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Abstract
In this paper we study the entanglement in symmetric N-quDit systems. In par-
ticular we use generalizations to U(D) of spin U(2) coherent states (CSs) and
their projections on definite parity c ∈ ZD−1

2 (multicomponent Schrödinger cat)
states and we analyse their reduced density matrices when tracing out M<N
quDits. The eigenvalues (or Schmidt coefficients) of these reduced density
matrices are completely characterized, allowing to prove a theorem for the
decomposition of a N-quDit Schrödinger cat state with a given parity c into a
sum over all possible parities of tensor products of Schrödinger cat states of
N−M and M particles. Diverse asymptotic properties of the Schmidt eigen-
values are studied and, in particular, for the (rescaled) double thermodynamic
limit (N,M→∞,M/N fixed), we reproduce and generalize to quDits known
results for photon loss of parity adapted CSs of the harmonic oscillator, thus
providing an unified Schmidt decomposition for both multi-quDits and (multi-
mode) photons. These results allow to determine the entanglement properties
of these states and also their decoherence properties under quDit loss, where
we demonstrate the robustness of these states.
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1. Introduction

Coherent states (CSs), either of the harmonic oscillator (HO) or for a spin system, have many
applications in Quantum Mechanics and Quantum Optics (among many other fields), and in
particular parity adapted CS (a particular instance of a Schrödinger cat state) for the HO or for
U(2)4 are interesting since they are used inmany protocols in Quantum Information Processing
or appear as the lower energy states in some molecular or nuclear models like the Dicke [1],
the vibron [2] or the Lipkin-Meshkov-Glick (LMG) models [3]. In all these models parity
adapted CS have been used as variational states to approximate the ground state and some
of the first excited states and to study their entanglement and localization properties across
quantum phase transitions [4–8].

We shall consider in this paper ‘spin’ CS forU(D) in its symmetric representation (i.e. made
of a fixed number N of indistinguishable quDits) and we shall construct from them parity
adapted CS, i.e states which are invariant under the parity group. The parity group in the case of
U(D) is ZD−1

2 , generalizing the case ofU(2), where the parity group is simply Z2 = {−1,+1}.
For applications, it is important to characterize the entanglement properties of these states,

therefore we shall consider entropic entanglement measures in terms of the entropy of M-
particle reduced density matrices (RDM), i.e. in terms of a bipartition of theN quDits inN−M
and M quDits and tracing out the N−M subsystem.

There is an intense debate in the literature concerning the notion of entanglement in sys-
tems of identical and indistinguishable particles (like the case of symmetric multi-quDits).
Some authors [9, 10] consider that particle entanglement, obtained through RDM by tracing
out a number of particles [11–13], cannot be used as a quantum resource in quantum inform-
ation tasks for indistinguishable particles. Other authors consider that the entanglement due
to exchange symmetry can indeed be useful in those tasks, providing some examples of it
[14, 15]. The authors of [9, 10] propose mode entanglement as the only meaningful way of
defining entanglement for indistinguishable particles.

In this paper we shall consider the notion of particle entanglement in symmetric multi-
quDit systems since it is mathematically consistent and physically justified in the case of parity
adapted coherent states. The case of mode entanglement will be considered in a future work.

To characterize the entanglement of parity adapted U(D) CS, we need to compute the
Schmidt decomposition of these states when a bipartition in N−M and M particles is con-
sidered. The main result of this paper is that, under this decomposition, parity adapted CS
decompose as the convolution over all possible parities, of tensor products of parity adapted

4 We shall consider in this paper unitary groups U(D) instead of special unitary groups SU(D) since the difference
between them is an irrelevant global phase and it is easier to write down a basis of the Lie algebra in the case of unitary
groups.

2

https://doi.org/10.1088/1751-8121/aceae0


J. Phys. A: Math. Theor. 56 (2023) 355304 J Guerrero et al

CS of N−M and M particles. The coefficients of this decomposition (Schmidt coefficients)
and their squares (Schmidt eigenvalues) are determined for all N andM, and the main features
of them and their behaviour under various limits are studied. For a detailed account of these
features, a variety of graphical tools are used, like contour plots, angular plots, etc but, in the
case of a largeD, information diagrams (see [16] and references therein) prove to be a valuable
tool when appropriate colormaps are used (see the supplementary material).

The content of the paper is the following. In section 2 the symmetric representation ofU(D)
is reviewed in order to fix notation (second quantization approach), and parity transformations
and parity projectors are introduced. In section 3 CS for the symmetric representation of U(D)
are reviewed, and some results for their relationwith identical TPS are given. In section 4 parity
adapted CS are defined and some of their properties are given, in particular their behaviour
under certain limits. In section 5 we specify the entanglement measure used in this paper to
study the entanglement properties of parity adapted CS. In section 6 the main result of this
paper is proved, namely the Schmidt decomposition of parity adapted CS of N particles into
N−M and M particle subsystems, with the determination of the Schmidt coefficients and
eigenvalues. In section 7 some limits for the Schmidt eigenvalues are studied. In section 8 some
physical applications and possible methods to generate these states are given, in particular
the interesting subject of quDit loss, where the Schmidt decomposition here provided can be
of crucial importance. The paper ends with a concluding section 10. In the supplementary
material, a reminder of the subject of information diagrams is included, and a exhaustive set
of figures shown the entanglement properties of parity adapted CS for D> 2 is provided.

2. Symmetric representation of U(D)

The fully symmetric representation of dimension
(N+D−1

N

)
ofU(D) can be realized as a system

of N identical and indistinguishable particles (atoms) with D levels (internal states), that will
be referred to as quDits, with levels labeled by |0⟩, |1⟩, . . . , |D− 1⟩ (for D= 2 we have the
standard qubit usually labelled by |0⟩,|1⟩ or | ↑⟩,| ↓⟩).

Introducing the boson operators ai,a
†
i (a

†
i creates a quDit in the ith level and ai annihilates

it), the Lie algebra of U(D) can be realized (in the Schwinger representation [17]) as:

Sij = a†i aj, i, j = 0, . . . ,D− 1 . (1)

The operator Sii is the number operator for the population of the ith level, and Sij (i ̸= j)
creates a quDit in the level i and annihilates another one in the level j. Therefore Sij preserves
the total number N of quDits.

It is important to note that the U(D) operators Sij are collective operators, in the sense that
they do not act on the individual states of the particles (which can be an ill-defined concept due
to symmetrization). They have in fact been built up using the second quantization formalism
[18, 19]. They fulfill the commutation relations:

[Sij,Skl] = δjkSil− δilSkj. (2)

The carrier Hilbert space HN of our symmetric N-quDit system is spanned by the Bose–
Einstein-Fock basis states (|⃗0⟩ denotes the Fock vacuum):

|⃗n⟩= |n0, . . . ,nD−1⟩=
(a†0)

n0 . . .(a†D−1)
nD−1√

n0! . . .nD−1!
|⃗0⟩ , n0 + · · ·+ nD−1 = N , (3)

3
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where ni ⩾ 0 denotes the occupancy number of the ith-level (the eigenvalue of Sii), with the
restriction given by the linear Casimir of U(D), C1 =

∑D−1
i=0 Sii, the total number of quDits.

The expansion of a general symmetric N-quDit state ψ in the Fock basis will be written as

|ψ⟩=
∑

∥⃗n∥1=N

c⃗n |⃗n⟩, (4)

where the sum is restricted to those n⃗ such that ∥⃗n∥1 = n0 + · · ·+ nD−1 = N.
In order to define the notion of entanglement, we shall consider in HN various families

of states. The simplest states that one usually introduces, in order to define separable (non-
entangled) states, are TPS |ψ⃗⟩(N) = |ψ1⟩⊗ · · · ⊗ |ψN⟩. However, due to the exchange sym-
metry, in HN the only TPS are the subset of identical TPS (ITPS):

AITPS
N = {|ψ ⟩⊗N ∈HN : |ψ⟩⊗N = |ψ⟩⊗ N· · · ⊗|ψ⟩} ⊂ HN (5)

with |ψ⟩ ∈ H1. If the one-quDit state |ψ⟩ ∈ H1 is expressed as:

|ψ⟩= w0|0⟩+w1|1⟩+ · · ·+wD−1|D− 1⟩ ≡ |w0,w1, . . . ,wD−1⟩ ≡ |w⟩ ,
|w0|2 + |w1|2 · · ·+ |wD−1|2 = 1 , (6)

then it can be shown (see [20]) that the expression of the N-quDit state |ψ⟩⊗N in the Fock basis
is:

|ψ⟩⊗N ≡ |w⟩⊗N =
∑

∥⃗n∥1=N

√(
N
n⃗

)D−1∏
j=0

wnjj

 |⃗n⟩ , (7)

where
(N
n⃗

)
= N!

n⃗ ! is a multinomial and n⃗ ! stands for
∏D−1

i=0 ni!.
As an important example of ITPS we have the coherent states discussed below.
In place of TPS, in HN we can consider the subset of symmetrized TPS (STPS), obtained

from a TPS under symmetrization:

ASTPS
N =

{
|ψ⃗ ⟩(ΣN) ∈HN : |ψ⃗⟩(ΣN) = 1

N (ψ⃗)(ΣN)
Σ|ψ⃗⟩= 1

N (ψ⃗)(ΣN)

1
N!

×
∑
σ∈SN

|ψσ(1)⟩⊗
N· · · ⊗|ψσ(N)⟩

}
⊂HN , (8)

with
(
N (ψ⃗)(ΣN)

)2
= (N)⟨ψ⃗|Σ|ψ⃗⟩(N), SN is the symmetric group of permutations of N ele-

ments, and where Σ is the symmetrization operator, i.e. the projector operator onto the sym-
metric subspace under SN.

