Mikhova Bozhana (Orcid ID: 0000-0001-8851-971X)

NMR studies of new heterocycles tethered to purine moieties with anticancer activity

Nerea Fernández-Sáez, Joaquín M. Campos, M. Encarnación Camacho, ${ }^{*}$ M. Dora Carrión*

Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain.

KEYWORDS: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ 1D NMR; ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ 2D NMR (HSQC, HMBC); 2D NOESY; benzoxazine, quinoline, pyridoxazine.

[^0]
Introduction

Cancer is one of the greatest threats of our society because is one of the leading causes of death. Many active compounds have been developed to face this problem in recent years. ${ }^{[1-3]}$ Some purine derivatives with an interesting anti-proliferative activity have been previously synthesized by combining benzo-fused heterocycles linked to substituted purines. ${ }^{[4-10]}$ In order to improve the activity and have a deeper idea of the structure-activity relationship, new compounds have been obtained. Such changes include some bioisosteric replacements as elimination of oxygen atom of the heterocycle or elongation of the linking chain between the six-membered heterocycles and the substituted purines.

In this waty the synthesis and biological evaluation of these novel families of purine derivatives linked to six-membered heterocyclic moieties $\mathbf{3 a - d}, \mathbf{5 a - d}$ and 11a-b, which were designed and evaluated as anticancer agents, have been described. ${ }^{[11]}$

The structures of these new compounds have been determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and mass spectrometry MS). Some of them have been studied more detailed in order to corroborate their skeleton by using two-dimensional techniques, and an elemental analysis have been performance to all the final compounds.

The present study reports the unambiguous assignment of each signal in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in benzoxazine derivatives (3a-d), including elongation of the side chain, tetrahydroquinolines (5a-d) and pyridoxazine derivatives (11a-b) in which a pyridine ring is merged to the oxazine heterocycle, using one- and two-dimensional resonance techniques. The assignment of derivatives $\mathbf{1 , 2 , 4 , 6 - 1 0}$, the precursors in their synthetic pathway, are also included.

Experimental

NMR spectra

Nuclear magnetic resonance (NMR) spectra were made on a $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ and $101 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Agilent Varian Direct Drive, and a $500-\mathrm{MHz}{ }^{1} \mathrm{H}$ and $125-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Agilent Varian Innova Unity spectrometers at 298 K. In DEPT experiments the employed parameters
were the following: pulse width $\left(135^{\circ}\right), 9.0 \mathrm{~ms}$; recycle time, $1 \mathrm{~s} ; 1 / 2 \mathrm{~J}(\mathrm{CH})=4 \mathrm{~ms} ; 65536$ data points acquired and transformed from 1024 scans; spectral width, 15 KHz ; and line broadening, 1.3 Hz . Chemical shifts (δ) are quoted in parts per million (ppm) and are referenced to the residual solvent peak: $\mathrm{CDCl}_{3}, \delta=7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right), \delta=77.4 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$ or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta=2.50 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right), \delta=39.52 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$. Spin multiplicities are given as s (singlet), bs (broad singlet), d (doublet), dd (doublet of doublet), ddd (doublet of doubletof doublet), td (triplet of doublet), t (triplet), tt (triplet of triplet), q (quadruplet), and m (multiplet), Coupling constant (J) are given in Hz .

The HSQC spectra were calculated with a pulse sequence gc2hsqcse (Standard sequence, Agilent Vnmrj_3.2A software). The HMBC spectra were determined with a pulse sequence gc2hmbc (standard sequence, Agilent Vnmrj_3.2A software) optimized for 8 Hz (inter-pulse delay for the evolution of long-range couplings: 62.5 ms).

Nuclear Overhauser spectra were recorded on a Agilent Varian Direct Drive spectrometer, operating at 500 MHz , with a spectral width of 8.01 KHz at 16 K complex points (acquisition time 2 s). The mixing time in 1D-NOESY experiment was 0.5 s . Data processing with zero filling at 64 K and apodization with exponential function ($\mathrm{LB}=0.5 \mathrm{~Hz}$).

Results and Discussion

Schemes 1-3 depict the synthetic route carried out in the preparation of final compounds 3ad, 5a-d and 11a-b, previously reported ${ }^{[11]}$ and Tables $1-4$ show the spectroscopic data for both the intermediate and final synthesized compounds.

Schemes 1-3 may be inserted here

Table 1-2 may be inserted here

The structure of these compounds has been elucidated by routine ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR techniques. Nevertheless, a definitive assignment of all signals was accomplished with the help of NMR techniques. Such procedures include the following: i) DEPT experiments for determining the presence of primary, secondary and tertiary carbon atoms; ii) HSQC spectra to assign the ${ }^{13} \mathrm{C}$ resonances of the primary, secondary and tertiary carbons; iii) HMBC
sequences to corroborate the signals of quaternary carbons via two-bond and three-bond interactions.

