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Limitations in Detecting Multicollinearity
due to Scaling Issues in the mcvis Package
by Roman Salmeron Gomez, Catalina B. Garcia Garcia, Ainara Rodriguez Sanchez, and Claudia
Garcia Garcia

Abstract Transformation of the observed data is a very common practice when a troubling degree of
near multicollinearity is detected in a linear regression model. However, it is important to take into
account that these transformations may affect the detection of this problem, so they should not be
performed systematically. In this paper we analyze the transformation of the data when applying
the R package mcvis, showing that it only detects essential near multicollinearity when the studentise
transformation is performed.

1 Introduction

Given the model Y = X · β + u for n observations and p independent variables where Y is a vector
that contains the observations of the dependent variables, X = [1 X2 . . . Xp] is a matrix whose columns
contain the observations of the independent variables (where the first column is a vector of ones
representing the intercept) and u represents the spherical random disturbance, the existence of linear
relationships between the independent variables of a model is known as multicollinearity. It is well-
known that a high degree of multicollinearity can affect the analysis of a linear regression model. In
this case, it is said that the multicollinearity is troubling (Novales 1988; Ramanathan 2002; Wooldridge
2008; Gujarati 2010). It is also interesting to note the distinction made, for example, by Marquardt
(1980) or Snee and Marquardt (1984), between essential (near-linear relationship between at least
two independent variables excluding the intercept) and non-essential multicollinearity (near-linear
relationship between the intercept and at least one of the remaining independent variables).

Note that the detection process is key to determining which tool is best suited to mitigation of the
problem: for example, ridge regression of Hoerl and Kennard (1970) and Hoerl and Kennard (1970);
LASSO of Tibshirani (1996) or elastic net of Zou and Hastie (2005), among others.

The most commonly applied measures to detect whether the degree of multicollinearity is troubling
are the following:

• The Variation Inflation Factor (VIF) that is obtained with the following expression VIF(j) =
1

1−R2
j
, j = 2, . . . , p, where R2

j is the coefficient of determination of the auxiliary regression

Xj = X−j · α + w with X−j being the matrix obtained when the independent variable Xj is
eliminated from matrix X. It is considered that values of VIF higher than 10 indicate that the
degree of multicollinearity is troubling (see, for example, Marquardt (1970) or O’Brien (2007)). R.
Salmerón, García, and García (2018) and Román Salmerón, Rodríguez, and García (2020) showed
that the VIF is not an appropriate measure to detect linear relations between the intercept and
other explanatory variables (non-essential collinearity).

• The Condition Number (CN) that is obtained with the following expression CN(X) =
√

µmax
µmin

where µmax and µmin are the maximum and minimum eigenvalue of matrix XtX. To obtain
the eigenvalues, the matrix X has to be previously transformed in order to ensure that all its
columns present unit length (see R. Salmerón, García, and García (2018) for more details about
this transformation). Values lower than 20 imply light collinearity, between 20 and 30 moderate
collinearity, while values higher than 30 imply strong collinearity (see, for example, D. A. Belsley,
Kuh, and Welsch (1980) and D. Belsley (1991)). Another alternative is to calculate the CN with
and without the intercept with the goal of analyzing the contribution of the intercept.

Another set of measures to detect the existence of troubling multicollinearity are the matrix
of simple linear correlations between the independent variables, R = (cor(Xl , Xm))l,m=2,...,p and
its determinant, |R|. C. García, Salmerón, and García (2019) show that values for the coefficient
of simple correlation between the independent variables higher than

√
0.9 and determinant lower

than 0.1013 + 0.00008626 · n − 0.01384 · p indicate a troubling degree of multicollinearity (see Román
Salmerón, García, and García (2021a) or Román Salmerón, García, and García (2021b) for more details).
The first value differs strongly from the threshold normally proposed equal to 0.7 to indicate a problem
of near collinearity (see, for example, Halkos and Tsilika (2018)).

