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A B S T R A C T

Advances in soil erosion measuring tools and micro-topography modelling will contribute to our understand-
ing of land degradation processes and help to design correct erosion mitigation measures in agricultural fields.
Vineyards being one of the most degraded agricultural landscapes, it is necessary to accurately predict soil ero-
sion levels within them. One possible method to achieve this goal in vine plantations is ISUM (improved stock
unearthing method). To apply ISUM, it is necessary to detect the graft unions which are recognised as passive
bioindicators of the original micro-topography at the time of planting. In this paper, we propose a methodol-
ogy to determine: (i) how many measuring points are necessary to reach the best estimate of soil erosion for
developing current soil surface level maps; and (ii) which spatial interpolation method is the best to map the mi-
cro-topographical changes. ISUM was applied in the Ruwer-Mosel valley vineyards (Germany) using 18 measur-
ing points at 10cm intervals between opposite pair graft unions of 1.7m inter-row distance. Several interpolation
methods were used to map the micro-topography changes and anisotropic ordinary kriging (OK) emerged as the
best as judged by the performance statistics of the coefficient of determination and the root-mean-square-error.
Our findings demonstrated that soil erosion rates were 40.1, 39.4, 25.0, 38.9, 37.9, to 64.8Mgha⁠−1 yr⁠−1 over the
40years since the establishment of the vineyard studied, when using 18, 15, 10, 7, 5 and 2 measuring points,
respectively. We propose that ISUM can be standardised as using measuring points at 10cm intervals.

1. Introduction

Advances in soil erosion measuring tools are crucial for the proper
assessment of soil erosion rates (Seeger, 2017). Such tools will con-
tribute to a better understanding of soil erosion processes and, subse-
quently, land degradation and desertification dynamics (Nearing et al.,
2017; Panagos et al., 2017). Accurate information on erosion processes
will improve the design of erosion control strategies required for a
planet that suffers from the abuse of natural resources (Keesstra et al.,
2018). Although soil formation processes and their factors are relevant
for the understanding of soil quality and properties (Calleja-Cervantes

et al., 2015), human impacts are more predominant in soil erosion
processes (Tarolli, 2016), particularly the topographical changes that
occur at the hillslope and pedon scales. Human-induced water erosion is
repeated in ploughed and tilled vineyards (Ramos et al., 2015). The ero-
sion problem is more extreme in vineyards compared with other agri-
cultural landscapes that also experience high erosion problems such as
in olive groves (Taguas et al., 2015), citrus (Liu et al., 2012) and cereal
crops (Zhang and Nearing, 2005).

Novara et al. (2018) recently quantified soil erosion rates higher
than 16Mgha⁠−1 yr⁠−1 in a vineyard and demonstrated that negative im-
pacts on soil carbon sequestration and plant vigour can also occur. This
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negative dynamic is commonly found in conventional vineyards where
the use of machinery enhances soil compaction, and the application of
herbicides keeps soils bare during the rainiest seasons (Biddoccu et al.,
2017a; Komac and Zorn, 2005). Cover crops, buffer strips of grass, and
straw mulches have been considered as the most effective soil erosion
control measures in vineyards (García-Díaz et al., 2017; Novara et al.,
2019). However, due to water competition where rainfall is limited,
farmers perception is negative and the focus is usually on the increase
of productivity of high-quality grapes and wine (Marqués et al., 2015;
Vaudour, 2002), and they do not in many cases implement erosion con-
trol measures.

The high soil erosion rates occurring within a high number of con-
ventional vineyards necessitates new research to demonstrate the nega-
tive consequences of soil erosion in bare soils in order to win the support
of farmers to take erosion control measures seriously (Rodrigo-Comino,
2018). In this regard, the stock unearthing method (SUM) can be con-
sidered as a useful tool for monitoring the soil erosion processes. Graft
unions used as passive bioindicators of topsoil level changes (Brenot
et al., 2006) have been applied in several research areas with dif-
ferent land management systems, lithologies and climate conditions
such as in France (Paroissien et al., 2010), Spain (Casalí et al., 2009),
Italy (Biddoccu et al., 2017a), and Germany (Rodrigo-Comino et al.,
2016). This method was improved (ISUM or improved stock unearthing
method) by Rodrigo-Comino and Cerdà (2018) in Eastern Spain by in-
cluding 3 extra measuring points within the inter-row areas. This im-
provement allows for solving a major limitation of SUM which as-
sumes that the inter-row areas remain planar, thus underestimating the
soil erosion rates (Brenot et al., 2008). This improved tool was tested
in vineyards within the same region but with different ages and soil
management systems (Rodrigo-Comino, 2018). However, some issues of
ISUM must be addressed prior to standardising it for larger area appli-
cations. Therefore, the main objectives of this paper were to determine:
(i) how many measuring points are necessary to achieve the best accu