Tables 1 and 2 show the ${ }^{1} \mathrm{H}$ NMR signals of each proton for molecules 1-11, whereas Tables 3 and 4 show the corresponding ${ }^{13} \mathrm{C}$ NMR chemical shifts for the same compounds. The NMR spectra of the intermediates were carried out in CDCl_{3} solutions. The NMR spectra of the final compounds were performed in CDCl_{3} solutions, except for $\mathbf{5 c}$, which was accomplished in DMSO- d_{6} for solubility reasons. As a consequence, some significant variations are observed in the chemical shifts depending of the solvent.

In relation to the benzoxazine family, chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of the tosylated intermediate 2 and the final derivatives 3a-d are similar for H-2, H-3a, H-3b, H-5, H-6, H-7 and H-8; nevertheless, in the untosylated intermediate 1, $\mathrm{H}-2$ appears at a greater chemical shift than H-3a. In the same way, $\mathrm{C}-2$ of the intermediate $\mathbf{1}$ appears at a higher shift than $\mathrm{C}-2$ in both compounds, the tosylated intermediate $\mathbf{2}$ and the tosylated purines 3a-d. Finally, the presence of trifluoromethyl group in $\mathbf{3 d}$ is justified due to the following C-F couplings: $145.20\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{CF} 3}=37.1, \mathrm{C}-6^{\prime}\right)$ and $120.69\left(\mathrm{q}, J_{\mathrm{CF}}=274.9, \mathrm{CF}_{3}\right)$.

In addition, in the dihydroquinoline series, the ${ }^{1} \mathrm{H}$ NMR signals are similar in both, the intermediate $\mathbf{4}$ and the final purines 5a-d, except for the CH_{2} signal of the side chain. In derivative 4 the CH_{2} linked to the OH group appears as a multiplet at $\delta=3.53 \mathrm{ppm}$, while in 5a-d the CH_{2} peak, which is linked to the purine moiety, appears as two doublet of doublets between $\delta 4.12-4.21 \mathrm{ppm}$ and $\delta 4.20-4.32 \mathrm{ppm}$ respectively. Nevertheless, the methylene group of $5 \mathbf{c}$ appears as multiplet centered at $\delta 4.26 \mathrm{ppm}$. Moreover, in this family, the main difference in ${ }^{13} \mathrm{C}$ is the CH_{2} aliphatic signal, which appears at $\delta 64.34 \mathrm{ppm}$ in the intermediate 4 and between δ 46.10-47.00 in purines 5a-d. Otherwise, the trifluoromethyl group presents in $\mathbf{5 d}$ is corroborated by the two quadruplets in the ${ }^{13} \mathrm{CNMR}$ spectrum which appear at δ $145.80 \mathrm{ppm}\left(J_{\mathrm{C}-\mathrm{CF} 3}=37.7, \mathrm{C}-6^{\prime}\right)$ and $\delta 120.80 \mathrm{ppm}\left(J_{\mathrm{CF}}=275.9, \mathrm{CF}_{3}\right)$, respectively.

In the last pyridoxazine family, the intermediate $\mathbf{6}$, structurally different from derivatives 7 10, does not follow the same coupling pattern of the latter, being similar the signals of the remaining intermediates except for $\mathrm{H}-3$. This proton appears between $\delta 3.74-3.76 \mathrm{ppm}$ in the untosylated derivatives $(\mathbf{7}, \mathbf{8})$ and at $\delta 4.95-4.98 \mathrm{ppm}$ in the tosylated ones $(\mathbf{9}, \mathbf{1 0})$,
respectively. In addition, target molecules 11a and 11b show similar chemical shifts with respect to their tosylated intermediates, except for the $\mathrm{CH}_{2} \mathrm{X}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{X}$ aliphatic signals, due to the different nature of the heteroatom linked to the aliphatic chain ($\mathrm{X}=\mathrm{O}$ in the intermediate compounds; $\mathrm{X}=\mathrm{N}$ in the final derivatives).

Table 3 may be inserted here
 Table 4 may be inserted here

HSQC and HMBC experiments were performed on an intermediate and a final molecule of each family. Table 5 shows the HSQC correlations for compounds $\mathbf{2 , 4 , 7 , 3 c} \mathbf{5 b}$ and 11a, whereas Figure 1 illustrates the more important connectivities found in the HMBC spectra ofthe same molecules.

