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Abstract
Electron transport in filamentary-type resistive switching memories is modeled using quantum
point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in
which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation
of the current flowing through the atomic-sized structure is carried out by means of the
finite-bias Landauer approach. Different approximations for the barrier transmission coefficient
are assessed with the aim of determining the role played by the temperature of the charge
reservoirs. In order to corroborate the proposed model, current-voltage measurements in
electroformed Ni/HfO2/Si devices operating in the non-linear transport regime were performed
in the temperature range from −40 C to 200 C. Obtained results using inverse modeling indicate
that a temperature-induced barrier lowering effect explains the experimental observations.
Finally, the model proposed to calculate the device current including the temperature
dependence is developed.

Keywords: resistive switching memory, resistive random access memories, conductive filaments,
variability, quantum point contact, tunneling effects

(Some figures may appear in colour only in the online journal)

1. Introduction

Filamentary-type resistive switching memory is currently con-
sidered a suitable candidate for the next generation of non-
volatile memory devices because of its high switching speed,
low power consumption and scaling properties, among oth-
ers [1]. Although variability associated with the stochastic
nature of the switching process is still a serious concern for
this technology, the idea of storing one bit of information
in the form of an opened or closed atomic chain embedded

in a dielectric film sandwiched by two metal electrodes is
very appealing not only for its simplicity but also for the low
fabrication cost involved. In resistive random access memory
(RRAM) devices, the atomic-sized conducting bridge consists
of oxygen vacancies or metal ions depending on the metal-
dielectric system combination. These species move under the
application of an external electric field by hopping enabling
or blocking the pass of electrons from one electrode to the
opposite. These two extreme situations are referred to as the
low (LRS) and high (HRS) resistance states of the device.
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Intermediate states and thus multibit storage is also a reality in
these structures. While LRS is often regarded as a completely
formed filament with a linear current-voltage (I-V) character-
istic associated, HRS is represented as a filament with a kind
of gap along its length. In this latter case, the I-V curve is no
longer linear but exhibits an exponential dependence on the
applied voltage. This behavior has been pointed out as indic-
ative of the presence of a potential barrier as considered in
many other mesoscopic systems [2]. As already proposed in
the past for the soft-breakdown current in MOS devices [3,
4] and more recently for RRAMs [5–7], the electron trans-
port in these structures can be envisaged as a one-dimensional
tunneling problem in which the filament is represented by
a parabolic-shaped potential barrier associated with the lat-
eral confinement of the electron wave function when passing
through the constriction’s bottleneck, i.e. the gap or the fil-
ament remnants. Remarkably, the effect of the charge reser-
voirs temperature on this non-linear conduction regime has not
received extensive attention in the literature.Most of the works
concerning the temperature effects focus exclusively on the
linear conduction regime [8–10] or on the ion/vacancy diffus-
ive movement through numerically solving the standard heat
equation in combination with the current continuity equation
[11–13]. It is clear that this classical approach does not leave
space for a quantum treatment of the phenomenon disregard-
ing recent studies pointing out in that direction [14–16]. In this
work, we explore bymeans of inversemodeling the role played
by the temperature on the confinement barrier and proposed a
simple analytic model for the I-V curves based on the Land-
auer formalism [2]. After a brief presentation of the theoret-
ical framework and a review of past developments in the area,
we derive a method for extracting the relevant parameters of
the tunneling barrier from experiments and verify that the fea-
ture dimensions obtained for the filament are those expected
for an atomic-sized constriction, giving support to the initial
paradigms.

