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Abstract

Endometrial stromal cells (EnSCs) and decidual stromal cells (DSCs) originate from fibroblastic precursors located around the vessels 
of the human nonpregnant endometrium and the pregnant endometrium (decidua), respectively. Under the effect of ovarian or 
pregnancy hormones, these precursors differentiate (decidualize), changing their morphology and secreting factors that appear to be 
essential for the normal development of pregnancy. However, the different physiological context – that is, non-pregnancy vs 
pregnancy – of those precursors (preEnSCs, preDSCs) might affect their phenotype and functions. In the present study, we established 
preEnSC and preDSC lines and compared the antigen phenotype and responses to decidualization factors in these two types of 
stromal cell line. Analyses with flow cytometry showed that preEnSCs and preDSCs exhibited a similar antigen phenotype compatible 
with that of bone marrow mesenchymal stem/stromal cells. The response to decidualization in cultures with progesterone and cAMP 
was evaluated by analyzing changes in cell morphology by microscopy, prolactin and IL-15 secretion by enzyme immunoassay and 
the induction of apoptosis by flow cytometry. In all four analyses, preDSCs showed a significantly higher response than preEnSCs. The 
expression of progesterone receptor (PR), protein kinase A (PKA) and FOXO1 was studied with Western blotting. Both types of cells 
showed similar levels of PR and PKA, but the increase in PKA RI subunit expression in response to decidualization was again 
significantly greater in preDSCs. We conclude that preEnSCs and preDSCs are equivalent cells but differ in their ability to 
decidualize. Functional differences between them probably derive from factors in their different milieus.
Reproduction (2020) 160 1–9

Introduction

Endometrial stromal cells (EnSCs) and decidual stromal 
cells (DSCs) are the main cellular components of the 
human nonpregnant endometrium and the pregnant 
endometrium (decidua), respectively. These stromal 
cells originate from fibroblastic precursors located 
around the vessels (Wynn 1974, Ferenczy & Guralnick 
1983) and are related to pericytes and mesenchymal 
stem/stromal cells (MSCs) (Dimitrov et  al. 2010, 
Munoz-Fernandez et al. 2018, 2019). The latter two are 
considered analogous or identical cell types (da Silva 
Meirelles et  al. 2008, 2016, Caplan & Correa 2011). 
From their perivascular location, fibroblastic precursors 
secrete chemokines that may determine the different 
types of leukocytes in the endometrium and decidua 
(Munoz-Fernandez et al. 2018). A predecidual reaction, 
which begins close to the vessels and extends through 

the endometrium, occurs under the effect of ovarian 
hormones during the luteal phase of the menstrual cycle. 
In this reaction, fibroblastic precursors differentiate 
into decidualized EnSCs, changing their morphology 
to a rounder shape and secreting several distinctive 
factors such as prolactin (PRL) (Telgmann & Gellersen 
1998, Bergeron 2000). These cells are discarded during 
menstruation, but if pregnancy occurs, the process of 
precursor decidualization continues in the presence 
of pregnancy hormones (Wynn 1974, Ferenczy & 
Guralnick 1983). This is essential for DSCs to acquire 
properties that allow embryo implantation, the control 
of trophoblast invasion and appropriate maternal–fetal 
immune relationships.

We and other authors have used the term ‘predecidual 
stromal cells’ (preDSCs) to refer to the perivascular 
stromal precursors in the decidua that differentiate into 
decidualized DSCs (Olivares et  al. 1997, Kyurkchiev 
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et  al. 2010, Munoz-Fernandez et  al. 2018). Likewise, 
stromal precursors in the nongestational endometrium 
can be referred to as preEnSCs. Therefore, preEnSCs 
and preDSCs can be hypothesized to correspond to 
the same type of cell in two different physiological 
situations: nonpregnancy and pregnancy. Nevertheless, 
a relevant point that needs to be ascertained is whether 
the gestational milieu, conditioned by the effect of local 
hormones, cytokines and growth factors, is associated 
with any phenotypic or functional changes in preDSCs 
compared to preEnSCs.