Table 5 may be inserted here

HSQC experiments performed on compounds 2, 4, and 7 allows the assignment of the secondary carbon atoms chemical shifts $\mathrm{C}-3, \mathrm{CH}_{2} \mathrm{OR}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OR}$, and the assignment of the chemical shifts for tertiary carbon atoms C-5, C-6, C-7 and C-8 in the intermediate derivatives $\mathbf{1 , 2 , 4 , 6 - 8}$ and 10. These atoms show signals in ranges of $\delta 48.47-72.24$ (C-2), δ $35.25-50.92(\mathrm{C}-3), \delta 33.60-64.34\left(\mathrm{CH}_{2} \mathrm{OR}\right), \delta 33.33-35.26\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OR}\right), \delta 115.35-$ 129.52 (C-5), $\delta 120.76-140.52(\mathrm{C}-6), \delta 113.18-125.82(\mathrm{C}-7)$ and $\delta 116.60-124.46$ (C-8).

Similar HSQC experiments performed on $\mathbf{3 c}$, $\mathbf{5 b}$ and 11a indicate that the ${ }^{13} \mathrm{C}$ NMR signals for the secondary and tertiary carbon atoms in the purine derivatives 3a-d, 5a-d and 11a-b are in similar ranges. Such chemical shifts are the following: $\delta 48.22-68.66$ (C-2), $\delta 32.35$ -$51.21(\mathrm{C}-3), \delta 40.15-47.00\left(\mathrm{CH}_{2} \mathrm{~N}\right), \delta 30.63-31.88\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \delta 30.30-31.09(\mathrm{C}-4), \delta$ $117.15-129.79$ (C-5), $\delta 121.31-140.94$ (C-6), $\delta 120.31$ - 126.44 (C-7), $\delta 123.47-124.79$ (C8), δ 151.02-153.19 (C-2') (except for 3a, 5a and 11a where C-2' is a quaternary carbon atom) and $\delta 145.03-147.92$ (C-8’).

The quaternary carbon signals were confirmed by HMBC spectra on the intermediate (2, $\mathbf{4}$ and 7) and final ($\mathbf{3 c}$, 5b and 11a) compounds (Figure 1). In 2, correlation between $\mathrm{H}-6$ (δ 6.92) and the ${ }^{13} \mathrm{C}$ at 123.51 ppm , allows the unequivocal assignment of $\mathrm{C}-4 \mathrm{a}$; another correlation between H-7 ($\delta 7.04$) and the peak at 146.44 ppm allows the identification of C-

8a. In the same way, the H-2' and H-6' signals ($\delta 7.54$) correlate with the ${ }^{13} \mathrm{C}$ peak at 144.07 ppm, making possible to assign this peak to $\mathrm{C}-4$ ', and the $\mathrm{H}-3$ ' and $\mathrm{H}-5$ ' signals (δ 7.23) correlate to peak at $\delta 135.41 \mathrm{ppm}$, being identified as $\mathrm{C}-1^{\prime}$ accordingly. In $\mathbf{4}$, correlations between H-6 ($\delta 7.15$) and H-5 ($\delta 7.04$) with the ${ }^{13} \mathrm{C}$ signal which appears at 137.01 ppm allow to identify it as C-4a. Assignation of C-8a has been possible due to the interactions between the signals at $\delta 7.06 \mathrm{ppm}(\mathrm{H}-7)$ and $\delta 7.68 \mathrm{ppm}(\mathrm{H}-8)$ and the ${ }^{13} \mathrm{C}$ peak at 129.27 ppm . Correlation between H-4 ($\delta 2.24$ and $\delta 2,59 \mathrm{ppm}$) and the same ${ }^{13} \mathrm{C}$ peak permits us to assign this peak to C-8a. Furthermore, the quaternary carbons of the tosyl group C-1' and C-4' were assigned by the observed correlation among $\delta 7.21 \mathrm{ppm}\left(\mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right)$ and the ${ }^{13} \mathrm{C}$ atom at 136.90 ppm (C-1'). Correlation between $\delta 7.51 \mathrm{ppm}$ (H-2' and H-6') and $\delta 143.78 \mathrm{ppm}$ allows us to assign inequivocally this signal to C-4'. Finally, in 7, correlations of $\mathrm{H}-2 \mathrm{a}$ (δ 4.14), $\mathrm{H}-2 \mathrm{~b}(\delta 3.82)$ and $\mathrm{H}-7(\delta 6.49)$ and the ${ }^{13} \mathrm{C}$ at $\delta 139.08 \mathrm{ppm}$ enables the assignment of $\mathrm{C}-8 \mathrm{a}$. In addition, the assignment of $\mathrm{C}-4 \mathrm{a}$ is possible due to the observed correlation between $\mathrm{H}-6(\delta 7.57)$ and $\mathrm{H}-8(\delta 6.93)$ with the peak at $\delta 146.99 \mathrm{ppm}$.