2. The model

Because of symmetry considerations, the problem of quantum
transport through a 3D tube-like constriction becomes a simple
1D tunneling problem, so that the expression for the current I is
given by the Landauer formula, within the Landauer–Buttiker
formalism

I=
2q
h

ˆ ∞

−∞
D(E)[F(E−µ1)−F(E−µ2)]dE (1)

where q is the electron charge, h the Planck constant,
µ1 =µ+βqV and µ2 = µ− (1−β)qV are the cathode (top
electrode) and anode (bottom electrode) quasi-Fermi levels at
the two ends of the constriction4, respectively, V is the voltage

4 We understand the term constriction as the narrowest section along the
filamentary structure. As always, the quasi-Fermi levels dictate the popula-
tion of electrons under non-equilibrium conditions (corresponding to a biased
device)..

drop across the constriction5, β is the fraction of V that drops
at the cathode side, E is the energy, D(E) is the transmission
coefficient of the system and F(E) is the Fermi–Dirac distri-
bution function

F(E) = 1/

(
1+ exp(

E
kBT

)

)
(2)

with kB = 8.617× 10−5eV/K the Boltzmann constant and T
the temperature. Since we are dealing with electrons, the
Fermi–Dirac statistics must be used. It is employed to repres-
ent the carrier density at both sides of the constriction. For
the sake of simplicity, we are assuming that there is no addi-
tional potential drop along the filament, therefore this statistics
reflects what is happening at the electrodes. In the zero tem-
perature limit, F(E) becomes the unit step function so that the
I-V expression simplifies as:

I=
2q
h

ˆ µ2

µ1

D(E)dE (3)

which only relies on the transmission coefficient D(E). The
constriction’s bottleneck can be approximately described by
an inverted parabolic potential barrier, for which an exact ana-
lytic expression for the corresponding tunneling probability
(transmission coefficient) is known [17, 18],

DP(E) = 1/(1+ e−α(E−E0)), (4)

where E0 is related to the potential barrier height and α
to its curvature (inverse width). In general, there are N 1D
propagating channels connecting the electrodes, which can be
considered identical for simplicity. The current for this case
turns out to be straightforwardly integrated and analytically
expressed as [19]:

I(V) =
2qN
h

{
qV+

1
α
ln

[
1+ eα(ϕ−βqV)

1+ eα(ϕ+(1−β)qV)

]}
, (5)

where ϕ=E0−µ. For a non-zero temperature T ̸= 0, no ana-
lytical expression for the current (1) with the transmission
coefficient (4) is available. We see in figure 1 that, for T ̸= 0,
the Fermi functions smear over an effective energy region lar-
ger than the interval [µ2,µ1]. This issue introduces a depend-
ence of the current I on the temperature T which will be ana-
lyzed in the following section.

In order to obtain analytic formulae for the current at T ̸=
0, we replace the transmission coefficient (4) by a continuous
piecewise linear approximation as follows:

DL(E) =


0 E≤ E0 − δ

δ+E−E0
2δ E0 − δ < E< E0 + δ
1 E≥ E0 + δ

(6)

5 In a resistive memory with a conductive filament formed, since the filament
regions outside the constriction are low resistance regions, the voltage V can
be assumed to be in some cases the externally applied voltage if the Maxwell
and series resistance are low enough.
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Figure 1. Effect of the temperature on the energy window
associated with the injected carriers.

Figure 2. Comparison between the tunneling probability DP for a
parabolic barrier of height E0 (dashed) and its piecewise linear
approximation DL (solid black) for a barrier width 2δ ≃ 2π

α
.

which is illustrated in figure 2. The width of the barrier (4) is
inversely proportional to α and we take δ ≃ π

α for a fairly good
matching of both transmission coefficients6 (see section 4 for
a relationship between transmission coefficients and potential
barriers).

Indeed, a comparison between the currents I(V) at T = 0
obtained from the transmission coefficient (4) and its piece-
wise linear estimation (6) is given in figure 3 for a particular
choice of parameters E0,ϕ,β,N, showing a good qualitative
and quantitative agreement. Note that the current (3) obtained
by integrating the continuous piecewise linear transmission
coefficient (6) on the interval [µ2,µ1] is a spline of order three
[27] (a continuous and differentiable piecewise polynomial of
degree two).

3. Temperature effects on the I-V characteristics

As mentioned above, no analytical expression of the current
(1) at T ̸= 0 for the transmission coefficient (4) is available.

