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Epigenetic modifications commonly associated with tumor development, such as histone
deacetylation, may influence the resistance of some tumor cells to tumor necrosis factor
(TNF)-related apoptosis-inducing ligand (TRAIL) by regulating gene transcription of com-
ponents of the TRAIL signalling pathway. In the present study we have analyzed the effect
of six different histone deacetylase inhibitors (HDACi), belonging to the four classic struc-
tural families, on TRAIL-induced apoptosis in leukemic T cell lines. Non-toxic and func-
tional doses of all HDACi but apicidin, similarly sensitized different leukemic T cell lines
to TRAIL-induced apoptosis, while they showed no effect on the resistance of normal T
lymphocytes. Sensitizing doses of vorinostat, valproic acid, sodium butyrate and MS-275
regulated the expression of TRAIL-R2, c-FLIP and Apaf-1 in leukemic cells while TSA mod-
ulated only the expression of Apaf-1. The synergistic effect of all HDACi and TRAIL was
inhibited in Bcl-2-overexpressing leukemic T cells. Thus, different HDACi may affect the
expression of different TRAIL-related genes, but regulation of the mitochondrial pathway
seems to be essential for the TRAIL sensitizing effect of HDACi in leukemic T cells. Overall,
HDACi represent a promising and safe strategy in combination with TRAIL for treatment of
T-cell leukaemia.

� 2010 Published by Elsevier Ireland Ltd.
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R1. Introduction

TNF-related apoptosis-inducing ligand (TRAIL/APO-2L)
is a type II transmembrane protein, belonging to the tumor
necrosis factor (TNF) superfamily, that induce apoptosis
upon binding to its specific death domain-containing
receptors TRAIL-R1/DR4 and TRAIL-R2/DR5 [1–3]. Apopto-
tic TRAIL signalling is initiated by oligomerization of TRAIL
death receptors and subsequent recruitment of the intra-
cellular adapter molecule Fas-associated death domain
61

62

63

64

65

66

y Elsevier Ireland Ltd.

tro de Investigación
illa, Granada, Spain.

.
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protein (FADD) and procaspases-8 and -10, thereby
forming the death-inducing signalling complex (DISC).
Activation of caspase-8 in the DISC allows the initiation
of a cascade of events that leads to apoptotic cell death
[4,5] either by directly activating effector caspases or by
Bid cleavage and engagement of the mitochondrial death
pathway.

Despite the selective antitumor activity of TRAIL, a large
number of cancer cells are resistant to this death ligand.
Resistance can occur by different ways since regulation of
TRAIL-induced apoptosis is exerted at many stages along
its signalling pathway. Several intracellular molecules have
been described to block the apoptotic effect of TRAIL, such
as the cellular Fas-associated death domain-like IL-1b-
converting enzyme inhibitory protein (c-FLIP) that com-
petes with caspase-8 for binding to FADD [6,7]; Bcl-2 and
h different gene regulation activities depend on the mitochondrial
ptosis, Cancer Lett. (2010), doi:10.1016/j.canlet.2010.04.029
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Bcl-xL that impede the activation of the mitochondrial
pathway [8]; or the inhibitors of apoptotic proteins XIAP,
c-IAP1 and c-IPA2 that inhibit active caspases [9,10].

During the last few years, several studies have focused
on the development of therapeutic strategies aimed at
overcoming resistance to TRAIL. One of these strategies
involves the pharmacologic inhibition of histone deacety-
lases (HDAC), enzymes implicated in the epigenetic mod-
ifications that regulate the expression of genes during
cancer development and progression [11]. Several HDAC
inhibitors (HDACi), from natural and synthetic origin,
have been described to induce cell cycle arrest, differenti-
ation and apoptosis in human tumor cells and non-hu-
man models of cancer [12,13]. These HDACi have
different chemical structures so that they can be classified
in four groups: (i) hydroxamic acids, such as trichostatin
A (TSA) and suberoylanilide hydroxamic acid (SAHA, Vori-
nostat); (ii) benzamides, such as MS-275; (iii) short-chain
fatty acids, such as valproic acid (VPA) and sodium buty-
rate (NaB); (iv) cyclic peptides, such as apicidin and dep-
sipeptide [12,14]. The hydroxamic acids are the most
potent HDACi showing activity on class I (HDAC1, 2, 3
and 8) and class II (HDAC4, 5, 6, 7, 9 and 10) HDAC. In
contrast, MS-275, apicidin and the short-chain fatty acids
VPA and NaB are more potent inhibitors of class I HDAC
and exhibit little or no activity against class II isoforms
[15,16].