racy of soil mobilisation rates, and for modelling micro-topographical
changes; and (ii) which interpolation method is the most suitable for
mapping the current soil surface level changes.

2. Materials and methods

2.1. Study area

The study plot (1.7m inter-row distance and 51.3m along the paired
rows, 87.2m⁠2) is located within the viticultural region of the Mosel val-
ley in the little village of Waldrach close to Trier, Rhineland- Palati-
nate, Germany (Fig. 1; centred at 49.7418N; 6.7524E). The vineyard
(40years old) is located on the Ruwer River, a tributary of the Mosel
River which flows from the south at the Hünsrück Mountains, at el-
evations from 500m a.s.l. to approximately 200m a.s.l. in the north
(Richter, 1980). The lithology is characterised by Devonian greywackes,
slates and quartzites partially overlain by Pleistocene silts deposited
near the Ruwer River. The slope inclination oscillates from 15° to 30°
with a convex morphology (Rodrigo-Comino et al., 2016).

The soils are classified as leptic-humic Regosols (IUSS Working
Group WRB, 2014). It is remarkable to note that the soils are char-
acterised by 37.9% rock cover fragments and of a silty loam texture
(64.7% of silt). The soils’ water retention capacity is high, reaching a
field capacity (water retention at −33kPa) close to 30% and a wilting
point of about 12.3%. The total organic matter varies during the year
due to the use of herbicides by the farmers but has a mean value of
7.9%. A pH value of 7.2 in water solution and 6.4 in KCl are registered
for the soils. Therefore, no soil acidification trends are observed. Infor-
mation on the soil analysis procedures can be found in Rodrigo-Comino
et al. (2016).

Other features of the study area are the average annual rainfall
of 765mmyr⁠−1, mean annual temperature of 9.3 °C, and rainfall ero-
sivity of 54.31MJmmha⁠-1 h⁠−1 yr⁠−1 (Rodrigo-Comino et al., 2016). The

Fig. 1. Location of the study area; yellow polygon shows the studied plot of the paired-vine rows. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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grapevine variety cultivated in this vineyard is Riesling under mechani-
cal soil tillage (≈ 20cm depth) before and after grape harvesting from
March to May, and from October to November. Seasonal grass cover
appears in the inter-row and row areas. A vine training system based
on a plantation framework of 0.9m (inter-plant separation)×1.7m (in-
ter-row separation) is available to enhance the photosynthesis and sugar
production, and also to facilitate the mechanical soil tillage. Farmers use
herbicides and pesticides during spring and summer to eliminate weeds
and fungi growth. Along the embankments and in the inter-row areas,
rills and ephemeral gullies caused by wheel tracks and foot trampling
can be observed.

2.2. The improved stock unearthing method (ISUM)

The improved stock unearthing method (ISUM) aims to measure the
distance between the frontal marks on the graft unions of vines and the
current soil surface level in addition to 3 extra measurements in the in-
ter-row areas (Rodrigo-Comino and Cerdà, 2018). After the Phylloxera
attack during the 19th and 20th, the vines were grafted from the Amer-
ican vine stock, which now shows an unearthing or buried signal. The
graft unions give an indication of the real distance above the soil sur-
face level at the time of planting because the original vine stock does
not grow vertically (Brenot et al., 2006; Casalí et al., 2009).