6 This relationship between δ andα arises when wemake to coincide the aver-
age dispersion of the derivatives D′(E) (with a bell shape), which can be cal-
culated as

´∞
−∞D′(E)(E−E0)2dE, for the parabolic (4) and for the piecewise

linear (6) transmission coefficients, giving π2/(3α2) and δ2/3, respectively,
that is π2/(3α2) = δ2/3⇒ δ = π/α.

Figure 3. Comparison between the currents I(V) at T = 0 obtained
from the parabolic transmission coefficient (dashed curves) in (4)
and its piecewise linear approximation (solid curves) in (6) for
barrier thickness δ=π/α.

Some approximations have been considered in the literature
(see e.g. [4, 6]), which consists in replacing (4) by D(E)≈
exp[α(E−E0)] forE <E0−3/α, which gives the current at low
voltages (exclusively the tunneling regime)

IP(V,T) =
2qN
hα

exp[−α(ϕ−βqV)]
sinc(παkBT)

[1− exp(−αqV)], (7)

valid for a Fermi level µ at least 3kBT below the tip E0 of the
barrier and kBTα < 1. Note that when α→ 0, we recover the
ballistic case D= 1 and therefore the standard Landauer for-
mula.

For the continuous piecewise linear transmission coeffi-
cient (6), the integral (1) can be performed and an explicit ana-
lytical formula for the current is obtained as

IL(V,T) =
2qN
h

{
qV+

(kBT)2

2δ

[
Li2

(
−e−

qβV+δ−ϕ
kBT

)
−Li2

(
−e−

qβV−δ−ϕ
kBT

)
+Li2

(
−e−

q(β−1)V−δ−ϕ
kBT

)
−Li2

(
−e−

q(β−1)V+δ−ϕ
kBT

)]}
(8)

in terms of the dilogarithm or Spence’s function Li2 (see the
appendix A for specific calculations and for more informa-
tion about these special functions). We can relate all ener-
gies to the Fermi level, so that ϕ=E0 is the barrier height for
zero applied voltage. The model presented here works well
at low voltages. In the quantum regime, Joule heating effects
are assumed to occur both outside and inside the region of
interest, i.e. the constriction’s bottleneck. It is widely accep-
ted in mesoscopic theory that forD= 1 dissipation takes place
exclusively at the reservoirs. However, for D< 1, only part of
the total power is dissipated in the filament. This part is what
contributes to the thermal movement of the atoms that form
the filament and which ultimately reduces the average barrier
height. Sincewe do not have access to the internal temperature,
we link the thermal movement with the external temperature.
These effects introduce a temperature dependence in the bar-
rier height ϕ=ϕ(T), which can be linearly approximated by

3



J. Phys. D: Appl. Phys. 53 (2020) 295106 M Calixto et al

Figure 4. Current IL in equation (8) against voltage for three
different temperatures. We have chosen δ= 1eV, β= 1, N= 10,
ϕ0 = 2eV and θ= 0.002eV/K for the three cases.

ϕ(T)≈ ϕ0 − θT, (9)

with θ a (positive) temperature coefficient. This effect has been
previously introduced in reference [6]. We shall introduce this
extra temperature dependence in the currents (7) and (8) com-
ing from ‘parabolic’ and piecewise linear transmission coeffi-
cients. In figure 4 we see the effect of temperature on the cur-
rent IL for fixed values of δ,β,N,ϕ0 and θ. We see that IL(V,T)
is an increasing function of T.

We have employed experimental data to try to assess the
accuracy of our model (see figure 5). In particular, we have
used structures fabricated at the Institute of Microelectron-
ics of Barcelona IMB-CNM (CSIC), they are based on a
Ni/HfO2/Si− n+ [20].

In these devices the top 200 nm-thick Ni electrode was
deposited bymagnetron sputtering, then a lift-off process went
on. The area of the cells was 5× 5µm2, defined by the field
oxide patterning. The statistical features of variability in this
technology has been analyzed previously [21, 22].