Another important family of states is the Hilbert subspace spanned by AITPS
N , i.e. HITPS

N =
span(AITPS

N ), containing all possible finite linear combinations of ITPS. We shall focus on this
paper on states obtained as finite linear combinations of coherent states (see section 3), which
belong to HITPS

N .

2.1. Parity operators for U(D)

Parity operators play an important role in the representation theory of the group U(D), and
also in its physical applications. They are given by (Roman i denotes the imaginary unit):

Πj = exp(iπSjj) , j = 0,1, . . . ,D− 1 , (9)

4
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with the action on Fock states:

Πj |⃗n⟩= (−1)nj |⃗n⟩ , (10)

indicating the even (+) or odd (−) character of the population nj of each level j = 0, . . . ,D− 1.
Note that parity operators, like the U(D) generators Sij, are collective operators, in the sense
that they only depend on the populations of each level, and do not depend on the individual
particle states (which could be ill-defined due to symmetrization).

The action of parity operators on ITPS states is given by:

Πj|w⟩⊗N =
∑

∥⃗n∥1=N

√(
N
n⃗

)(D−1∏
i=0

wnii

)
(−1)nj |⃗n⟩= |w0, . . . ,−wj, . . . ,wD−1⟩⊗N . (11)

Due to the constraint of the fixed number of particles equating to N, we have the relation
Π0 . . .ΠD−1 |⃗n⟩= (−1)N |⃗n⟩. Hence, discarding for instance Π0, the true discrete parity sym-
metry group corresponds to the finite Abelian group ZD−1

2 = Z2× D−1. . . ×Z2.

Taking this into account, let us denote by Πb =Πb1
1 . . .Π

bD−1

D−1 , where Π
bi
i = (Πi)

bi and the
binary string b = [b1, . . . ,bD−1] ∈ {0,1}D−1 denotes one of the 2D−1 elements of the parity
group ZD−1

2 . There are 2D−1 parity invariant subspaces labelled by the inequivalent group
characters χc, with c = [c1, . . . ,cD−1] ∈ {0,1}D−1 denoting elements of the Pontryagin dual

group (see, for instance, [21]) ẐD−1
2 ∼ ZD−1

2 .
The projectors onto these invariant subspaces of definite parity c are given by the Fourier

transform (FT) between ZD−1
2 and its dual ẐD−1

2 (which in this case is a multidimensional
Discrete FT of dimension 2× D−1. . . ×2, whose matrix realization is the Walsh–Hadamard
transform [22]):

Πc = 21−D
∑
b

χc(b)Π
b , (12)

with group characters χc(b) = (−1)c·b = (−1)c1b1+···+cD−1bD−1 . The sum in b is on the whole
parity group ZD−1

2 , but we shall omit it for notational convenience (the same applies to the
sums in c that run on the dual group, which is isomorphic to ZD−1

2 ).
Using the properties of the characters χc of the parity group ZD−1

2 , the projectors satisfy:

ΠcΠc ′ = δc,c ′Πc (13)

and since they are self-adjoint, they are orthogonal projectors.

By the Fourier inversion formula between ẐD−1
2 and ZD−1

2 , the parity operators can be
recovered from the parity projectors through the inverse FT:

Πb =
∑

c

χc(b)Πc , (14)

where we have used that, in this case, the characters are real and therefore χc(b) = χc(b).
Denoting by 0 and 1 the binary strings [0,0, . . . ,0] and [1,1, . . . ,1], respectively, we obtain:

Π0 =
∑

c

Πc = I , (15)

Π1 =
∑

c

(−1)c·1Πc , (16)

5
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with I the identity operator on HN. Note that Π1 =Π1 . . .ΠD−1 represents the total parity of
all the states 1,2, . . .D− 1, and that Π0 = I and Π1 generate a Z2 subgroup (the ‘total parity’
subgroup) of the parity group.

By equation (15) and the orthogonality of the projectors, the Hilbert spaceHN decomposes
into a direct sum of parity adapted (or projected) subspaces:

HN =
⊕

c

H(c)
N . (17)

In order to clarify the meaning of the different objects appearing in the remaining sections,
we shall make explicit the number of particles (say M) of the involved representations in the
notation of U(D) generators, parity, projection and identity operators:

Sij −→ S(M)
ij , Πb −→Πb(M) , Πc −→Π(M)

c , I−→ I(M) . (18)

Let us state the following Lemma, which will be helpful in the proof of the rest of results
of this paper.

Lemma 1. M-particle parity operators Π
(M)
i can be factorized into one-particle parity

operators:

Π
(M)
i =

M∏
k=1

I(k−1) ⊗Π
(1)
i ⊗ I(M−k) . (19)

Proof. The proof is a consequence of the fact thatM-particle collective U(D) generators S(M)
ij

can be decomposed as a sum of one-particle U(D) generators S(1)ij (see [20]):

S(M)
ij =

M∑
k=1

I(k−1) ⊗ S(1)ij ⊗ I(M−k) . (20)

Then equation (19) follows from the definition of parity operators (9) and the commutativity
of the diagonal operators S(M)

ii .

According to this lemma the parity operators are identical tensor product operators (ITPO).
These operators preserve the subset AITPS

N and therefore leave invariant the Hilbert subspace
HITPS
N . They also commute with the symmetrization operator Σ, as Πb and Πc also do.

3. CS for the symmetric representation of U(D)

U(D)-spin coherent states are defined as [23]:

|z⟩= 1√
N!

(
a†0 + z1a

†
1 + · · ·+ zD−1a

†
D−1√

1+ |z1|2 + · · ·+ |zD−1|2

)N

|⃗0⟩ . (21)

They are labeled by D− 1 complex numbers zj ∈ C arranged in the column vector z=
(z1,z2, . . . ,zD−1)

t ∈ CD−1. They are in fact labeled by the points in the complex projective
space CPD−1, but for simplicity we have considered the chart in CPD−1 where z0 ̸= 0 and
divided all coefficients by z0 (see, for instance, [24]).

Note that the coherent state for z= 0, |0⟩= a†N0√
N!
|⃗0⟩, should not be confused with the Fock

vacuum |⃗0⟩.

6
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The coefficients c⃗n(z) of |ψ⟩= |z⟩ in the Fock basis are (see equation (4))

c⃗n(z) =

√
N!
n⃗ !

∏D−1
i=1 z

ni
i

(1+ z†z)N/2
, (22)

where z†z= |z1|2 + · · ·+ |zD−1|2 denotes the standard scalar product in CD−1 and n⃗ ! stands
for
∏D−1

i=0 ni!.
From the previous expression, and comparing with equation (7), it is clear that coher-

ent states are ITPS, cf equation (6), with coefficients wj =
zj√
1+z†z

, j = 0,1, . . .D− 1

(where z0 = 1).
In general, these CS are non-orthogonal since the scalar product

⟨z|z ′⟩= (1+ z†z ′)N

(1+ z†z)N/2(1+ z ′†z ′)N/2
(23)

is not necessarily zero. However, they constitute an overcomplete set of states closing a resol-
ution of the identity [23]

I=
ˆ
CD−1

|z⟩⟨z|dµ(z),

dµ(z) =
(D− 1)!
πD−1

(
N+D− 1

N

)
d2z1 . . .d2zD−1

(1+ z†z)D
, (24)

with d2zi = dRe(zi)dIm(zi) the usual (Lebesgue) measure on C∼ R2.
It turns out that a CS for a representation withN particles is the tensor product ofN copies of

one-particle CS states, all of them with the same value of z (see, for instance, [20]). Therefore
coherent states belong to the subset AITPS

N , and will be denoted as |z⟩⊗N when we need to
specify the number of quDits in the representation.

In fact, the only ITPS are coherent states, as it is proven in the following lemma and pro-
position.

Lemma 2. There is a bijective map betweenH1 and the set of one-particle coherent states.

Proof. An arbitrary state inH1 is given by equation (6), with |w0|2 + |w1|2 + · · ·+ |wD−1|2 =
1. By the proyective character of H1 (invariance under a global phase), the topology of this
space is that of the product of the first hyper-octant of SD−1 times the hypertorus TD−1 (the
relative phases), see [25]. Note that for U(2) this reduces to S2 ≡ CP1, usually referred to as
the Bloch sphere (for pure states). In general, it corresponds to the projective space CPD−1,
which we shall call the Bloch projective space.

To construct the bijection with one-particle coherent states, let us consider a particular chart
and suppose w0 ̸= 0, then invariance under a global phase allows to choose w0 > 0.

One-particle coherent states are of the form

|z⟩= |0⟩+ z1|1⟩+ z2|2⟩+ · · ·+ zD−1|D− 1⟩√
1+ |z1|2 + · · ·+ |zD−1|2

, (25)

and the geometry is also that of the projective space CPD−1, where again we have used the
chart where z0 ̸= 0 (see, for instance, [26]).

Thus, to a one-particle coherent state we can associate a unique element of the Bloch pro-
jective space given by:

w0 =
1√

1+ |z1|2 + · · ·+ |zD−1|2
> 0 , wi =

zi√
1+ |z1|2 + · · ·+ |zD−1|2

, (26)

7
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for i = 1, . . . ,D− 1. Conversely, to an element of the Bloch projective space (with w0 > 0) we
can associate the coherent state with parameters:

zi =
wi
w0
. (27)

The case w0 = 0 is handled considering a different chart in the projective space of coherent
states and in the Bloch projective space.

Proposition 1. There is a bijection between AITPS
N and the set of N-particle coherent states.

Proof. Consider tensor products of the same one-particle state and apply the previous lemma
for each particle.