Histone acetylation by HDACi affects the expression of
many genes [17], some of which are involved in the
TRAIL signalling pathway. Accordingly, it has been shown
that HDACi down-regulate anti-apoptotic factors, such as
c-FLIP, Bcl-2, Bcl-xL and XIAP, while increase the expres-
sion of pro-apoptotic proteins, such as caspase-8, cas-
pase-3, Bid, Bim, Bax or Bak, in different solid and
hematopoietic tumor types [18–21]. In addition, TRAIL it-
self and its pro-apoptotic receptor TRAIL-R2 have been
reported to be regulated by HDACi in myeloid leukaemia
cells, thus mediating the apoptotic effect of these inhibi-
tors [22,23].

HDACi induce histone acetylation in both tumor and
normal cells, but, similarly to TRAIL, they have shown
selective antitumor activity [12,24]. However, the mecha-
nism of this selective activity is not known and few studies
have determined the effects of the combined treatment
with HDACi and TRAIL in non-transformed cells
[21,23,25,26]. The present study was designed to compare
and better understand the effects of HDACi from different
chemical classes on the induction of apoptosis by TRAIL
in leukemic T cells and normal T lymphocytes. We ana-
lyzed the susceptibility to TRAIL-induced apoptosis upon
pre-treatment with HDACi in both cell types. Furthermore,
we determined the expression of several proteins involved
in the TRAIL signalling pathway, such as components of the
DISC and factors of the mitochondrial death pathway, in
normal and leukemic T cells in response to HDACi. Our re-
sults show that different HDACi may differ in their mecha-
nism of action and their efficacy for regulating TRAIL-
mediated apoptosis in leukemic T cells, but their sensitiz-
ing effect involves the mitochondrial apoptotic pathway.
In addition, none of them is able to sensitize normal T lym-
phocytes to TRAIL.
Please cite this article in press as: J.C. Morales et al., HDAC inhibitors wit
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2. Materials and methods

2.1. Reagents and antibodies

Human recombinant TRAIL was prepared as described
previously [1]. Valproic acid (VPA), trichostatin A (TSA),
MS-275, sodium butyrate (NaB), phytohemagglutinin and
mouse anti-b-actin were from Sigma–Aldrich (St. Louis,
MO). Apicidin was obtained from Calbiochem (Darmstadt,
Germany). Suberoylanilide hydroxamic acid (SAHA, Vori-
nostat, Zolinza�) was generously provided by Merck Re-
search Laboratories (Boston, MA). Z-VAD-FMK, a wide
spectrum caspase inhibitor, was from Bachem (Bubendorf,
Suiza). Anti-cFLIP monoclonal antibody NF6 and mouse
anti-human TRAIL receptor-2 antibody were purchased
from Alexis Biochemicals (San Diego, CA). Mouse anti-hu-
man CD28 was from eBioscience (San Diego, CA). Anti-hu-
man caspase-8 monoclonal antibody was purchased from
Cell Diagnostica (Munster, Germany). Caspase inhibitors
Z-IETD-FMK and Z-LEHD-FMK, anti-human caspase-9
monoclonal antibody and monoclonal anti-human Apaf-1
were from R&D Systems (Minneapolis, MN). Anti-human
caspase-3 polyclonal antibody was obtained from Stress-
gen (Ann Arbor, MI). Polyclonal antibody anti-histone H4
acetylated was obtained from Upstate Biotechnology (Lake
Placid, NY).

2.2. Cells and cell culture

Blood samples, obtained from healthy donors by in-
formed consent, were collected into citrate tubes. Periphe-
ral blood T lymphocytes were then isolated and activated
as previously described [27].

The human leukemic T cell lines Jurkat, CEM-6 and
MOLT-4 were kindly provided by Dr. Abelardo López-Rivas
(CABIMER, Sevilla, Spain). They were all maintained in cul-
ture in RPMI 1640 medium with 10% fetal bovine serum,
1 mM l-glutamine, penicillin and streptomycin at 37 �C in
a humidified 5% CO2, 95% air incubator. Jurkat cells stably
overexpressing Bcl-2 were generously provided by Dr. Ja-
cint Boix (Departamento de Ciencias Médicas Básicas, Uni-
versidad de Lleida, Spain) and maintained in culture
medium with 1 mg/ml G418 sulfate (Sigma Chemical Co.).

2.3. Determination of apoptotic cells

Hypodiploid apoptotic cells were detected by flow
cytometry according to published procedures [28]. Briefly,
cells were washed with PBS, fixed in cold 70% ethanol, and
then stained with propidium iodide while treating with
RNase. Quantitative analysis of sub-G1 cells was carried
out in a FACScan cytometer using the Cell Quest software
(BD Biosciences).