The ALD fabricated dielectric layer was 20 nm thick.
The conduction is filamentary in these devices, i.e. it
takes place through conductive filaments (CFs) that are
formed and destroyed within the the Resistive Switching
(RS) device operation. At low voltages these I-V curves
are non-linear and, in previous publications [7, 23, 24],
the QPC model was employed to analyze the conduc-
tion. These devices were measured at different temperat-
ures, precisely, 50 cycles of set and reset processes for each
temperature.

For these curves we first selected the reset curves at T1 =
−40oC, T2 = 20oC, T3 = 140oC and T4 = 200oC (five cycles
for each temperature). For these temperatures, the conductive
filaments are destroyed arround the reset voltages V = 1.5V,
V = 1.4V, V = 1.1V and V = 1V, respectively. The behaviour
of these values is in line with the evolution of the barrier height
E0 =ϕ with temperature (see later in this section and figure
9). It is interesting to highlight that the effects of variability
in these type of devices have to be considered and assumed
taking into account the stochastic nature of resistive switching.

Studies on these variability issues have to account for hundreds
of curves in long resistive switching series and they have to be
performed under a statistical methodology [21, 22]. For the
validation of the model presented here and for the sake of sim-
plicity, we have limited the amount of experimental curves
considered. A comparison between experimental values of the
current I(V,T) at these four temperatures and their fit to the
‘linear’ current formula (8) is presented in figure 5. The agree-
ment of this formula with experimental data is good far from
the reset point (that is, in the low voltage regime). All the
curves in figure 5 can be reasonably well fitted to IL with com-
mon parameters: zero temperature barrier height ϕ0 = 2.2eV
and zero anode quasi-Fermi level β= 1. The barrier width δ is
a decreasing function of temperature and θ varies in the inter-
val [0.0025, 0.003]eV/K; the main difference between these
currents comes from the number N of propagating channels
(conductive filaments) formed within each RS device opera-
tion.When the number of filaments is higher than one, we con-
sider an average of the existing channels. This is a reasonable
and simplifying approach from the compact modeling view-
point. In this case, the QPC parameters should be considered
as effective parameters, since the individual filament details
(barrier heights, widths, etc) cannot be accessed individually.
Also, the barrier height E0 =ϕ gets affected by temperat-
ure according to formula (9), giving ϕ(T1)≃ 1.5eV, ϕ(T2)≃
1.38eV and ϕ(T3)≃ ϕ(T4)≃ 1eV. This is better appreciated
in the potential barrier profiles calculated in the next section
(see figure 9).

The linear dependence of I(V,T) on the number of
propagating channels N masks the intrinsic dependence of
I(V,T) on temperature in figure 5. This is linked to the
conductive filament length and intrinsic variability of these
devices in their resistive switching operation. However, we can
still appreciate this temperature dependence when we take into
consideration an average within a resistive switching series.
To better see this, we compute the average current, measured
considering all the curves at our disposal, for three different
low voltages (0.1 V, 0.2 V and 0.3 V) inside the temperat-
ure range T ∈ [233, 473] Kelvin. Figure 6 shows these aver-
aged data of I versus temperature T, together with their fit-
tings using formulas (8) (left) and (7) (right). We find a qual-
itative fitting for barrier width δ= 2eV (α=π/2eV−1), zero
anode quasi-Fermi level β= 1, N= 6 propagating channels,
zero temperature barrier height ϕ0 = 2.4eV and temperature
factor θ= 0.002eV/K. We see that formula (8) captures the
qualitative behavior (increase of I with T and V), although
the variability inherently linked to resistive switching makes
the quantitative behavior less accurate. Other issues, such as
the ohmic resistance of the conductive filament, the exist-
ence of tree-branched filaments, etc should also be taken into
account when comparing with experimental measurements,
as it is the case here. For the temperature range considered,
the threshold kBTα < 1 (imposed for the validity of (7)) is not
exceeded, since kBTmaxα= 0.064 for the maximum temper-
ature Tmax = 473K and α=π/2. However, we observe that
the fitting with IP in figure 6 is less accurate at higher tem-
peratures. The expression (8) for IL is not affected by this
constraint.
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Figure 5. Comparison between experimental values of the current (for four temperatures and five cycles for each temperature) and their fit
to the linear formula IL(V,T) in equation (8), as a function of voltage VRRAM. All the curves can be reasonably well fitted to the common
parameters: zero temperature barrier height ϕ0 = 2.2eV and zero anode quasi-Fermi level β= 1. The barrier width δ is a decreasing function
of temperature and θ∈ [0.0025, 0.003]. The main difference between cycles has to do with the number N of propagating channels (different
filaments corresponding to different cycles).