As a corollary of this result, it turns out thatHITPS
N coincides with span({|z⟩⊗N : z ∈ CD−1}.

From equation (27) it is clear that the parameterization z for coherent states is the projective
version of the parameterization w for the Bloch projective space. Thus, we can identify the
general one-particle state (6) and its corresponding N-particle ITPS as:

|ψ⟩= |w⟩= |z⟩ , |ψ⟩⊗N = |w⟩⊗N = |z⟩⊗N . (28)

However, the parameterization z has important properties from the analytical and geomet-
rical point of view, making them more suitable in the applications. According to these results,
the family of coherent states, due to their useful geometric and analytic properties, is a con-
venient way of parameterizing HITPS

N .
We can go one step further and write any state in HN as a finite linear combination of

coherent states (or ITPS, as you like).

Theorem 1. Any state in HN can be written as a finite linear combination of ITPS, i.e.
HITPS
N =HN.

Proof. Weprovide here an sketch of the proof, leaving a detailed proof for a future publication.
Although coherent states are not orthogonal, they generate the whole spaceHN since they are
overcomplete by equation (24). Since HN is finite-dimensional, it is possible to find a finite
subset of coherent states generating the wholeHN (see for instance [27] for the case of SU(2)),
and thereforeHITPS

N =HN.

Note that this theorem does not hold in the case of non-compact groups, where the irre-
ducible unitary representations are realized in an infinite dimensional Hilbert space H∞, and
therefore finite linear combinations of coherent states are only dense in the Hilbert space, i.e.
HITPS
N ̸=H∞ but HITPS

N =H∞ (see [28] for the case of SU(1,1)).
For the case of SU(2) an stronger result can be given:HN is made of symmetrized TPS.

Theorem 2. For D= 2,HN =ASTPS
N .

Proof. The usual proof is given in terms of the Majorana representation and Majorana
constellation [29, 30]. The Majorana representation for the SU(2) state |ψ⟩ of spin s, with
N= 2s, is given in terms of the Husimi amplitude M(z) = ⟨z|ψ⟩. Ignoring a global factor
depending on |z|, the Majorana function M(z) is a polynomial in z̄ which is characterized by
its zeros, having up to 2s zeros. Completing this zeros with the zeros at infinity of M(z), the
Majorana representation of the state |ψ⟩ is characterized by 2s points on the sphere (once the
complex zeros are mapped to the sphere by inverse stereographic projection and the zeros at
infinity are associated with the North pole of the sphere), denoted as Majorana constellation.

8
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On the other hand, the Majorana representation of a STPS |ψ⃗⟩ is given by:

Mψ⃗(z) =
1

N (ψ⃗)(ΣN)

1
N!

∑
σ∈SN

⟨z|ψσ(1)⟩⊗ · · · ⊗ ⟨z|ψσ(N)⟩

=
1

N (ψ⃗)(ΣN)
⟨z|ψ1⟩ · · · ⟨z|ψN⟩ , (29)

which coincides, up to a global normalization factor independent of z, with the Majorana rep-
resentation of a (non-symmetrical) TPS state. By lemma 2 every |ψi⟩ coincides with a coherent
state |zi⟩, thus

Mψ⃗(z) =
1

N (ψ⃗)(ΣN)
⟨z|z1⟩ · · · ⟨z|zN⟩ . (30)

The zeros of Mψ⃗(z) are clearly those values of z that make zero any of the overlaps ⟨z|zi⟩,
for some i = 1, . . . ,N, and, for SU(2) coherent states, the unique zero values of the overlaps
are the antipodal points − 1

z̄i
. By the unicity of the representation of the Majorana function in

terms of its zeros, we conclude that any state of spin s corresponds to a STPS.

Unfortunately, although we can define a Majorana representation for D⩾ 3 in terms of the
Husimi amplitudes M(z) = ⟨z|Ψ⟩, defined on the projective spaces CPD−1, they cannot be
characterized in terms of their zeros (which are no longer isolated points), and a result like
theorem 2 is not available. However, theorem 1 is still valid and it can be used to compute the
Schmidt decomposition of arbitrary parity adapted multi-quDit states.

4. Parity adapted U(D)-spin coherent states

Parity operators Πj = exp(iπSjj) act on CS as

Πj|z⟩= |z1, . . . ,−zj, . . . ,zD−1⟩ , j = 0,1, . . . ,D− 1 , (31)

thus Πj just changes the sign of zj in |z⟩. Let us denote zb ≡ ((−1)b1z1, . . . ,(−1)bD−1zD−1)
t,

then

|zb⟩ ≡Πb|z⟩=
D−1∏
i=1

Πbi
i |z⟩ . (32)

Define also parity c adapted U(D)-spin CS as

|z⟩c ≡
Πc|z⟩
Nc(z)

=
21−D

Nc(z)

∑
b

χc(b)|zb⟩ , (33)

as the normalized projection of |z⟩ onto the invariant subspace of parity c (or normalized FT
of |zb⟩), where the normalization factor is given by:

Nc(z)2 = 21−D
∑
b

χc(b)⟨z|zb⟩= 21−D

∑
bχc(b)(1+ z†zb)N

(1+ z†z)N
, (34)

i.e.Nc(z)2 is the FT of the overlap between a coherent state and its parity transformed versions.
Note that Nc(z) is a function only of the absolute values |zi| , i = 1, . . . ,D− 1, and does not
depend on the relative phases.

Note also that Nc(z) can be zero (as well as Πc|z⟩) for some particular values of z and c.
We shall discuss these cases in the next subsections.
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The rest of the paper will be devoted to study the entanglement properties of these parity
adapted CS, which can be seen as particular instances of entangled CS [31] (see also the review
[32]).

4.1. Limit values for normalization factors

It is worth showing some particular values of the normalization factor, that will be useful in
computing some limit values of the Schmidt eigenvalues in section 7.

At z= 0 we have

Nc(0)2 = δc,0 , (35)

implying that the normalization at z= 0 is zero except for the completely even unnormalized
parity adapted CS state (see section 4.3 for a detailed study of the limit z→ 0 of these states).

It will be useful later to study the properties of the normalization factors when one of the
variables zi approaches zero. In this case we have:

N (N)
c (z)2 =

{
N (N)

ci (zi)2 +O(|zi|2) ci = 0

|zi|2 N
1+z†i zi

N (N−1)
ci (zi)2 +O(|zi|4) ci = 1

(36)

where zi and ci are obtained by removing the ith component from z and c, respectively.
The ∥z∥→∞ limit does not exist (except for the case D= 2, see below), since its value

depends on the direction. Using hyper-spherical coordinates in the first hyper-octant, |zi|=
ryi(θ⃗), θ⃗ ∈ [0, π2 ]

D−2 , i = 1,2, . . .D− 1, we can compute the directional limits:

lim
r→∞

Nc(z)2 = 21−D
∑
b

χc(b)Yb(θ⃗)
N , (37)

with Yb(θ⃗) =
∑D−1

i=1 (−1)biyi(θ⃗)2. For instance, for D= 3 we have polar coordinates, and in
this case Yb(θ) = (−1)b1 cos2 θ+(−1)b2 sin2 θ .

For D= 2 the limit |z| →∞ exists, and it is given by:

lim
|z|→∞

Nc(z)
2 = δNc,0 . (38)

with Nc = (N− c)mod 2.
Another interesting limit is the thermodynamic limit, i.e. when the number of particles N

grows to infinity:

lim
N→∞

Nc(z)2 = 2−kδc0,00
, (39)

where k= ∥z∥0, with the 0-norm being the number of nonzero components of the vector z, and
c0 (00) indicates the subset of components of c (0) whose indices coincide with the indices of
the zero components of z.

10
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Figure 1. Plots of the (squared) normalization factor Nc(z)2 for D= 2, N= 6 (left),
N= 7 (center) and in the restated thermodynamic limit (right), for |z|, |α| ∈ [0,10].

Finally, let us consider the rescaled thermodynamic limit, when N grows to infinity but at
the same time z approach 0 such that

√
Nz=α is finite. This process is equivalent to the group

contraction from U(D) to the HO group in D− 1 dimensions5, HOD−1:

lim
N→∞

Nc

(
α√
N

)2

=
D−1∏
i=1

(
NHO
ci (αi)

)2
, (40)

where NHO
c (α) are the normalization factors of the even (c= 0) and odd (c= 1) Schrödinger

cat states of the one-dimensional HO:(
NHO
c (α)

)2
=

1
2

∑
b=0,1

(−1)bc⟨α|(−1)bα⟩= 1
2

∑
b=0,1

(−1)bce((−1)b−1)|α|2 = e−|α|2expc(|α|2) ,

(41)

with |α⟩ the coherent states of the HO, and where:

expc(x) =

{
cosh(x) , c= 0 (even) ,
sinh(x) , c= 1 (odd) .

(42)

The behavior of the (squared) normalization factors Nc(z)2 is summarized in figure 1 for
the caseD= 2. Note the plateau at |z|= 1, with value 1

2 , for finiteN and the fast approach to the
asymptotic value 1

2 for the (rescaled) N→∞ limit. At |z|= 1 the coherent states |z⟩ and | − z⟩
are orthogonal (see equation (23)), therefore the (squared) normalization factor for both parity
adapted coherent states is 1

2 . The reason for the plateau is the fact that the derivatives at |z|= 1
are zero up to order N− 1 (thus the plateau is flatter as N increases). For the (rescaled) N→∞
limit, the Gaussian character of the standard coherent states makes them practically orthogonal
as |α| increases and therefore the (squared) normalization factor approaches exponentially to
the value 1

2 .