PreEnSCs, obtained from the endometrium or 
menstrual blood, and preDSCs, obtained from decidua, 
can be cultured in vitro to establish cell lines. This has 
made it possible to analyze the antigen phenotype and 
functions of these cells (Dimitrov et al. 2008, Munoz-
Fernandez et  al. 2012, 2018). Furthermore, under 
the effects of progesterone (P4) and cAMP, stromal 
precursors decidualize in vitro as they do in vivo: the 
cells become rounder and secrete PRL (Huang et  al. 
1987, Olivares et al. 1997). Menstrual blood, although a 
wasting tissue, is an appropriate source of stromal cells 
that have been used in many basic and clinical studies 
(Hida et al. 2008, Zhong et al. 2009, Ulrich et al. 2013, 
Sugawara et  al. 2014). In the work reported here, we 
established preEnSC lines from menstrual blood and 
preDSC lines from first-trimester decidua and compared 
the antigen phenotype and functions of these two types 
of cell line. As expected, they had similar phenotypic 
markers; however, they showed differences in the 
process of decidualization.

Materials and methods

Samples

For preDSC lines, samples from elective vaginal terminations 
of first-trimester pregnancies (6–11 weeks) were obtained 
from 20 healthy women. None of the abortions were 
pharmacologically induced. The specimens were obtained 
by suction curettage at the Clínica El Sur in Malaga or the 
Clínica Ginegranada in Granada. For the preEnSC lines, 21 
healthy women donated menstrual blood samples. All women 
were aged 20 to 35 years, and those who were using any 
medication or with infectious, autoimmune or other systemic 
or local disease were excluded.

For MSC lines, leftover samples of bone marrow aspirates 
from seven hematologically normal donors were obtained at 
the Hospital de Baza (Baza, Granada).

All donors provided a written informed consent. The 
Research and Ethics Committee of the University of Granada 
approved the study.

Isolation, culture and decidualization of cell lines

To establish preDSC lines, we used the method described 
by Kimatrai et  al. (2003). For preEnSC and MSC lines, the 
procedure started with the dilution in phosphate buffered 

saline (PBS) of menstrual blood and bone marrow aspirate 
samples, respectively, followed by centrifugation on a Ficoll-
Paque (Sigma-Aldrich) density gradient. Only preparations with 
>95% viable cells, as determined by trypan blue exclusion, 
were used. Purified cells, confirmed by the co-expression of 
CD10 and CD29 (95–100% positive cells) and the absence 
of CD45 and cytokeratin, were maintained and expanded 
in Opti-MEM medium (Invitrogen) with 3% fetal calf serum 
(FCS). In this low serum-containing medium, cell lines showed 
a stable antigen phenotype and functional activities for 8–12 
weeks (up to five passages) (Oliver et al. 1999, Garcia-Pacheco 
et al. 2001, Kimatrai et al. 2003, 2005). The maternal origin 
of each preDSC line was confirmed by comparison with its 
corresponding trophoblast obtained from the same sample, 
using short tandem repeat markers and quantitative-fluorescent 
PCR (Devyser AB, Hägersten, Sweden).

For decidualization, preDSC, preEnSC and MSC lines were 
cultured to 70% confluence and incubated in complete 
medium (OptiMEM plus 3% FCS) with 300 nM P4 and 500 
mM 8-bromo-cAMP (Sigma-Aldrich) for up to 28 days. Every 
3–4 days the culture medium was changed and the factors 
were added again (Leno-Duran et al. 2014).

