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a b s t r a c t

The inclusion of non-Abelian U(N) internal charges (other than the electric charge)
into Twistor Theory is accomplished through the concept of ‘‘colored twistors’’ (ctwistors
for short) transforming under the colored conformal symmetry U(2N, 2N). In particu-
lar, we are interested in 2N-ctwistors describing colored spinless conformal massive
particles with phase space U(2N, 2N)/U(2N) × U(2N). Penrose formulas for incidence
relations are generalized to N > 1. We propose U(2N)-gauge invariant Lagrangians
for 2N-ctwistors and we quantize them through a bosonic representation, interpreting
quantum states as particle–hole excitations above the ground state. The connection
between the corresponding Hilbert (Fock-like with constraints) space and the carrier
space of a discrete series representation of U(2N, 2N) is established through a coherent
state (holomorphic) representation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A classical description of particles with non-Abelian charges was given long ago by Wong [45] in terms of equations of
motion, and the Lagrangian and Hamiltonian descriptions of the corresponding dynamics were formulated in [4] and [3].
Here we are interested in the formulation of a theory of particle (electromagnetic, weak and strong) interactions in twistor
terms. The Twistor Program was introduced by R. Penrose and coworkers [31–35] in the 1960s as an approach to the
unification of quantum theory with gravity. Penrose, Perjés [37–40], and Hughston [25] made some attempts to formulate
models of massive spinning particles with internal symmetries in Minkowski space in terms of M-twistors, proposing the
identification of the SU(2) and SU(3) symmetries appearing in theM = 2 andM = 3 twistor models with the symmetry for
leptons and hadrons, respectively. In particular, Hughston [25] studied the three-twistor model for low-lying barions and
mesons carrying electric charge, hypercharge, barion number and isospin. However, there is an absence of color (only
flavor) degrees of freedom. Also, the inherent chirality of twistor space seemed to be a handicap, until 2004 Witten’s
paper [44] on twistorial representations of scattering amplitudes showed how to overcome this issue when string theory
is introduced into twistor space. This entails a spur to pursue a reworking of particle interactions in twistor language and
it is the subject of much recent activity (see e.g. [24] and references therein).
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The Lagrangian mechanics of a massive spinning particle in Minkowski space, formulated in terms of 2-twistors, has
been revisited in [5,6,18,19,23] (see [12] for other formulations in terms of nonlinear sigma models on U(2,2)). The
sixteen real coordinates of two-twistor space are transformed into an enlarged relativistic phase space–time framework,
containing the standard relativistic phase space of coordinates supplemented by a six-parameter spin and a two-parameter
electric charge phase space, with constraints. Only the two-twistor case is adopted, without mention to the M(≥ 3)-
twistor descriptions. Actually, it is shown in [41] that only the two-twistor formulation can successfully describe a massive
particle in Minkowski space. Moreover, it is proved in [30] that the M-twistor expression of a particle’s four-momentum
vector reduces to the two-twistor expression for a massive particle or the one-twistor expression for a massless particle.
Therefore, they conclude that the genuine M-twistor description of a massive particle in four-dimensional Minkowski
space fails for the case M ≥ 3. This is a kind of ‘‘no-go’’ theorem that prevents the inclusion of internal charges (other
than the electric charge) into the model, as originally envisaged by [25,31–35,37–40].

In this article we pursue a way out to this no-go theorem by replacing standard twistors by colored twistors (‘‘ctwistors’’
for short), which transform under the colored conformal group U(2N, 2N), with N the number of colors of our particle.
Although strong interactions suggest N = 3, we shall leave N arbitrary all along the paper for the sake of generality,
comparing with the standard N = 1 case. Colored twistors have enough room to accommodate non-Abelian internal
degrees of freedom. In particular, we are interested in 2N-ctwistors describing colored spinless conformal massive
particles with 8N2-dimensional (‘‘complex colored Minkowski’’) phase space U(2N, 2N)/U(2N)×U(2N), which reduces to
the forward tube domain of the complex Minkowski space for N = 1. In this article we shall analyze the structure of the
colored conformal symmetry U(2N, 2N) (its discrete series representations) and the quantization of colored conformal
massive particles through a bosonic representation of colored twistors.

The organization of the paper is the following. In Section 2 we describe the colored conformal symmetry (Lie algebra
generators and coordinate systems) and its discrete series representations, which provides the carrier Hilbert space of our
colored conformal massive particle. In Section 3 we formulate nonlinear sigma model Lagrangians on U(2N, 2N)/U(2N)×
U(2N) (either as a phase or a configuration space) for colored conformal massive particles in terms of colored twistors.
They are U(2N)-gauge invariant and their quantization is accomplished in Section 4 in a Fock space (bosonic) picture
with constraints. The basic quantum states of the corresponding Hilbert space are constructed by repeated application of
particle–hole (‘‘exciton’’) ladder operators on the ground state. The connection between this bosonic representation and
the holomorphic representation offered at the end of Section 2 is achieved through a coherent state representation of the
corresponding quantum states. In Section 5 we briefly extend these ideas to the many-particle case, by formulating field
theory Lagrangian densities. Finally, Section 6 is devoted to conclusions and outlook.

2. Colored conformal symmetry and discrete series representation

In this Section we describe the underlying symmetry U(2N, 2N), Lie algebra structure, irreducible representations and
infinitesimal generators.

2.1. Colored conformal group and complex Minkowski space

Let us start by discussing the group theoretical backdrop, fixing notation and reminding some standard definitions.
The unitary group U(M) is a subgroup of the general linear group GL(M,C) fulfilling:

U(M) =
{
U ∈ GL(M,C) : U†U = UU†

= 1M
}
, (1)

where † means conjugate transpose and 1M is the M × M identity matrix (we use the fundamental or defining represen-
tation for the sake of convenience). The u(M) Lie algebra basis is then given by the M2 hermitian matrices [we use the
physicist convention for the exponential map U = exp(iλ), with λ hermitian and i the imaginary unit]:

(λij)kl = (δikδjl + δilδjk)/
√
2, j > i = 1, . . . ,M,

(λji)kl = −i(δikδjl − δilδjk)/
√
2, j > i = 1, . . . ,M,

λi =
1

√
i(i + 1)

diag(1, i. . ., 1,−i, 0, M−i−1. . . , 0), i = 1, . . . ,M − 1. (2)

[which generate su(M)] plus the M × M identity matrix 1M =
√
Mλ0 (the ‘trace’ or linear Casimir). The matrices λ

constitute a generalization of the usual Pauli matrices σ from SU(2) to SU(M) [more precisely, σ 1
=

√
2λ12, σ 2

=
√
2λ21

and σ 3
=

√
2λ1] plus the identity σ 0

=
√
2λ0. We shall denote all the U(M) Lie algebra generators collectively by

λa, a = 0, . . . ,M2
− 1, so that the Killing form is simply tr(λaλb) = δab, which is a generalization of the usual relation

tr(σµσ ν) = 2δµν for U(2) Pauli matrices.
This Lie-algebra structure is straightforwardly translated to the non-compact counterpart (for even M)

U(M/2,M/2) =

{
Ũ ∈ MatM×M (C) : Ũ†Γ Ũ = Γ

}
, (3)
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of pseudo-unitary matrices Ũ leaving invariant the M ×M Hermitian form Γ of signature (1, M/2. . ., 1,−1, M/2. . .,−1). The Lie
algebra is made of pseudo-hermitian matrices λ̃ fulfilling λ̃†

= Γ λ̃Γ ; actually, if λ is a (hermitian) generator of U(M),
then λ̃ = Γ λ is a (pseudo-hermitian) generator of U(M/2,M/2).