2.4. Flow cytometric analysis of histone acetylation

Histone acetylation was analyzed as previously re-
ported [29]. In brief, after 4 h treatment with HDACi cells
were washed and fixed for 20 min in 1% formaldehyde in
PBS on ice. Cells were then permeabilized with 0.1% Triton
h different gene regulation activities depend on the mitochondrial
ptosis, Cancer Lett. (2010), doi:10.1016/j.canlet.2010.04.029
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X-100 in PBS for 10 min at room temperature, washed with
PBS containing 1% BSA, and incubated with 10% normal
goat serum in PBS for 30 min. Subsequently, samples were
incubated with 0.1 lg/ml anti-acetylated histone H4
monoclonal antibody for 1 h at room temperature and,
after washing, stained with goat anti-rabbit fluorescein
isothiocyanate-conjugated antibody (1:1000; Caltag Labo-
ratories, Burlingame, CA) for 1 h at room temperature in
the dark. Fluorescence of acetylated histone H4 was deter-
mined in a FACScan cytometer using the Cell Quest soft-
ware (BD Biosciences).
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2.5. Immunoblot detection of proteins

For detection of cytosolic proteins, cells were lysed in
ice-cold lysis buffer (150 mM NaCl, 50 mM Tris–Cl, 1%
NP-40) for 30 min. Proteins were resolved on SDS–PAGE
minigels and detected as reported previously [30].
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2.6. Cytofluorometric analysis of TRAIL receptors

To detect TRAIL-R2 receptor at the cell surface, control
or treated cells were incubated with primary antibody
(5 lg/ml) for 30 min at 4 �C. After washing with PBS to re-
move unbound primary antibody, cells were incubated
with goat anti-mouse fluorescein isothiocyanate-conju-
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Fig. 1. Induction of apoptosis by HDACi in leukemic and normal T cells. (A) CEM
doses of HDACi: TSA 10, 30, 50, 75 and 100 ng/ml; VPA 0.5, 0.75, 1, 2.5 and 5 mM;
5 lM; NaB 0.1, 0.3, 0.5, 1 and 5 mM; and apicidin 10, 25, 50, 100 and 250 nM for
three lower doses of TSA and the three higher doses of the rest of HDACi mentione
cytometry. Error bars show SD from three independent experiments in (A and B
compared to control cells.

Please cite this article in press as: J.C. Morales et al., HDAC inhibitors wit
pathway for the sensitization of leukemic T cells to TRAIL-induced apo
gated antibody (1:1000; Caltag Laboratories, Burlingame,
CA) for 30 min at 4 �C. Cells were then washed, resus-
pended in PBS and analyzed in a FACScan flow cytometer.
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2.7. Real-time PCR

Total RNA was extracted from cells with Trizol Reagent
(Invitrogen) as recommended by the supplier. cDNAs were
synthesized from 3 lg of total RNA by using M-MLV re-
verse transcriptase (Invitrogen) and oligo(dT) primer in a
total volume of 20 ll. Reverse transcription was performed
at 37 �C for 50 min followed by 15 min at 70 �C for
inactivation.

Real-time PCR analysis was carried out with 1 ll cDNA
using iQ SYBR Green Supermix (BioRad) and the iCycler iQ
detection system (BioRad) according to the manufacturer’s
instructions. Samples were analyzed in triplicate and
mRNA expression was normalized to 18S rRNA and quan-
tified by the comparative cycle threshold (Ct) method.

PCRs were done using the following specific primers:
TRAIL-R2, forward 50-TTGCATCAGTTAGGGATACTGGG-30

and reverse 50-CAAAACCAACATTGATTCTTCAATAC-30; c-FLIPL,
forward 50-AATTCAAGGCTCAGAAGCGA-30 and reverse 50-
GGCAGAAACTCTGCTGTTCC-30; c-FLIPS, forward 50-AATGTT
CTCCAAGCAGCAATCC-30 and reverse 50-CCAAGAATTTTCA-
GATCAGGACAAT-30; rRNA 18s, forward 50-GATATGCTC
C
T
E
D

-6 and (B) Jurkat cells were treated without (control, C) or with different
vorinostat (Vor) 0.1, 0.3, 0.5, 1 and 2 lM; MS-275 (MS) 0.5, 0.75, 1, 2.5 and

24 h. (C) Resting and (D) activated T cells were incubated for 24 h with the
d above. The percentage of sub-G1 apoptotic cells was determined by flow
) or three different donors in (C and D). �p < 0.05; ��p < 0.01; ���p < 0.001,

h different gene regulation activities depend on the mitochondrial
ptosis, Cancer Lett. (2010), doi:10.1016/j.canlet.2010.04.029
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ATGTGGTGTTG -30 and reverse 50-AATCTTCTTCAGTCGCTC-
CA-30. The PCR cycling conditions were as follows: 95 �C for
5 min; then 40 cycles at 95 �C for 30 seg, 57 �C for 30 seg
and 72 �C for 45 seg; and a final extension at 72 �C for
10 min.
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2.8. Statistical analysis