Prior to planting in this study area, the soil surface was flattened and
the vine roots were inserted into the soil. Nowadays, vines are planted
using GPS and small tractors which make this activity fully automated.
This vineyard was manually planted, and the graft unions were consis-
tently placed at 2cm height above the original ground level. This infor-
mation was confirmed by the farmers in the field through non-formal in-
terviews and it was also observed in new plantations near the study area
(Remke et al., 2018). This optimal distance above ground reduces some
complications caused by soil moisture, freezing, and fungi plagues on
the plants. After planting, only the new part corresponding to the new
grape variety grows vertically. Therefore, changes from the theoretical
initial conditions due to soil movements can be easily quantified. How-
ever, some small imprecisions can be found because this assumption can
be violated if the vine is moved because of tractor or animal impacts or
if the root strength changes the original position to another angle. This
error, that can reach close to 0.5–1cm, was detected by Rodrigo-Comino
et al. (2016) in new plantations in the same area and confirmed by
Remke et al. (2018) in other surrounding plantations) by fieldwork ob-
servation and non-formal interviews with owners and farmers.

For each opposite paired-vine along the inter-row, we first identi-
fied each vine graft union and then stretched a measuring tape between
these paired-points. After that, we used a meter stick to measure the
vertical distance between the horizontally stretched measuring tape and
the current soil surface at different locations at 10cm intervals (Fig. 2,
ISUM⁠18). To avoid difficulties in our measurements in cases where a
graft union was buried, the measuring tape was placed at 30cm above
the graft union. Since the original ground level is 2cm below the graft
union, and thus 32cm below the measuring tape level, the difference
between 32cm and the current measurement at each graft union gives
an indication of unburied vine stock when negative and buried when
positive (Rodrigo-Comino and Cerdà, 2018).

The same person took the distance measurements of 118 (59
paired-vines) graft unions, from the end part of the graft union to the
actual surface level. Including the additional 16 inter-row measuring
points, a total of 1,062 points were measured within the 91.8m⁠2 study
area (1.7m×0.9m). Where the soil roughness under the vine generated
small dips or rises or the grass cover impaired the visibility of the graft
union, the grasses were carefully cut, or soil levelled, not affecting the
reading though.

2.3. ISUM maps and interpolation methods

ArcMap 10.5 (ESRI, USA) software was used to process the actual
soil surface levels measured during August 2017 in a grid of points
(“fishnet”) with a pixel resolution of 10cm. Various geostatistical meth-
ods most commonly used in soil sciences (e.g., Kravchenko and Bullock,
1999) were used to develop the ISUM maps and the micro-topograph-
ical changes using the Geospatial analyst extension and the semi-vari-
ogram generated by ArcMap 10.5 before projecting to Universal Trans-
verse Mercator, UTM (WGS 1984).

2.3.1. Inverse distance weighting (IDW)
Inverse Distance Weighting (IDW) is a quick deterministic interpola-

tor which has basically two decisions to make regarding the power of
distance used in the weighting and the number of nearest neighbours. It
can be considered as the best method to get an overall understanding of
the interpolated area (Li and Heap, 2011) where data is limited. How-
ever, it does not offer an assessment of prediction errors. The number of
closest neighbouring samples ranging between 10 and 15 was tested to
select a number that gave the highest estimation accuracy.

2.3.2. Ordinary kriging
Kriging is a stochastic interpolator that is characterised by its flex-

ibility allowing investigating graphs of spatial auto- and cross-correla-
tion (Baskan et al., 2009). However, it requires at least a sample vari-
ogram, which can be isotropic or anisotropic, in addition to the parame-
ter requirements of IDW. Depending on the measurement error model,
it may give exact or smoothed results (Fritsch et al., 2011). A variety of
output surfaces including predictions, prediction standard errors, proba-
bility and quantile can be obtained with this interpolator tool (Govaerts
and Vervoort, 2010). Kriging assumes the data provided come from a
stationary stochastic process, and are normally-distributed (Lesch and
Corwin, 2008; Tabari et al., 2011). The sample variogram is fitted with
a variogram model and its adequacy is checked by cross-validation.
Spherical, Gaussian and exponential variogram models were tested in
this study. The number of closest neighbours was varied between 2 and
5 and the one with the highest estimation accuracy was selected.

2.3.3. Empirical Bayesian Kriging (EBK)
EBK is a Kriging-based interpolation method that accounts for uncer-

tainty in the semi-variogram estimation by simulating several semi-var-
iograms obtained from the given dataset (Gribov and Krivoruchko,
2012). It automates the most difficult aspects of building a valid kriging
model and is able to automatically calculate the needed parameters by
sub-setting and simulations (Dzakpasu et al., 2014; Sağir and Kurtuluş,
2017). A distinguishing feature of this method is that it takes into ac-
count the error introduced by estimating an underlying semi-variogram
(Kamble and Aggrawal, 2011; Samsonova et al., 2017). In this study, the
cross-validation was performed using varying model parameter values
and the number of the closest neighbours between 10 and 15 until the
highest estimation accuracy was reached. The subset size and the num-
ber of simulations were each taken as 100.

