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Abstract

In digital histopathological image analysis, two conflicting objectives are often pursued:
closeness to the original tissue and high classification performance. The former objective
tries to recover images (stains) that are as close as possible to the ones obtained by staining
the tissue with a single dye. The latter objective requires images that allow the extraction
of better features for an improved classification, even if their appearance is not close to
single stained tissues. In this paper we propose a framework that achieves both objectives
depending on the number of stains used to mathematically decompose the scanned image.
The proposed framework uses a total variation prior for each stain together with the simi-
larity to a given reference color-vector matrix. Variational inference and an evidence lower
bound are utilized to automatically estimate all the latent variables and model parameters.
The proposed methodology is tested on real images and compared to classical and state-of-
the-art methods for histopathological blind image color deconvolution and prostate cancer
classification.

Keywords: Blind Color Deconvolution, histopathological images, Variational Bayes,
Prostate Cancer

1. Introduction

Histopathological tissues are usually stained with a combination of stains that bind to
specific proteins on the tissue. Hematoxylin and Eosin (H&E) is one of the most commonly
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used combination of stains. Hematoxylin stains cell nuclei while eosin stains cytoplasm and
extracellular matrix components [1]. In digital brightfield microscopy, stained slides are
then scanned to obtain high resolution whole-slide images (WSI). WSI analysis requires a
lot of time and effort and computer-aided diagnosis (CAD) systems have become a valuable
ally for pathologists. These systems frequently make use of the information provided by
the different stains separately [2]. The separation of the stains in a WSI is known as Color
Deconvolution (CD) and aims at estimating each stain concentration at each pixel location.
Usually, the color spectral properties of each stain are also unknown since they vary from
image to image. Color variations have a wide range of origins: different scanners, stain
manufactures, or staining procedures, among others that create inter- and intra-laboratory
differences. A study on color variation sources can be found in [3]. Blind CD techniques
estimate image specific stain color-vectors together with stain concentrations.

CD is usually considered as a branch of color normalization. Tosta et al. [3] classified
normalization methods into histogram matching, color transfer, and spectral matching. Nor-
malization does not always require CD. Histogram matching methods do not use it, which
leads to information loss as stains are assumed to be equally distributed. Color transfer
usually separates histological regions identified by a segmentation step or between dyes. Al-
though they usually involve deconvolution steps, it is not their main objective but a way to
apply an statistical based color correction. Spectral matching techniques require to identify
image specific spectral properties through CD. One of the first CD methods was proposed
by Ruifrok et al. [4]. They obtained a set of globally standard color-vectors for hematoxylin,
eosin and 3,3’-Diaminobenzidine (DAB), by measuring the relative absorption of each stain
in single-stained images. The proposed set of stain color-vectors was calibrated for process-
ing and digitization at the authors’ laboratory. While these color vectors have been widely
used, they do not take into account inter-slide variability. Empirical determination of the
color-vector using single-stained tissue was used in [5, 6]. Aside from techniques that require
the user to select pixels corresponding to each stain [7], several methods have been proposed
to tackle inter-slide variability. In [2] Non-negative Matrix Factorization (NMF) is used to
solve the problem formulated as a blind source separation one. This line of research was
further developed in [8] and [9] by adding regularization and sparsity terms to take into
account that a type of stain is only bounds to certain biological structures. Singular Value
Descomposition (SVD), proposed in [10] to separate H&E images, was extended by McCann
et al. [11] by taking into account the interaction between eosin and hematoxylin. The use
of Non-Negative Least Squares (NNLS) to improve the performance of NMF is proposed in
[12] to obtain a faster and less memory demanding method. Clustering techniques were ex-
plored in [13] where the stain vectors are estimated by projecting the input color image onto
the Maxwellian chromaticity plane to form clusters, each one corresponding to one stained
tissue type. In [14], to estimate the stain color-vector matrix, the image is segmented into
background and pixels belonging to each stain using supervised relevant vector machines.
The mean color of the pixels in each class is utilized as the stain color vector. Alsubaie et
al. [15, 16], following [17], applied Independent Component Analysis (ICA) in the wavelet
domain where the independence condition among sources is relaxed. Astola et al. [18] states
that the method in [10] obtains better results applied in the linearly inverted RGB-space
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and not in the (logarithmically inverted) absorbency space. In [19] a loss function based
on the authors’ experience is optimized to obtain the image stain color-vectors. For further
information on classical and state-of-the-art methods, the interested reader might check the
reviews published in [20, 3].

In this paper, we present a framework for blind color deconvolution and classification
of histological images. Depending on the number of stains used to mathematically model
the observed image, the framework can be utilized to either recover the original H&E stains
or to produce an H&E separation that boosts the performance of image classifiers. Within
the framework, the proposed Bayesian blind CD problem algorithm, extends our previous
work in [21] and [22]. In [21], a prior on the color-vectors, favouring similarity to a reference
stain color-vectors, as well as a smoothness Simultaneous Autoregresive (SAR) prior model
on each stain concentrations was used. As the SAR prior tends to oversmooth the edges
of the image structures, in [22], we proposed the use of a Total Variation (TV) prior on
each stain. The TV prior reduces the noise in the images while preserving sharp edges
[23]. All model parameters were experimentally determined. In this paper, we extend
the work in [22] by applying the Variational Bayes inference [24] and an evidence lower
bound to automatically estimate all the latent variables and model parameters for blind
color deconvolution and classification purposes. The proposed framework has been tested
on additional real images for blind color deconvolution, where the fidelity to a ground-truth
stain separation is assessed, and, for the first time, on classification tasks.