The data were analyzed with unpaired Student’s t-tests
(two-tailed) by using GraphPad Prism 4 for Windows. Val-
ues of p < 0.05 were considered significant.
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3. Results

3.1. Non-toxic doses of different HDACi induce histone acetylation in both
leukemic and normal T lymphocytes

We analyzed the induction of apoptosis in CEM-6 and Jurkat cells in
response to treatment with the hydroxamic acids TSA and vorinostat,
the benzamide MS-275, the aliphatic acids VPA and NaB, and the cyclic
peptide apicidin. The range of doses used for each HDACi was established
according to previous reports [19,27,31,32]. Similar results were found in
both cell lines (Fig. 1A and B). All HDACi showed a dose-dependent apop-
totic effect except for apicidin. In addition, no significant apoptosis was
induced by MS-275 in CEM-6 cells. The higher percentages of apoptotic
cells were observed after treatment with high doses of the pan-HDACi
vorinostat and TSA. Next, we determined the induction of apoptosis in
primary resting and activated T lymphocytes upon incubation with the
three lower doses of TSA and the three higher doses of the rest of HDACi.
Resting T cells were highly resistant to HDACi-mediated apoptosis,
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Fig. 2. HDACi increase histone acetylation levels in leukemic and normal T lym
incubated without (control) or with 10 ng/ml TSA, 1 mM VPA, 0.5 lM vorinos
acetylation was analyzed by flow cytometry as described in Section 2. Negative
show SD from three independent experiments in (A), or three different donors

Please cite this article in press as: J.C. Morales et al., HDAC inhibitors wit
pathway for the sensitization of leukemic T cells to TRAIL-induced apo
whereas high doses of both hydroxamic acids, TSA and vorinostat,
showed a slight and significant toxicity against activated T cells (Fig. 1C
and D).

Doses of HDACi (10 ng/ml TSA, 1 mM VPA, 0.5 lM vorinostat, 1 lM
MS-275, 0.5 mM NaB and 50 nM apicidin) were selected on the basis of
their low and no toxicity for leukemic and normal T lymphocytes, respec-
tively, and analyzed for their ability to enhance the levels of acetylated
histone H4. Flow cytometric analyses demonstrated that all HDACi treat-
ments increased H4 acetylation in leukemic T cells, reaching maximum
acetylation level after 4 h of treatment (Fig. 2A and data not shown). Fur-
thermore, the selected non-toxic doses of HDACi significantly increased
the level of histone acetylation in resting T lymphocytes, with the excep-
tion of vorinostat (Fig. 2B). In the case of activated T cells, we also ob-
served a low, but not significant, increase in histone H4 acetylation in
response to all HDACi but apicidin (Fig. 2B).
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O3.2. Different HDACi potentiate TRAIL-induced apoptosis in leukemic T cell

lines but not in normal T cells

We had previously shown that the HDACi valproic acid increased the
susceptibility of the T-lymphoblastic leukemic CEM-6 cell line to TRAIL,
while it did not alter the resistance of resting and activated normal T cells
to TRAIL [27]. Now, we determined the ability of the different HDACi to
increase TRAIL-mediated apoptosis in three different leukemic T cell lines,
namely CEM-6, Jurkat and MOLT-4, when used at the above selected non-
toxic concentrations. Pre-treatment for 4 h with all HDACi, except for
apicidin, potentiated the apoptotic effect of TRAIL in the three cell lines,
with CEM-6 showing a greater variability in the response to the different
HDACi (Fig. 3A–C). Apicidin also enhanced TRAIL-induced apoptosis in
Jurkat cells, but to a lesser degree when compared to the rest of HDACi
(Fig. 3B). However, it had a significant although minimal effect and no sig-
nificant effect in CEM-6 and MOLT-4 cell lines, respectively (Fig. 3A and
C). We simultaneously analyzed the sensitivity to TRAIL-induced apopto-
C
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phocytes. (A) CEM-6, Jurkat cells, (B) resting and activated T cells were
tat, 1 lM MS-275, 0.5 mM NaB and 50 nM apicidin for 4 h. Histone H4

represent background fluorescence with secondary antibody. Error bars
in (B). �p < 0.05; ��p < 0.01, compared to control cells.

