂2 β̂3 CNV IF=10,n=15 CNV IF=10,n=200

3 Standardized -0.843 2.186 -1.881 ·10−5 6.069457 6.065877
4 Standardized -0.8097 2.26 -2.719 ·10−4 6.332969 6.282668
5 Standardized -0.9326 2.435 -5.096 ·10−4 6.751902 6.665626
3 Unit length -1.449 2.389 -8.075 ·10−4 6.093569 5.944181
4 Unit length -1.185 2.395 -1.346 ·10−3 6.368465 6.119455
5 Unit length -1.194 2.548 -1.871 ·10−3 6.835418 6.489283

Table 4. Estimation of the regression (13) and the minimum and maximum bound equivalents for the VIF

and CN

p Data α̂1 α̂2 CNV IF=10,n=15 CNV IF=10,n=200

3 Standardized 1.986 -0.00403 6.2198 5.4742
4 Standardized 2.142 -0.00467 6.7035 5.8395
5 Standardized 2.332 -0.00583 7.2869 6.2084
3 Unit length 2.003 -0.0065 6.2365 5.034
4 Unit length 2.208 -0.0073 6.8728 5.5223
5 Unit length 2.409 -0.00835 7.4926 5.9479

will be worrying when the CN is higher than 5.
• Note that Tables 3 and 4 lead to relations similar to those obtained

from expression (7).

Finally, since regression (13) is most coherent with expression (7), its
estimates are presented in Table 4. Tables 5-10 show equivalent values of
the CN and VIF depending on the sample size.

6. Conclusions

The existence of an approximate linear relation between the regressors of a econo-
metric model presents a widely studied problem know as collinearity. The measures
commonly applied for its detection are the Variance Inflation Factor and the Condi-
tion Number. This paper analyzes these measures and their relation and obtains the
following conclusions:

a) The decision rule that there exists collinearity for values of VIF higher than 10
implies that there is a minimum eigenvalue of XtX less than 0.1 when data
are standardized. The Monte Carlo simulations confirm that this relation is also
verified when data are expressed in unit length. This would answer the following
question raised in [28]: Kendall (1957) and Silvey (1969) have suggested using the
eigenvalues of XtX as a key to the presence of collinearity: collinearity is indicated
by the presence of a “small” eigenvalue. Unfortunately we are not informed what
“small” is.

b) The square of CN is a upper bound of the VIF. This finding is supported because
the VIF does not capture the relation between the exogenous variables and the
constant term, in contrast to what happens with the CN. It is possible to say
that the VIF captures only the relation between the exogenous variables (from a
statistical point of view), while the CN is more focused on the ill-conditioning of
the matrix X (from a numerical point of view).
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c) The fact that the VIF ignores the relation between the exogenous variables, and the
constant term implies that this measure is not able to detect linear dependencies
when the variance in the variables is very small. From the CN and using the bounds
provided by [6], the Monte Carlo simulations indicate that there is a worrying
relation between the exogenous variables and the constant term when the variance
in the exogenous variable is less than 0.005.

d) The Monte Carlo simulations suggest that the VIF and the CN are related through
a squared root when data are standardized or unit length (if there is no relation
with the constant term). From this relation, is possible to establish equivalences
between the bounds for the VIF and the CN for different samples sizes. Thus, the
values of the CN are presented from Table 5 to Table 10 for p = 3, 4 and
5 with standardized and unit length data considering n varying from 15
to 200 and the maximum VIF from 4 to 200.

e) For p = 2 is not possible to establish a relation between the VIF and
the CN due to the first is always equal to 1. This fact supports the idea
presented in conclusion b) about the VIF ignores the relation between
the exogenous variables and the constant term.
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