2.3.4. Radial basis functions (RBFs)
RBFs are moderately quicker deterministic interpolators that are

considered to be exact. They usually need a higher number of para-
meters to make decisions compared with IDW or kriging for example;
however, no assessment of prediction errors can be done (Fang and
Horstemeyer, 2006; Ilati and Dehghan, 2015). With this method, it is
not possible to investigate data autocorrelation, thus, it is considered to
have less flexibility (Fornberg et al., 2011). Also, this method relaxes
the data normality assumption of kriging. The mechanism works with a

3
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Fig. 2. Cross section of the ISUM measuring points in the field showing the circled graft unions and the grid of points obtained for mapping the current soil surface level. *The original
horizontal level partitions the depressions and accumulations of the current soil surface level.

surface that passes through each measured sample point and creates a
new surface (Kim and Kasabov, 1999). RBFs are considered by many
authors as the best for smooth changes in the data over long distances
because, when the values change at short distances, errors can be intro-
duced into the predicted surface (Keshavarzi et al., 2018; Shiri et al.,
2017).

In this study, we applied five different models: (i) completely reg-
ularised spline; (ii) spline with tension; (iii) multi-quadric; (iv) inverse
multi-quadric; and (v) thin plate spline. All data were cross-validated
by varying the model parameter values and using different kernel func-
tions. To determine the kernel function, we used the Geostatistical Wiz-
ard and Radial Basis Functions, and adjusted the kernel function and
kernel parameter, checking the error based on the best results of R⁠2 and
RMSE.

2.3.5. Model calibration
We used the RMSE (root-mean-square-error) and R⁠2 (coefficient of

determination) to assess the models’ performance in a cross-validation
mode. The smaller the RMSE and the higher the R⁠2 the better. Finally,
to decide how many measuring points are necessary to get the highest
accuracy of the different methods, reductions in the performance statis-
tics of R⁠2Δ and RMSEΔ were calculated (Shiri et al., 2017) as:

(1)

and

4



UN
CO

RR
EC

TE
D

PR
OO

F

J. Rodrigo-Comino et al. Computers and Electronics in Agriculture xxx (xxxx) xxx-xxx

(2)

where R⁠2
⁠ref and RMESE⁠ref are the reference performance statistics us-

ing all of the 18 measuring points of the inter-row pair-vines values
(ISUM⁠18), and R⁠2

⁠z and RMSE⁠Z are the corresponding values for the re-
duction in the number of measuring points to 15 (ISUM⁠15), 10 (ISUM⁠10),
7 (ISUM⁠7) and 5 (ISUM⁠5) as depicted in Fig. 2.

2.4. Soil transport estimations

The total soil transport was estimated in Mgha⁠−1 yr⁠−1 using 18
(ISUM⁠18), 15 (ISUM⁠15), 10 (ISUM⁠10), 7 (ISUM⁠7), 5 (ISUM⁠5) and 2 (SUM)
point measurements from the volume difference between the current
soil surface topography and the initial soil surface topography (Fig.
2). The horizontal sides of the polygons were defined as the distances
between the measuring points used, varying from 10cm (ISUM⁠18) to
170cm (SUM). The inter-row distance is 170cm, and this means that the
first and last of the 16 measuring points are 10cm from the graft unions.
The height of the polygon is taken as the distance between the botanic
marks on the graft union and the inter-row surface levels, taking into
account the visible actual rootstock (Rodrigo-Comino et al., 2016). The
total soil mobilisation was estimated from the erosion–deposition (ER)
equation proposed by Paroissien et al. (2010):

(3)

Table 1
Descriptive statistics of the soil surface level data (cm).

Sampling
method Mean

Maximum
depletion

Maximum
accumulation

St.
Dev.

Coeff.
Var.