Figure 6. Experimental data, and fitting with formulas (8) (a) and (7) (b), of average currents values against temperature T for three
different voltages: 0.1, 0.2 and 0.3 V. The fitting parameters correspond to: δ= 2 (α=π/2), β= 1, N= 6, ϕ0 = 2.4 and θ= 0.002.
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4. Transmission coefficients and potential barriers

As we stated in section 2, the transmission coefficient DP(E)
for an inverted parabolic barrier U(x) = E0 − kx2/2 (here
k reminds a ‘spring constant’) is given by (4) with α=
2π

√
m/k/ℏ, where m is the effective mass of the particle in

the constriction. In this article we have proposed continuous
piecewise linear estimations of D(E) like (6), and we wonder
what is the corresponding barrier shape. For this purpose, we
shall use the semiclassical (WKB) formula:

D(E)≃ exp

[
−2
ˆ x+(E)

x−(E)
dx

√
2 m
ℏ2

(U(x)−E)

]
≡ Q(E),

(10)
where U(x−(E)) = U(x+(E)) = E. We shall assume a sym-
metric potential barrier so that the turning points are x−(E) =
−x+(E) =−x(E). This semiclassical formula is only valid for
low energies E≪ E0 compared to the barrier height E0. This
formula has been used in the past [25] to obtain, from experi-
ments, the barrier profile of a soft breakdown filament in MOS
capacitors.

In this manuscript we shall consider an extension of this
formula as

D(E) =
Q(E)

1+Q(E)
, (11)

which turns out to give good results even for E≈E0. Addi-
tionally, formula (11) reproduces the valueD(E0)= 0.5 for the
linear and parabolic transmissions (see figure 2). Solving the
previous expression (11) for Q(E) gives

Q(E) =
D(E)

1−D(E)
. (12)

In order to obtain the shape of the confinement potential bar-
rierU(x) for a given transmissionD(E), we shall discretize the
values of the energy and take E= En,n= 0, . . . ,M in decreas-
ing order, with E0 the potential barrier height. If we restrict
ourselves to energy values between [E0 −∆,E0], then we have
En = E0 − n∆/M. We shall also discretize the integral that
defines the exponent of Q(E) in (10). Denoting xm = x(Em),
x0 = 0, the left Riemann sum (rectangle rule) states that, for
an even function f (x), a rough calculation of the integral is
given by

ˆ xn

−xn

f(x)dx= 2
ˆ xn

x0

f(x)dx= 2
n−1∑
m=0

ˆ xm+1

xm

f(x)dx

≈ 2
n−1∑
m=0

f(xm)(xm+1 − xm). (13)

Therefore, using that U(xm) = Em, we can approximate

ln(Q(En))≃ a
n−1∑
m=0

√
n−m(xm+1 − xm), n= 1, . . .M, (14)

Figure 7. Potential barrier U(x) (in eV), obtained from the modified
WKB formula (15), against the longitudinal x-axis (in nanometers)
associated with the transmission coefficient
D(E) = 1/(1+ e−α(E−E0)) (blue diamond and pink square) and the
piecewise linear estimation (6) (green triangle and red dot), for
inverse thickness α1 = π/δ1 (δ1 = 1.4eV) and α2 = π/δ2
(δ2 = 1.2eV), potential barrier height E0 = 1eV and M= 10 points.
We also plot the exact parabolic barrier U(x) = E0 − kx2/2 curves,
with k= 4π2 m/(ℏ2α2), associated with the transmission (4) for α1