Antibodies

The monoclonal antibodies (mAbs) used in this study for 
flow cytometry analysis were CD9-fluorescein isothiocyanate 
(FITC), CD10-phycoerythrin (PE), CD15-allophycocyanin 
(APC), CD19-PE, CD31-FITC, CD34-FITC, CD34-brilliant 
violet 421, CD44-FITC, CD45-FITC, CD62P-PE, CD73-PE, 
CD80-PE, CD86-APC, CD140b-PE, CD146, HLA-DR-PE, 
ICAM-1(CD54)-FITC, podoplanin-Alexa Fluor® 647, VCAM-1 
(CD106)-PE, W5C5-APC, cytokeratin (Biolegend, San Diego, 
CA, USA), CD13 (OKM13, Ortho Diagnostic Systems, Beerse, 
Belgium), CD29-APC (Caltag Laboratories, Burlingame, 
CA, USA), CD90-FITC (eBioscience, San Diego, CA, USA), 
CD140b, nestin, BAFF-FITC, CXCL13-APC (R&D Systems), 
anti-alpha smooth muscle (α-SM) actin-FITC or cyanine 3 
(Cy3) (Sigma-Aldrich) and HLA-G-APC (Abcam). The isotype 
controls were immunoglobulin IgM, IgG1-FITC, IgG1-PE, 
IgG1-APC or IgG2-PE (Biolegend). The secondary antibodies 
were FITC-labeled goat anti-mouse IgM and Alexa Fluor® 
488-labeled goat anti-mouse IgG (Invitrogen). For Western 
blot analysis, we used anti-protein Kinase A (PKA) Riα/β 
(which recognizes both RIα and Riβ; 1:100), anti-PKA Cα/β/γ 
(which does not distinguish among Cα, Cβ and Cγ; 1:100) anti-
progesterone receptor (PR; 1:100) (Santa Cruz Biotechnology), 
anti-human Foxo1 antibody (1 µg/mL; R&D Systems), anti-
mouse IgG-horseradish peroxidase (HRP) (1:5000; Santa Cruz 
Biotechnology), anti-sheep IgG HRP-conjugated (1:1000; R&D 
Systems), anti-β actin (1:5000) and anti-α-tubulin antibody 
(1:1000) (Sigma-Aldrich).

Prolactin and IL-15 analysis

The concentration of PRL and IL-15 in supernatants, collected 
from decidualized cells at the indicated times, was determined 
by enzyme immunoassay (Roche and R&D Systems) according 
to the manufacturer’s instructions.
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Flow cytometry analysis

Surface and intracellular antigens, as well as hypodiploid 
apoptotic cells, were studied in an FACScan cytometer as 
previously described (Blanco et al. 2009).

Reverse transcription polymerase chain reaction 
(RT-PCR)

Total RNA was extracted from cells with the TRIzol isolation 
method, and cDNA was synthesized with Oligo-dT primers and 
Moloney murine leukemia virus H minus ribonuclease reverse 
transcriptase (Invitrogen) according to the manufacturer’s 
protocol. For RT-PCR, we used a 2720 Thermal Cycler 
(Applied Biosystems). The reaction mixture (total volume 20 
μL) contained cDNA (the equivalent of 100 ng RNA), 200 
nM deoxy-NTPs, 0.5 U GoTaq polymerase (Biotools, Madrid, 
Spain) and 800 nm of each primer. After initial incubation for 
3 min at 95°C, each cycle consisted of 95°C for 30 s, 55°C for 
45 s and 72°C for 45 s, for a total of 35 cycles. The RT-PCR 
products were size-separated on ethidium bromide-stained 
2% agarose gels (PanReact AppliChem, Barcelona, Spain) and 
a 100-bp DNA ladder was included in each run.

The following primers, obtained from the Instituto de 
Parasitología y Biomedicina, Granada, Spain, were used:

β2-microglobulin (β2MG): 
5′-CTCGCGCTACTCTCTCTCTTTCTGG-3′ (forward) and 
5′-TCTACATGTCTCGATCCCACTTAA-3′ (reverse).

Prolactin: 5′-TTCAGGATGAACCTGGCTGAC-3′ (forward) 
and 5′-GGGTTCATTACCAAGGCCATC-3′ (reverse).