ISUM⁠18 −12.7 −28.1 10.2 4.6 36.4
ISUM⁠15 −12.3 −28.1 10.2 4.7 21.6
ISUM⁠10 −12.2 −28 10.2 4.8 23.1
ISUM⁠7 −12.0 −28 10.2 4.8 23.3
ISUM⁠5 −11.7 −28 10.2 4.9 24.1
SUM −10.5 −22 10.2 5.7 32.8

*ISUM: Improved Stock Unearthing Method; SUM: Stock Unearthing Method; St. Dev.:
Standard deviation; Coeff. Var.: Coefficient of variation.

where V (m⁠3) is the volume, S (ha) is the total area for the considered
field unit, A (years) is the age of the vines (40years-old) and BD is the
soil bulk density (1.4gcm⁠−3). The reference value of the soil bulk den-
sity was taken as the mean soil bulk density of 36 soil samples collected
along the row and inter-row areas.

3. Results and discussion

3.1. Measured points from ISUM survey

Table 1 presents the summary of the descriptive statistics of the
1062measuring point (ISUM⁠18) levels and those of the other ISUMs. The
distribution of the measured point levels for the different ISUMs is rep-
resented in the form of histograms in Fig. 3. All mean values are in
the depletion side and increase numerically with the number of mea-
suring points. There was virtually no change in the maximum deple-
tion and the maximum accumulation across the ISUMs with the excep-
tion of SUM which recorded a significant decrease of 22% in the max-
imum depletion compared with the others. Taking only two measure-
ments (SUM), the ability to capture the highest depletion point was lost.
However, SUM was sufficient for finding the highest accumulation point
because the measuring points are situated under the vines that impede
water and soil movement, thus encouraging deposition.

As reported in the literature (Biddoccu et al., 2017a), the highest
depletion areas were found in the inter-row areas where the bare soils
are easily eroded. Moreover, the more compacted surface due to tractor
passes (Arnáez et al., 2012) and trampling effects (Quinn et al., 1980)
also account for the reduction in the soil surface level in the inter-row
areas. These two mechanical factors were recognised to be vital to the
understanding of soil erosion and hydrological processes in Continental
European vineyards using modelling techniques (Hacisalihoglu, 2007).
Also, our findings confirm that the maximum accumulation points are
close to the vines due to the redistribution of the material after each
tractor pass and the effect of splash from the wheel track areas.

3.2. ISUM maps using different interpolation methods

After observing that the descriptive statistics are able to introduce
some key factors to understanding soil erosion processes in vineyards,
maps of the micro-topographical changes were prepared using eight
different interpolation techniques for the ISUMs. Table 2 presents the

Fig. 3. Histograms of the ISUMs measured levels.
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Table 2
Results obtained from the interpolation methods.

Kernel function/anisotropy ⁠* ISUM Kernel parameter Prediction errors in cross-validation

Mean RMSE R⁠2 Δ RMSE Δ R⁠2

OK Isotropy ⁠* ISUM⁠18 – −0.057 2.865 0.594 0.00 0.00
ISUM⁠15 −0.015 3.159 0.535 −0.29 0.06
ISUM⁠10 −0.076 3.493 0.449 −0.63 0.14
ISUM⁠7 −0.130 4.038 0.301 −1.17 0.29
ISUM⁠5 −0.171 4.620 0.151 −1.76 0.44

OK Anisotropy ⁠* ISUM⁠18 – −0.022 2.842 0.617 0.00 0.00
ISUM⁠15 0.004 3.073 0.558 −0.23 0.06
ISUM⁠10 −0.096 3.476 0.454 −0.63 0.16
ISUM⁠7 −0.053 3.877 0.350 −1.03 0.27
ISUM⁠5 −0.153 4.320 0.255 −1.48 0.36

IDW ISUM⁠18 – −0.115 2.859 0.610 0.00 0.00
ISUM⁠15 −0.068 3.207 0.527 −0.35 0.08
ISUM⁠10 −0.222 3.657 0.399 −0.80 0.21
ISUM⁠7 −0.258 4.199 0.247 −1.34 0.36
ISUM⁠5 −0.079 4.665 0.121 −1.81 0.49

EBK ISUM⁠18 – −0.022 2.900 0.604 0.00 0.00
ISUM⁠15 0.000 3.007 0.577 −0.11 0.03
ISUM⁠10 −0.130 3.516 0.442 −0.62 0.16
ISUM⁠7 −0.159 4.104 0.271 −1.20 0.33
ISUM⁠5 −0.040 4.629 0.136 −1.73 0.47