For the colored conformal symmetry U(2N, 2N) we will rather prefer sometimes a different Lie-algebra basis adapted to
the usual fundamental matrix realization of the SU(2, 2) conformal generators in terms of fifteen 4 × 4 matrices D,Mµν, Pµ
and Kµ (dilation, Lorentz, translation and acceleration, respectively) of the form

D =
1
2

(
−σ 0 0
0 σ 0

)
, Mµν

=
1
4

(
σµσ̌ ν − σ ν σ̌µ 0

0 σ̌µσ ν − σ̌ νσµ

)
,

Pµ =

(
0 σµ

0 0

)
, Kµ =

(
0 0
σ̌µ 0

)
.

(4)

where σ̌µ ≡ σµ = ηµνσ
ν [we are using the convention η = diag(1,−1,−1,−1) for the Minkowski metric] denote parity-

reversed Pauli matrices. Denoting the sixteen U(2, 2) generators {14,D,Mµν, Pµ, Kµ} collectively by {Tα, α = 0, . . . , 15},
a natural basis for the colored conformal symmetry U(2N, 2N) is the direct product

Tαa = Tα ⊗ λa, α = 0, . . . , 15, a = 0, . . . ,N2
− 1 (5)

of space–time U(2, 2) symmetry generators Tα times internal U(N) symmetry generators λa.
Let us define the colored twistor space C4N as the basic representation space of the colored conformal group U(2N, 2N).

Lines, planes, etc., in C4N lead to the notion of (ctwistor) flag manifolds, which can be regarded as homogeneous spaces
of U(2N, 2N). There is a one-to-one correspondence between orbits

Oλ̃ = {Λ = AdU (λ̃) = U λ̃U†, U ∈ U(2N, 2N)}, (6)

of the adjoint representation of U(2N, 2N) on a given Lie-algebra u(2N, 2N) generator λ̃ (usually in the Cartan subalgebra
of diagonal matrices), and cosets U(2N, 2N)/Hλ̃, with Hλ̃ the isotropy group (stabilizer) of λ̃. In particular, we are interested
in the Grassmann manifold of 2N planes in C4N , which is the colored conformal orbit

D4N2 = U(2N, 2N)/[U(2N) × U(2N)] (7)

of the adjoint action of U(2N, 2N) on the dilation generator

λ̃ = D̃ = D ⊗ λ0 ∝ (1, 2N. . ., 1,−1, 2N. . .,−1) (8)

with isotropy group HD̃ = U(2N) × U(2N) the maximal compact subgroup of U(2N, 2N). For example, for N = 1, the
conformal Cartan–Bergman domain D4 is eight-dimensional and corresponds to the phase space of a spinless positive
mass conformal particle [17,43]. A parametrization of the complex manifold D4N2 can be obtained as follows. Any group
element U ∈ U(2N, 2N) (in a given patch, containing the identity element) admits the Iwasawa decomposition (in block
matrix form)

U =

(
AC
B D

)
=

(
∆1 Z†∆2
Z∆1 ∆2

)(
V1 0
0 V2

)
, (9)

with

Z = BA−1, ∆1 = (AA†)
1
2 = (12N − Z†Z)−

1
2 , V1 = (AA†)−

1
2 A,

Z†
= CD−1, ∆2 = (DD†)

1
2 = (12N − ZZ†)−

1
2 , V2 = (DD†)−

1
2 D.

(10)

Note that V1, V2 ∈ U(2N) are unitary matrices and each 2N × 2N complex matrix Z defines an equivalence class
representative of the quotient U(2N, 2N)/U(2N)2 [See later on Remark 3.1, which relates this ‘‘gauge fixing’’ Z = BA−1 to
the solution of ‘‘colored’’ Penrose incidence equations]. Therefore, the colored conformal Cartan domain can be defined
through the positivity condition

D4N2 = {Z ∈ Mat2N×2N (C) : 12N − Z†Z > 0}. (11)

The Shilov boundary of D4N2 (that is, those points fulfilling Z†Z = 12N ) is then the 4N2-dimensional ‘‘compactified colored
Minkowski space’’ U(2N). Actually, for N = 1, the group manifold of U(2) is the compactification (S3

× S1)/Z2 of the
four-dimensional Minkowski space R4.

Let us introduce a suitable set of 4N2 complex (colored Minkowski) coordinates zµa on D4N2 using the U(2N) Lie algebra
matrices σµ ⊗ λa as

Z = zµaσµ ⊗ λa, zµa =
1
2
tr(Zσµ ⊗ λa), µ = 0, . . . , 3, a = 0, . . . ,N2

− 1. (12)

The particular case zµ = zµ0 provides a coordinate system of the eight-dimensional Cartan domain D4, which can be
mapped onto the forward tube domain

T4 = {W = X + iY ∈ Mat2×2(C) : Y > 0} (13)
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of the complex Minkowski (phase) space C4, with X = xµσµ (four-position) and Y = yµσµ (four-momenta) hermitian
matrices. To be more precise, position xµ and momenta yν are conjugated but not ‘‘canonically conjugated’’. However, we
can define a proper canonically conjugated four-momentum as pν = yν/y2, which gives the desired (canonical) Poisson
bracket {xµ, pν} = ηµν , when we look at T4 as a Kähler manifold with a closed (symplectic) two form (see [12] for more
details). From this point of view, the positivity condition Y > 0 ⇔ y0 > ∥y⃗∥ is related to the positive energy condition
p0 > ∥p⃗∥. The mapping from D4 onto T4 is the four-dimensional analogue of the usual Möbius map z → (z+i)/(iz+1) from
the unit disk onto the upper half-plane in two dimensions. We can extend this map (also denoted by Cayley transform)
to D4N2 and T4N2 by defining the ‘‘colored Cayley transform’’ and its inverse as

Z → W = i(12N − Z)(12N + Z)−1,

W → Z = (12N − iW )−1(12N + iW ). (14)

For convenience, we shall rather prefer the Cartan domain D4N2 to the forward tube domain T4N2 picture, for the phase
space of our colored massive conformal particle, although we perhaps have more physical intuition in T4 than in D4 for
N = 1. Note that in the phase space T4N2 ∋ W = X + iY of our colored conformal spinless massive particle, we have
4N2 ‘‘colored position’’ xµa = tr(Xσµ ⊗ λa)/2 and 4N2 ‘‘colored momentum’’ yµa = tr(Yσµ ⊗ λa)/2 coordinates. Pure
spacetime coordinates correspond to xµ = xµ0, which transform under the pure conformal transformations generated by
Tα0 in (5). The remainder generators mix spacetime and internal degrees of freedom, according to a ‘‘colored Möbius’’
transformation of phase-space coordinates zµa under general colored conformal transformations U [see later on Eq. (21)].
Note that this colored Möbius transformation is nonlinear, unlike other approaches like [3,4] (also non conformal), which
introduce coordinates xµi = (xµ, θi), i = 1, . . . ,N , to describe classical colored particles, where θi are Grasssmann variables
transforming linearly under the fundamental representation of U(N), thus not allowing an interesting mixture between
spacetime and internal degrees of freedom, like our approach does. The counting of phase-space degrees of freedom is
also different in both approaches; indeed, we have much more room in our 8N2-dimensional phase space.