Western blot

To detect proteins, cells were lysed in ice-cold lysis buffer 
(140 mM NaCl, 10 mM Tris–HCl, 2 M EDTA, 1% NP-40, 50 
mM NaF, 1 mM PMSF, 10 mM iodoacetamide, 5 mM sodium 
pyrophosphate, 50 mM phenylarsine oxide and protease 
inhibitors) for 30 min. Proteins in the supernatants were 
resolved on 10% SDS-PAGE gels and detected as reported 
previously (Leno-Duran et  al. 2014). Band intensity was 
quantified with Adobe Photoshop software; intensity values 
were normalized against the respective loading controls.

Statistical analysis

All experiments were repeated at least three times with different 
cell lines. Statistical analysis was carried out using GraphPad 
Prism 7 software. The data were analyzed with Welch’s test 
for unequal variances. Values of P < 0.05 were considered 
significant (*P < 0.05, **P < 0.01 and ***P < 0.001).

Results

Antigen phenotype compatible with bone marrow 
MSC lines in both preEnSC and preDSC lines

The phenotypic profile of preEnSC lines obtained from 
menstrual blood showed the characteristic markers 
previously detected in preDSC lines (Munoz-Fernandez 

et al. 2018). An extensive, comparative flow cytometric 
analysis of preEnSC and preDSC lines with a panel of 
28 antigens confirmed that both types of cell exhibited 
an equivalent phenotype, with no statistically significant 
differences for all the antigens studied. More than 95% 
of cells in the preEnSC and preDSC lines expressed CD9, 
CD10 (an EnSC marker (Sumathi & McCluggage 2002)), 
CD13, CD29, CD44, CD73, CD90, α-SM actin, nestin 
and podoplanin and lacked CD15, CD19, CD31, CD34, 
CD45, CD62P, cytokeratin and HLA-DR expression (Fig. 
1 and Table 1). The expression profile for these antigens 
was equivalent to that observed in bone marrow MSC 
lines. The exceptions were BAFF and CXCL13, which 
were expressed by preEnSCs and preDSCs, but not by 
MSCs (Table 1) (Munoz-Fernandez et al. 2012, Gargett 
et al. 2016). PreDSC and preEnSC lines also expressed 
the endometrial MSC (eMSC) markers CD140b, CD146 
and SUSD2 (Gargett et al. 2016) (Fig. 1 and Table 1).

Figure 1 Antigen phenotype of preEnSCs obtained from menstrual 
blood. Flow cytometry analysis of preEnSC cells stained with 
antibodies for different cell surface antigens. The figures show the 
results for a single representative established cell line.
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Stronger evidence of markers and functions 
associated with decidualization in preDSC lines than 
in preEnSC lines

PreDSC and preEnSC lines can differentiate in vitro, as 
they do in vivo. Under the effect of the decidualizing 

agents P4 and cAMP, these cells became rounder, 
secreted PRL and IL-15 and underwent apoptosis (Dunn 
et al. 2003, Leno-Duran et al. 2014, Sharma et al. 2016).

To further determine whether preDSCs and preEnSCs 
are equivalent cells, we compared their ability to 
differentiate in response to P4 and cAMP. Interestingly, 
while both types of cells changed their fibroblastic-like 
appearance to a rounder morphology, the percentage of 
rounded cells was significantly higher in decidualized 
preDSCs. In addition, decidualized preDSCs secrected 
significantly more PRL, a widely used marker of 
decidualization, than decidualized preEnSCs. Other 
activities associated with the process of decidualization, 
such as IL-15 production and apoptosis (Dunn et  al. 
2003, Leno-Duran et  al. 2014, Sharma et  al. 2016), 
were also significantly greater in preDSC than in 
preEnSC lines (Fig. 2). Even after prolonged incubation 
with P4 and cAMP, preEnSCs did not reach the level 
of PRL production and apoptosis observed in preDSCs 
(Fig. 2B and D). Due to the close relationship of bone 
marrow MSCs with preEnSCs and preDSCs (Table 1), we 
also analyzed MSC lines cultured under decidualizing 
conditions for comparison. Intriguingly, although 
MSCs changed their shape to a rounder morphology 
and expressed PRL mRNA, secretion of this factor was 
not detected (Supplementary Fig. 1, see section on 
supplementary materials given at the end of this article).