CRS ISUM⁠18 22.81 −0.009 3.253 0.548 0.00 0.00
ISUM⁠15 0.27 −0.028 3.254 0.528 0.00 0.02
ISUM⁠10 0.19 −0.085 3.572 0.443 −0.32 0.10
ISUM⁠7 0.37 −0.118 4.081 0.287 −0.83 0.26
ISUM⁠5 0.27 −0.097 4.579 0.165 −1.33 0.38

ST ISUM⁠18 11.03 0.000 3.038 0.587 0.00 0.00
ISUM⁠15 0.17 −0.024 3.219 0.534 −0.18 0.05
ISUM⁠10 0.12 −0.082 3.571 0.443 −0.53 0.14
ISUM⁠7 0.29 −0.119 4.080 0.286 −1.04 0.30
ISUM⁠5 0.31 −0.072 4.576 0.161 −1.54 0.43

M-Q ISUM⁠18 0 0.010 2.920 0.608 0.00 0.00
ISUM⁠15 0 0.012 3.202 0.541 −0.28 0.07
ISUM⁠10 0 −0.027 3.523 0.458 −0.60 0.15
ISUM⁠7 0 −0.028 4.038 0.329 −1.12 0.28
ISUM⁠5 0 −0.248 4.624 0.193 −1.70 0.41

IM-Q ISUM⁠18 0.16 −0.008 3.341 0.534 0.00 0.00
ISUM⁠15 16.50 −0.032 3.431 0.501 −0.09 0.03
ISUM⁠10 20.75 −0.082 3.632 0.438 −0.29 0.10
ISUM⁠7 12.09 −0.170 4.147 0.265 −0.81 0.27
ISUM⁠5 13.73 −0.026 4.567 0.159 −1.23 0.37

TPS ISUM⁠18 1e+020 0.037 3.104 0.582 0.00 0.00
ISUM⁠15 1e+020 0.053 3.379 0.521 −0.28 0.06
ISUM⁠10 1e+020 0.093 3.524 0.486 −0.42 0.10
ISUM⁠7 0.041176 0.108 4.177 0.343 −1.07 0.24
ISUM⁠5 1e+020 −0.311 4.768 0.220 −1.66 0.36

ISUM: Improved Stock Unearthing Method; OK: Ordinary Kriging; IDW: Inverse Distance Weighting; EBK: Empirical Bayesian Kriging; CRS: Completely Regularised Spline; RBF: Radial
basis functions; ST: Spline with Tension; M-Q: Multi-quadric; Inverse Multi-quadric. IM-Q; TPS: Thin Plate Spline. RMSE: Root mean square error.

cross-validation results of the interpolation methods, selecting the best
model parameter sets as dictated by the performance statistics for each
ISUM. The results show that the best maps can be modelled using
up to 10 points which has an acceptable ΔR⁠2 value between 0.1 and
0.2. In order of decreasing performance, the methods identified were
OK (with anisotropy), IDW, RBF (Multi-quadric) and EBK (Table 2).
Our results can be considered valuable for this kind of study. This is
notwithstanding that others, such as Biddoccu et al. (2017b) and Brenot
et al. (2008), have indicated that OK and IDW are the best meth-
ods since they are the most applied methods in the literature (Fang
and Horstemeyer, 2006; Fritsch et al., 2011; Kravchenko and Bullock,
1999; Samsonova et al., 2017). We suggest that authors should test all

possible methods prior to developing ISUM maps and elucidate how
many points should be used. At the catchment scale only, and specifi-
cally in vineyards, Chevigny et al. (2014) highlighted the idea of test-
ing different interpolation methods when using the stock unearthing
method to assess topsoil level changes. This paper also confirmed that
this procedure is necessary to determine the best method, and it is also
necessary to compare measurements in different regions of the world.
This confirmation also gives insights into the design of field campaigns
to apply ISUM for larger areas.