Also useful to use the coefficient of variation (CV), values less than 0.1002506 indicate the existence
of troubling multicollinearity (see Román Salmerón, Rodríguez, and García (2020) for more details).
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J. García et al. (2016) and R. Salmerón, García, and García (2020) showed that the VIF is invariant
to origin and scale changes, which is the same as saying that model Y = X · β + u and the model
Y = x · β + u present the same VIF, where x = [x1 x2 . . . xp] with xi = Xi−ai

bi
for ai ∈ R, bi > 0

and i = 1, . . . , p. Note that if ai = Xi, x1 is a vector of zeros, i.e. the intercept disappears from the
model. Instead, R. Salmerón et al. (2018) showed that the CN is not invariant to origin and scale
changes, meaning that the two previous models present different CNs. This fact implies that models
Y = X · β + u and Y = x · β + u present different eigenvalues.

Consequently, transforming the data in a linear regression model may affect the detection of the
multicollinearity problem depending on the diagnostic measure. Furthermore, note that this sensitivity
to scaling is due to the fact that there are certain transformations (such as data centering) that mitigate
the multicollinearity problem, so that the dependence or otherwise on scaling simply highlights the
capacity/incapacity of each measure to detect this reduction of the degree of near multicollinearity.

Therefore, when transforming the data in a linear regression model and analyzing whether the
degree of multicollinearity is of concern or not, it is necessary to be clear whether the measure used
to detect it is affected by the transformation and whether it is capable of detecting the two types of
near multicollinearity mentioned (essential and non-essential). Thus, in this paper we analyze the MC
index recently presented in Lin, Wang, and Mueller (2020).

First, this paper will briefly review the MC index. In order to show that the MC index depends on
the transformation of the data and its inability to detect non-essential multicollinearity, we present two
simulations with a troubling degree of essential and non-essential multicollinearity, respectively, and a
third simulation where the degree of multicollinearity is not troubling. For all these cases, we calculate
the different measures to detect multicollinearity commented on the introduction together with the MC
index. Two empirical applications recently applied in the scientific literature are also presented. After
a discussion of the results we propose a scatter plot between the VIF and CV to detect which variables
are the cause of the troubling degree of multicollinearity and the kind of multicollinearity (essential or
non-essential) existing in the model. Finally, the main conclusions of the paper are summarized.

2 Background: MC index

The MC index presented in Lin, Wang, and Mueller (2020) is based on the existing relation between
the VIFs ant the inverse of the eigenvalues of the matrix ZtZ where Z represents the standardized
matrix of X. This is to say, is the matrix x mentioned in the introduction when for all i it is obtained
that ai = Xi and bi =

√
n · var (Xi) where var (Xi) represents the variance of Xi. More precisely, taking

into account the fact that in the main diagonal of
(
ZtZ

)−1 we find the VIFs (for standardized data), it
is possible to establish the following relation:

 VIF(2)
...

VIF(p)

 = A ·


1

µ2

...
1

µp

 , (1)

where A is a matrix that depends on the eigenvalues of ZtZ and µp is the maximum eigenvalue of
this matrix.

From this relationship, resampling and obtaining the regression of 1/µp as a function of the
VIFs, Lin, Wang, and Mueller (2020) proposed the use of the t-statistics to conclude which variable
contributes the most to this relationship, thus identifying which variables are responsible for the
degree of approximate multicollinearity in the model. These authors defined the MC index as an index
from zero to one, larger values indicating greater contribution of the variable i in explaining the observed severity
of multicollinearity.

Taking into account that the calculation of the MC index is based on the relation established
between the VIFs and the inverse of the smallest eigenvalue, it seems logical to consider that the
transformation of the data may affect the calculation of this measure. Thus, it is possible to conclude:

• If the MC index is calculated with a transformation of the data that leads to the elimination of
the intercept, the non-essential multicollinearity will be ignored.

• Due to the fact that MC index is based on the VIF, it should inherit its inability to detect the
non-essential multicollinearity.