4.2. Fock coefficients

The coefficients c⃗n(z)c of |z⟩c in the Fock basis are:

c⃗n(z)c =
21−D

Nc(z)

∑
b

χc+n(b)c⃗n(z) =
c⃗n(z)
Nc(z)

δ⃗n0 mod 2,c , (43)

5 The HO group in D− 1 dimensions is the Lie group generated by the Lie algebra of the canonical annihilation and
creation operators inD− 1 dimensions, including the corresponding number operators and the rotations. Alternatively,
this contraction procedure can be seen as the large N limit of the generalized Holstein-Primakoff realization of SU(D),
see [33, 34].
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where n⃗0 = (n1, . . . ,nD−1) is retrieved from n⃗ by removing n0. With this expression of the Fock
coefficients for |z⟩c, the squared norm can be rewritten as

Nc(z)2 =
∑

∥⃗n∥1=N

δ⃗n0 mod 2,c|c⃗n(z)|2. (44)

Thus, parity adapted U(D)-spin CS |z⟩c in equation (33) contain only basis Fock states |⃗n⟩
with the same parity as c (in the indices i = 1, . . . ,D− 1).

Due to these properties, parity adapted CS can be considered multicomponent Schrödinger
cat states, being an extension to D levels and parity c ∈ ZD−1

2 of SU(2) Schrödinger cat states
[35], which in turn are the SU(2) version of the traditional even and odd Schrödinger cat states
for one-mode HO [36]. They are also the U(D) version (extended to all possible parities)
of Schrödinger cat states of the multimode HO [37]. The SU(2) version of these states are
related to spin cat states [38–41], with interesting metrological properties. We shall call them
‘c-DCATs’, or ‘DCATs’ for short when the parity c is not relevant.

It is interesting to note that if we consider parity adapted CS but restricted to the total parity
subgroup, i.e. the one generated by Π0 = I and Π1, the resulting states are the U(D) version
of the even and odd multimode (or polychromatic) Schrödinger cat states introduced in [37].
In this case, the even or odd parity refers to the total parity, i.e, that of the sum n1 + n2 + . . .+
nD−1 = N− n0.

Finally, note that due to the equivalence between the set of coherent states and the Bloch
projective space, given by lemma 2 and proposition 1, we can extend the definitions in this
section to the states parameterized by the Bloch projective space and the ITPS obtained from
them, i.e. we can define in the obvious way the (N-particle states):

|wb⟩ , |w⟩c , |ψb⟩ , |ψ⟩c , (45)

where |ψ⟩ here stands for N identical copies of the state given in equation (6). Note that the
parity transformed states |wb⟩ and |ψb⟩ are N-particle ITPS, whereas the parity adapted states
|w⟩c and |ψ⟩c are finite sums of ITPS.

Also, by theorem 1, any state |Ψ⟩ ∈ HN (not necessarily an ITPS) can be writen as a finite
sum of coherent states. Therefore we can define |Ψ⟩b and |Ψ⟩c as the corresponding finite sums
of parity transformed or parity adapted coherent states. Although parity transformations are
well defined for any state through its action on Fock states, see equation (10), for the purpose
of the Schmidt decomposition the expansion in terms of coherent states will be useful in order
to use the factorization property of parity transformations given in lemma 1.

4.3. Limit values for DCATs at z= 0: Fock-cat states

It could seem that c-DCATs for parities c ̸= 0 do not exist at z= 0, in view of the zero vale of
the norm of the unnormalized parity adapted states Πc|z⟩ (see equation (35) and figure 1 for
D= 2). However, if we consider the normalized c-DCATs states |z⟩c in equation (33), they are
well-behaved at z= 0, and their Fock coefficients have the expression:

lim
z→0

c⃗n(z)c = δ⃗n0,c . (46)

This means that c-DCATs are Fock states at z= 0, in particular the ones given by:

lim
z→0

|z⟩c = |n0 = N− k, n⃗0 = c⟩= |N− k,c1, . . . ,cD−1⟩ , (47)
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with k= ∥c∥0 the number of non-zero components of c. We shall call these states Fock-cat
states, since they are Fock states but sharing many properties with DCATs, since they are limits
of DCATs when z→ 0.

In the thermodynamic limit (N→∞), the same result still applies, but now n0 →∞ in all
cases.

In the rescaled thermodynamic limit (the contraction to D− 1 HOs), the result is also sim-
ilar, but in this case the z→ 0 limit is the (D− 1)-dimensional HO Fock state:

lim
z→0

|z⟩HOc = |c⟩= |c1, . . . ,cD−1⟩ . (48)

It is also interesting to consider in U(D) the limit when one of the zi approach zero. In this
case we obtain, using equation (36) and making explicit the number of particles involved:

lim
zi→0

|z⟩(N)c =

√1+ z†i zi
N

N (N)
ci (zi)

N (N−1)
ci (zi)

ci

(Si0)
ci |zi⟩(N)ci , (49)

where zi and ci are obtained by removing the ith component from z and c, respectively, and
|zi⟩(N)ci is a (D−1)CAT with N quDits, i.e. a parity adapted CS of U(D− 1), without the i-level.
For ci ̸= 0, this state can be considered as the Schrödinger cat version of the photon-added
CS for the HO [42], the photon-added spin CS [43] of SU(2) or that of SU(1,1) [44], since it
is a (D−1)CAT where, if ci = 1, a quDit has been promoted from the zero-th (reference) level
to the (new and previously empty) level i. See [8] for an alternative interpretation in terms of
parity adapted CS of U(D) but for the parity group ZD−2

2 (with the parity transformation Πi

removed).
This can be easily generalized to the case when more than one component approach zero.

Consider I a subset of indices of {1,2, . . . ,D− 1}, and zI , cI are obtained by removing the
indices I from z and c, respectively. Then:

lim
zi→0, i∈I

|z⟩c =
∏
i∈I

(Si0)
ci |zI⟩cI . (50)

Clearly, when I= {1,2, . . . ,D− 1} we recover the Fock-cat states in equation (47).

4.4. Limit values for DCATs when ∥z∥→∞

As it can be seen for the caseD= 2 at figure 1(the two leftmost graphics), the norm approaches
either zero or one when ∥z∥→∞. A similar behaviour can be observed for higher values of
D at the coordinate axes. This suggests that we should study with detail these limits in order
to properly identify these states.

Define the vector z ∈ {0,1}D−1 such that ∥z∥0 = 1, i.e. z is a unitary vector pointing in the
positive direction of one of the coordinate axes in RD−1 (that is, z is a particular element of
the canonical basis of RD−1). Then the Fock coefficients of the c-DCATs in the limit along the
coordinate axes are given by:

lim
r→∞

c⃗n(rz)c = δ⃗n0,c+(N−∥c∥0−Nc)z , (51)

with Nc = (N−∥c∥0)mod 2. This means again that c-DCATs approach Fock states in these
limits, in particular the ones given by:

13
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lim
r→∞

|rz⟩c = |Nc,c+(N−∥c∥0 −Nc)z⟩ , (52)

and thus they are also Fock-cat states.
In some particular cases, depending on the parity of N and on c and z, the resulting Fock

state has all the particles in the same level (i.e. they are ITPS, with no entanglement). For
instance, for D= 2 the resulting Fock state in the limit |z| →∞ is |0,N⟩ if N and c have the
same parity. For D= 3, c = [0,0], and even N, in the limit z→ (∞,0) the resulting state is
|0,N,0⟩ and in the limit z→ (0,∞) the resulting state is |0,0,N⟩. For c = [1,0] and odd N,
in the limit z→ (∞,0) the resulting state is |0,N,0⟩. For c = [0,1] and odd N, in the limit
z→ (0,∞) the resulting state is |0,0,N⟩. For c = [1,1], in none of the cases we obtain a Fock
state with all the particles in the same level.

It should be noted that zi →∞ for some i = 1, . . . ,D− 1 means that the chosen chart (the
one for which z0 ̸= 0) is no longer valid since z0 turns out to be zero. In this case the chart for
which zi ̸= 0 should be used instead.

Taking into account this fact, the cases ∥z∥→ 0 and zi →∞ for some i = 1, . . . ,D− 1
should stand on the same foot. For instance, the Fock state |0, . . . ,0,N,0, . . . ,0⟩, with the N
particles at level i, corresponds (in the notation used in equation (6)) to wi = 1,wj = 0 for j ̸= i
and c = 0 if N is even and c = [0, . . . ,0,1,0, . . . ,0] (with a one at position i) if N is odd. The
other cases can be treated in a similar fashion.

5. Entanglement measures

Entanglement implies quantum correlations among the different parts of a multipartite system.
We shall restrict to bipartite entanglement of pure states, where different measures of entan-
glement exist, depending on how non-entangled (separable) states are defined. In [9] some
definitions of entanglement are introduced, and in the most basic one (Entanglement-I) separ-
able states are identical TPS states (ITPS), thus the only separable states are coherent states,
as shown in proposition 1. In particular, symmetrized TPS are entangled according to this
definition, due to the exchange symmetry.

For other definitions of entanglement, like (Entanglement-V) in [9], also known as mode
entanglement, separable states are obtained, in the second quantization formalism, by act-
ing on the Fock vacuum with a product of creation operators which act on a different set of
modes (or levels). An example of separable states are basis Fock states |⃗n⟩, which however are
not separable (except in the case when all the particles are in the same level) with respect to
Entanglement-I. Also, with respect to Entanglement-V, coherent states are not separable (see,
for instance, [26] for U(3) coherent states).

There is an intense debate in the literature about which of the different notions of entangle-
ment is the correct one for indistinguishable particles, in the sense that entanglement could be
used as a resource in quantum information, computation, communication or metrology tasks,
see [9, 10, 15] and references therein.