2.2. Discrete series representation of the colored conformal group

Let us now discuss the structure of the Hilbert space for our colored conformal massive particle as the carrier space
of a unitary irreducible representation of the colored conformal group. Let us start by considering the Hilbert space
L2(U(2N, 2N), dµ) of square integrable complex functions ψ(U) on U(2N, 2N) ∋ U with invariant scalar product

(ψ |ψ ′) =

∫
ψ(U)ψ ′(U)dµ(U), dµ(U) = det(12N − Z†Z)−4N

|dZ |dv(V1)dv(V2), (15)

given through the invariant Haar measure dµ(U) on U(2N, 2N), which has been decomposed as the product of the
invariant measure on D4N2 (|dZ | denotes the standard Lebesgue measure on C4N2

) and the measure dv on U(2N)×U(2N),
according to the Iwasawa decomposition (9). The colored conformal group is unitarily represented in L2(U(2N, 2N), dµ)
by the left action [U(U ′)ψ](U) = ψ(U ′−1U). However, this representation is highly reducible. As we want to restrict
ourselves to the quotient D4N2 = U(2N, 2N)/U(2N)2, we can choose ψn(U) = det(A)−n [for the decomposition (9)] as
the lowest-weight state, where n is an integer that will eventually label the representation (for N = 1, n corresponds to
the scale or conformal dimension, also related to the conformal invariant mass). The exponent of det(A) is chosen to be
negative for irreducibility reasons (see below) and it is not a problem since det(A) ̸= 0. Under U ′

∈ U(2N)2 (the maximal
compact subgroup), the lowest-weight state ψn remains invariant

ψn(U ′−1U) = det(V †
1 A)

−n
= det(V1)nψn(U), U ′

=

(
V1 0
0 V2

)
, (16)

up to an irrelevant phase det(V1)n [note that, in this sense, there are other options like det(D)−n for the lowest-weight
state]. Moreover, according to (10), the lowest-weight state modulus

|ψn(U)|2 = det(AA†)−n
= det(12N − Z†Z)n

can also be just written in terms of coordinates Z ∈ D4N2 . Under a general colored conformal transformation U ′
∈

U(2N, 2N) the lowest-weight state transforms as

[U(U ′)ψn](U) = ψn(U ′−1U) = det(A′†A + B′†B)−n
= det(A′†

+ B′†Z)−nψn(U), (17)

where we have used that U ′−1
= Γ U ′†Γ =

(
A′†

−B′†

−C ′† D′†

)
and the definition of Z = BA−1 in (10). The factor

det(A′†
+ B′†Z)−n plays the role of a multiplier and its expansion in holomorphic polynomial functions φ(Z) requires

homogeneous polynomials of all order degrees (as long as n > 0), thus implying an infinite-dimensional representation of
U(2N, 2N), as required by unirreps of non-compact groups (see [13] for a relation of this expansion with the MacMahon–
Schwinger’s Master Theorem). In other words, we have chosen det(A)−n [and not det(A)n], with n > 0, for unitarity
reasons.
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The set of functions {ψU
n = U(U)ψn,U ∈ U(2N, 2N)} in the orbit of the fiducial vector ψn under U(2N, 2N) is usually

referred to as a coherent state system. Note that ψU ′

n (U) can also be written as

ψn(U ′−1U) = ψn(U ′)Kn(Z ′†, Z)ψn(U), Kn(Z ′†, Z) = (12N − Z ′†Z)−n, (18)

where ψn(U ′) = det(A′†)−n, Z ′†
= (B′A′−1)† and Kn(Z ′†, Z) is the so called Bergman kernel of D4N2 . This suggests us to

restrict ourselves to functions ψ(U) = φ(Z)ψn(U), where φ(Z) denotes an arbitrary analytic holomorphic function. Since
|ψn(U)|2 = det(12N − Z†Z)n, the scalar product (15) on the whole group U(2N, 2N) can be restricted to D4N2 as

(ψ |ψ ′)
v(U(2N))2

cn =

∫
D4N2

φ(Z)φ′(Z)dµN
n(Z, Z

†) ≡ ⟨φ|φ′
⟩, (19)

where v(U(2N)) denotes the total volume of U(2N) and

dµN
n(Z, Z

†) = cn|ψn(U)|2 det(12N − Z†Z)−4N
|dZ | = cn det(12N − ZZ†)n−4N

|dZ | (20)

denotes the measure on D4N2 . The constant (the formal degree)

cn = π−4N2
2N∏
j=1

(n − j)!
(n − 2N − j)!

has been introduced to make the unit function φ(Z) = 1 normalized (see [28,36]).
Let us consider then the Hilbert space Hn(D4N2 ) of square integrable holomorphic (wave) functions φ(Z) on the phase

space D4N2 with scalar product ⟨φ|φ′
⟩ given in terms of the measure dµN

n. Finiteness of this measure requires n ≥ 4N .
Taking into account that Z = BA−1, the group action U ′′

= U ′−1U induces a ‘‘colored Möbius’’ transformation of a point
Z ∈ D4N2 under a colored conformal translation U ′ as:

Z
U ′

→ Z ′
= B′′A′′−1

= (D′†Z − C ′†)(A′†
− B′†Z)−1. (21)

The regular representation U on L2(U(2N, 2N), dµ) can then be straightforwardly projected onto Hn(D4N2 ) as [Un(U)φ](Z)
≡ [U(U)ψ](U)/ψn(U) for ψ(U) = φ(Z)ψn(U). Let us summarize the previous construction in the following proposition.

Proposition 2.1. For any colored conformal transformation U =

(
A C
B D

)
∈ U(2N, 2N), the following action

φ(Z)
U
→ [Un(U)φ](Z) = det(A†

+ B†Z)−nφ
(
(D†Z − C†)(A†

− B†Z)−1)
≡ φU (Z), (22)

defines a unitary irreducible square integrable (discrete series) representation Un of U(2N, 2N) on the Hilbert space Hn(D4N2 )
of analytic functions φ(Z) on the colored Cartan domain D4N2 with integration measure dµN

n(Z, Z
†).

Proof. It is easy to see that Un(U)Un(U ′) = Un(UU ′) (group homomorphism). Irreducibility is related to the fact that the
constant function φ(Z) = 1 is mapped to det(A†

+ B†Z)−n (the multiplier), which can be expanded in a complete basis
of homogeneous polynomials of arbitrary homogeneity degree in the 4N2 complex entries of Z (see [13] for a relation of
this expansion with the MacMahon–Schwinger’s Master Theorem). In order to prove unitarity, i.e. ⟨φU |φU ⟩ = ⟨φ|φ⟩, we
can use the constraints UΓ U†

= U†Γ U = Γ to realize that the weight function det(12N − ZZ†)n−4N and the Lebesgue
measure |dZ | transform as

det(12N − Z ′Z ′†)n−4N
= |det(A†

+ B†Z)|−2(n−4N) det(12N − ZZ†)n−4N

and

|dZ | = |dZ ′
||det(A†

+ B†Z)|8N ,

respectively, for Z ′
= (D†Z − C†)(A†

− B†Z)−1. Therefore, the Jacobian determinant |det(A†
+ B†Z)|8N , the multipliers

product |det(A†
+ B†Z)|−2n and the weight function factor |det(A†

+ B†Z)|2(n−4N) exactly compensate each other to give
the isometry relation ⟨φU |φU ⟩ = ⟨φ|φ⟩. ■