In conclusion, regardless of whether the data is transformed or not, the MC index is not capable of
detecting non-essential multicollinearity. It is expected that it will show its usefulness in the case of
essential multicollinearity.
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Therefore, when Lin, Wang, and Mueller (2020) commented that there are different views on what
centering technique is most appropriate in regression [. . . ] To facilitate this diversity of opinion, in the software
implementation of mcvis, we allow the option of passing matrices with different centering techniques as input.
The role of scaling is not the focus of our work as our framework does not rely on any specific scaling method,
far from facilitating the use of their proposal, they consider scenarios for which the MC index is
not designed, since in their theoretical development and step 2 of their method, the standardization
of the data is performed. However, as shown in this paper, the MC index is capable of detecting
multicollinearity of the essential type only when used with its default option studentise.

3 Simulations

In this section, different versions of the matrix X = [1 X2 X3 X4] will be simulated. The results on the
correlation matrix, its determinant, condition number (with and without intercept), variance inflation
factor and coefficient of variation are obtained using the multiColl package (see Román Salmerón,
García, and García (2021a) and Román Salmerón, García, and García (2021b) for more details).

In all cases, are calculated the values for the MC index for each set of simulated data considering
the two alternative transformation for the data: Euclidean (centered by mean and divided by Euclidean
length) and studentise (centered by mean and divided by standard deviation). In each case (simulation
and kind of transformation), the calculation of the MC index was performed 100 times.

Simulation 1

In this case, 100 observations are generated according to Xi ∼ N(10, 100), i = 2, 3, and X4 = X3 − p
where p ∼ N(1, 0.5). The goal of this simulation is to ensure that the variables X3 and X4 will be
highly correlated (essential multicollinearity). This fact is confirmed when taking into account the
following results in relation to the correlation matrix, correlation matrix’s determinant, the CN with
and without the intercept (with its corresponding increasing), the VIFs and the coefficient of variation
of the different variables.

RdetR(X_S1)

#> $`Correlation matrix`
#> X2_S1 X3_S1 X4_S1
#> X2_S1 1.00000000 -0.0875466 -0.09110579
#> X3_S1 -0.08754660 1.0000000 0.99881845
#> X4_S1 -0.09110579 0.9988184 1.00000000
#>
#> $`Correlation matrix's determinant`
#> [1] 0.002330192

CNs(X_S1)

#> $`Condition Number without intercept`
#> [1] 38.67204
#>
#> $`Condition Number with intercept`
#> [1] 66.94135
#>
#> $`Increase (in percentage)`
#> [1] 42.22997

VIF(X_S1)

#> X2_S1 X3_S1 X4_S1
#> 1.013525 425.587184 425.860062

CVs(X_S1)

#> [1] 1.239795 1.052896 1.166335
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Table 1: MC index for the independent variables in Simulation 1. Three random iterations, the average
value of the 100 times and the standard deviation for Euclidean and studentise transformations. The
relationship between the second and third variables is detected when studentise transformation is
performed.

X2 X3 X4
Euclidean - Random 1 0.2846628 0.3670736 0.3482636
Euclidean - Random 2 0.1466484 0.4444270 0.4089246
Euclidean - Random 3 0.4026253 0.3140131 0.2833616
Euclidean - Average 0.2505292 0.3899482 0.3595226
Euclidean - Standard Deviation 0.1075164 0.0550333 0.0526817
Studentise - Random 1 0.0000338 0.4942761 0.5056901
Studentise - Random 2 0.0001294 0.4901233 0.5097473
Studentise - Random 3 0.0000307 0.4950536 0.5049157
Studentise - Average 0.0000519 0.4944290 0.5055191
Studentise - Standard Deviation 0.0000264 0.0023510 0.0023528

Table 1 shows three random iterations, the average value of the 100 times and the standard
deviation. As expected in the case of essential multicollinearity, from the average values of Simulation
1 it is noted that (specially with the transformation studentise) the MC index correctly identified that
the variables X3 and X4 are causing the troubling degree of essential multicollinearity. However, it is
noted that in some cases the intercept or the variable X2 are identified as relevant in the existing linear
relations when the Euclidean transformation is performed. This behavior is not observed when the
studentise transformation is performed. This fact seems to indicate that the MC index depends on the
transformation with the studentise transformation being the most appropriate.