The rest of the paper is organized as follows: in section 2 the problem of color decon-
volution is mathematically formulated. Following the Bayesian modelling and inference, in
section 3 we propose a fully Bayesian algorithm for the estimation of the concentrations
and the color-vector matrix as well as all the model parameters. In section 4, the proposed
framework is evaluated on H&E stained images and its performance is compared with other
classical and state-of-the-art CD methods in two different scenarios: color deconvolution
and prostate cancer classification. Finally, section 5 concludes the paper.

2. Problem Formulation

Digital brightfield microscopes usually store a stained histological specimen’s WSI as an
RGB color image of size M ×N , represented by the MN × 3 matrix, I = [iR iG iB]. Each
color plane is stacked into a MN × 1 column vector ic = (i1c, . . . , iMNc)

T, c ∈ {R,G,B}.
Each value iic represents the transmitted light on color band c ∈ {R,G,B} for the pixel i
of the slide.

CAD systems, on the other side, usually work with images in the Optical Density (OD)
space. In this space, the intensity is linear with the amount of each stain absorbed by a
sample. The OD of an image channel, yc ∈ RMN×1, is defined as yc = − log10 (ic/i

0
c), where

i0c denotes the incident light, and the division operation and log10(·) function are computed
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element-wise. The observed OD image Y ∈ RMN×3 has three OD channels, i.e.,

Y =
[
yR yG yB

]
=

 yT
1,:
...

yT
MN,:

 =

 y1R y1G y1B
...

...
...

yMNR yMNG yMNB

 . (1)

The Beer-Lambert law, for a slide stained with ns stains, establishes that

YT = MCT + NT , (2)

where M ∈ R3×ns is the color-vector matrix,

M =
[
m1 . . . mns

]
=

mT
R

mT
G

mT
B

 =

mR1 . . . mRns

mG1 . . . mGns

mB1 . . . mBns

 ∈ R3×ns , (3)

with each column ms in matrix M being a unit `2-norm stain color-vector containing the
relative RGB color composition of the corresponding stain in the OD space, C ∈ RMN×ns

is the stain concentration matrix,

C =

 c11 . . . c1ns

...
. . .

...
cMN1 . . . cMNns

 =

 cT
1,:
...

cT
MN,:

 =
[
c1 . . . cns

]
, (4)

with the s-th column cs = (c1s, . . . , cMNs)
T, s ∈ {1, . . . , ns}, representing the concentrations

of the s-th stain, and the i-th row cT
i,: = (ci1, . . . , cins), i = 1, . . . ,MN , representing the

contribution of each stain to the i-th Y pixel value, yi,:, and N is a random matrix of size
MN × 3 with i.i.d. zero mean Gaussian components with variance β−1, representing the
noise introduced by the image capture system.

In the following section we use Bayesian modeling and inference to estimate both C and
M, from Y

3. Bayesian Modelling and Inference

Bayesian methods start with a prior distribution on the unknowns. In this paper we
adopt the TV prior, which smooths the image noise while preserving its edges, for each one
of the independent stain concentration vectors cs, that is,

p(C|α) =
ns∏
s=1

p(cs|αs) ∝
ns∏
s=1

exp [−αsTV(cs)] , (5)

with αs > 0 controlling the image smoothness. The TV function is defined for any cs,
s ∈ {1, . . . , ns}, as

TV(cs) =
MN∑
i=1

√
(∆h

i (cs))
2 + (∆v

i (cs))
2, (6)

4



where the operators ∆h
i (cs) and ∆v

i (cs) correspond to the horizontal and vertical first order
differences of cs at pixel i, respectively.

The color-vector matrix M = [m1, . . . ,mns ] varies, as previously discussed, from image
to image. However, images from the same laboratory usually have similar colors and we
can benefit from this prior knowledge. Ruifrok et al. [4] proposed a procedure to obtain
a laboratory dependant standard color-vectors. Although those vectors are not exact for
every single image, they are representative and widely used. To take into account these con-
siderations, we incorporate similarity to a reference color-vector matrix M = [m1, . . . ,mns

]
into the color-vector matrix prior model as

p(M|γ) =
ns∏
s=1

p(ms|γs) ∝
ns∏
s=1

γ
3
2
s exp

(
−1

2
γs‖ms −ms‖2

)
, (7)

where γs, s = 1, . . . , ns, controls our confidence on the accuracy of ms.
Finally, from the degradation model in (2), we have

p(Y|M,C, β) =
MN∏
i=1

p(yi,:|M, ci,:, β) =
MN∏
i=1

N (yi,:|Mci,:, β
−1I3×3). (8)

With all these ingredients, we define the joint probability distribution as

p(Y,C,M, β,α,γ) = p(Y|C,M, β) p(C|α) p(M|γ) p(β) p(α) p(γ) , (9)

where p(γ), p(α) and p(β) are improper distributions of the form p(w) ∝ const.
Following the Bayesian paradigm, inference will be based on the posterior distribution

p(Θ|Y) with Θ = {C,M, β,α,γ} = {c1, . . . , cns ,m1, . . . ,mns , β, α1, . . . , αns , γ1, . . . , γns},
the set of all unknowns.