For completeness and future use, let us provide a differential realization of the colored conformal generators (5)
on holomorphic functions φ ∈ Hn(D4N2 ). Let us denote by Mn

U (Z) = det(A†
+ B†Z)−n the multiplier in (22), so that

φU (Z) = Mn
U (Z)φ(Z

′). For one-parameter (t) group translations U(t) = eitT
αa

generated by a colored conformal generator
Tαa in (5), the associated conformal differential operator is defined by its action on holomorphic functions as

T αaφ(Z) = −i
dφU (Z)

dt

⏐⏐⏐⏐
t=0

= −i
dMn

U (Z)
dt

⏐⏐⏐⏐
t=0
φ(Z) − i

dz ′

µb

dt

⏐⏐⏐⏐
t=0

∂

∂zµb
φ(Z), (23)
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where we are using coordinates zµb =
1
2 tr(Zσ

µ
⊗λb) and the Einstein summation convention. For example, the differential

operator associated to the colored dilation

Da
= D ⊗ λa =

1
2

(
−σ 0

⊗ λa 0
0 σ 0

⊗ λa

)
is

Da
= −n tr(λa) −

1
4
tr
(
{σ 0

⊗ λa, Z}σµ ⊗ λb
) ∂

∂zµb
, (24)

where {A, B} = AB + BA means the anticommutator. Note that, according to the nomenclature adopted in this article,
tr(λa) =

√
2Nδa,0 since λa are traceless except λ0 = 12N/

√
2N . The differential operator associated to colored translations

is

Pνa = Pν ⊗ λa =

(
0 σ ν ⊗ λa

0 0

)
→ Pνa =

∂

∂zνa
. (25)

For colored accelerations

K νa = K ν ⊗ λa =

(
0 0

σ̌ ν ⊗ λa 0

)
we have

Kνa = 2n zνa −
1
2
tr
(
Z σ̌ ν ⊗ λaZσµ ⊗ λb

) ∂

∂zµb
, (26)

where zνa =
1
2 tr(Z σ̌

ν
⊗ λa) = ηνµzµa. The expression of colored Lorentz differential operators Mµνa is a bit more bulky.

Their aspect gets simpler for N = 1, acquiring the more familiar form

D = −n − zµ∂µ, Pµ = ∂µ, Kµ = −z2Pµ − 2zµD, Mµν
= zµ∂ν − zν∂µ, (27)

where ∂µ = ∂/∂zµ and z2 = ηµνzµzν = zνzν . Note that commutation relations get unaltered under the conformal ‘‘Born
reciprocity principle’’ [12] D ↔ −D, Pµ ↔ Kµ.

3. Twistor nonlinear sigma models for conformal massive colored particles

In this section we shall formulate nonlinear sigma models on the Grassmannian D4N2 , either as a configuration space
or a phase space of a colored conformal massive particle, in terms of colored twistors (‘‘ctwistors’’ for short). Let us define
M-ctwistors ζ as a juxtaposition of M (column) linearly independent 1-ctwistors ζj = (a1,j, . . . , a2N,j, b1,j, . . . , b2N,j)t ∈

C4N , j = 1, . . . ,M , that is:

ζ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ζ1 . . . ζM

a11 . . . a1,M
...

...

a2N,1 . . . a2N,M
b11 . . . b1,M
...

...

b2N,1 . . . b2N,M

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (28)

Here ctwistors ζj are coordinatized by a pair of 2N-component colored spinors a and b, resembling standard two-
component ‘‘undotted and dotted’’ (or chiral and anti-chiral) spinors, in van der Waerden notation, respectively
(see later on Remark 3.1 for more information about the traditional van der Waerden notation and the generalization
of Penrose incidence relations). For N = 1, we know [43] that C4 1-twistors describe massless particles, whereas
2-twistor compounds describe conformal massive particles. For standard 1-twistors, the quantity ζ †Γ ζ is U(2, 2) invariant
and represents the helicity s of the corresponding massless particle. We are interested in the massive case, therefore, we
shall set M = 2N in the sequel. 2N-ctwistors are subject to the constraint ζ †Γ ζ = κ12N , where sgn(κ) = ±1 makes
reference to the two open orbits D+

4N2 and D−

4N2 that the complex pseudo-Grassmannian manifold D4N2 of 2N-planes in
C4N2

carries. The quantum counterpart of this constraint will fix the value of the conformal scale n [see later on Eq. (51)].
This constraint is preserved by transformations ζ → UζV , with U ∈ U(2N, 2N) and V ∈ U(2N). More explicitly

ζ =

(
A
B

)
→ UζV =

(
A′ C ′

B′ D′

)(
A
B

)
V =

(
(A′A + C ′B)V
(B′A + D′B)V

)
. (29)

Let us motivate the appearance of D4N2 from constrained Lagrangian mechanics of 2N-ctwistors ζ , either as a
configuration or a phase space of a massive colored conformal particle.
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3.1. U(2N) gauge twistor model and geodesic motion on D4N2

We make ζ depend on time ζ (t) and start considering the Lagrangian

L̃ = tr(
dζ †

dt
Γ

dζ
dt

). (30)

This Lagrangian is invariant under rigid transformations ζ → UζV , U ∈ U(2N, 2N), V ∈ U(2N). Now we want to promote
rigid right transformations V ∈ U(2N) to local (gauge) transformations V (t) depending arbitrarily on time t . This means
that the configuration space is restricted to the Grassmannian space of all 2N-dimensional linear subspaces of C4N . The
connection with the coset D4N2 = U(2N, 2N)/U(2N)2 is the following. We can think of colored conformal transformations

U =

(
A C
B D

)
= (ζ |ζ⊥), ζ =

(
A
B

)
, ζ⊥ =

(
C
D

)
, (31)

as a juxtaposition of two perpendicular (ζ †Γ ζ⊥ = 0) 2N-ctwistors ζ and ζ⊥ fulfilling the constraint ζ †Γ ζ = 12N and
ζ

†
⊥
Γ ζ⊥ = −12N , for Γ with signature (1, 2N. . ., 1,−1, 2N. . .,−1). We make this choice for the sake of convenience.
The coset representative (10) obtained from the Iwasawa decomposition (9) then provides a gauge fixing given by

ζ =

(
12N
Z

)
(12N − Z†Z)−1/2, Z = BA−1 (32)

Therefore, the 2N-ctwistor ζ is no longer a set of 2N independent ctwistors ζj, but only carries 8N2 real degrees of freedom
[the 4N2 complex entries zij of Z].