Simulation 2

In this case, 100 observations are generated according to Xi ∼ N(10, 100), i = 2, 3, and X4 ∼
N(10, 0.0001). The goal of this simulation is to ensure that the variable X4 will be highly corre-
lated to the intercept (non-essential multicollinearity). This fact is confirmed from the following results
taking into account that Román Salmerón, Rodríguez, and García (2020) showed that a value of the
CV lower than 0.1002506 indicates a troubling degree of non-essential multicollinearity.

RdetR(X_S2)

#> $`Correlation matrix`
#> X2_S2 X3_S2 X4_S2
#> X2_S2 1.0000000 -0.08754660 0.06676070
#> X3_S2 -0.0875466 1.00000000 0.09445547
#> X4_S2 0.0667607 0.09445547 1.00000000
#>
#> $`Correlation matrix's determinant`
#> [1] 0.9778526

CNs(X_S2)

#> $`Condition Number without intercept`
#> [1] 2.999836
#>
#> $`Condition Number with intercept`
#> [1] 2430.189
#>
#> $`Increase (in percentage)`
#> [1] 99.87656

VIF(X_S2)

#> X2_S2 X3_S2 X4_S2
#> 1.013525 1.018091 1.014811
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Table 2: MC index for the independent variables in Simulation 2. Three random iterations, the average
value of the 100 times and the standard deviation for Euclidean and studentise transformations. The
relationship between the four variable and the intercept is not detected.

X2 X3 X4
Euclidean - Random 1 0.2671991 0.2097102 0.5230907
Euclidean - Random 2 0.1649092 0.5119198 0.3231711
Euclidean - Random 3 0.2126011 0.2678652 0.5195337
Euclidean - Average 0.1678676 0.3335266 0.4986058
Euclidean - Standard Deviation 0.0725673 0.0845660 0.1029678
Studentise - Random 1 0.3307490 0.3342851 0.3349658
Studentise - Random 2 0.3646487 0.2995420 0.3358093
Studentise - Random 3 0.3107573 0.3481032 0.3411395
Studentise - Average 0.3541923 0.3150319 0.3307758
Studentise - Standard Deviation 0.0201173 0.0203717 0.0187872

CVs(X_S2)

#> [1] 1.239794695 1.052896496 0.001022819

Table 2 presents three random iterations, the average value of the 100 times and the standard
deviation for Simulation 2 for Euclidean and studentise transformations. Before commenting the results
of Simulation 2, it is important to take into account the fact that with transformations that imply the
elimination of the intercept it will not be possible to detect the non-essential multicollinearity. Note
that in some occasions, when Euclidean transformation is performed, it is concluded that X3 and X4
are the most relevant while, when studentise transformation is performed, all variables seem to present
the same relevance. In the first case, a higher stability is observed by considering the average values,
although the conclusion is that there is a relation between X3 and X4 when the relationship is between
the intercept and X4.

Simulation 3

Finally, in this case 100 observations are generated according to Xi ∼ N(10, 100), i = 2, 3, 4. The goal
of this simulation is to ensure that the degree of multicollinearity (essential and non-essential) will be
not troubling. This fact is confirmed when taking into account the following results.

RdetR(X_S3)

#> $`Correlation matrix`
#> X2_S3 X3_S3 X4_S3
#> X2_S3 1.0000000 -0.08754660 0.06676070
#> X3_S3 -0.0875466 1.00000000 0.09445547
#> X4_S3 0.0667607 0.09445547 1.00000000
#>
#> $`Correlation matrix's determinant`
#> [1] 0.9778526

CNs(X_S3)

#> $`Condition Number without intercept`
#> [1] 2.07584
#>
#> $`Condition Number with intercept`
#> [1] 3.60862
#>
#> $`Increase (in percentage)`
#> [1] 42.47552

VIF(X_S3)

#> X2_S3 X3_S3 X4_S3
#> 1.013525 1.018091 1.014811
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Table 3: MC index for the independent variables in Simulation 3. Three random iterations, the average
value of the 100 times and the standard deviation for Euclidean and studentise transformations. The
not troubling relationship between the variables is not detected.