Expression of progesterone receptor, protein kinase A 
and FOXO1 in preEnSCs and preDSCs

The nuclear receptors for progesterone (PR) and protein 
kinase A (PKA)-mediated cAMP signaling are crucial for 
decidualization (Brar et al. 1997, Telgmann et al. 1997, 

Q7

Table 1  Antigen expression by preEnSC, preDSC and bone marrow 
MSC lines as determined by flow cytometry.

% Positive cells
Antigen preEnSC (n = 21) preDSC (n = 20) MSC (n = 7)

CD9 >95 >95 ND
CD10 >95 >95 >95
CD13 >95 >95 >95
CD15 <1 <1 <1
CD19 <1 <1 <1
CD29 >95 >95 >95
CD31 <1 <1 <1
CD34 <1 <1 <1
CD44 >95 >95 >95
CD45 <1 <1 <1
CD54 75–87 72–91 45–69
CD62P <1 <1 <1
CD73 >95 >95 >95
CD80 5–33 0–73 ND
CD86 10–22 0–79 ND
CD90 >95 >95 >95
CD106 0–22 0–17 0–10
CD140b 30–92 72–84 ND
CD146 42–85 67–82 68–75
α-SM actin >95 >95 >95
BAFF 72–84 52–66 <1
CXCL13 18–33 20–32 <1
Cytokeratin <1 <1 ND
HLA-DR <1 <1 <1
HLA-G 0–18 7–22 <1
Nestin >95 >95 >95
Podoplanin >95 >95 >95
SUSD2 34–79 33–55 21–35

ND, Not determined.Q6

Figure 2 Comparative analysis of decidualized 
EnSCs and DSCs. (A) Morphological changes 
in undifferentiated preEnSCs and preDSCs 
after 7 days of culture with P4 and cAMP. Bars 
show the percentage of rounded cells after 
quantification of representative areas (n = 3 per 
sample) with ImageJ. (B) Time course of PRL 
secretion by preEnSCs and preDSCs after 
incubation with P4 and cAMP. PRL production 
by nondecidualized (undifferentiated) cells 
was zero at all time points (not shown). (C) 
Secretion of IL-15 after 7 days of culture 
without (undifferentiated) or with P4 and 
cAMP. (D) Induction of apoptosis upon 
incubation without (undifferentiated) or with 
P4 and cAMP for up to 28 days. Sub-G1 
apoptotic cells were analyzed every 7 days. 
Error bars show the s.e.m. of five (B and D) and 
three (A and C) independent experiments with 
different cell lines. *P < 0.05, **P < 0.01 and 
***P < 0.001 (preEnSC + P4 + cAMP vs 
preDSC + P4 + cAMP).
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Kaya et  al. 2015). The progesterone receptor has two 
isoforms, PR-A and PR-B, whereas in the case of PKA, 
an enzymatic complex formed by two regulatory (R) 
and two catalytic (C) subunits, three distinct C subunits 
(Cα/β/γ) and four R subunits (RIα/β and RIIα/β) have been 
identified (Skalhegg & Tasken 2000). It has been reported 
that EnSCs express the Cα and Cβ isoforms as well as all 
four regulatory subunits of PKA, although expression of 
the RIα isoform is higher than the rest (Telgmann et al. 
1997, Kim et  al. 1998). We compared the expression 
of PR and PKA between preEnSC and preDSC. As 
shown in Fig. 3A, both types of cells showed similar 
basal levels of the two isoforms of PR and the catalytic 
(Cα/β/γ) and Iα/β regulatory (RIα/β) subunits of PKA. In 
addition, expression of the regulatory subunit of PKA 
and the PR-A isoform increased after decidualization in 
both cell types. Interestingly, upregulation of PKA RIα/β 
was significantly higher in decidualized preDSCs than 
in decidualized preEnSCs (Fig. 3A, right panel). These 
results were confirmed by a time course expression 
analysis of PKA RIα/β in response to decidualization 
(Fig. 3B). We further explored differences in the signaling 
pathways in response to decidualization by analyzing 
the expression of the transcription factor FOXO1, a 
downstream mediator of decidualizing factors (Buzzio 
et al 2006, Labied et al 2006). As expected, incubation 
with P4 and cAMP induced the expression of FOXO1 in 
preEnSC and preDSC but without significant differences 
between both cell types (Fig. 3A).