(solid pink) and α2 (dashed blue).

with a=−4
√

2mq∆

ℏ
√
M

. Solving the linear system coming
from (12)

ln(Q(En)) = ln

[
D(En)

1−D(En)

]
, (15)

we estimate the values for the points xm at which U(xm) = Em.
This linear system can be compactly written as Ax= b, with
x= (x1, . . . ,xM)t the column vector of unknowns. The coeffi-
cient matrix

A= a



1 0 0 . . . 0 0
√
2−

√
1 1 0 . . . 0 0

√
3−

√
2

√
2−

√
1 1 0 . . . 0

...
...

...
...

...
...

√
M−

√
M− 1

√
M− 1−

√
M− 2 . . . . . .

√
2−

√
1 1


(16)

is lower triangular and bn = ln
[

D(En)
1−D(En)

]
are the entries of

the column vector b. In figure 7 we represent the potential
barriers obtained from the modified WKB formula (15) for
the transmission coefficients (4) and (6), for two values of
α (δ=π/α) and ∆=E0. Note that the parabolic transmis-
sion coefficient DP in equation (4) is never zero, whereas the
linear transmission coefficient DL in equation (6) is zero for
E≤E0−δ, which means x±(E) =±∞. We avoid this diver-
gence by taking ∆=E0 < δ. We can appreciate in figure 7 the
different shape of the potential barriers coming from DP and
DL. In order to test the validity of the modified WKB for-
mula (11), we also plot in figure 7 the exact parabolic barrier

6
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Figure 8. Transmission coefficient D(E) from the experimental I-V curves in figure 5, together with their fittings to DL(E) = h
2q2 N

∂IL(E)
∂E

(black solid curve) and DP(E) = 1/(1+ e−α(E−E0)) (black dashed curve).

U(x) = E0 − kx2/2 curves associated with DP for α1 = π/δ1
(solid blue) and α2 = π/δ2 (dashed blue). Recall that the rela-
tionship between the ‘spring constant’ k of the parabola and the
parameter α is k= 4π2 m/(ℏ2α2). We see that formula (15)
accurately recovers the original parabolic potential barrier (in
blue). Therefore, we shall use this adapted semiclassical for-
mula to obtain the shape of potential barriers associated with
transmission coefficients coming from I-V curves.

In fact, starting from (1), with integration interval
[βqV,∞), assuming the Boltzmann approximation F(E)≃
exp(−E/kBT) and neglecting the left-going current compon-
ent flowing back from anode to cathode (second negative
addend in (1)), one can arrive at the formula [25]

D(βqV)≃
q
kBT
I+ 1

βq
∂I
∂V

N 2q2

h exp( µ
kBT

)
, (17)

which allows a numerical reconstruction of transmission coef-
ficients from experimental I-V data (inverse modeling). As
alreadymentioned, this formula has been used in [25] to obtain
the barrier profile for a soft-breakdown filament in electrically
stressed MOS capacitors. In our case, we shall neglect q

kBT
I

compared to 1
βq

∂I
∂V and we shall take Fermi level µ= 0, which

eventually seems to be a reasonable choice; note that formu-
las (7) and (8) depend on the relative value ϕ=E0−µ, but we
do not have direct access to the absolute values of the poten-
tial barrier height E0 nor to the Fermi energy µ. Therefore, we
shall use the simple formula

D(E)≃ h
2q2 N

∂I(E)
∂E

. (18)

This formula, when applied to IL in (8), reproduces the
piecewise linear transmission DL in equation (6) with a slight
smoothing due to temperature effects. However, the parabolic
transmission DP in equation (4) is not recovered from IP in
equation (7) since, as we already noticed, this formula is only
valid for low energies below E0. In figure 8, we compute the
transmission coefficientsD(E) from the I-V curves in figure 5.
The derivative is carried out numerically using the simple dif-
ference quotient I′(En)≃ (I(En+1)− I(En))/∆, with energy
step size ∆/M= 0.05eV, which gives a=−4.582 3nm−1, and
(2q2/h)−1 = 12 906.4A/eV. The result is compared with
DL(E) = h