X2 X3 X4
Euclidean - Random 1 0.1318422 0.3832372 0.4849206
Euclidean - Random 2 0.1679453 0.4315253 0.4005294
Euclidean - Random 3 0.0728076 0.5693939 0.3577986
Euclidean - Average 0.1083812 0.4107279 0.4808910
Euclidean - Standard Deviation 0.0410296 0.0661189 0.0628212
Studentise - Random 1 0.3586837 0.3154482 0.3258681
Studentise - Random 2 0.3805084 0.3205751 0.2989166
Studentise - Random 3 0.3651891 0.3069920 0.3278189
Studentise - Average 0.3541923 0.3150319 0.3307758
Studentise - Standard Deviation 0.0201173 0.0203717 0.0187872

CVs(X_S3)

#> [1] 1.239795 1.052896 1.019006

Table 3 presents three random iterations, the average value of the 100 times and the standard
deviation for Simulation 3 for Euclidean and studentise transformations. Simulation 3 shows different
situations depending on the transformation: when the Euclidean transformation is performed, the
variable X3 is also identified apart from variable X4; with the studentise transformation, all the variables
seem to be relevant.

Interpretation of the obtained results

From the above results, it is concluded that the MC index applied individually is not able to detect if
the degree of multicollinearity is troubling. This conclusion is in line with the comment presented
by Lin, Wang, and Mueller (2020) where it is stated that those classical collinearity measures are used
together with mcvis for the better learning of how one or more variables display dominant behavior in explaining
multicollinearity. That is to say, it is recommended to use measures such as the VIF and the CN to
detect whether the degree of multicollinearity is troubling and, if it is, then use the MC index to detect
which variables are more relevant.

We should reiterate the fact that the results of the MC index depend on the transformation
performed with the data.

Finally, it is worthy of note that the lowest dispersion is obtained when the studentise transformation
is performed, which indicate that with this transformation a higher stability exists in the results
obtained with the 100 iterations performed.

4 Examples

In this section we will analyze two examples applied recently to illustrate the multicollinearity problem.
The first one focuses on the existence of non-essential approximate multicollinearity while the second
one is focused on essential multicollinearity.

Example 1

Román Salmerón, Rodríguez, and García (2020) analyzed the Euribor as a function of the harmonized
index of consumer prices (HICP), the balance of payments to net current account (BC) and the
government deficit to net non-financial accounts (GD).

The following determinant of the matrix of correlations of the independent variables, the VIFs,
condition number without intercept and with intercept and the coefficients of variation indicate that
the degree of essential near multicollinearity is not troubling while the non-essential type (due to the
variable HIPC) is.

Figure 1 shows a tour displayed with a scatterplot by using the tourr package. This package
allows tours of multivariate data, see Wickham et al. (2011) for more details. From the tour on all
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Figure 1: Representation of example 1 using the R tourr package. No linear relationship is observed
between the explanatory variables in any of the four plots. See html version for an interactive 2-D tour.

the explanatory variables (it runs for 3.47 minutes in the html version), no linear relation is observed
between the explanatory variables. Note that this package does not allow us to work with the intercept.

In relation to the application of the mcvis package in this example, it can be observed that if the
Euclidean transformation is performed the method concludes that all the variables seem to be relevant:

#> HIPC BC GD
#> tau3 0.29 0.39 0.32

For studentise transformation it concludes the establishing of a relationship between HIPC and
GD:

#> HIPC BC GD
#> tau3 0.49 0.13 0.38

Clearly, these conclusions are not consistent. Moreover, by eliminating the intercept when trans-
forming the data, it is not feasible to detect the non-essential multicollinearity.

Example 2

James et al. (2013) illustrated multicollinearity with a data set which contains information about the
dependent variable balance (average credit card debt for a number of individuals) and, among others,
the following quantitative independent variables: income, limit (credit limit), rating (credit rating),
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Figure 2: Representation of example 2 using the R tourr package. From the 3.47 minutes tour on all
the explanatory variables, a certain linear relationship between independent variables is observed
specially in plots one (top and left) and four (bottom and right). See html version for an interactive
2-D tour.

cards (number of credit cards), age, education (years of education). Data is available in the ISLR
package (see James et al. (2021) for more details).