Discussion

There is considerable confusion in the terminology 
regarding EnSCs and DSCs. Because the endometrium 
differentiates into decidua when gestation occurs, some 
authors consider EnSCs as precursor cells and DSCs 

as differentiated cells. The fact that decidualization 
has been observed in vivo and in vitro, in both the 
endometrium and decidua (Wynn 1974, Ferenczy & 
Guralnick 1983, Huang et  al. 1987, Olivares et  al. 
1997), indicates that there must be precursor cells 
in both tissues, which we have called preEnSCs and 
preDSCs, respectively (Olivares et al. 1997). These two 
types of precursors may be considered the same type 
of cell in two different physiological situations, that is, 
nongestation and gestation. In fact, our analysis of the 
expression of 35 antigens showed an equivalent antigen 
phenotype for both precursors (Fig. 1 and Table 1). 
However, we observed that processes associated with 
decidualization, for example, change in the cellular 
morphology to a rounder shape, secretion of PRL and 
IL-15 and apoptosis (Dunn et  al. 2003, Leno-Duran 
et al. 2014, Sharma et al. 2016), were significantly more 
evident in preDSCs than in preEnSCs (Fig. 2). To our 
knowledge, this is the first study designed to compare 
markers of decidualization processes in preEnSCs and 
preDSCs.

Our results could be attributed to the fact that we 
compared stromal cells from a wasting tissue (menstrual 
blood) to stromal cells from a developing tissue 
(decidua). However, although normal menstrual blood 
and decidua harbor apoptotic cells (Tabibzadeh 1996, 
von Rango  et  al. 1998), the cell cultures developed 
to establish cell lines select only healthy, proliferative 
cells to survive, which correspond to precursor cells 
in both tissues (Meng et  al. 2007, Hida et  al. 2008, 
Patel et  al. 2008, Munoz-Fernandez et  al. 2019). In 
this connection, stromal cells from menstrual blood 
and decidua have been used in numerous basic and 
clinical studies (Hida et  al. 2008, Zhong et  al. 2009, 
Ulrich et  al. 2013, Sugawara et  al. 2014, Alshabibi 
et al. 2018, Sadeghi et al. 2019). Furthermore, a similar 

Q8

Figure 3 Expression of PR, PKA and FOXO1 in 
response to decidualization. (A) preEnSCs and 
preDSCs were incubated with P4 and cAMP 
for 10 days, and the expression of PR isoforms, 
PKA catalytic (Cα/β/γ) and regulatory (RIα/β) 
subunits and FOXO1 was determined by 
Western blot. (B) Expression of PKA RIα/β was 
analyzed by Western blot in preEnSCs and 
preDSCs after incubation for 7, 10 and 14 
days with P4 + cAMP. α-tubulin and β-actin 
were used as controls for loaded protein. A 
representative experiment is shown (left 
panels). Bar charts show the relative 
expression of PR-A (A), PKA RIα/β (A, B) and 
FOXO1 (A) after band intensity analysis from 
three different Western blots (right panels).
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antigen phenotype and capacity to decidualize were 
observed in preEnSC lines obtained from endometrial 
biopsies rather than menstrual blood (Supplementary 
Fig. 2). Because menstrual blood is easily obtained 
by noninvasive methods, it was used as the source of 
endometrial stromal cells in our study.