2q2 N
∂IL(E)
∂E (black solid curve) and DP(E) = 1/(1+

7
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Figure 9. Potential barrier U(x) (in eV), against the longitudinal x-axis (in nanometers), associated with the transmission coefficient (18)
obtained from the experimental values of the I-V curves of figure 8 for four temperatures. The potential barriers obtained from DL and DP

are represented by solid and dashed black curves, respectively.

e−α(E−E0)) (black dashed curve). We choose the interval
E∈ [0,E0], for which D(E)∈[0, 0.5], approximately [remem-
ber figure 2]. From figure 8, we can conclude that, despite the
variability associatedwith experimental currentmeasurements
and their numerical derivatives, formula (18) still captures the
general behavior of the transmission coefficient, with a reas-
onable fitting to DL.

Inserting (18) into (12) and solving

ln[Q(En)]≃ ln

[
I′(En)

2q2 N
h − I′(En)

]
, n= 1, . . . ,M, (19)

for xn, we get in figure 9 the potential barriers from the exper-
imental values of the I-V curves of figure 5. We see that the
general effect of temperature is to lower the potential barrier
height E0, according to formula (9) for ϕ=E0 for zero Fermi
level µ= 0. In particular, we have ϕ(T1)≃ 1.5eV, ϕ(T2)≃
1.38eV and ϕ(T3)≃ ϕ(T4)≃ 1eV; this effect has also been
reported in [6]. Finally, the barrier width along the conduct-
ive filament constriction can be estimated by the relation [19]

tB =
ℏα
π

√
2ϕ
m

, (20)

where m is the electron effective mass and we are tak-
ing α=π/δ. Assuming that m(T1) = 0.1me, m(T2) = 0.2me,
m(T3) = 0.4me, m(T4) = 0.5me (these are reasonable electron
effective mass values for HfO2 [5]), and taking the fitting
values of δ from figure 5, we get tB(T1)≃ 1.1nm, tB(T2)≃
0.79nm, tB(T3)≃ 0.51nm and tB(T4)≃ 0.55nm, which are in
concordance with the barrier widths in figure 9. Another inter-
esting representative parameter is the radius of the constric-
tion, estimated by [5]

rB =
ℏz0√
2 mϕ

(21)

where z0 = 2.404 is the first zero of the Bessel function J0,
when considering the problem of a particle in an infinite cir-
cular well [26]. In our case, using the same electron effective
masses as before, we get rB(T1)≃ 1.2nm, rB(T2)≃ 0.89nm,
rB(T3)≃ 0.74nm and rB(T4)≃ 0.66nm, which are of the order
of the values of the barrier widths previously calculated. Note

8
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that the barrier profiles of figure 9 at low temperatures are
sharper than the barrier profiles at high temperatures, where
quantum effects get blurred. This blurring of the potential
is more apparent near the barrier top where filaments start
being destroyed. Moreover, we observe a barrier narrowing
at high temperatures for energies close to zero. This is due
to the fact that the transmission coefficient D(E) turns out to
be higher than expected at low energies and high temperat-
ures (see figure 8(c) and especially 8(d)). This narrowing of
the potential barrier does not occur when D(E) is an increas-
ing function of E, like it happens in figure 2 for the para-
bolic barrier (this is the usual case, but not the more general
one).

In any case, the barrier profile coming from experimental I-
V curves seems to slightly differ from the barrier profiles com-
ing from lineal DL and parabolic DP transmissions. Perhaps
the use of higher-degree continuous piecewise estimations of
D(E) provides a better fitting to the experiment. This is left for
future work.