Remark 3.1 (Gauge Fixing and Colored Penrose Incidence Equations). As promised, let us make a brief aside about the relation
between our notation and the traditional van der Waerden notation, together with an interpretation of the gauge fixing
(32) as a generalization of the traditional Penrose incidence relations. A two-twistor compound describing a conformal
massive particle (N = 1) is a juxtaposition ζ = (ζ1|ζ2) of two (column) 1-twistors ζ1 = (π̄α̇, ωα)t and ζ2 = (η̄α̇, λα)t ,
which in turn are defined by a pair of complex Weyl spinors (dotted and undotted spinor indices correspond to positive
and negative chirality; we are using the notation of, for example, Ref. [19]). Arranging the two-twistor compound as:

ζ = (ζ1|ζ2) =

(
A
B

)
, A =

(
π̄1̇ η̄1̇
π̄2̇ η̄2̇

)
, B =

(
ω1 λ1

ω2 λ2

)
, (33)

the gauge fixing Z = BA−1 in (32) straightforwardly provides the composite complex Minkowski coordinates zµ =
1
2 tr(Zσ

µ) described by the well-known Penrose formula

Z = BA−1
→ zαβ̇ =

ωα η̄β̇ − λαπ̄ β̇

det(A)
, det(A) = π̄ α̇ η̄α̇ ̸= 0, (34)

where we rise and lower dotted and undotted indices with the two-dimensional Levi-Civita symbol, namely π̄ α̇ = ϵα̇β̇ π̄β̇ .
The Penrose incidence relations simply state that

B = ZA ⇔ ωα = zαβ̇ π̄β̇ , λ
α

= zαβ̇ η̄β̇ . (35)

Therefore, using our compact matrix notation, Penrose formula and incidence relations are straightforwardly generalized
to the colored (N > 1) case simply as Z = BA−1 and B = ZA, respectively. The Grassmannian space D4N2 =

U(2N, 2N)/U(2N)2 of all 2N-dimensional linear subspaces of C4N (the so called null-planes for N = 1) are parametrized by
the composite colored complex Minkowski coordinates zµa in (12). Once stated the relation to standard spinorial geometry,
we shall rather continue with our compact matrix notation. ■

Although we want ζ (t) and ζ (t)V (t) to be (gauge) equivalent, the Lagrangian (30) is not U(2N)-gauge invariant.
In order to make it gauge invariant, we must perform minimal coupling, replacing dζ/dt by the covariant derivative
Dζ/dt = dζ/dt − iζA, with A a U(2N)-gauge potential transforming as A → V †AV − iV †dV/dt . Therefore, the Lagrangian

L = tr[
(
Dζ
dt

)†

Γ
Dζ
dt

], (36)

becomes U(2N)-gauge invariant. From the equations of motion, and given that A is an auxiliary (not a dynamical) field,
we obtain A = −iζ †Γ dζ/dt = idζ †/dtΓ ζ . Using this, the covariant derivative can be written as Dζ/dt = P(ζ , ζ †)dζ/dt
with P(ζ , ζ †) = (12N −ζ ζ †Γ ) a 2N×2N projector fulfilling Pζ = 0 (it projects onto the orthogonal subspace to ζ spanned
by ζ⊥) and P†

= Γ PΓ , P†Γ P = Γ P . With this information, the Lagrangian (36) can be equivalently written as

L = tr
[
dζ †

dt
Γ P(ζ , ζ †)

dζ
dt

]
=

1
2
tr
(
dT
dt

dT
dt

)
, T = ζ ζ †Γ , (37)
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where we have used that d
dt (ζ

†Γ ζ ) = 0 to derive the right-hand part of (37). The last expression shows the Lagrangian
written in terms of the gauge invariant quantities T. Using a basis {λ̃a = Γ λa, a = 0, . . . , 16N2

− 1} of 2N × 2N pseudo-
hermitian matrices λ̃a of the colored conformal Lie algebra u(2N, 2N), with λa the generalized U(4N) Pauli matrices defined
after (2), we can expand T in this basis with coefficients (the generalized Hopf map)

T = Taλ̃
a, Ta

= tr(Tλ̃a) = tr(ζ ζ †λa), a = 1, . . . , 16N2
− 1, (38)

where Ta
= δ̃abTb and δ̃ab denotes the U(2N, 2N) Killing form

δ̃ab = tr(λ̃aλ̃b) = tr(λaΓ λbΓ ) = diag(1, 8N2
. . ., 1,−1, 8N2

. . .,−1) (39)

in a specific ordering [remember that we have tr(λaλb) = δab]. Note that the gauge invariant quantities Ta are constrained
by

tr(TT) = tr(ζ ζ †Γ ζ ζ †Γ ) = tr(12N ) = 2N = Taδ̃
abTb, (40)

where we have used the constraint ζ †Γ ζ = 12N . Therefore, the Lagrangian (37) can also be written as

L =
1
2
dTa

dt
δ̃ab

dTb

dt
. (41)

This expression resembles the usual Lagrangian for a free particle on the M-sphere SM , L =
1
2 ẋaδ

abẋa, with the constraint
xaδabxb = R2 (the squared radius), replacing the Euclidean δ by the non-Euclidean δ̃ metric. Therefore, the Lagrangian (37)
describes geodesic motion on D4N2 . Another equivalent expression for (37) is given in terms of the minimal coordinates
Z ∈ D4N2 though the gauge fixing (32) as

L = tr
(
∆2

2
dZ
dt
∆2

1
dZ†

dt

)
, (42)

where we have used that ∆2
2Z = Z∆2

1 with ∆1,2 in (10).
Note that, the colored conformal domain D4N2 here plays the role of a configuration space, rather than a phase space.

For N = 1, the eight-dimensional conformal domain D4 has been proposed in [26] to replace the four-dimensional
Minkowski space–time at short distances (at the microscale or high energies). This approach has to do with Born’s
reciprocity principle [7,8], which conjectures that the basic underlying physical space is the eight-dimensional {xµ, pµ}
phase space and replaces the Poincaré line element ds2 = dxµdxµ by the Finslerian ds̃2 = dxµdxµ + ℓ4mindpµdp

µ/h̄2,
where ℓmin is a minimal length (maximal momentum transfer). Interesting physical phenomena like dark matter and
black hole cosmology have been reinterpreted as an effect of Born’s reciprocal relativity theory [16]. The adaptation of
Born’s reciprocity principle to conformal relativity was also put forward in [12], and an explanation of the Unruh effect
(vacuum radiation in accelerated frames) as a spontaneous breakdown of the conformal symmetry U(2, 2) was given
in [1,15].

3.2. Berry Lagrangian and colored conformal massive particles

In this article we are more interested in the colored complex Minkowski space D4N2 as a phase space, rather than a
configuration space. This construction can also be achieved by considering U(2N)-gauge invariant ctwistor Lagrangians,
but this time linear in dζ/dt (that is, singular Lagrangians) in a Berry-like form

LB = i tr(ζ †Γ
dζ
dt

) = −tr(A). (43)

One can prove that (43) is also invariant under rigid colored conformal transformations, ζ → Uζ ,U ∈ U(2N, 2N), and
semi-invariant under local (gauge) transformations ζ (t) → ζ (t)V (t), V (t) ∈ U(2N), up to a total derivative

LB → LB + i
d tr(ln V )

dt
. (44)

This Lagrangian encodes the basic Poisson brackets. The fact that ∂LB/∂ζ̇ = iζ †Γ implies that conjugate momenta of ζ
are π = iζ †Γ , whereas π†

= ∂LB/∂ζ̇ †
= 0. Singular Lagrangians can be approached by Dirac formalism, treating π†

= 0
as a constraint. We shall not enter into details and we will just state the essential Poisson brackets among phase space
variables ζ = (ζij) and ζ †

= (ζ̄ji) as

{ζij, πkl} = δikδjl,→ {ζij, ζ̄kl} = −iδikΓjl, (45)

which endow ctwistors with a canonical symplectic structure. Under these Poisson brackets, the conserved quantities Ta

in (38), associated to the colored conformal symmetry, close the u(2N, 2N) Lie algebra commutation relations