Decidualized cells depend on the constant activation 
of cAMP-dependent PKA for the efficient expression of 
their characteristic phenotype and markers, including 
PRL. Earlier work found that, after decidualization with 
17β-estradiol, MPA (medroxyprogesterone acetate) and 
relaxin, there were no differences in the expression 
of the PKA subunits except for the RIα isoform, which 
was downregulated at the protein level (Telgmann 
et al. 1997, Kim et al. 1998). In the present work, we 
compared the expression of the C and RI subunits in 
preEnSCs and preDSCs and found that both types of 
cells showed similar levels of these proteins. This finding 
confirmed that decidualization did not regulate the 
expression of PKA C. Interestingly, we found that PKA RI 
was upregulated after treatment with P4 and cAMP. Both 
decidualized EnSCs and DSCs maintained high levels of 
PKA RI expression throughout the time course studied 
here, although the increase was significantly greater in 
DSCs. The discrepancies between our data and those of 
Telgmann et al. may be due to the different experimental 
conditions used to establish, maintain and decidualize 
cell lines (Telgmann et al. 1997). Because PKA formed 
by RI subunits was reportedly a more efficient activator 
of cAMP-responsive elements than PKA that contained 
RII (Stakkestad et al. 2011), the larger increase in RI in 
preDSCs may explain their greater ability to decidualize. 
In addition to PKA, we also analyzed the expression of PR 
as the other key mediator of decidualization signaling. 
Our results show that there was no difference between 
preDSCs and preEnSC in either the basal expression of 
PR or the increase in the PR-A isoform in response to 
decidualization, suggesting that the different behaviors 
in the two cell types may not be due to differences at 
this stage of progesterone signaling. Moreover, the 
downstream mediator FOXO1, which has been reported 
to play a role in the differentiation of endometrial cells 
(Buzzio et al. 2006, Labied et al. 2006, Kajihara et al. 
2013), did not seem to be involved in the different 
response of preEnSC and DSC to decidualization.

Gestation is an immunological challenge for the 
mother, and several lines of experimental evidence 
support the key role of DSCs in maintaining 
immunological tolerance to avoid rejection of the 
fetus (Dunn et  al. 2003, Blanco et  al. 2008, 2009, 
Munoz-Fernandez et al. 2012, Nancy et al. 2012). The 
production of IL-15 by decidualized cells appears to be 
related to the maintenance of decidual NK cells (Dunn 
et al. 2003). Concerning apoptosis, this was previously 
reported to occur in parallel with decidualization, as 
a physiological phenomenon necessary to limit the 
lifespan of DSCs and allow placental development to 

proceed (Leno-Duran et  al. 2014). Conversely, in the 
absence of gestation, these activities do not necessarily 
need to be carried out by EnSCs, although these cells are 
‘standing by’ in case pregnancy takes place. Although 
the findings available to date regarding antigen 
phenotype, perivascular location, relation to MSCs and 
secreted factors support that preEnSCs and preDSCs 
are the same type of cell, they are nevertheless located 
in two different physiological milieus: nongestational 
and gestational, respectively. Furthermore, preDSCs 
remain in vivo for a longer period (up to 11 weeks of 
gestation before the voluntary termination of pregnancy) 
than preEnSCs (up to 4 weeks before menstruation) 
before they can be isolated to establish cell lines. These 
distinct milieus, which involve a different environment 
in terms of cytokines, hormones and growth factors, 
together with differences in their natural history, 
are the probable causes of the differences observed 
between preEnSCs and preDSCs, as suggested by others 
(Kyurkchiev et  al. 2010). Because decidualization is a 
complex phenomenon, further research is necessary to 
understand the molecules involved in this process as 
well as the genetic or epigenetic factors that, under the 
influence of the milieu, may regulate the likelihood of 
decidualization.