Fig. 4 presents ISUM⁠18 maps using various interpolation methods to
show how it is possible to model soil surface variations from −20cm
to +8cm. For example, the EBK map shows the high depletion mainly
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Fig. 4. ISUM⁠18 maps obtained from the different interpolation methods; OK: Ordinary Kriging; IDW: inverse distance weighting; EBK: empirical Bayesian kriging; CRS: Completely Regu-
larized Spline; ST: Spline with Tension; M-Q: Multi-quadric; Inverse Multi-quadric (IM-Q); TPS: Thin-Plate Spline.

near the summit and the footslope, thus overestimating soil depletion.
Among others, TPS and IM-Q maps show the highest accumulation ar-
eas, confirming sink areas of sediment accumulation. The rest of the
maps for the other methods apparently show high similarities among
them, although the predicted errors have demonstrated that RBF ob-
tained the worst performance statistics.

3.3. Soil depletion and accumulation results

Table 3 shows the estimated total soil transport during the 40years
since the start of the plantation using the erosion-deposition equation
(Paroissien et al., 2010). The calculated soil transport values corrob-
orate the findings of Rodrigo-Comino et al. (2016) that soil depletion
mainly occurs in the sloping vineyards of the Ruwer-Mosel valley in-
stead of sedimentation. Using SUM an erosion rate of 3.3Mgha⁠−1 yr⁠−1

was obtained in an adjacent vine row by these authors. Our calculated
erosion rates range from 64.8 obtained by SUM to 40.1Mgha⁠−1 yr⁠−1

with ISUM⁠18, and ISUM⁠15 obtained similar values to ISUM⁠18 reach-
ing 39.4Mgha⁠−1 yr⁠−1. We observe a break when we use 10 measuring
points with only 25.0Mgha⁠−1 yr⁠−1 being obtained. On the other hand,
ISUM⁠5 and ISUM⁠7 registered 38.9 and 37.9Mgha⁠−1 yr⁠−1, respectively,

Table 3
Estimates of total soil transport.

Sampling Method Total Soil Transport

m⁠3 ha⁠−1 Mgha⁠−1 Mgha⁠−1 yr⁠−1

ISUM⁠18 −9.54 −13.6 40.1
ISUM⁠15 −9.36 −13.4 39.4
ISUM⁠10 −5.95 −8.5 25.0
ISUM⁠7 −9.01 −12.8 38.9
ISUM⁠5 −9.01 −12.9 37.9
SUM −15.40 −22.1 64.8

*ISUM: Improved Stock Unearthing Method; SUM: Stock Unearthing Method.

which are definitively close to ISUM⁠18 and ISUM⁠15. This confirms that
the ISUM⁠5 applied in the Valencian vineyards for the first time could
be accurate (Rodrigo-Comino and Cerdà, 2018). These soil transport
estimates confirm that 5 measurements (2 under the vines plus 3 in
the inter-row) achieve the same result as 7 or very similar to 15 and
18 measurements. By selecting a smaller number of measuring points,
time spent in the field would be reduced considerably, but the results
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would not be so accurate, at least, in this area. Thus, these results are
useful in helping future standardisation of ISUM for larger plot sizes.
However, it is important to remark on the importance of the specifi-
cations of the study area in question. Sometimes the wheel track areas
are very well pronounced, and omitting measurements in the upper and
lower parts could lead to significant errors in the developed models as
was observed in Slovakia (Lieskovský and Kenderessy, 2014), Northern
Spain (Casalí et al., 2009; Flaño et al., 2008), Portugal (Serpa et al.,
2017) and Slovenia (Komac and Zorn, 2005).