The following determinant of the matrix of correlations of the independent variables, the simple
correlation between limit and rating (0.99687974), the VIFs, condition number without intercept and
with intercept and CVs indicate that the degree of approximate multicollinearity of the non-essential
type is not troubling while that of the essential type (due to the relationship between variables limit
and rating) is troubling.

Figure 2 displays its tour by using again tourr package. Multicollinearity was checked using a
tour on all the explanatory variables (it runs for 3.47 minutes in html version). In this case a certain
linear relationship is observed, although it is difficult to determine which variables are related.

In relation to the application of the mcvis package in this example, it can be observed that if the
Euclidean transformation is performed the variable with the highest value is income, with the variable
rating being the second-lowest in value.

#> Income Limit Rating Cards Age Education
#> tau6 0.62 0.14 0.05 0.05 0.11 0.03

Finally, when the studentise transformation is applied, the method clearly indicates that variables
limit and rating are the ones responsible for the multicollinearity problem.

#> Income Limit Rating Cards Age Education
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#> tau6 0 0.49 0.51 0 0 0

5 Discussion

The results shown in the previous sections indicate that, on the one hand, the calculation of the MC
index depends on the transformation performed and, on the other hand, that to apply this index with
guarantees, the studentise transformation is the most appropriate.

It was also showed that the MC index “inherits’ ’ the same limitations indicated by Lin, Wang, and
Mueller (2020) when they state that collinearity indices such as the variance inflation factor and the condition
number have limitations and may not be effective in some applications. In the case of VIF, these limitations
are well summarized by Lin, Wang, and Mueller (2020): The VIF can show how variables are correlated to
each other, but as shown, low correlation does not guarantee low level of collinearity. Note that the example
applied by the authors in Section 1 (similar to the one presented in R. Salmerón, García, and García
(2018) and a reduced version of the one presented by David A. Belsley (1984)) is a clear case in which
the multicollinearity is non-essential. As was commented earlier, the VIF ((R. Salmerón, García, and
García 2018) and (Román Salmerón, Rodríguez, and García 2020)) and the MC index are not able to
detect this kind of multicollinearity, for this reason they are only recommended for detecting essential
multicollinearity.

Another limitation of the VIF (and also of the MC index) worthy of note is that it is not adequate
for calculating with dummy variables. Using these kinds of variables, the VIF is obtained from a
coefficient of determination of an auxiliary regression whose dependent variable is a dummy variable.
Although it is possible to apply ordinary least squares in this kind of regression, it is well known that it
can present some problems: for example, the coefficient of determination is not representative since it
measures the linear relation but the relation between the dummy variable and the rest of independent
variables is not linear. For this reason, these kinds of regressions are estimated with non-linear models
such as the logit/probit. Thus, we consider that if it is not adequate for calculating the VIF associated
to a dummy variable, these kinds of variables should be avoided in the calculation of the MC index.

Finally, Simulation 3 shows that MC index is not able to detect whether the degree of essential
multicollinearity is troubling. For this reason, it should only be used once this situation is determined
by other measures (as set out in the introduction) and in order to determine which variables cause it.

6 Solution

The distinction between essential and non-essential multicollinearity and the limitations of each
measure for detecting the different kinds of multicollinearity, can be very useful for detecting whether
there is a troubling degree of multicollinearity, what kind of multicollinearity it is and which variables
are causing the multicollinearity. Thus, taking into account the fact that the VIF is useful for detecting
essential multicollinearity and the CV is useful for detecting non-essential multicollinearity, the scatter
plot of both measures can provide interesting information in a joint way.

We present the scatter plot for the values of the VIF and the CV for the three simulations previously
performed. Note that the figures include the lines corresponding to the established thresholds for each
measure: red dashed vertical line for 0.1002506 (CV) and red dotted horizontal line for 10 (VIF). These
lines determine four regions that can be interpreted as follows: A, existence of troubling non-essential
and non-troubling essential multicollinearity; B, existence of troubling essential and non-essential
multicollinearity; C, existence of non-troubling non-essential and troubling essential multicollinearity;
D: non-troubling degree of existing multicollinearity (essential and non-essential).