In previous publications, we and others demonstrated 
the close relationships between preEnSCs, preDSCs and 
MSCs (Dimitrov et  al. 2008, 2010, Munoz-Fernandez 
et  al. 2012, 2018, 2019). Our present results, which 
show that both types of precursor – one from the 
endometrium, and one from the decidua – have an 
antigen phenotype in common with bone marrow MSCs 
(Table 1), confirm these relationships and support the 
view proposed by some authors (Taylor 2004, Du & 
Taylor 2007) that bone marrow-derived MSCs may be 
the source of EnSCs and hence of DSCs. Despite the 
close relationships among preEnSCs, preDSCs and bone 
marrow MSCs, we detected differences in the expression 
of BAFF and CXCL13, which was positive in preEnSCs 
and preDSCs but negative in MSCs. These differences 
may be due to the immunological interactions of bone 
marrow MSCs, when they arrive in the endometrium or 
decidua, with local immune cells (Vacca et al. 2015). 
Furthermore, bone marrow MSCs demonstrated a low 
capacity to decidualize, given that they did not secrete 
PRL in response to P4 and cAMP (Supplementary Fig. 
1). Our results suggest that through a gradual process 
of progression from MSCs (bone marrow) to preEnSCs 
(endometrium) and then to preDSCs (decidua), stromal 
cells acquire the decidualization capacity essential 
for the normal development of pregnancy (Dunn et al. 
2003). Thus, further elucidation of the initiation and 
progression of decidualization capacity may help to 
better understand diseases such as endometriosis, in 
which cells are unable to decidualize (Patel et al. 2017).

PreDSCs and preEnSCs also appear to correspond to 
endometrial MSCs (eMSCs), that is, clonogenic, self-
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renewing, multipotent cells that can differentiate into 
adipogenic, osteogenic, chondrogenic and myogenic 
lineages. Like preEnSCs and preDSCs, eMSCs are 
CD146+, CD140b+ and SUSD2+, decidualize, are 
found in perivascular sites, and have also been associated 
with pericytes (Gargett & Masuda 2010, Kyurkchiev 
et al. 2010, Spitzer et al. 2012, Munoz-Fernandez et al. 
2018). However, to date, eMSCs have been isolated 
only by cell sorting, whereas the preEnSC and preDSC 
lines obtained in the present work from endometrium 
and decidua were enriched by cell culture.

Like MSCs (Uccelli et  al. 2008), preDSCs and 
preEnSCs exhibit immunoregulatory activity in vivo and 
in vitro (Vacca et al. 2015). Human DSCs were found 
to have beneficial effects in steroid-refractory graft-vs-
host disease in humans (Ringden et  al. 2013, 2018). 
Likewise, we recently demonstrated the therapeutic 
effect of human preDSCs in an immune-based mouse 
model of recurrent spontaneous abortion (Munoz-
Fernandez et al. 2019). These findings identify DSCs, and 
probably EnSCs, as potentially important components 
of cell therapies for immune-mediated diseases. The 
availability of endometrial and decidual stromal cells, 
and the straightforward techniques needed to purify 
and expand them, may help to further research on their 
clinical applications in the treatment of autoimmune 
and inflammatory diseases. Our findings thus raise the 
possibility of testing DSCs and EnSCs in therapeutic trials 
to determine which cell type would be more suitable 
(Simoni & Taylor 2018, Queckborner et al. 2019).

In conclusion, our results suggest that although 
stromal precursors from endometrium and decidua have 
a similar phenotype, they differ in their response to 
decidualization factors, with preDSCs being significantly 
more responsive. The similarity of these precursors with 
MSCs suggests an important therapeutic potential for 
inflammatory diseases.
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