{Ta,Tb
} = tr(T[λ̃a, λ̃b]). (46)
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The standard quantization mapping ζ → ζ̂ assigns bosonic annihilation and creation quantum operators to the classical
ζ and ζ̄ phase space quantities. However, due to the indefinite character of Γ , we have to split ζ̂ in the following form.
Actually, a direct application of the standard canonical quantization rules states that

[ζ̂ij, ζ̂
†
j′ i′ ] = i ˆ

{ζij, ζ̄i′j′} = δii′Γjj′ . (47)

Traditionally, gauge invariance and indefinite metrics create difficulties in the quantization process (ghosts, negative
energy, etc.). In our case, the solution resembles the original Dirac’s idea of reinterpreting some annihilation operators of
particles as creation operators of holes. In our case we see that commutations relations for degrees of freedom ζ̂ij with
j > 2N have the reverse sign as desired for standard bosonic commutation relations are [â, â†

] = 1. The solution is to let
ζ̂ij represent annihilation operators â for j ≤ 2N , whereas ζ̂ij represent creation operators b̂† for j > 2N . Otherwise stated,
to set the quantization mapping as

ζ̂ =

(
Â
B̂†

)
, Â = (âij), B̂ = (b̂ij), i, j = 1, . . . , 2N. (48)

This is just a convention, as we could also have arrived to the choice ζ̂ †
= (Â B̂†) by changing the sign of the Lagrangian.

Compare this splitting of ζ̂ with the separation of the classical ctwistor (28) into a pair of colored conjugate (dotted and
undotted) spinors a and b. What we are saying is that undotted spinors have a ‘‘hole’’ nature (with this convention) in
the quantization process. Extra constraints have to be imposed [see later on Eq. (51)] stating that, in particular, the total
excess of particle over hole quanta must be fixed. Commutation relations are invariant under colored conformal group
transformations ζ̂ → U ζ̂ , U ∈ U(2N, 2N). In fact, this quantization mapping is closely related to the Jordan–Schwinger
oscillator representation of the pseudo-unitary u(p, q) Lie algebra generators [see later on Eq. (50)].

4. Bosonic representation of a colored conformal massive quantum particle

Let us construct the Hilbert space and the basic observables of a colored conformal massive quantum particle in a
different (Fock space) picture to the holomorphic representation offered at the end of Section 2. Both pictures are related
by the coherent state representation of a given quantum state (see later in this section).

We have two kinds of quanta: a-type and b-type; due to their conjugated nature inside ζ̂ , we shall refer to them
sometimes as ‘‘particle and hole quanta’’, respectively. The Fock space is generated from a normalized vacuum |0⟩
(annihilated by âij and b̂ij) by repeated action of creation operators

|na
⟩ ⊗ |nb

⟩ =

2N∏
i,j=1

(â†
ij)

naij (b̂†
ij)

nbij√
na
ij!n

b
ij!

|0⟩, (49)

where na,b denote 2N ×2N matrices with integer entries na,b
ij (the occupancy numbers of a- and b-type bosons). A unitary

representation of the colored conformal group in Fock space is then given by the oscillator (Jordan–Schwinger) realization
of the 16N2 colored conformal generators Tαa in (5), given by

T̂αa = −tr(ζ̂ †Γ Tαaζ̂ ), (50)

which is the quantum counterpart of the classical Hopf map (38). This oscillator realization is in fact extensible to general
U(p, q) [2,9,10,42] and it became popular after [22], who discussed the use of U(6, 6) to classify hadrons; in this case
barions and antibarions belong to mutually conjugate representations with respect to U(6). Using commutation relations
for creation and annihilation operators, one can verify that [T̂αa, T̂βb] = −tr(ζ̂ †Γ [Tαa, Tβb]ζ̂ ), which implies that (50)
defines a Lie algebra representation of u(2N, 2N) in the Fock space defined by (49). All colored conformal generators T̂αa
commute with T̂ 00

= tr(ζ̂ †Γ ζ̂ ) (the linear Casimir) and, therefore, the representation is reducible. In order to reduce it,
we have to fix the value of

ζ̂ †Γ ζ̂ = Â†Â − B̂B̂†
= 2Nc12N , (51)

which is the quantum counterpart of the ctwistor constraint ζ †Γ ζ = κ12N (the helicity for 1-twistors) defined after (28).
The value of the constant c will be related to the conformal or scale dimension n, introduced after (15), and the number
of colors N in Proposition 4.1. Taking into account that B̂B̂†

= B̂†B̂ + 2N12N and the constraint (51), the linear Casimir is

T̂ 00
= −tr(ζ̂ †Γ ζ̂ ) = 4N2

−

2N∑
i,j=1

n̂a
ij − n̂b

ij = −4N2c, (52)

which says that the total excess of particle over hole quanta is always a fixed quantity na
−nb

= 4N2(c +1). The constant
c is chosen so that the excess na

− nb is an integer. Therefore, particle and hole quanta must be created and annihilated
by pairs (‘‘excitons’’). Actually, the oscillator representation of the colored dilation operator D in (4)

D0
=

1
2

(
−σ 0 0
0 σ 0

)
⊗ λ0 → D̂0

=
1

2
√
2N

tr(ζ †ζ ) =
1

2
√
2N

tr(Â†Â + B̂B̂†), (53)
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measures the total number (na
+ nb)/2 of excitons (particle–hole pair quanta ab). The oscillator representation of colored

accelerations

K νa =

(
0 0

σ̌ ν ⊗ λa 0

)
→ K̂ νa = tr(B̂σ̌ ν ⊗ λaÂ) (54)

annihilates excitons, whereas the oscillator representation of colored translations

Pνa =

(
0 σ ν ⊗ λa

0 0

)
→ P̂νa = −tr(Â†σ ν ⊗ λaB̂†) (55)

creates excitons. Excitons are not exactly bosons, since the basic commutations relations between creation and annihi-
lation operators of excitons,

[
K̂µ, P̂ν

]
= 2(ηµν D̂ + M̂µν), include corrections in the number of particle–hole pairs arising

from the interaction between excitons.
We can choose the ground state |ψn⟩ to be made of either particle (a) or hole (b) quanta, leading to two different

(inequivalent) representations. Let us choose particle quanta this time for the content of our ground state (the other
option is similar). The structure of the ground state |ψn⟩ is the Fock space counterpart of the lowest-weight state
ψn(U) = det(A)−n defined after (15). Its structure is described in the following Proposition.

Proposition 4.1. Let n = 2N(c + 1), with c > −1, an integer. The Fock state

|ψn⟩ =
det(Â†)n

N 1/2
n,N

|0⟩, Nn,N =

2N∏
q=1

(q)n, (56)

is made of 2Nn = 4N2(c+1) particle (a-type) quanta and fulfills the constraints ζ̂ †Γ ζ̂ |ψn⟩ = 2Nc12N |ψn⟩ given in (51). Nn,N
is a normalization constant, such that ⟨ψn|ψn⟩ = 1, given in terms of the Pochhammer symbol (q)n = q(q+1) . . . (q+n−1).
Therefore, |ψn⟩ can be taken as the ground (lowest weight) state of a representation of the colored conformal group.