5. Conclusions

An analytic expression for the non-linear current-voltage char-
acteristic of resistive memories based on filamentary con-
duction was presented. The model was developed within
the framework of Landauer’s theory for mesoscopic con-
ductors. The role of the confinement effect on the electron
wavefunction was highlighted through an in-depth investiga-
tion of different approximations for the tunneling coefficient.
In addition, the role of the charge reservoirs temperature on
the current magnitude was thoroughly analyzed. In agree-
ment with previous reports, it was found that the smearing
of the Fermi functions at the electrodes cannot explain by
itself the current increase observed for increasing temperat-
ures. Instead, a barrier-lowering effect can indeed explain the
experimental results. This is directly obtained by inverse mod-
eling of the tunneling current, without making any assump-
tion about the barrier profile as done in the past. The pro-
posed approach reveals that quantum effects cannot be ruled
out when discussing the electron transport mechanisms in this
kind of RRAM devices and that a classical simulation frame-
work only describes specific situations. It is important to high-
light that we have developed a current model including tem-
perature and quantum effects that can be employed for circuit
design and simulation.
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Appendix Polylogarithm functions

Replacing the piece-wise linear transmision coefficient (6)
into the Landauer–Buttiker equation (1) for the current I, we
arrive to

I=
2q
h

ˆ E0+δ

E0−δ

E− (E0 − δ)

2δ
(F(E−µ1)−F(E−µ2))dE

+
2q
h

ˆ ∞

E0+δ

(F(E−µ1)−F(E−µ2))dE. (A1)

If we write the Fermi–Dirac distribution function (2) as

F(E−µ) =
1

1+ exp(E−µ
kBT

)
=

1
1+ eϵ/z

, ϵ≡ E
kBT

, z≡ e
µ
kBT ,

and use that
ˆ ∞

0
F(E−µ)dE= kBT ln(1+ z)

and the definition of the dilogarithm or Spence’s function [28]

Li2(−z)≡−
ˆ ∞

0

ϵdϵ
1+ eϵ/z

=
∞∑
k=1

(−1)k
zk

k2
, (A2)

we can easily compute

ˆ E0+δ

E0−δ

(E−E0)F(E−µ)dE=−kBTδ(ln(1+ z+)+ ln(1+ z−))

+ k2B T2(Li2(−z−)−Li2(−z+)),
(A3)

with z± ≡ exp(−µ+E0±δ
kBT

), together with

ˆ E0+δ

E0−δ

F(E−µ)dE= 2δ+ kBT(log(1+ z−)− log(1+ z+))

and
ˆ ∞

E0+δ

F(E−µ)dE=−(E0 + δ)+ kBT log

(
e
E0+δ

kBT + z

)
.

Putting together all the previous partial calculations into (A1)
and using the definition of the cathode µ1 =µ+βqV and
anode µ2 = µ− (1−β)qV quasi-Fermi levels in terms of the
voltage V, we finally arrive at expression (8).

The dilogarithm or Spence’s function is also defined as [28]

Li2(z) =−
ˆ z

0

ln(1− t)
t

dt=−
ˆ 1

0

ln(1− zt)
t

dt (A4)
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and it turns out to be a particular case (n= 2) of the polylog-
arithm (Jonquière’s) function [29, 30]

Lin(−z) =− 1
(n− 1)!

ˆ ∞

0

ϵn−1dϵ
1+ eϵ/z

=
∞∑
k=1

(−1)k
zk

kn
, (A5)

which can be extended to non-integer n values. These func-
tions are common in quantum statistics, where they are also
called Fermi–Dirac or Bose–Einstein integrals. Moreover, in
quantum electrodynamics, they arise in the calculation of pro-
cesses represented by higher-order Feynman diagrams. In our
context, the trilogarithm Li3 function would arise when con-
sidering piecewise parabolic (quadratic spline) approxima-
tions to the transmission coefficient D(E). In general, a piece-
wise polynomial transmission coefficient D(E) of degree m
would give rise to a current I(V,T) (1) written in terms of
Lim+ 1.
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