h different gene regulation activities depend on the mitochondrial
ptosis, Cancer Lett. (2010), doi:10.1016/j.canlet.2010.04.029
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Fig. 3. Effect of HDACi on TRAIL-induced apoptosis in leukemic and normal T lymphocytes. (A) CEM-6, (B) Jurkat, (C) MOLT-4, (D) resting and (E) activated T
cells were preincubated in the absence (control, C) or in the presence of non-toxic doses of HDACi (10 ng/ml TSA, 1 mM VPA, 0.5 lM vorinostat (Vor), 1 lM
MS-275 (MS), 0.5 mM NaB and 50 nM apicidin) for 4 h. After preincubation, cells were treated with or without recombinant TRAIL (100 and 250 ng/ml for
leukemic and normal T cells, respectively) for 24 h. The percentage of sub-G1 apoptotic cells was determined by flow cytometry. Error bars show SD from
three independent experiments in (A–C) or three different donors in (D and E). �p < 0.05; ��p < 0.01; ���p < 0.001, compared to TRAIL alone.
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none of the inhibitors altered the resistance to TRAIL in either resting or
activated T cells (Fig. 3D and E).

To further characterize the apoptotic cell death induced by the com-
bined treatment with HDACi and TRAIL in leukemic T cells, we analyzed
the activation of caspase-8, -9 and -3. All HDACi, except for apicidin, en-
hanced TRAIL-induced activation of caspases in CEM-6 cells (Fig. 4A). The
same results were obtained in MOLT-4 cells (data not shown). In contrast,
apicidin induced a similar increase in caspases activation to that observed
with the rest of HDACi in Jurkat cells, as shown in Fig. 4A where the effect
of apicidin is compared with that of NaB. These data correlate with those
obtained in Fig. 3 and indicates that, in contrast to other HDACi, apicidin
may selectively regulate TRAIL-induced apoptosis in some, but not all,
leukemic T cells.

Previous studies have suggested the involvement of both the extrinsic
and the intrinsic pathways in the synergistic effect of TRAIL and HDACi in
human myeloid leukemic cell lines [19,33]. To confirm these observations
Please cite this article in press as: J.C. Morales et al., HDAC inhibitors wit
pathway for the sensitization of leukemic T cells to TRAIL-induced apo
in leukemic T cells, we compared the effect of specific caspase-8 and cas-
pase-9 inhibitors (Z-IETD-FMK and Z-LEHD-FMK respectively) with that
of the pan-caspase inhibitor Z-VAD-FMK, in the induction of apoptosis
by HDACi and TRAIL in Jurkat cells. Not only the wide spectrum inhibitor
Z-VAD, but also the caspase-8 and caspase-9 inhibitors were able to com-
pletely block apoptosis in response to the combined treatment with
HDACi and TRAIL (Fig. 4B).

3.3. Components of the death receptor signalling pathway are differentially
regulated by different HDACi in leukemic and normal T lymphocytes

To study the mechanism by which HDACi selectively modulate the
sensitivity of leukemic T cells to TRAIL-induced apoptosis, we compared
their effect on the expression of several pro- and anti-apoptotic proteins
in both leukemic and normal T cells. At the selected sublethal doses, all
HDACi slightly up-regulated the expression of TRAIL-R2 receptor, except
for TSA and apicidin in CEM-6 cells and TSA in Jurkat cells (Fig. 5A). In
h different gene regulation activities depend on the mitochondrial
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Fig. 4. HDACi enhance TRAIL-induced caspase activation in leukemic T cells. (A) CEM-6 and Jurkat cells were preincubated for 4 h with 10 ng/ml TSA, 1 mM
VPA, 0.5 lM vorinostat (Vor), 1 lM MS-275 (MS), 0.5 mM NaB or 50 nM apicidin (Api) before treatment without or with 100 ng/ml recombinant TRAIL for
20 h. Activation of caspase-8, -9 and -3 was determined by Western-blot. (B) Jurkat cells were preincubated for 1 h in the absence or in the presence of the
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sub-G1 apoptotic cells was determined by flow cytometry. Results shown are representative of at least three independent experiments.

6 J.C. Morales et al. / Cancer Letters xxx (2010) xxx–xxx

CAN 10268 No. of Pages 11, Model 3G

12 May 2010
ARTICLE IN PRESS
U
N

C
O

R
R

contrast, after treatment with the same non-toxic concentrations of
HDACi there was no up-regulation of TRAIL-R1 expression (data not
shown). We also analyzed the regulation of TRAIL-R2 expression in pri-
mary T cells. Both resting and activated T lymphocytes expressed barely
detectable levels of TRAIL-R2 [27] and no change in the expression was
observed upon treatment with HDACi (data not shown). To further
confirm the regulation of TRAIL-R2 in leukemic T cell lines we determined
mRNA receptor expression by real-time PCR. We observed that all HDACi
increased the expression of TRAIL-R2 mRNA in Jurkat cells but the effect
of TSA was minimal, compared to the rest of HDACi (Fig. 5B). In CEM-6
and MOLT-4 cells, not only TSA but also apicidin exerted a negligible ef-
fect in the expression of TRAIL-R2 mRNA (Fig. 5B and data not shown).
These results are in agreement with that of surface TRAIL-R2 analysis
and suggest that the ability to regulate gene expression may vary be-
tween cell lines and HDACi.