Proof. On the one hand, looking at the structure of

det(Â†) =

∑
σ∈S2N

sgn(σ )
2N∏
j=1

â†
j,σj

=

2N∑
i1,...,i2N=1

εi1,...,i2N

2N∏
j=1

â†
j,ij
,

where S2N is the symmetric group of degree 2N and ε is the Levi-Civita symbol, it is clear that det(Â†)n|0⟩ is made of
4N × n = 4N2(c − 1) particle quanta. On the other hand, the basic boson commutation relations [â, â†

] = 1 imply that
[â, F (â†)] = F ′(â†) or âF (â†)|0⟩ = F ′(â†)|0⟩, where F ′ denotes the formal derivative with respect to the argument. Let us
simply write â†

= a† and â = ∂/∂a†. Therefore

(Â†Â)ij det(Â†)n|0⟩ =

2N∑
k=1

a†
ki
∂

∂a†
kj

det(Â†)n|0⟩

= n det(Â†)n−1
2N∑
k=1

a†
ki
∂

∂a†
kj

det(Â†)|0⟩.

Antisymmetry implies that
2N∑
k=1

a†
ki
∂

∂a†
kj

det(Â†) = δij det(Â†).

Therefore, Â†Â|ψn⟩ = n12N |ψn⟩ and |ψn⟩ fulfills the constraint (51), that is

ζ̂ †Γ ζ̂ |ψn⟩ = (Â†Â − B̂†B̂ − 2N12N )|ψn⟩ = 2Nc12N |ψn⟩.

It remains to prove that the norm of det(Â†)n|0⟩ is given by the quantity N 1/2
n,N in (56). We proceed by mathematical

induction. Firstly we prove that N1,N = (2N)!. Indeed,

⟨0| det(Â) det(Â†)|0⟩ =

∑
σ∈S2N

1 = (2N)!.

Now we assume that ⟨0| det(Â)n det(Â†)n|0⟩ = Nn,N and we shall prove that

⟨0| det(Â)n+1 det(Â†)n+1
|0⟩ = Nn+1,N .

Indeed, it can be shown that

⟨0| det(Â)n+1 det(Â†)n+1
|0⟩ = (n + 1)2N⟨0| det(Â)n det(Â†)n|0⟩.
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The proof is a bit clumsy and we shall restrict ourselves to the more maneuverable N = 1 case, which grasps the essence
of the general case. In fact,

det(Â) det(Â†)n+1
|0⟩ =

(
∂

∂a†
11

∂

∂a†
22

−
∂

∂a†
12

∂

∂a†
21

)
(a†

11a
†
22 − a†

12a
†
21)

n+1
|0⟩

= (n + 1)n det(Â†)n|0⟩ + 2(n + 1) det(Â†)n|0⟩
= (n + 1)2 det(Â†)n|0⟩. (57)

In general

det(Â) det(Â†)n+1
|0⟩ = (n + 1)2N det(Â†)n|0⟩.

It remains to realize that (n + 1)2NNn,N = Nn+1,N for Nn,N =
∏2N

n=1(n)n, which concludes the proof by induction. ■

Remark 4.2. Note that the determinant structure of |ψn⟩ ∝ det(Â†)n|0⟩ denotes a fermion compound structure for
our colored conformal massive particle, as made of 2N more elementary (massless) colored particles obeying the Pauli
exclusion principle. However, the statistics of the compound depends on the parity of n. In fact, under an interchange of
two columns (two 1-ctwistors representing two massless colored constituents) of the 2N-ctwistor massive compound ζ̂ in
(48), the determinant det(Â†)n acquires a phase (−1)n; therefore, for odd n the compound has a fermionic nature, whereas
for even n, the compound is bosonic. That is, the conformal dimension n determines the statistics of the compound.
This fact resembles the statistical transmutation that electrons suffer in some condensed matter systems, like fractional
quantum Hall effect, when magnetic flux quanta are attached to them, thus forming ‘‘composite fermions’’ [27]. ■

A step by step repeated application of exciton, creation P̂ = −B̂†Â† and annihilation K̂ = ÂB̂, ladder operators on the
lowest-weight state |ψn⟩ provides the remainder (infinite) quantum states |ψ⟩ of our Hilbert space Hn. This construction
is rather cumbersome and has been achieved in [14] for N = 1. We shall not further pursuit it here but, instead, we shall
provide the connection between this oscillator representation and the holomorphic picture showed in Section 2 through
the introduction of colored conformal coherent states. We shall also show that the integer n defined in Proposition 4.1
coincides with the colored scale or conformal dimension defined in Section 2.

For the Schwinger boson realization (50) of colored conformal operators T̂αa, the exponential Û(U) = exp(wαaT̂αa)
defines a unitary representation of U(2N, 2N) in Fock space, with U = exp(wαaTαa) ∈ U(2N, 2N) a colored conformal
transformation with matrix generators Tαa in (5). The adjoint action of Û(U) on ζ̂ and ζ̂ † is simply

Û(U)ζ̂ Û†(U) = U ζ̂ , Û(U)ζ̂ †Û†(U) = ζ̂ †U†. (58)

Let us introduce coherent states for the colored conformal massive particle.

Definition 4.3. For any U ∈ U(2N, 2N), we define generalized coherent states

|ψU
n ⟩ = Û(U)|ψn⟩ (59)

as Fock states |ψU
n ⟩ in the orbit of the ground state |ψn⟩ under the action Û(U).

From (58) we can see that, for U =

(
V1 0
0 V2

)
∈ U(2N)2 (the maximal compact subgroup) the ground state is

invariant up to an irrelevant phase, more precisely Û(U)|ψn⟩ = det(V1)−n
|ψn⟩ [this is the Fock space counterpart of (16)].

Therefore, equivalence classes of coherent states can be labeled by points Z ∈ D4N4 [i.e., the coset U(2N, 2N)/U(2N)2],
according to the Iwasawa decomposition (9). Let us denote then coherent states simply by |ψU

n ⟩ = |Z⟩.

Proposition 4.4. The set of coherent states {|Z⟩, Z ∈ D4N4} is not orthogonal, since

⟨Z ′
|Z⟩ =

det(12N − Z ′†Z ′)n/2 det(12N − Z†Z)n/2

det(12N − Z ′†Z)n
, (60)

but it is overcomplete and resolves the identity

I =

∫
D4N4

|Z⟩⟨Z |dµ(Z, Z†), dµ(Z, Z†) = cn det(12N − Z†Z)−4N
|dZ |, (61)

where |dZ | denotes the standard Lebesgue measure on C4N2
and cn is the normalization constant in (20).

Proof. Firstly, let us show that

⟨ψn|Û(U)|ψn⟩ = det(A)−n, U =

(
A C
B D

)
. (62)
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Indeed, let us use the Cartan decomposition U = VWṼ with V = diag(V1, V2) and Ṽ = diag(Ṽ1, Ṽ2) block diagonal matrices
and V1,2, Ṽ1,2 ∈ U(2N). We already know that

Û(V )|ψn⟩ = det(V1)−n
|ψn⟩, Û(Ṽ )|ψn⟩ = det(Ṽ1)−n

|ψn⟩.

Let us factor W as

W =

(
12N 0
X 12N

)(
R 0
0 R−1

)(
12N X
0 12N

)
= UKUDUP .