The HMBC experiment performed on $\mathbf{3 c}$ indicates correlations between H-3 ($\delta 4.19$) and H-6 ($\delta 6.93$) with the signal $\delta 123.42 \mathrm{ppm}(\mathrm{C}-4 \mathrm{a})$. Other correlation exits between $\mathrm{H}-7$ ($\delta 7.06$) and the peak which appears at $\delta 145.88 \mathrm{ppm}(\mathrm{C}-8 \mathrm{a})$. In the same way, the ${ }^{13} \mathrm{C}$ at $\delta 150.39$ ppm that correlates with H-2' $(\delta 8.69), \mathrm{H}-8^{\prime}(\delta 7.98)$ and $\mathrm{CH}_{2} \mathrm{~N}(\delta 4.44)$ can be identified as C-4'. A correlation of $\mathrm{H}-2^{\prime}(\delta 8.69)$ and the ${ }^{13} \mathrm{C}$ peak at $\delta 143.07 \mathrm{ppm}$ allows to identify $\mathrm{C}-6^{\prime}$ and finally, correlation of $\mathrm{H}-8^{\prime}(\delta 7.98)$ and the signal at 135.20 ppm permits us to identify it as C-5'. C-1'" corresponds to a signal appearing at $\delta 134.11 \mathrm{ppm}$ due to its correlation with $\mathrm{H}-3^{\prime \prime}$, and $\mathrm{H}-5$ " ${ }^{\prime}(\delta 7.06)$. C-4" is assigned to the ${ }^{13} \mathrm{C}$ peak at $\delta 144.55 \mathrm{ppm}$ because is correlated with H-2'' and H-6" ($\delta 7.36$).

Figure 1 may be inserted here

In $\mathbf{5 b}$, the assignment of the C-4a and C-8a signals of the quaternary carbons included in the tetrahydroquinoline heterocycle has been deduced through the correlations between $\mathrm{H}-6$ (δ 7.20) and the ${ }^{13} \mathrm{C}$ at $136.33 \mathrm{ppm}(\mathrm{C}-4 \mathrm{a})$. In the same way, correlations between $\delta 7.08$ (H-7), $\delta 6.98(\mathrm{H}-5)$ and $\mathrm{H}-4(\delta 2.30$ and 2.59$)$ with $\delta 127.23$, permits the latter to be assigned to C8 a . In addition, the quaternary carbons of the purine moiety and the tosyl group have been assigned by similar correlations to those of their benzoxazine isosteres, being these signals C -

```
4'( }\delta151.84\textrm{ppm}),\textrm{C}-5`'(\delta131.59 ppm), C-6'( \delta 151.33 ppm), C-1''( \delta 136.21 ppm) and C-
4''(\delta 143.99 ppm).
```

The HMBC experiment performed on 11a, shows that H-6 ($\delta 8.02$) and H-8 ($\delta 7.15$) are correlated with the ${ }^{13} \mathrm{C}$ signal at $\delta 137.00 \mathrm{ppm}$, being assigned this to $\mathrm{C}-4 \mathrm{a} . \mathrm{H}-7(\delta 6.96)$ and $\mathrm{H}-2 \mathrm{a}(\delta 4.18)$ are correlated with the peak at $\delta 140.34 \mathrm{ppm}(\mathrm{C}-8 \mathrm{a})$. Furthermore, the signal appearing at $\delta 153.13 \mathrm{ppm}$ is assigned to $\mathrm{C}-4^{\prime}$ due to its correlation with $\mathrm{H}-8^{\prime}(\delta 8.30)$ and $\mathrm{CH}_{2} \mathrm{~N}(\delta 4.44$ and $\delta 4.52)$. In addition, $\mathrm{H}-8^{\prime}$ is correlated with a signal at $\delta 130.95$, which can be assigned to C-5'. Moreover, the quaternary carbon atoms identification of the tosyl moiety has been deduced similary as in their two isosteric families, being C-1" the peak at $\delta 136.01$ ppm and C-4'' the $\delta 144.51 \mathrm{ppm}$ signal. At last, the characterization of quaternary atoms in the purine skeleton C-2' and C-6' has been deduced by analogy to the corresponding purine chemical shifts already justify in the two previous isosteric families (see Figure 1).

Intermediate 6, precursor of the pyridoxazine family 11a-b, has been studied in detail to prove its structure. In this way, to obtain only the desired 3-regioisomer we have started from 2-aminopyridin-3-ol, followed by acylation of its amino group by treatment with acetic anhydride and pyridine, to decrease the nucleophilicity of the amino group. Subsequently, cyclization of this intermediate with 4-bromobut-2-enoate (ethyl crotonate) in ethanol and $\mathrm{K}_{2} \mathrm{CO}_{3}$ only gave 6, but not its 2-regioisomer $\mathbf{1 2}$ (Scheme 4). This is different to that described by other authors who obtained a mixture of two pyridoxazine regioisomers (ethyl-4-acetyl-3,4-dihidro-2H-pyrido[3,2-b][1,4]oxazine-2-carboxylate and ethyl-4-acetyl-3,4-dihidro- $2 H$-pyrido[3,2-b][1,4]oxazine-3-carboxylate), by reaction between N-(3-hydroxypyridin-2-yl)acetamide and ethyl 2,3-dibromopropionate in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$, employing $\mathrm{CH}_{3} \mathrm{CN}$ as solvent [12].