Considering this classification, in Simulation 1 (Figure 3) it is noted that there is a troubling degree
of essential multicollinearity due to the variables X3 and X4, while in Simulation 2 (Figure 4) it is
noted that there is a troubling degree of non-essential multicollinearity due to the variable X4 and in
Simulation 3 (Figure 5) it is noted that the degree of multicollinearity is not troubling.

Analogously, we present Figures 6 and 7 for Examples 1 and 2, respectively. For Example 1,
it is concluded that the only type of troubling multicollinearity is non-essential due to the second
variable (HIPC). On the other hand, for Example 2 it is concluded that the only type of troubling
multicollinearity is that essentially due to the relationship existing between the third and fourth
variables (limit and rating).
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Figure 3: Representation of the VIFs and CVs of explanatory variables in Simulation 1. A troubling de-
gree of essential multicollinearity due to variables third and four is detected by considering thresholds
of 0.1002506 (CV) and 10 (VIF) highlighted with red lines. Note that VIFs of variables three and four
are greater than 10 and the CV of variable 2 is lower than 0.1002506.
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Figure 4: Representation of the VIFs and CVs of explanatory variables in Simulation 2. A troubling
degree of non-essential multicollinearity due to variable four is detected by considering thresholds
of 0.1002506 (CV) and 10 (VIF) highlighted with red lines. Note that the VIFs of variables three and
four are less than 10 and the CV greater than 0.1002506; while the CV of second variable is less than
0.1002506.
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Figure 5: Representation of the VIFs and CVs of explanatory variables in Simulation 3. The degree of
multicollinearity is not troubling by considering thresholds of 0.1002506 (CV) and 10 (VIF) highlighted
with red lines. Note that the VIFs of all variables are lower than 10 and the CVs greater than 0.1002506.
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Figure 6: Representation of the VIFs and CVs of the variables of example 1. A troubling degree of
non-essential multicollinearity generated by variable 2 (HIPC) is detected by considering thresholds
of 0.1002506 (CV) and 10 (VIF) highlighted with red lines. Note that the VIFs of variables three and
four are less than 10 and the CV greater than 0.1002506; while the CV of second variable is less than
0.1002506.
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Figure 7: Representation of the VIFs and CVs of the variables of example 2. A troubling degree of
essential multicollinearity generated by variables three and four (limit and rating) is detected by
considering thresholds of 0.1002506 (CV) and 10 (VIF) highlighted with red lines. Note that the VIFs
of variables three and four are greater than 10 while the VIFs and CVs of the rest of variables are,
respectively, lower than 10 and greater than 0.1002506.
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7 Summary

This paper analyses the limitations that may arise in detecting the problem of troubling multicollinear-
ity in a linear regression model due to transformations performed on the data. The discussion is used
to illustrate that the MC index presented by Lin, Wang, and Mueller (2020) depends on the way that
the data are transformed.

It was shown that when the studentise transformation is performed, the measure is stable for
measuring what variable contributes the most to the linear relationship, and thus identifying what variables best
explain the collinearity in the original data (Lin, Wang, and Mueller 2020), as long as the multicollinearity
is essential. This kind of transformation was taken as default by the authors and this paper contributes
with a formal justification. Note that the MC index only provides interesting information if the
troubling multicollinearity is previously detected using other measures (such as the VIF or the CN).

Summarizing, the achievement of the goal intended by the mcvis package is conditioned by the
following limitations:

• It is not able to detect non-essential multicollinearity.
• Other measures (as the VIF or CN) should be applied previously to determine whether the

degree of essential multicollinearity is troubling.
• The studentise transformation should be applied.
• It is not applicable for dummy variables.

Finally, it is proposed to use a scatter plot between the VIFs and the CVs, on the one hand, to
detect whether the degree of multicollinearity (essential or not essential) is troubling and, on the other
hand, to detect which variables are causing the multicollinearity. This would overcome the limitations
of the mcvis package discussed above while achieving its overall purpose.
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