Since the exponential of exciton-annihilation operators Û(UK ) = exp[tr(B̂XÂ)] contains B̂, its does not affect |ψn⟩. In the
same manner, the exponential of exciton-creation operators Û(UP ) = exp[−tr(Â†XB̂†)] contains B̂† and it does not affect
⟨ψn|. The only not trivial action comes from Û(UD) = exp[−tr(Â† ln(R)Â)− tr(B̂† ln(R)B̂)]. Since B̂†B̂ = B̂B̂†

−2N12N and we
have the constraint (51), we arrive to Û(UD)|ψn⟩ = det(R)−n

|ψn⟩. Since V1RṼ1 = A, we conclude that ⟨ψn|Û(U)|ψn⟩ =

det(A)−n, as desired. Now

⟨Z ′
|Z⟩ = ⟨ψn|Û†(U ′)Û(U)|ψn⟩ = ⟨ψn|Û(U ′−1U)|ψn⟩ = det (A′†A − B′†B)

−n

= det (A′†)
−n

det (12N − A′−1†B′†BA−1)
−n

det (A)−n. (63)

Noting Z = BA−1 and Z ′
= B′A′−1, as in (9), and using the phase freedom, we can take A and A′ so that det(A)−n

=

det(AA†)−n/2
= det(12N − Z†Z)n/2 (similar for A′). In this way, Eq. (63) reduces to (60).

The closure relation (61) is a consequence of Schur’s lemma applied to general unimodular groups, such as U(2N, 2N),
with square-integrable representations. ■

Coherent states defined in 4.3 also admit a representation in terms of an exponential action of exciton creation
operators P̂ ≡ Â†B̂† on the lowest-weight state |ψn⟩ as

|Z⟩ = det(σ 0
− Z†Z)n/2etr(ZP̂)|ψn⟩. (64)

This expression resembles the definition of traditional canonical Glauber and Perelomov SU(2) CS as the action of a
displacement operator S(Z) = det exp(ZÂ†B̂†

− B̂ÂZ†) onto the vacuum or lowest-weight state. It also shows the coherent
state |Z⟩ as a ‘‘Bose–Einstein condensate’’ of excitons. Interesting physical phenomena of Bose–Einstein condensation of
excitons and biexcitons can be found in [29]. We believe that our abstract construction of coherent states of excitons
can provide an interesting framework to study, not only colored twistors, but also other possible physical applications in
Condensed Matter.

The connection with the holomorphic (CS or Bargmann representation) picture presented in Section 2.2 is the following.
Given an arbitrary state |φ⟩ ∈ Hn of excitons, we define the corresponding CS representation as

φ(Z) = ⟨φ|Z⟩Kn/2(Z†, Z), Kn/2(Z†, Z) = det(σ 0
− Z†Z)−n/2, (65)

where Kn/2(Z†, Z) is the square root of the Bergman kernel defined in (18). Indeed, inserting the resolution of the identity
(61) in ⟨φ′

|I|φ⟩ we recover the scalar product (19) in the Hilbert space Hn(D4N2 ) of square integrable holomorphic (wave)
functions φ(Z) on the phase space D4N2 . Also, the matrix elements and expectation values ⟨Z ′

|T̂αa|Z⟩ (also called operator
symbols) of colored conformal generators (50) in coherent states |Z⟩ of excitons, reduce to simple derivatives of the
Bergman kernel Kn(Z ′†, Z) in (18), through the differential realization (23) of colored conformal generators on holomorphic
functions, as

⟨Z ′
|T̂αa|Z⟩ = [Kn/2(Z ′†, Z ′)Kn/2(Z†, Z)]−1T αaKn(Z ′†, Z). (66)

5. Field theory

Let us now consider M-ctwistors (28) as matrix fields on Minkowski spacetime ζ (x). A relativistic invariant field theory
for massive conformal colored particles can be proposed by extending the mechanical Lagrangian (30) to the Lagrangian
density

L̃ = tr(∂µζ †Γ ∂µζ ), (67)

with the constraint ζ †Γ ζ = 12N . If we want the 2N-ctwistors ζ (x) and ζ (x)V (x) to be gauge equivalent [with local
V (x) ∈ U(2N)] transformations) we must perform minimal coupling, replacing ∂µζ by Dµζ = ∂µ − iζAµ with Aµ a
U(2N)-gauge potential transforming as Aµ → V−1AµV − iV−1∂µV . Therefore, the Lagrangian density

L = tr[(Dµζ )†Γ Dµζ ], (68)

becomes U(2N)-gauge invariant. From the equations of motion, we obtain Aµ = −iζ †Γ ∂µζ = i∂µζ †Γ ζ for the non-
dynamical U(2N)-gauge vector potential Aµ. With this information, the Lagrangian density (68) can be equivalently written
as

L = tr
[
∂µζ

†Γ P(ζ , ζ †)∂µζ
]

=
1
2
tr
(
∂µT ∂µT

)
, (69)
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with T = ζ ζ †Γ a U(2N)-gauge invariant quantity. Expanding T = Taλ̃
a, like in (38), in the Lie algebra basis {λ̃a} of the

colored conformal group u(2N, 2N), the Lagrangian density (69) can also be written as

L =
1
2
∂µTaδ̃

ab∂µTb, (70)

which has the form of a nonlinear sigma model (that is, a generalized Heisenberg model of spin–spin interaction)
Lagrangian, with Sa(x) = Ta(x) the generalized U(2N, 2N) ‘‘spin field’’ placed at position x, but with a non Euclidean
metric δ̃ab (see [11] for the Euclidean U(N) case and its relation to sigma models for N-component fractional quantum
Hall systems). Another equivalent expression for (69) is given in terms of the minimal fields Z ∈ D4N2 though the gauge
fixing (32) as

L = tr
(
∆2

2∂µZ∆
2
1∂
µZ†) , (71)

with ∆1,2 in (10). In this case, the number of real field degrees of freedom is 8N2.
The field theoretic version of the Berry Lagrangian (43) now adopts the following form

LB = i ẋµtr(ζ †Γ ∂µζ ), (72)

with ẋµ = dxµ/dτ and τ the proper time. The number of real field degrees of freedom is now 4N2.
We shall leave the quantization of these ctwistor field theories for future work.

6. Conclusions and outlook

We have introduced the concepts of colored conformal symmetry U(2N, 2N) and colored twistors to address the
inclusion of non-Abelian internal U(N) charges into (spinless massive) conformal particles. It is known that a genuine
M-twistor description of a massive particle in four-dimensional Minkowski space fails for the case M ≥ 3 [30]. However,
replacing standard twistors by colored twistors provides enough room to accommodate non-Abelian internal degrees of
freedom, other than the electric charge.

We have analyzed the Lie algebra structure of U(2N, 2N) and its discrete series representations, relating the corre-
sponding carrier space to the Hilbert space of a quantized nonlinear sigma model of colored free twistors. The quantization
is accomplished through a constrained bosonic representation of observables and quantum (Fock) states, which can be
defined as particle–hole quanta excitations (excitons) above a ground state. We also define coherent states of excitons
and the corresponding holomorphic (Bargmann) picture.

Whereas the basics and the underlying mathematical (group-theoretical) structure presented here is firm and solid,
we recognize that there is still a long way to go to on the physical interpretation of phenomenology and final validity of
this framework. Before, a reworking of the theory of particle (electromagnetic, weak and strong) interactions, rendered
in ctwistor terms, including a reframe of gravity, should be presented. This is a long term task, but we think it is worth to
explore this proposal. Our next step is to describe higher spin colored conformal particles in ctwistor language. The case
N = 1 was treated in [12] by extending the Grassmannian U(2, 2)/U(2) × U(2) to the pseudo-flag U(2, 2)/U(1)4. There
are also other gauged twistor formulations of conformal massive spinning particles in, for example, [20,21]. The spinning
colored case will basically consist in extending D4N2 to U(2N, 2N)/U(N) × U(N).
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