Scheme 4 may be inserted here

In order to unequivocally determine the structure of 6, 2D NMR (HSQC and HMBC) experiments have been carried out. HSQC (Table 5) allows the unequivocal assignment of the tertiary carbon in the pyrido[3,2-b][1,4]oxazine ring C-3, C-6, C-7 and C-8, and the methyl group of both, acetyl and ethyl carboxylate moieties. These atoms show signals at $\delta 44.57$, 139.56, 120.60, $124.30,25.70$ and 13.95 ppm , respectively. In addition, the secondary
carbons $\mathrm{C}-2\left(\delta 67.17 \mathrm{ppm}\right.$), the CH_{2} linker carbon ($\delta 33.60 \mathrm{ppm}$) and the CH_{2} of the ethyl carboxylate group ($\delta 60.69 \mathrm{ppm}$) have also been assigned.

The HMBC experiment to determine the quaternary carbons (Figure 1) shows that $\mathrm{H}-2 \mathrm{a}$ (δ $4.47 \mathrm{ppm})$ and $\mathrm{H}-8(\delta 6.93 \mathrm{ppm})$ are correlated with the ${ }^{13} \mathrm{C}$ at $\delta 140.67 \mathrm{ppm}(\mathrm{C}-8 \mathrm{a})$. $\mathrm{H}-3$ (δ $5.41 \mathrm{ppm})$ and H-6 ($\delta 7.96 \mathrm{ppm}$) peaks are correlated with the signal at $\delta 138.46$ (C-4a). In addition, both ester and amide CO groups show very similar chemical shifts ($\delta 170.21$ and δ $169.69 \mathrm{ppm})$. The signal at $\delta 4.12 \mathrm{ppm}$ of the CH_{2} ethyl carboxylate group is correlated with a peak at $\delta 170.21 \mathrm{ppm}$ (CO ester group). Furthermore, a corrrelation between the CH_{3} amide group ($\delta 2.59 \mathrm{ppm}$) and the ${ }^{13} \mathrm{C}$ at $\delta 169.69 \mathrm{ppm}$ indicates that this peak is the CO amide moiety.

Scheme 4 shows two possible structures ($\mathbf{6}$ and 12) that could be formed in the cyclization reaction. In our case, we have only obtained 6, as demonstrated by the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} \mathrm{HMBC}$ study. This experiment corroborates that $\mathrm{H}-3(\delta 5.41 \mathrm{ppm})$ is correlated with the ${ }^{13} \mathrm{C}$ chemical shift of the amide group ($\delta 169.69$). This correlation confirms the proximity between these groups and proves that $\mathbf{6}$ but not $\mathbf{1 2}$ is the obtained regioisomer.

Due to $\mathbf{6}$ is the intermediate of the final purines 11a-b, it is demonstrated that the side chain links throughthe 3-position of the heterocycle, unlike derivatives 3a-d, whose purine residue binds through its 2-position.

Nuclear Overhauser Spectroscopy experiments performed on compound 3c ($\mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{H}$) shows the existence of a NOESY effect between $\mathrm{H}-2$ and $\mathrm{H}-8^{\prime}$ and within both multiplet hydrogen atoms $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ of the linear chain and $\mathrm{H}-8$, A correlation with $\mathrm{C}_{2} \underline{\mathrm{H}} \mathrm{N}$ and the same hydrogen of the purine skeleton $\mathrm{H}^{\prime} 8^{\prime}$ is observed, but no NOESY effects are noticed among H-3a or $\mathrm{H}-3 \mathrm{~b}$ and $\mathrm{H}-8$ '. These facts are compatible with a preferred conformational arrangement in which the imidazole ring of the purine is located below that of the benzoxazine moiety (Figure 2a).

Figure 2 may be inserted here

Acknowledgements

This work was partially supported by the Junta de Andalucía (project n ${ }^{\circ}$ CS2016.1).