3.4. Challenges and future research questions

Results obtained in this study using ISUM⁠18 (16 measurements in
the inter-row areas and 2 in the vine stocks) are much lower than the
results obtained with SUM as reported in the literature, e.g., in Bur-
gundy in France with 23Mgha⁠−1 yr⁠−1 (Brenot et al., 2008), in Navarre
in Spain reaching 30Mgha⁠−1 yr⁠−1 (Casalí et al., 2009) and in the Aosta
Valley in Italy with 15.7Mgha⁠−1 yr⁠−1 (Biddoccu et al., 2017b). All of the
study areas investigated by these authors are situated in the Mediter-
ranean region with some influence of the continent and/or the Atlantic
Ocean. However, applying ISUM⁠5 in another Mediterranean vineyard in
Valencia (Eastern Spain), Rodrigo-Comino and Cerdà (2018) registered
only −2.5Mgha⁠−1 yr⁠−1 which is too far from our estimations. Therefore,
SUM and ISUM⁠5 applied in different regions cannot be compared as the
differences could be due to an artefact in the method applied or due
to the regional differences in soil mobilisation that could vary signif-
icantly across rows and inter-row areas. Therefore, standardisation of
the method (interpolation and number of measurements) should be con-
sidered mandatory. We confirm that less than 10cm separation of in-
ter-row measurements (>15 measuring points in this study area) and 2
at the base of the pair graft unions could be enough to achieve a reason-
able estimation of soil mobilisation rate and to model micro-topographi-
cal changes. It is proposed that future measurements should check ISUM
accuracy in other countries or other techniques such as rainfall simula-
tors (Iserloh et al., 2012) on erosion plots (Mekonnen et al., 2016). Also,
it is suggested that ISUM is compared with other measurements and es-
timations at different scales (Raclot et al., 2009) and soil parameters
such as organic carbon (Garcia et al., 2018). Larger scales would make
possible the modelling of rills and ephemeral gullies, and areas of ac-
cumulation (Ben-Salem et al., 2018; López-Vicente et al., 2015). A key
research topic will be to determine the effect of soil erosion on soil qual-
ity and plant vigour as ISUM can show the spatial distribution of soil
mobilisation and their effect on plant production. ISUM can also help
to understand the impact of soil erosion on the soil physical properties
such as infiltration and saturated hydraulic conductivity, and on grape
production and wine quality.

It is recognised that the original micro-topography of the inter-row
area 40years ago is not possible to be known precisely. The original
stock unearthing method (SUM) is applied only to measure the distance
between the graft unions and the soil surface, and the estimation of ele-
vation differences is done for these points only. The soil compaction of
the row area cannot be the same as the inter-row area where tillage is
carried out. The original inter-row area surface may have been subjected
to wheel tracks and foot trampling effects before the occurrence of soil
mobilisation processes. Therefore, further research for reconstruction of
the original soil surface through modelling techniques is required, or
the measurements should start soon after the plantation of the vineyards
(Remke et al., 2018).

The initial measurement of the distance between the soil surface
and measuring tape was taken only once during August. We selected
this month due to fact that it reflects natural soil settling/compaction
after the mechanical tillage applied in spring and prior to disturbing
the soil surface after the harvest. However, for future research, we will

improve the methodology by taking the same measurements at least
three times per year so that we can include the average value and dis-
cuss the seasonal variability of soil surface topography.

Our analysed area is thin and long, which could indicate that the ob-
tained results may be determined by these particular points distribution.
However, this aspect has to be investigated thoroughly. As we measured
only one row, a logical next step would be the application of ISUM to
more rows in order to increase the area and, subsequently, the width.
Possibly, we could observe if differences in the current soil surface map
exist because of the new points distribution pattern.

Moreover, new research on strategies to reduce soil mobilisation
from areas that are likely to register high erosion rates but where the
studies of soil erosion are scarce should also be carried out such as
in South Africa, China, Iran or Turkey among others (Rodrigo-Comino,
2018). Another research topic using ISUM would be a focus on mea-
suring areas where there is an establishment of vegetation cover on the
soil surface, which is well-known as a good practice that farmers should
be encouraged to follow (Marqués et al., 2015). Finally, since the pa-
leo-surface is well-recognised because of the graft union, the use of new
technologies such as drones or cameras should be considered mandatory
to help increase the number of points and to assess larger areas (Remke
et al., 2018; Tarolli et al., 2019).

4. Conclusions

The improved stock unearthing method (ISUM) can be considered as
a useful tool for the estimation of soil mobilisation rates and modelling
of micro-topographical changes. This research has given insight into the
minimum number of measuring points in the inter-row areas required
to obtain reasonable accuracy in the estimation of erosion rates, and
surface levels for generating precise maps using interpolation methods.
Starting with a maximum of 10cm separation of measuring points, we
established that this should be sufficient for estimation of soil mobilisa-
tion rates. Moreover, Ordinary Kriging emerged as the best interpolation
method for the best ISUM (8 points in the inter-row areas) map for as-
sessing micro-topographical changes in this area. These results highlight
the steps that should be taken to standardise ISUM and to perform field
measurements across other vineyards. Further, it is not known whether
results under different land management systems, parent materials, ages
and climate conditions will alter the findings.
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