Without entering in this debate, we shall stick in this paper to the notion of Entanglement-I,
which is very common in the literature, and which provides a mathematically consistent notion
of entanglement in terms of M-particle RDMs (when N−M quDits are traced out) and their
corresponding Schmidt coefficients (see [45] and references therein). We shall use entropic
measures on the RDMs to quantify the entanglement (see [11] for the case of qubits). From
the physical (and also the mathematical) point of view, this is justified since we shall work only
with CS and finite sums of them. Also, in certain situations, like quDit loss (see section 8.2),
the process of losing one or more quDits is modelled by tracing out by these quDits, and our
decomposition fits in perfectly in this scheme.
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Since the computation of many entropies (like von Neumann entropy) requires the know-
ledge of the eigenvalues of the RDM, we shall mainly focus on computing the eigenvalues of
these M-particle RDMs.

By the Schmidt decomposition theorem (see [45]) the nonzero eigenvalues (the squares of
the so called Schmidt coefficients) of theM-particle RDM coincide with those of the (N−M)-
particle RDM, thus we shall restrict to 1⩽M⩽ ⌊N2 ⌋. Only in the study of robustness (see
section 8.2) we will be interested in the (N−M)-particle RDM.

Starting with a pure state |ψ⟩(N) in the symmetric irreducible representation of U(D) with
N particles/quDits, we define the M-particle RDM as:

ρ(M) = TrN−M|ψ⟩⟨ψ |(N) . (53)

Due to the symmetry of the original state |ψ⟩(N), the resulting density matrix ρ(M) lies in the
symmetric irreducible representation of U(D) with M particles. For a proof of this fact see
[11] for the case D= 2 and M= 2, proved showing that the matrix elements of the reduced
density matrix can be expressed in terms of expectation values of products of collective spin
operators (either of the reduced or the initial density matrix), [26] for a similar proof forD= 3
and M= 1,2, and [46] in the context of more general representations of U(D) with mixed
symmetries (different Young tableaux). This last paper uses a recursion algorithm (adding/re-
moving one particle/box) to show that theM-particle reduced density matrix will, under certain
conditions, have a definite symmetry under particle exchange. This is true, in particular, for
the completely symmetric (bosons) and anti-symmetric (fermions) representations, where the
M-particle reduced density matrix has the same symmetry as the original one.

6. Schmidt decomposition of DCATs

In this section we provide the main results of the paper on Schmidt decomposition of DCATs
under the bipartition in M and N−M particles, with 1⩽M⩽ ⌊N2 ⌋.

6.1. Decomposition of definite parity projection operators

The following Lemma will be of extreme importance in the following results about Schmidt
coefficients of reduced density matrices for states with definite parity, stating that projectors
Πc onto subspaces of definite parity c for a given number of particles can be decomposed as a
sum over all possible parities of tensor products of projectors on subspaces of definite parity
with smaller number of particles.

Lemma 3. Let N,M integers with N> 1 and 1⩽M⩽ ⌊N2 ⌋. Then:

Π(N)
c =

∑
c ′

Π
(N−M)
c−c ′ ⊗Π

(M)
c ′ =

∑
c ′

Π
(M)
c−c ′ ⊗Π

(N−M)
c ′ =

∑
c ′

Π
(N−M)
c ′ ⊗Π

(M)
c−c ′ . (54)

Proof. The proof is obvious using Convolution Theorem for ZD−1
2 :

Π(N)
c = 21−D

∑
b

χc(b)Π
b(N) = 21−D

∑
b

χc(b)
(
Πb(N−M) ⊗ I(M)

)(
I(N−M) ⊗Πb(M)

)
(55)

=
∑
c ′

(
Π

(N−M)
c−c ′ ⊗ IM

)(
I(N−M) ⊗Π

(M)
c ′

)
=
∑
c ′

Π
(N−M)
c−c ′ ⊗Π

(M)
c ′ ,
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where we have used lemma 1 to factorize Πb(N):

Πb(N) =Πb1
1 . . .Π

bD−1

D−1 = exp

iπ
D−1∑
j=1

bjS
(N)
jj

= exp

iπ
D−1∑
j=1

bj(S
(N−M)
jj ⊗ I(M) + I(N−M) ⊗ S(M)

jj )


= exp

iπ
D−1∑
j=1

bjS
(N−M)
jj ⊗ I(M)

exp(iπbjI
(N−M) ⊗ S(M)

jj )

=
(
Πb(N−M) ⊗ I(M)

)(
I(N−M) ⊗Πb(M)

)
, (56)

together with the fact that the number operators Sjj commute among them for all values of j.

Note the symmetry under the interchange (N−M)↔M, due to the Schmidt Theorem, and
the symmetry under the interchange (c− c ′)↔ c ′, due to the Convolution Theorem.

6.2. Decomposition of parity adapted CS

Using the previous result applied to a coherent state we obtain the main result of this paper:

Theorem 3. Let N,M integers with N> 1 and 1⩽M⩽ ⌊N2 ⌋. Then the c-DCAT of N particles
can be decomposed in terms of superpositions of tensor products of DCATs of M and N−M
particles as:

|z⟩(N)c =
∑
c ′

lN,Mc,c ′(z)|z⟩(N−M)
c−c ′ ⊗ |z⟩(M)

c ′ , (57)

with Schmidt coefficients

lN,Mc,c ′(z) =
N (N−M)

c−c ′ (z)N (M)
c ′ (z)

N (N)
c (z)

. (58)

Proof. The proof is obvious by applying the previous Lemma and restoring the normalization
of the diverse DCATs appearing in the equation.

The Schmidt eigenvalues of the RDM obtained after tracing out N−M particles are given
by the squares of the Schmidt coefficients:

λN,Mc,c ′(z) =
(
lN,Mc,c ′(z)

)2
. (59)

Note that the Schmidt eigenvalues depend only on the absolute values |zi| , i = 1, . . . ,D−
1, and do not depend on the relative phases. They are also invariant under the simultaneous
interchange of (N−M)↔M and (c− c ′)↔ c ′.

TheM-particle RDMs are well-defined density matrices, since the eigenvalues are positive
and their sum is one.

Proposition 2. The trace of the M-particle RDM ρ
(M)
c (z) of a c-DCAT is:

Tr ρ(M)
c (z) = Tr

(
TrN−M

(N)|z⟩c c⟨z|(N)
)
=
∑
c ′

λN,Mc,c ′(z) = 1 . (60)
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Proof. Using the definition of the Schmidt numbers, it is easily proven that∑
c ′

λN,Mc,c ′(z) =
1(

N (N)
c (z)

)2∑
c ′

(
N (N−M)

c−c ′ (z)N (M)
c ′ (z)

)2
=

1(
N (N)

c (z)
)2 21−D

∑
b

χc(b)⟨z|zb⟩(N−M)⟨z|zb⟩(M)

=
1(

N (N)
c (z)

)2 21−D
∑
b

χc(b)⟨z|zb⟩(N) = 1 , (61)

where Convolution Theorem for ZD−1
2 has been used again in the second line.

It could seem that the Schmidt decomposition provided by equation (57) is ill-defined since
the right-hand side of the equation is not invariant under particle permutations. However, it
is easy to show that, due to the group-theoretical properties of parity adapted CS, it is in fact
symmetric, guaranteeing that the standard Schmidt decomposition for distinguishable bipartite
systems works in our case without the need of modification (see for instance the modification
suggested in [13] for the case of two indistinguishable qubits).

6.3. Schmidt rank of DCATs

Although there are 2D−1 terms in the decomposition of a parity adapted CS, not all the eigen-
values λN,Mc,c ′ are in general different from zero. There are some general bounds on the rank that
we should take into account:

• If some zi = 0 in equation (21)⇒ the number of eigenvalues is reduced in a factor 2 if ci = 0
(see section 7.3)
Thus, the minimum Schmidt number (attained when z→ 0) is 2k, with k= ∥c∥0 the num-

ber of non-zero components of the vector c.
• For a givenM, the dimension of the symmetric representation withM particles is

(M+D−1
M

)
.

From this considerations, the next corollary follows.

Corollary 1. The Schmidt number of the M-particle RDM, defined as the rank of ρ(M)
c (z), for

a c-DCAT satisfy the bounds:

rank(ρ(M)
c (z)) =min{2∥z∥0+∥c0∥0 ,

(M+D−1
M

)
} , (62)

with ∥z∥0 ⩽ D− 1 the number of non-zero entries of the vector z, and where ∥c0∥0 is the num-
ber of nonzero entries of the vector c0, defined as the subset of components of c whose indices
coincide with the indices of the zero components of z.

In table 1 some examples for the different dimensions are shown, highlighting the cases
where the dimension of the symmetric representation with M particles is smaller than the
maximum number of DCATs.

As it can be seen, in general, for D= 2 (qubits) it is enough to consider 1-particle RDMs
to account for the two possible 2CATs (even and odd). For D= 3 (qutrits) we need 2-particle
RDMs to have enough room to accommodate the four 3CATs, and for D= 5 it is necessary to
use 3-particle RDMs to have room for the sixteen 5CATs. Since 2D−1 grows exponentially with
D, whereas the binomial coefficient

(M+D−1
M

)
grows as a polynomial of degree M in D, if we
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Table 1. Dimensions of the full tensor product space H⊗M
1 and the symmetric repres-

entation space HM compared with the maximum number of DCATs, for different values
of D and M. Highlighted numbers refer to cases where the maximum number of DCATs
exceeds the dimension of HM.