References

[1] S. Ijaz, N. Akhtar, M. S. Khan, A. Hameed, M. Irfan, M. A. Arshad, S. Ali, M. Asrar. Biomed. Pharmacother. 2018, 103, 1643-1651.
[2] S. J. Li, X. Zhang, X. H. Wang, C. Q. Zhao. Eur. J. Med. Chem. 2018, 156, 316-343.
[3] M. S. Kumar, K. M. Adki. Biomed. Pharmacother. 2018, 105, 233-245.
[4] J. Campos, E. Saniger, J. A. Marchal, S. Aiello, I. Suárez, H. Boulaiz, A. Aránega, M. A. Gallo, A. Espinosa. Curr. Med. Chem. 2005, 12, 1423-1438.
[5] A. Conejo-García, M. C. Núñez, M. Díaz-Gavilán, O. Cruz-López, M. A. Gallo, A. Espinosa, J. M. Campos. Expert Opin. Drug Discov. 2008, 3, 1223-1235.
[6] M. C. Núñez, M. Díaz-Gavilán, A. Conejo-García, O. Cruz-López, M. A. Gallo, A. Espinosa, J. M. Campos. Curr. Med. Chem. 2008, 15, 2614-2631.
[7] A. Conejo-García, M. A. Gallo, A. Espinosa, J. M. Campos. Expert Opin. Ther. Pat. 2008, 12, 212-222.
[8] M. Díaz-Gavilán, A. Conejo-García, O. Cruz-López, M. C. Núñez, D. ChoquesilloLazarte, J. M. González-Pérez, F. Rodríguez-Serrano, J. A. Marchal, A. Aránega, M. A. Gallo, A. Espinosa, J. M. Campos. ChemMedChem 2008, 3, 127-135.
[9] A. Conejo-García, M. E. García-Rubiño, J. A. Marchal, M. C. Núñez, A. Ramírez, S. Cimino, M. A. García, A. Aránega, M. A. Gallo, J. M. Campos. Eur. J. Med. Chem. 2011, 46, 3795-3801.
[10] M. Díaz-Gavilán, J. A. Gómez-Vidal, F. Rodríguez-Serrano, J. A. Marchal, O. Caba, A. Aránega, M. A. Gallo, A. Espinosa, J. M. Campos. Bioorg. Med. Chem. Lett. 2008, 18, 1457-1460.
[11] N. Fernández-Sáez, B. Rubio-Ruiz, J. M. Campos, A. Unciti-Broceta, M. D. Carrión, M. E. Camacho. Future Med. Chem. 2019, DOI: 10.4155/fmc-2018-0291.
[12] N. Henry, I. Sánchez, A. Sabatié, V. Bénéteau, G. Guillamuet, M.D. Pujol. Tetrahedron 2006, 62, 2405-2412.

s , singlet; bs, broad singlet; d, doublet; dd, doublet doublet; ddd, doublet doublet doublet; t , triplet; q , quadruplet; m , multiplet.

Compound	C-2	C-3	C-4	C-4a	C-5	C-6	C-7	C-8	C-8a	$\mathrm{CH}_{2} \mathrm{OR}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OR}$
1	72.24	45.31	-	132.95	115.35	121.20	118.75	116.60	143.30	59.40	35.16
2	69.97	48.47	-	123.51	117.25	120.76	125.82	123.98	146.44	58.70	34.88
4	48.47	35.25	29.48	137.01	129.52	126.62	124.93	123.60	129.37	64.34	-
	67.17	44.57	-	138.46	-	139.56	120.60	124.30	140.67	33.60	-
7	68.70	49.25	-	146.99	-	139.02	113.18	121.72	139.08	60.06	33.35
8	69.27	48.64	-	147.53	-	140.52	114.18	121.11	139.59	60.67	35.26
	67.75	50.92	-	140.66	-	140.11	119.64	123.88	137.96	59.39	33.33
10	67.44	50.83	-	140.50	-	140.21	119.82	124.46	137.39	58.28	33.40

Solvent used CDCl_{3}.
Cl_{3}) are reported in $\delta(\mathrm{ppm})$ relative to $\mathrm{CDCl}_{6} \cdot{ }^{13} \mathrm{C}$
Chemical shifts (in CDCl_{3}) are reported in $\delta(\mathrm{ppm})$ relative to $\mathrm{CDCl}_{3} ;{ }^{13} \mathrm{C}$ signals for the tosyl substituents: 2, ${ }^{\prime}-1^{\prime}: 135.41, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}: 127.05, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}: 129.70, \mathrm{C}-4^{\prime}: 144.07, \mathrm{CH}_{3}: 21.39 ; 4, \mathrm{C}-1^{\prime}: 136.90, \mathrm{C}^{\prime} \mathbf{2}^{\prime}, \mathrm{C}-6^{\prime}: 127.07, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}: 1$
 C signals for the sylit substituent: 8: C: $18.69,\left(\mathrm{CH}_{3}\right)_{3}: 26.38,\left(\mathrm{CH}_{3}\right) 2: 4.96$; $9: \mathrm{C}: 18.03,\left(\mathrm{CH}_{3}\right) 3: 25.16,\left(\mathrm{CH}_{3}\right)$: 5.65 . $\mathrm{CH}_{3} .13$.