Next, we determined the expression of different factors involved in
the extrinsic apoptotic pathway, such as caspase-8, FADD and c-FLIP.
We found no changes in the levels of caspase-8 and FADD (Fig. 4A and
data not shown). Regarding the anti-apoptotic protein c-FLIP, all HDACi,
except for TSA and apicidin, seemed to reduce the expression of the long
isoform, c-FLIPL, in leukemic T cell lines, but the expression of the short
isoform, c-FLIPs, could not be detected by Western-blot (data not shown).
We further analyzed the expression of several proteins involved in the
mitochondrial apoptotic pathway and no changes were observed in the
levels of Bcl-2, Bcl-xL, Mcl-1, XIAP, c-IAP1, c-IAP2, Bim or Smac/DIABLO
upon treatment with any of the HDACi (data not shown). In contrast,
we found a clear increase in the expression of Apaf-1 in response to treat-
ment with all HDACi but apicidin in all cell lines (Fig. 6A). As expected,
Please cite this article in press as: J.C. Morales et al., HDAC inhibitors wit
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HDACi did not regulate the levels of Apaf-1 in primary normal T lympho-
cytes (Fig. 6B).
3.4. HDACi do not increase TRAIL-induced apoptosis in leukemic T cells
overexpressing Bcl-2

To establish the requirement of mitochondrial signals in the induction
of apoptosis by HDACi and TRAIL in leukemic T cells, we examined the ef-
fect of this combined treatment in Jurkat cells overexpressing the anti-
apoptotic protein Bcl-2. Prevention of TRAIL-mediated apoptosis by Bcl-
2 is complex as it depends on the dose of TRAIL as well as the levels of
Bcl-2 expression [8,34]. We found that overexpression of Bcl-2 failed to
protect Jurkat cells from TRAIL-induced apoptosis at the dose used in this
study (Fig. 7A and B). However, no significant sensitizing effect of HDACi
was observed in Bcl-2-overexpressing cells (Fig. 7B) thus suggesting that
regulation of mitochondrial factors and signals may play an essential role
in the synergistic effect of HDACi and TRAIL. Interestingly, apicidin did
not facilitate TRAIL-induced apoptosis in mock-transfected Jurkat cells,
used as control of Bcl-2-overexpressing cells (Fig. 7A), which may be re-
lated to the existence of different Jurkat subclones that derived from dif-
ferent sources. In addition, we compared the effect on caspase activation
in Jurkat Bcl-2 cells of two HDACi (i.e., vorinostat and TSA) showing dif-
ferent ability to regulate the expression of TRAIL-R2 and c-FLIP, that is,
factors of the TRAIL signalling pathway acting upstream of mitochondrial
events. As it was expected, pre-treatment with vorinostat, but not with
TSA, increased TRAIL-induced activation of caspase-8 in Bcl-2 over-
expressing cells (Fig. 7C). Even though, neither of them was able to
h different gene regulation activities depend on the mitochondrial
ptosis, Cancer Lett. (2010), doi:10.1016/j.canlet.2010.04.029
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Fig. 5. HDACi up-regulate the expression of TRAIL-R2 in leukemic cells. (A) Cell surface TRAIL-R2 receptor expression was analyzed by flow cytometry in
CEM-6 and Jurkat cells after treatment without (shaded peaks) or with (unshaded peaks) 10 ng/ml TSA, 1 mM VPA, 0.5 lM vorinostat, 1 lM MS-275,
0.5 mM NaB or 50 nM apicidin for 20 h. Dashed lines represent background fluorescence with secondary antibody alone. MFI, median fluorescence intensity
for TRAIL-2 expression in cells treated as indicated. The MFI values of untreated CEM and Jurkat cells were 3.4 and 4.25, respectively. (B) TRAIL-R2 mRNA
levels were determined by real-time PCR in CEM-6 and Jurkat cells after treatment with HDACi as in (A) for 15 h. Experiments were done in triplicate and
results were normalized to the expression of 18S rRNA for all samples. Error bars show SD from triplicate samples. Data shown in all panels are
representative of at least two independent experiments.