Full tensor
product
DM

Symmetric
irrep

(M+D−1
M

) Maximum
number of
DCATs 2D−1

D= 2,M= 1 2 2 2
D= 3,M= 1 3 3 4
D= 3,M= 2 9 6 4
D= 4,M= 1 4 4 8
D= 4,M= 2 16 10 8
D= 5,M= 1 5 5 16
D= 5,M= 2 25 15 16
D= 5,M= 3 125 35 16

fix M, clearly the number of DCATs will exceed the maximum rank of the RDMs as D grows.
We need to increase also M to have enough room for all possible DCATs in the RDMs.

From the previous discussion, we can compute the Schmidt rank, i.e. the maximumSchmidt
number for all possible M-RDM.

Corollary 2. The Schmidt rank of a c-DCAT is:

Schmidt rankof |z⟩c = max
1⩽M⩽⌊ N

2 ⌋
rank(ρ(M)

c (z)) = 2∥z∥0+∥c0∥0 ⩽ 2D−1 . (63)

6.4. M-wise entanglement entropy of parity adapted U(D)-spin coherent states

The knowledge of the Schmidt coefficients and eigenvalues allows to easily compute the Linear
and von Neumann entropies

L(ρ) = d
d− 1

(1−Tr(ρ2)) , S(ρ) =−Tr(ρ logd ρ) (64)

of theM-wise RDMmatrices, with d a suitable dimension to normalize the entropies between
0 and 1.

In our case the chosen dimensions (according to the dimension of the symmetric repres-
entation for M particles, when M is finite, and to the maximum rank of the RDM for parity
adapted CS) are:

d=


(M+D−1

M

)
, finite M ,

2D−1 , infinite M .
(65)

In section 9 (and in the supplementary material) we shall show different plots of von
Neumann entropy (line plots for D= 2, contour plots for D= 3, angular plots with ∥z∥2 = R
for D= 4 and information diagrams for arbitrary values of D). In these plots we shall observe
the main features of the entropy of the M-wise RDM of parity adapted CS, and therefore of
the entanglement of these states.
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7. Some interesting limits of the Schmidt eigenvalues

In this section we shall analyse with detail the behaviour of the Schmidt eigenvalues under
certain limits (N→∞, M→∞, ∥z∥→ 0, zi → 1, ∥z∥→∞, etc). We shall make use of the
limit values of the normalization factors Nc(z) computed in section 4.

7.1. Single thermodynamic limit

In many-body systems, the thermodynamic limit is the limit where the number of particles N
grows to infinity. The limit N→∞ of the Schmidt eigenvalues has the expression:

lim
N→∞

λN,Mc,c ′(z) =
(
N (M)

c ′ (z)
)2
. (66)

It turns out that, in this limit, the Schmidt eigenvalues do not depend on the original parity c,
therefore all c-DCATs have the same Schmidt decomposition in the thermodynamic limit. Thus,
looking at the RDMs, we cannot infer the parity of the original state in this limit. This confers
an universal character to the thermodynamic limit of the Schmidt decomposition, erasing all
information about the parity c of the original state.

7.2. Double thermodynamic limit

Another interesting limit is the double thermodynamic limit, when both N andM go to infinity
independently. However, this limit is not well-defined. In fact only one of the iterated limits
makes sense (since M⩽ N). The only possible iterated double thermodynamic limit is:

lim
M→∞

lim
N→∞

λN,Mc,c ′(z) = 2−kδc0,c ′
0
, (67)

where k= ∥z∥0 is the number of nonzero components of the vector z, and c0 indicates the
subset of components of c whose indices coincide with the indices of the zero components
of z.

This shows that the ∞-RDM of an infinite number of quDits corresponds to a maximally
mixed state of dimension 2k.

We can also consider the rescaled directional double thermodynamic limit, where both N
andM go to infinity but withM/N= 1− η fixed, and simultaneously the variable z is rescaled
by

√
N:

lim
N→∞

M=(1−η)N

λN,Mc,c ′(α/
√
N) =

D−1∏
i=1

λHO,ηci,c ′i
(αi) (68)

with

λHO,ηc,c ′ (α) =

(
NHO
c−c ′(

√
ηα)NHO

c ′ (
√
1− ηα)

NHO
c (α)

)2

(69)

with η ∈ [ 12 ,1). Using the expression of N
HO
c (α) given in section 4, we arrive at:

λHO,ηc,c ′ (α) =
expc−c ′(η|α|2)expc ′((1− η)|α|2)

expc(|α|2)
=

1
2
+(−1)c−c ′ expc((1− 2η)|α|2)

2expc(|α|2)
. (70)
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Note that for η = 1
2 we have λ

HO, 12
1,c ′ (α) = 1

2 (the odd cat state is maximally entangled for all
non-zero values of α), and for η→ 1 we have

lim
η→1

λHO,ηc,c ′ (α) = δc ′,0 , (71)

indicating that the fidelity with respect to the original state approaches 1 as η→ 1 (see
section 8.2).

This represents a generalization to higher dimensions of the results of [47] (see also [48]
for the case η = 1

2 ), for decoherence of a Schrödinger cat state of the HO (realized with
a laser beam) by photon absorption modelled by the passage through a beam splitter of
transmissivity η.

This suggests that in the case of DCATs, the Schmidt decomposition we have obtained can
be physically interpreted as a decoherence process under the loss of M-quDits. In this sense,
our results can help in designing quantum systems robust under quDit loss, for instance in
quantum error correction protocols (see [49, 50] for the case of qubit loss). We shall further
discuss this point in section 8.2.

7.3. Limits when ∥z∥→ 0, |zi | → 1, ∥z∥→∞

In this subsection we shall consider diverse limits of the Schmidt eigenvalues in the variable
z.

Let us consider first the case when one of the zi approaches zero. Using equation (36) it is
easy to derive:

lim
zi→0

λN,Mc,c ′(z) =

{
λN,Mci,c ′

i
(zi)δc ′i ,0 ci = 0

N−M
N λN−1,M

ci,c ′
i

(zi)δc ′i ,0 +
M
N λ

N−1,M−1
ci,c ′

i
(zi)δc ′i ,1 ci = 1

(72)

where zi, ci and c ′
i are obtained by removing the ith component from z, c and c ′, respectively.

Note that in this limit, if ci = 0 the rank is reduced in a factor 2.
Using the previous formula we can compute the limit whenmore variables zi approach zero,

until we arrive to the limit at z= 0= (0,0, . . . ,0), which is important since it will provide the
minimum rank of the RDM. The general expression is given by:

lim
z→0

λN,Mc,c ′(z) =
(N−M)∥c−c ′∥0

(M)∥c ′∥0

(N)∥c∥0

δc ′
0 ,0D−1−∥c∥0

, (73)

where (x)n = x(x− 1) · · ·(x− n+ 1) standards for the lowering factorial, c ′
0 indicates the sub-

set of components of c ′ whose indices coincide with the indices of the zero components of c,
and 0n indicates a string of zeros of length n. For ∥c∥0 = D− 1 the Kronecker delta is assumed
to be one.

From this expression the rank of the RDM at z= 0 is equal to 2∥c∥0 , since if some ci = 0,
the DCATs with c ′i = 1 are absent in the Schmidt decomposition. Note that this last statement
should be understood in the limit sense since for c ̸= 0 the action of the parity projector onto
the highest-weight state (which lies in the completely even subspace) is zero, Πc|0⟩= 0.

Particularizing for D= 2 we have:

lim
z→0

λN,Mc,c ′ (z) =
M
N
δc,c ′ +

N−M
N

δc ′,0 . (74)

Thus at z= 0 the Schmidt rank is 1 (pure state) for the completely even (c= 0) 2CAT and 2 for
the odd case (c= 1) 2CAT.
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For D= 3 we have:

lim
(z1,z2)→(0,0)

λN,M[0,0],c ′(z1,z2) = (1,0,0,0)

lim
(z1,z2)→(0,0)

λN,M[0,1],c ′(z1,z2) =

(
N−M
N

,
M
N
,0,0

)
lim

(z1,z2)→(0,0)
λN,M[1,0],c ′(z1,z2) =

(
N−M
N

,0,
M
N
,0

)
lim

(z1,z2)→(0,0)
λN,M[1,1],c ′(z1,z2) =

(
(N−M)(N−M− 1)

N(N− 1)
,
M(N−M)

N(N− 1)
,
M(N−M)

N(N− 1)
,
M(M− 1)
N(N− 1)

)
,

(75)

where at the right-hand side the vector of Schmidt eigenvalues is shown, ordered according to
the decimal expression of c ′.

The expression we have obtained for the Schmidt eigenvalues in the limit z→ 0 provide
the Schmidt decomposition of Fock-cat states appearing in sections 4.3 and 4.4.

The limit when |zi| → 1 , i = 1, . . . ,D− 1 also deserves attention, since at this point the
entropy of the RDM takes its maximum value, as can be checked in the graphs shown in the
SupplementaryMaterial. However, the general analytic expression of the limit is cumbersome,
therefore we shall consider only some special cases.