Compound	C-2	C-3	C-4	C-4a	C-5	C-6	C-7	C-8	C-8a	$\mathrm{CH}_{2} \mathrm{~N}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$	C-2,	C-4'	C-5'	C-6,	C-8'
3 a	68.66	48.31	-	123.68	117.40	121.60	126.44	124.35	145.98	40.61	31.88	153.19	153.17	130.86	151.91	146.07
3b	68.33	48.18	-	123.52	117.25	121.42	126.29	124.29	145.98	40.33	31.75	151.97	151.72	131.62	151.09	145.24
3 c	68.32	48.08	-	123.42	117.17	121.31	126.18	124.13	145.88	40.29	31.67	151.80	150.39	135.20	143.07	145.03
3d	68.62	48.07	-	123.44	117.15	121.36	126.17	124.00	145.80	40.15	31.77	152.40	153.65	129.92	$\begin{gathered} 145.20(\mathrm{q}, \\ 37.1) \end{gathered}$	147.29
5a	48.22	32.35	30.43	136.11	129.29	127.03	125.06	123.60	126.87	46.71	-	153.00	152.86	130.58	151.78	145.96
5b	48.47	32.85	30.67	136.33	129.34	127.19	125.20	123.97	127.23	46.70	-	152.01	151.84	131.59	151.33	145.22
$5 \mathrm{c}^{\text {a }}$	48.51	32.58	30.30	136.04	129.73	126.71	125.07	123.47	128.77	46.10	-	151.78	150.95	133.63	141.96	147.62
5d	48.90	33.24	31.09	136.73	129.79	127.64	125.62	124.27	127.51	47.00	-	152.40	154.25	130.36	$\begin{gathered} 145.80(\mathrm{q}, \\ 37.7) \end{gathered}$	147.92
11 a	66.92	51.13	-	137.00	-	140.94	120.46	124.79	140.34	41.74	30.63	152.63	153.13	130.95	151.66	146.72
11b	67.02	51.21	-	137.15	-	140.93	120.36	124.72	140.34	41.60	30.85	151.02	151.81	131.82	151.68	145.96

Chemical shifts (in CDCl_{3}) are reported in $\delta(\mathrm{ppm})$ relative to CDCl_{3}; multiplicities and coupling constants (Hz) are given in parentheses.

${ }^{13} \mathrm{C}$ signals for the CF_{3} substituent: 3d: 120.69 (q, 274.9); 5d: $120.80(\mathrm{q}, 275.9)$.

${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$	2	4	6	7	3c	5b	11a
H-2	3.58	4.12, 3.42	4.47, 4.07	4.15, 3.82	3.34	4.01, 3.45	4.18, 3.75
C-2	69.97	48.47	67.17	68.7	68.32	48.47	66.92
H-3	4.32, 3.19	1.94	5.41	3.76	4.19, 3.21	2,39	4.77
C-3	48.47	35.25	44.57	49.25	48.08	32.85	51.13
H-4	-	2.24	-	5.12	-	2.30	-
C-4	-	29.48	-	-	-	30.67	-
H-5	6.79	7.04	-	-	6.77	6.98	-
C-5	115.35	129.52	-	-	117.17	129.34	-
H-6	6.92	7.15	7.96	7.57	6.93	7.2	8.02
C-6	120.76	126.62	139.56	139.02	121.31	127.19	140.34
H-7	7.04	7.04	7.00	6.49	7.06	7.08	6.96
C-7	125.82	124.93	120.60	113.18	126.18	125.2	120.46
H-8	7.83	7.8	7.20	6.93	7.77	7.73	7.15
C-8	123.98	123.60	124.30	121.72	124.13	123.97	124.79
H-2,	-	-	-	-	8.69	8,74	-
C-2'	-	-	-	-	151.8	152.01	153.13
H-8'	-	-	-	-	7.98	8.04	8.30
C-8'	-	-	-	-	145.03	145.22	146.72
$\mathrm{CH}_{2} \mathrm{X}$	3.76	3.53	2.47	3.87, 3.97	4.44	4.15,4.25	4.44, 4.52
$\mathrm{CH}_{2} \mathrm{X}$	58.7	64.34	33.60	60.06	40.29	46.7	41.74
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{X}$	1.77	-	-	1.70	2.04, 2.28	-	2.13
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{X}$	34.88	-	-	33.35	31.67	-	30.63
$\mathrm{COOCH}_{2} \mathrm{CH}_{3}$	-	-	4.12	-	-	-	-
$\mathrm{COOCH}_{2} \mathrm{CH}_{3}$	-	-	60.69	-	-	-	-
$\mathrm{COOCH}_{2} \mathrm{CH}_{3}$	-	-	1.22	-	-	-	-
$\mathrm{COOCH}_{2} \underline{\mathrm{CH}}_{3}$	-	-	13.95	-	-	-	-
COCH_{3}	-	-	2.59	-	-	-	-
COCH_{3}	-	-	25.70	-	-	-	-

This article is protected by copyright. All rights reserved.