Fig. 6. Apaf-1 is up-regulated in response to treatment with HDACi in leukemic T cells. (A) CEM-6, Jurkat, (B) resting and activated T cells were treated with
10 ng/ml TSA, 1 mM VPA, 0.5 lM vorinostat (Vor), 1 lM MS-275 (MS), 0.5 mM NaB or 50 nM apicidin (Api) for 20 h. Apaf-1 protein expression was
determined by Western-blot and b-actin was used as control of loaded protein. Data shown are representative of at least three independent experiments.
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and -3 was determined by Western-blot in Jurkat/Bcl-2 cells incubated with or without 100 ng/ml TRAIL for 20 h after pre-treatment with 10 ng/ml TSA or
0.5 lM vorinostat for 4 h. b-actin was used as control of loaded protein. Data shown are representative of three independent experiments.
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4. Discussion

HDAC inhibitors have been recently proposed as a valu-
able therapeutic strategy to improve the sensitivity of tu-
mor cells to TRAIL-induced apoptosis by regulating the
expression of pro- and anti-apoptotic factors. To date, most
of the studies have focused on the effects of two or three
HDACi in some tumor cell types [18–21,32]. The variability
in the results from different groups suggests that the pat-
tern of gene regulation by HDACi may depend not only
on the cell type but also on the chemical structure of the
inhibitor. Few studies have investigated the effect of
HDACi on the sensitivity of human leukemic T cells to
TRAIL-mediated apoptosis, and all of them used the Jurkat
cell line as the model of T-cell leukaemia [19,32,35]. Here,
for the first time, we have simultaneously compared the
ability of six different HDACi, belonging to the four classic
structural families, to potentiate TRAIL-induced apoptosis
in three leukemic T cell lines. With the exception of apici-
din, pre-treatment with all HDACi increased the percent-
age of apoptotic cells and the activation of caspases-8, -9
and -3 induced by TRAIL in CEM-6, Jurkat and MOLT-4
cells. Interestingly, apicidin only regulated TRAIL sensitiv-
ity in a certain subclone of Jurkat cells.
Please cite this article in press as: J.C. Morales et al., HDAC inhibitors wit
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The analysis of several genes of the extrinsic and the
intrinsic apoptotic pathways revealed that the pro-apopto-
tic factors TRAIL-R2 and Apaf-1 were up-regulated, and the
anti-apoptotic protein c-FLIP down-modulated, in different
leukemic T cell lines in response to treatment with vorino-
stat, VPA, NaB and MS-275. In contrast, TSA only regulated
the expression of Apaf-1. In agreement with our results,
the expression of TRAIL-R2 has been previously reported
to be regulated by vorinostat, NaB and MS-275 in Jurkat
cells [19,32]. Additionally, these authors describe the regu-
lation of TRAIL-R2 in response to TSA but discrepancies be-
tween these reports and our data may be due to the
different doses of TSA used. Our most interesting finding
about TSA is that non-toxic doses of this HDACi may poten-
tiate TRAIL-induced apoptosis in leukemic T cells without
affecting the expression of TRAIL-R2. These results also
suggest that regulation of Apaf-1, and therefore the mito-
chondrial pathway, may be involved in the sensitization
to TRAIL-induced apoptosis. In relation with this hypothe-
sis, we demonstrated that overexpression of the anti-apop-
totic protein Bcl-2 inhibited the synergistic effect of all
HDACi on TRAIL-mediated apoptosis, without affecting
the induction of apoptosis by TRAIL alone. In this respect,
our results are similar to that obtained by Shankar et al.
with Jurkat cells overexpressing either Bcl-2 or Bcl-xL,
although they observed inhibition of apoptosis induced
by TRAIL alone and in combination with HDACi [19]. In
h different gene regulation activities depend on the mitochondrial
ptosis, Cancer Lett. (2010), doi:10.1016/j.canlet.2010.04.029
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contrast, other authors have described the enhancement of
TRAIL-induced apoptosis in Bcl-xL-overexpressing Jurkat
cells by high doses of TSA [25]. It is possible that, in addi-
tion to the dose of TRAIL and the expression levels of Bcl-2
proteins [8,34], the dose of HDACi used may affect the re-
sponse of Bcl-2-overexpressing cells. Our results further
showed that HDACi did not potentiate TRAIL-induced
apoptosis in Jurkat Bcl-2 cells even when a clear increase
in apical caspase-8 activation occurred, as it was observed
after pre-treatment with vorinostat. These are interesting
results since they confirm that, regardless of the regulation
of TRAIL-R2 and c-FLIP expression, modulation of mito-
chondrial signals also play a key role in the sensitizing ef-
fect of HDACi in leukemic T cells. In addition, they explain
why TSA synergizes with TRAIL in the absence of regula-
tion of proteins involved in the extrinsic apoptotic path-
way. The increase in TRAIL-induced caspase-8 activation
observed after pre-treatment with TSA in leukemic T cells
is probably due to a mitochondria-mediated amplification
feedback loop.