For D= 2 we have:

lim
|z|→1

λN,Mc,c ′ (z) =
1
2
, ∀c,c ′,∀N,M, 1⩽M⩽ ⌊N

2
⌋ . (76)

Then we conclude that for D= 2 the RDM is maximally mixed at |z|= 1.
For D= 3 we have:

lim
(|z1|,|z2|)→(1,1)

λN,Mc,c ′(z) = (77)

(3N−M+(−1)c1−c ′1 +(−1)c2−c ′2 +(−1)c1+c2−c ′1 −c ′2 +N−M)(3M+(−1)c
′
1 +(−1)c

′
2 +(−1)c

′
1 +c

′
2 +M)

4(3N+(−1)c1 +(−1)c2 +(−1)c1+c2+N)
,

∀c,c ′,∀N,M 1⩽M⩽ ⌊N2 ⌋. In particular we have for M= 1:

lim
(|z1|,|z2|)→(1,1)

λN,1c,[1,1](z) = 0 , ∀c,∀N> 1 , (78)

which is due to the fact thatN[1,1](z)(1) = 0 ,∀z ∈ C2. Also, in this case for the other values of
c ′ ̸= [1,1] and k> 1:

lim
(|z1|,|z2|)→(1,1)

λ2k,1[0,0],c ′(z) =
1
3
, (79)

lim
(|z1|,|z2|)→(1,1)

λ2k+1,1
[1,1],c ′(z) =

1
3
. (80)

In all other cases the nonzero eigenvalues are practically 1
3 , approaching

1
3 for large odd

N. Then we conclude that for M= 1 the RDM is (approximately) maximally mixed when
(|z1|, |z2|) = (1,1).

Similar conclusions can be obtained for larger values of D, although the expressions are
cumbersome. Then we can conclude that at the point |zi|= 1, i = 1, . . . ,D− 1, the rank of the
M-wise RDM is min{

(M+D−1
M

)
,2D−1}.
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The ∥z∥→∞ limit does not exist (except for the case D= 2, see below), since its value
depends on the direction. Using hyper-spherical coordinates in the first hyper-octant, |zi|=
ryi(θ⃗), θ⃗ ∈ [0, π2 ]

D−2 , i = 1,2, . . .D− 1, we can compute the directional limits:

lim
r→∞

λN,Mc,c ′(r, θ⃗) = 21−D

∑
bχc−c ′(b)Yb(θ⃗)

N−M
∑

bχc ′(b)Yb(θ⃗)
M∑

bχc(b)Yb(θ⃗)N
, (81)

with Yb(θ⃗) =
∑D−1

i=1 (−1)biyi(θ⃗)2.
For instance, for D= 3 we have polar coordinates Yb(θ⃗) = (−1)b1 cos2 θ+(−1)b2 sin2 θ .
The case D= 2 deserves special attention, since the limit exists, but care should be taken

since in some particular cases undetermined limits can appear. The result is:

lim
|z|→∞

λN,Mc,c ′ (z) =
1
2

[
1+

N−M
N

(−1)c
′+M+

M
N
(−1)c−c ′+N−M

]
. (82)

8. Physical applications

Quantum superpositions of macroscopically distinct quasi-classical states (the so-called
Schrödinger cat states) are an important resource for quantum metrology, quantum commu-
nication and quantum computation. In particular, superpositions 1

2N (α)

(
|α⟩± |eiϕα⟩

)
of HO

CS |α⟩ with the same |α| but with different phases (like the even ϕ= 0 and odd ϕ = π parity
adapted CS discussed here) are a common resource in a large variety of experiments (see for
instance the encode of a logical qubit in the subspace generated by this kind of superpositions,
which is protected against phase-flip errors [51, 52]).

In this section we shall discuss how the DCATs introduced in this paper can be generated
using different Hamiltonians, and how the Schmidt decomposition found here can be useful
to study the interesting problem of quDit loss.

8.1. DCATs generation

In [47] different methods of producing optical Schrödinger cats for the HO were discussed,
and some of them have been realized experimentally [53]. The experimental creation of optical
Schrödinger cat states in cavity QED is discussed in [54]. A Schrödinger cat state of an ion
in a trap has been generated experimentally [55], and a Schrödinger cat state formed by two
interacting Bose–Einstein condensates of atoms in different internal states (two-well) has been
proposed [56]. Another proposal is the generation of optomechanical Schrödinger cat states
in a cavity Bose–Einstein condensate [57], with a considerable enhancement in the size of the
mechanical Schrödinger cat state.

An important technique to produce Schrödinger cat states is the use of Kerr o Kerr-like
media, like in [51, 52], which allows to create, control and measure a qubit in the subspace
generated by various Schrödinger cat states, which is protected against phase-flip errors.

Another Hamiltonian where Schrödinger cat states appear is the LMG nuclear model [3].
In this case they appear as the ground state solution in the thermodynamic limit [24, 26], or
as approximate solutions for the lowest eigenstates of the Hamiltonian for finite N [8]. The
LMG model has been also realized in circuit QED scheme [58], and proposed for optimal
state preparation with collective spins [59].
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8.1.1. LMG D-level model. The important feature of models like the LMG nuclear model is
pairing correlations, which can be described by a second quantized Hamiltonian of the form

HD =
D∑
i=1

N∑
µ=1

εi c
†
iµciµ−

D∑
i,j,k,l=1

N∑
µ,ν=1

λklij c
†
iµcjµc

†
kνclν (83)

where c†iµ (ciµ) are creation (annihilation) fermion operators in the µth particle and the ith
energy level, with i = 1, . . . ,D, and with level energies εi.

The two-body interaction (with strength λ) scatters pairs of particles between the D levels
without changing the total number of particles. In the common case of hermitianHD, λ̄klij = λjilk.

The U(D) ‘quasispin’ collective operators are defined as:

Sij =
N∑
µ=1

c†iµcjµ (84)

and the Hamiltonian (83) can be written as

HD =
D∑
i=1

εi Sii−
D∑

i,j,k,l=1

λklij SijSkl . (85)

The best known case is the original D= 2 levels LMG shell model [3, 60, 61] to describe
the quantum phase transition from spherical to deformed shapes in nuclei. In this model the
nucleus is a system of fermions which can occupy two levels i = 1,2 with the same degeneracy
N, separated by a gap ε= 2ε2 =−2ε1. It can also describe a system of N interacting two-level
identical atoms (‘qubits’), or an anisotropic XY Ising model

HXY = ε
N∑
µ=1

σzµ+
∑
µ<ν

λxσ
x
µσ

x
ν +

∑
µ<ν

λyσ
y
µσ

y
ν , (86)

in a transverse magnetic field ε with infinite-range constant interactions. In terms of the U(2)
angular momentum J⃗ collective operators J+ = S21,J− = S12 and Jz = 1

2 (S22 − S11), the two-
level LMG shell model Hamiltonian reads [3, 60]:

H2 = εJz+
λ1
2
(J2+ + J2−)+

λ2
2
(J+J− + J−J+) = εJz+

λ1
2
(J2+ + J2−)+λ2(⃗J

2 − J2z ) . (87)

The λ1 interaction term annihilates pairs of particles in one level and creates pairs in the
other level, and the λ2 term scatters one particle up while another is scattered down. The total
number of particles N and the squared angular momentum J⃗2 = j( j+ 1) are conserved. The
Hamiltonian H2 also commutes with the parity operator Π= eiπ(Jz+j), so that temporal evol-
ution does not connect states with different parity. This parity symmetry Z2 is spontaneously
broken in the thermodynamic N→∞ limit, giving rise to a degenerate ground state.

The less familiar case of D= 3 level LMG model can be found, for instance, in [8, 24,
26, 62–66]. Following [64], we consider vanishing interactions for particles in the same level
and equal interactions for particles in different levels (similar to setting λ2 = 0 in (87)). More
explicitly, we take

λklij =
λ

N(N− 1)
δikδjl(1− δij) (88)
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in (85), and write the intensive energy splitting per particle ε3 =−ε1 = ϵ/N and ε2 = 0.
Therefore, the Hamiltonian density will be:

H3 =
ϵ

N
(S33 − S11)−

λ

N(N− 1)

3∑
i̸=j=1

S2ij. (89)

The Hamiltonian H3 possesses a parity symmetry (like in the two-level case), which has
to do with the fact that the interaction only scatters pairs of particles, thus conserving the
parityΠi = exp(iπSii), even (+) or odd (−), of the population Sii in each level i = 1,2,3. Due
to the conservation of the total number of particles N, there are only two independent parity
transformations, and therefore the parity symmetry of the Hamiltonian H3 is Z2

2.
It is surprising that in the literature, when multilevel (with D> 2 levels) systems are

considered, the only studied cat states are the ones associated to the total parity subgroup
Z2 ⊂ ZD−1

2 (the one formed by the parity transformations in equations (15) and (16), see
for instance [67, 68]. However, there are models, like the D-level LMG model, where the
Hamiltonian is invariant under parity transformations ZD−1

2 , where the ground state and some
of the first excited states are parity adapted CS [8]. Moreover, in the limit where the interac-
tion parameter λ→∞ in the LMG D-level model for a finite number of particles, the ground
state is approximately (with a high fidelity) a completely even DCAT with z= (1,1, . . . ,1) [24],
which corresponds to a maximally entangled state among all parity adapted CS, as was shown
in equations (77)–(80). Also, some of the first excited energy eigenstates are also c-DCATs with
different parities c [8]. A detailed study of the localization properties of these states, using the
Husimi function and Wehrl entropy, was performed in [8], focussing on the behavior across
the quantum phase transitions occurring in this model.

8.1.2. Generation by Kerr-like effect. The optical Kerr effect is a universal technique to gen-
erate non-classical states in quantum optics. In [69] multicomponent Schrödinger cat states
were generated in a circuit QED where an intense artificial Kerr effect is created, allowing for
single-photon Kerr regime.

In [70], a logical qubit is encoded in two or four HO Schrödinger cat states of a microwave
cavity, of the form 1

2N (α) (|α⟩± |−α⟩) and 1
2N (α) (|iα⟩± |− iα⟩), realizing the π/2 rotation

around the z-axis by means of Kerr effect, and exploiting multi-photon driven dissipative pro-
cesses. A two-photon driven dissipative process is used to stabilize a logical qubit basis of
two-component Schrödinger cat states against photon dephasing errors, while a four-photon
driven dissipative process stabilizes a logical qubit in four-component Schrödinger cat states,
which is protected against single-photon loss.