Scheme 1. Synthesis of compounds 3a-d included in the benzoxazine family. Reagents and conditions: (i) ethyl 4-bromobut-2-enoate, $\mathrm{NaHCO}_{3}, \mathrm{EtOH}, 3 \mathrm{~h}$, rt, then $\mathrm{K}_{2} \mathrm{CO}_{3}, 30 \mathrm{~min}$; (ii) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~h}, 0^{\circ} \mathrm{C}$ to rt; (iii) $\mathrm{TsCl}, \mathrm{py}, 12 \mathrm{~h}, 0^{\circ} \mathrm{C}$ to rt; (iv) 2,6-dihalopurine or 6halopurine, DIAD, $\mathrm{Ph}_{3} \mathrm{P}, 36 \mathrm{~h},-20^{\circ} \mathrm{C}$ to rt; (v) MFSDA, CuI, HMAP, DMF, $12 \mathrm{~h}, 70^{\circ} \mathrm{C}$.

(1)

Scheme 2. Synthesis of the tetrahydroquinoline family compounds (5a-d). Reagents and conditions: (i) aq. $\mathrm{NaOH}, \mathrm{EtOH}, 20 \mathrm{~h}$, reflux, then HCl 1 N ; (ii) $\mathrm{SOCl}_{2}, \mathrm{EtOH}, 4 \mathrm{~h}$, reflux; (iii) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{HCl}, \mathrm{Et}_{2} \mathrm{O}, 6 \mathrm{~h}$, rt; (iv) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 1 \mathrm{~h}, 0^{\circ} \mathrm{C}$; (v) TsCl, py, 12 h , $0^{\circ} \mathrm{C}$ to rt; (vi) 2,6-dihalopurine or 6-halopurine, DIAD, $\mathrm{Ph}_{3} \mathrm{P}, 36 \mathrm{~h},-20^{\circ} \mathrm{C}$ to rt; (vii) MFSDA, CuI, HMAP, DMF, $12 \mathrm{~h}, 70^{\circ} \mathrm{C}$.

Scheme 3. Synthesis of compounds belonging to the pyridoxazine family (11a-b).
Reagents and conditions: (i) $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{py}, 5 \mathrm{~min}$, reflux, then NaOH ; (ii) ethyl 4-bromobut-2enoate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{EtOH}, 24 \mathrm{~h}$; (iii) LiAlH_{4}, THF, $1 \mathrm{~h}, 0^{\circ} \mathrm{C}$ to rt; (iv) TBDMSCl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, DCM, 12 h, rt; (v) TsCl, Et ${ }_{3} \mathrm{~N}$, DMAP, DCM, 12 h , rt; (vi) AcOH, H2O, THF, 12 h , rt; (vii)
 2,6-dichloropurine or 6-halopurine, DIAD, $\mathrm{Ph}_{3} \mathrm{P},-20^{\circ} \mathrm{C}$ to $\mathrm{rt}, 36 \mathrm{~h}$.

Scheme 4. Detailed route leading to the intermediate regioisomer 6 from 2-aminopyridin-3ol.

(D) 2

4

6

7

5b

11a

Figure 1. Main connectivities found in the $\mathrm{HMBC}{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ spectra of intermedia compounds $(\mathbf{2}, \mathbf{4}, \mathbf{6}, 7)$ and final derivatives ($\mathbf{3 c}, \mathbf{5} \mathbf{b}$ and 11a).

a)

Figure 2. Selected NOESY correlations for compound 3c.

Graphical table of Contents

The NMR assignment of several heterocyclic families linked to purine moieties has been unequivocally established by using the concerted application of one- and two-dimensional NMR experiments (DEPT, HSQC and HMBC).

[^0]: *Corresponding author: M. Encarnación Camacho. Departamento de Química Farmacéutica y Orgánica. Facultad de Farmacia. Universidad de Granada. c/ Campus de Cartuja, s/n. 18071 Granada, Spain. E-mail: ecamacho@ugr.es. Tfno. +34958243844.
 *Corresponding author: M. Dora Carrión. Departamento de Química Farmacéutica y Orgánica. Facultad de Farmacia. Universidad de Granada. c/ Campus de Cartuja, s/n. 18071 Granada, Spain. E-mail: dcarrion@ugr.es. Tfno. +34958240728.

 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/mrc. 4871