Concerning apicidin our results are striking as it in-
duced histone acetylation in a similar way to other HDACi
in both Jurkat and CEM cells but its sensitizing effect was
only evident in Jurkat cells by regulating the expression
of TRAIL-R2. To our knowledge, there is no other published
data about the effect of apicidin in combination with
TRAIL, apart from a recent report by Park et al. describing
the sensitization of K562 erythroleukemia cells to TRAIL-
induced apoptosis through a caspase-dependent mito-
chondrial pathway [36]. Interestingly depsipeptide, an
HDACi from the same structural family as apicidin, has
been shown to up-regulate the expression of TRAIL-R2
and to increase DISC formation in Jurkat cells [25], which
could support our results. However, we cannot rule out
the possibility that apicidin may be regulating other apop-
tosis-related factors that contribute to its sensitizing effect.
Further studies on the effects of apicidin in different cell
lines will help clarify the selective effect of this HDACi
but, on the whole, results with apicidin suggest that this
HDACi is not the one of choice for facilitating TRAIL-in-
duced apoptosis in leukemic T cells.

Differences found in the mechanism of action of HDACi
and their ability to enhance TRAIL-induced apoptosis in
leukemic T cells may come from their different selectivity
against diverse classes of HDAC [15,16]. In addition, differ-
ent HDACi, even belonging to the same structural group,
show different selectivity and potency toward different
isoforms of the same HDAC class. For instance, MS-275
does not inhibit the class I isoform HDAC8; and TSA seems
to be more potent against some class II isoforms than vori-
nostat. Considering all these data it is tempting to specu-
late that, except for HDAC8, class I HDAC play a major
role in the regulation of the sensitivity to TRAIL-induced
apoptosis in leukemic T cells, which is in agreement with
a previous study in chronic lymphocytic leukaemia cells
[37]. Interestingly, enhanced expression of class I rather
that class II HDAC isoforms seems to be associated with
cell survival and worse tumor prognosis [24,38]. We have
determined the expression of some HDAC isoforms in leu-
kemic T cell lines. Concerning class I HDAC, the results of
this study indicate that Jurkat cells express similar levels
Please cite this article in press as: J.C. Morales et al., HDAC inhibitors wit
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of HDAC1 but lower levels of HDAC2 and HDAC3 than
CEM-6 and MOLT-4 cell lines (data not shown). These are
interesting results as the response to HDACi is similar in
all cell lines. However, they might explain the peculiar
behaviour of apicidin, which is a selective inhibitor of
HDAC2 and HDAC3 [16]. We can hypothesize that apicidin
is less potent than other HDACi and, therefore, it is only
able to show activity in cells with low levels of HDAC, that
is, Jurkat cells.

Several HDACi are currently in clinical trials as anti-can-
cer drugs. In particular, vorinostat has been approved for
the treatment of cutaneous manifestations in patients with
cutaneous T cell lymphoma who have progressive, persis-
tent or recurrent disease on or following two systemic
therapies [38,39]. Although the molecular mechanism
responsible for the selective action of HDACi in cancer cells
is not completely understood, global chromatin alterations
associated with oncogenic transformation might at least in
part account for their different activity against tumor and
normal cells. In addition, alterations in the expression
and function of HDAC enzymes have been found in many
human cancers [24]. Regarding the therapeutic potential
of combined treatment with HDACi and TRAIL, few studies
have paid attention to the outcome of this combination in
normal cells [21,25,26,32]. We had previously reported
that valproic acid did not regulate TRAIL resistance in pri-
mary T cells [27]. Now, we have simultaneously analyzed
the effect of the six already mentioned HDACi in primary
resting and activated T lymphocytes. The effect in the last
ones is interesting as they are similar to tumor cells in
terms of proliferative potential. Higher doses of TSA and
vorinostat showed low toxicity toward activated T lym-
phocytes, which might be associated with their activity
as broad-spectrum inhibitors. It is not surprising that rest-
ing and activated T lymphocytes showed different sensitiv-
ity to these HDACi as their mechanisms of apoptosis
regulation are different [27,40]. In contrast, at the selected
doses that are effective in potentiating TRAIL-induced
apoptosis in leukemic T cells, HDACi neither showed toxic-
ity nor regulated TRAIL resistance in primary T lympho-
cytes, despite their ability to increase histone acetylation
in these cells. Overall, our data emphasize the necessity
of thoroughly selecting specific HDACi that show safety
and efficacy in combined therapeutic strategies with TRAIL
for the treatment of T-cell leukemic.
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