In [51] a logical qubit is created in the subspace of four Schrödinger cat states, 1
2N (α) (|α⟩±

|−α⟩) and 1
2N (α) (|α⟩± i| −α⟩), using a Hamiltonian that encompasses both Kerr effect and

squeezing in a superconducting microwave resonator. The created qubit is protected under
phase-flip errors.

Kerr-like effect in U(2) and U(D) can also be exploited to create Schrödinger cat states,
using Hamiltonians of the type Hkerr = χJ2z (Jz =

1
2 (S22 − S11) is the third component of the

angular momentum operator) for SU(2) or

Hkerr = χ
D−1∑
j=1

S2jj (90)
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for the case of U(D). Note that this Hamiltonian is a particular case of the interacting term
of the LMG Hamiltonian for general D [8, 24], which, in the rescaled double thermodynamic
limit, approaches the (multimode) Kerr Hamiltonian plus a squeezing term (see [34]).

Denoting the revival time as Trev = 2π
χ , for times t= Trev/q, with q= 2,3, . . ., this kind of

Hamiltonians produce multicomponent Schrödinger cat states, where the number of compon-
ents is q for odd q and q

2 for even q (see [71] for the case of SU(2) and the HO).

8.2. QuDit loss

As commented in section 7.1, when the rescaled directional double thermodynamic limit was
discussed and the results in the literature for the study of photon loss were recovered (and
generalized to a larger number or HOs, or polycromatic lasers), we can infer that the Schmidt
decomposition of parity adapted CS in terms of a sum for all parities of tensor products of
parity adapted CS with smaller number of particles, really corresponds to the physical process
of quDit loss, when some quDits of a symmetric multi-quDit state are lost by some irreversible
process (like decoherence by interaction with the environment or other similar process), and
that this process is mathematically described by the partial trace (see, for instance [72]).

This suggests that in the case of c-DCATs, the Schmidt decomposition we have obtained can
be used to describe a decoherence process under the loss ofM-quDits. In this sense, our results
can help in designing quantum error correction protocols (see [49, 50] for the case of qubit
loss).

Our Schmidt decomposition can also be useful in the generalization to quDits of the study
of robustness of entanglement under qubit loss [72]. In this context, robustness is defined as
the survival of entanglement after the loss ofM qubits, i.e. the RDM after tracing outM qubits,
ρ
(N−M)
c (z) (which describes in general a mixed state), is entangled.
In our case, as it can be checked in the limit values discussed in section 7 and in the figures

in section 9 (and in the supplementary material), the rank of the RDM is larger than one except
possibly in the cases ∥z∥→ 0 and |zi| →∞ (i.e, along some of the axes), and the entropy of the
RDM is lower than the not entangled mixed states (NEMSs) limit except in the cases marked
in red in table 1 (changing M by N−M), when maximally mixed (not entangled) RDM can
appear.

The limits of the DCATs when ∥z∥→ 0 and |zi| →∞ were studied in sections 4.3 and 4.4,
and they turn to be Fock states and in some particular cases they are ITPS. Thus, except for
the cases where the original state is an ITPS (and therefore it is not entangled), the rank of the
resulting RDM is larger than one and ρ(N−M)

c (z) is entangled (except in the cases marked in
red in table 1).

Therefore, we can guarantee that, except in the mentioned cases, the entanglement of the
original DCAT is robust under quDit loss. This should be compared with the case of GHZ or
NOON states, which are maximally entangled but they are fragile under qubit loss [72]. In fact,
spin cat states [38] with moderate entanglement can reach the standard quantum limit even in
the presence of a relative large amount of qubit loss, whereas GHZ states lose this capability
with an small fraction of qubit loss.

Motivated by the example discussed in [47, 48], where in the case of photon loss when
η→ 1 the fidelitywith the original state approaches one, wewould like to introduce the concept
of fidelity also in our case. Strictly speaking, the fidelity

FN,Mc (z)≡ (N)
c⟨z|ρ(N−M)

c (z)|z⟩(N)c , (91)
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makes sense only in the case N→∞, since otherwise the number of particles do not match
and the expectation value makes no sense. Alternatively, we can define the fidelity for
finite N as:

FN,Mc (z)≡ λN,M
c,0

(z) , (92)

i.e. as the component in the Schmidt decompostion where the (N−M) subsystem has the
same parity as the original system, and this, according to our definition, corresponds to c ′ = 0

in equation (57).
This definition of fidelity (and its maximization with respect to z) could be interesting in

some protocols where it is important that the parity c of the state should be robust under quDit
loss. In other situations, however, it could be interesting the fact that the state has a (quasi)
definite parity under quDit loss, without worrying about its value. In this case, λN,Mc,c ′(z) should
be maximized for all possible values of c ′, too. And in other situations, it could be interesting
to maximize a balanced combination of robustness + fidelity.

9. Figures for D=2 atom levels (qubits)

9.1. Finite number N of qubits

In this section, in figures 2 (N= 6) and 3 (N= 7) we show plots of the normalized von
Neumann entropy (see equation (64)) ofM-wise RDMs of the even (c = [0]) and odd (c = [1])
c-2CAT as a function of |z|, for values in the range [0,10] . We can observe that all normalized
entropies reach the maximum for |z|= 1, with a value 1, i.e. the 2CAT is maximally entangled,
for M= 1.

In the case of an even number of particles N, for the even parity (c = [0]) 2CAT the entropy is
zero (i.e. the 2CAT is a separable pure state) at z= 0 and for large |z|, whereas for the odd (c =
[1]) 2CAT both at z= 0 and for large |z| the entropy takes the same non-zero value, approaching
1
2 when M

N approaches 1
2 .

For N odd, the behaviour is similar but the even and odd c cases get interchanged for large
|z|.

9.2. Single thermodynamic limit

In this section, in figure 4 we show plots of the normalized von Neumann entropy of RDMs of
the even (c = [0]) and odd (c = [1]) c-2CAT as a function of |z|, for values in the range [0,10], in
the case N→∞. We can observe that all normalized entropies reach the maximum for |z|= 1,
with a value of 1 (i.e. the 2cats are maximally entangled) for M= 1, and approach zero when
|z| approach zero or grows to infinity. In this case the entropies coincide for both parities,
agreeing with equation (66).

9.3. Rescaled double thermodynamic limit

Finally, in figure 5 we show plots of the normalized von Neumann entropy of RDM of the even
(c = [0]) and odd (c = [1]) c-2CAT as a function of |z|, for values in the range [0,10], in the case
N,M→∞ withM= (1− η)N. We can observe that for the even 2CAT the normalized entropy
reach the maximum of 1 when |z| grows to infinity, and approach zero when z approach zero.
For the odd 2CAT, the normalized entropy reach the maximum of 1 when |z| grows to infinity,
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Figure 2. Plots of von Neumann entropy for D= 2, N= 6 and M= 1,2,3, for |z| ∈
[0,10].

Figure 3. Plots of von Neumann entropy for D= 2, N= 7 and M= 1,2,3, for |z| ∈
[0,10].

Figure 4. Plots of von Neumann entropy for D= 2, N= 6 and M= 1,2,3, for |z| ∈
[0,10].

Figure 5. Plots of von Neumann entropy for D= 2, N= 6 and M= 1,2,3, for |z| ∈
[0,10].

but approach a non-zero value when |z| → 0, and this value approach 1 when η approach 1
2 ,

agreeing with the results of section 7.2.
Note that a plateau in the entropy at |z|= 1 is also present for the case M> 1. The reason

is that von Neumann entropy is obtained from the Schmidt coefficients, and those in turn are
obtained form the normalization factors (see equation (57)) and therefore inherit this beha-
vior. In particular, the derivatives of the Schmichdt numbers and von Neumann entropy at
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|z|= 1 are zero up to order M− 1 (this also holds for N→∞). In the rescaled thermody-
namic limit (with both N,M→∞), the von Neumann entropy approaches exponentially 1 as
|α| grows.

10. Conclusions

In this paper we provide a thorough discussion of the entanglement properties of symmetric
N-quDit systems described by parity adapted CS for U(D) (c-DCATs), in terms of the entropy
of theM-wise RDM and proving a Schmidt decomposition theorem under a bipartition of the
system in terms of M<N and N−M particles (quDits).

We show that the Schmidt decomposition turns out to be a sum over all possible parities of
tensor products of parity adapted CS with smaller number of particles. This Schmidt decom-
position is well-defined even thoughwe are treating with indistinguishable particles, the reason
being the constraints imposed by the group-theoretical properties of the parity adapted states.

The properties of the Schmidt eigenvalues have been studied for different limit values and
different thermodynamic limits, reproducing, in the case of the rescaled double thermodynamic
limit, known results in the literature for photon loss. This suggests that the obtained Schmidt
decomposition and entanglement properties could be useful in designing quantum information
and computation protocols with parity adapted CS for quDits of arbitraryD, and studying their
decoherence properties under quDit loss.

Possible generalizations of this work in different directions are under study. One of them is
considering different transformation groups generalizing the parity group ZD−1

2 , for instance
ZD−1
n with n> 2 (an anisotropic version Zn1 × . . .ZnD−1 could also be considered). See [73]

for the particular case of the one-mode HO.
Another possible generalization is to consider mode entanglement instead of particle entan-

glement, i.e. considering a bipartition of different modes or levels, for instance D−K and K,
with 0< K< ⌊D2 ⌋. In this case, it is expected that a similar result for the Schmidt decompos-
ition should hold but the decomposition involving parity adapted CS of U(D−K) and U(K).
Interlevel entanglement for the case K= 1 has already been discussed in [26].
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