Since the above posterior cannot be obtained in closed form, several approaches have
been proposed to approximate it. In this paper we use the mean-field variational Bayesian
model [25] to approximate p(Θ|Y) by the distribution q(Θ) of the form

q(Θ) = q(β)
ns∏
s=1

q(ms)q(cs)q(αs)q(γs), (10)

where q(β), q(αs), q(γs), s = 1, . . . , ns, are assumed to be degenerate distributions. The
optimal q(Θ) minimizes the Kullback-Leibler divergence [26] defined as

KL (q(Θ) || p(Θ|Y)) =

∫
q(Θ) log

q(Θ)

p(Θ|Y)
dΘ (11)

=

∫
q(Θ) log

q(Θ)

p(Θ,Y)
dΘ + log p(Y). (12)

The Kullback-Leibler divergence is always non negative and equal to zero if and only if
q(Θ) = p(Θ|Y).
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Even with this factorization, the TV prior for C hampers the evaluation of this di-
vergence. To solve this problem, we define for αs, cs, and any N−dimensions vector
us ∈ (R+)MN , s = 1, . . . , ns, the functional

Ms(cs,us|αs) = exp

[
−αs

2

MN∑
i=1

(∆h
i (cs))

2 + (∆v
i (cs))

2 + uis√
uis

]
. (13)

Now, using the inequality for w ≥ 0 and z > 0,
√
wz ≤ w+z

2
⇒
√
w ≤ w+z

2
√
z
,

we can write

exp[−αsTV(cs)] ≥Ms(cs,us|αs), s = 1, . . . , ns. (14)

We, then, define

M(C,U|α) =
∏
s

Ms(cs,us|αs), (15)

where U = [u1 . . .uns ] and F(Θ,U,Y) = p(Y|M,C, β)M(C,U,α)p(M,γ)p(β)p(α)p(γ)
to obtain the inequality

log p(Θ,Y) ≥ log F(Θ,U,Y). (16)

We have then found a lower bound, F(Θ,U,Y), for the joint probability p(Θ,Y) defined
in (9). Utilizing this lower bound in (12), we minimize KL (q(Θ) ||F(Θ,U,Y)) instead of
KL (q(Θ) || p(Θ|Y)).

As shown in [25], the mean field variational distribution approximation establishes that
for each unknown θ ∈ Θ, q(θ) will have the form

q(θ) ∝ exp 〈log F(Y,C,M, β,α,γ)〉q(Θ\θ) , (17)

where Θ\θ represents all the variables in Θ except θ and 〈·〉q(Θ\θ) denotes the expected
value calculated using the distribution q(Θ\θ). For variables with a degenerate posterior
approximation, that is, for θ ∈ {β, α1, . . . , αns , γ1, . . . , γns}, the value where the posterior
degenerates is

θ̂ = arg max
θ
〈log F(Y,C,M, β,α,γ)〉q(Θ\θ) . (18)

For the rest of the variables, that is, for θ ∈ {m1, . . . ,mns , c1, . . . , cns}, when point estimates
are required, the expected value, that is, θ̂ = 〈θ〉q(θ) is used.

Let us now explicitly obtain analytical expressions for these estimates.

3.1. Concentration Update

According to (17), the estimation of the distributions on the concentrations q(cs) is
obtained as

q(cs) ∝ exp 〈log F(Y,C,M, β,α,γ)〉q(Θ\cs) , (19)

where

〈log F(Y,C,M, β,α,γ)〉q(Θ\cs = 〈log p(Y|C,M, β)〉q(Θ\cs) + 〈logM(C,U,α)〉q(Θ\cs) .
(20)

6



To calculate the first term of the sum, we rewrite the distribution probability in (8) as

p(Y|M,C, β) ∝ β
1
2

MN∏
i=1

exp

(
−1

2
β‖yi,: −

ns∑
s=1

cisms‖2

)

= β
1
2

MN∏
i=1

exp

(
−1

2
β‖yi,: − cisms −

∑
k 6=s

cikmk‖2

)

= β
1
2

MN∏
i=1

exp

(
−1

2
β

ns∑
s=1

[
−2cism

T
s

(
yi,: −

∑
k 6=s

cikmk

)
+ c2

is‖ms‖2

]

+const

)
, (21)

where we have separated the contribution of the s-th stain to each observed image pixel
from the rest of stains and const indicates the term which does not depend on cs.

Then, we calculate 〈log p(Y|C,M|β)〉q(Θ\cs) as

〈log p(Y|C,M|β)〉q(Θ\cs) =

〈
−β

2

MN∑
i=1

ns∑
s=1

[
−2cism

T
s

(
yi,: −

∑
k 6=s

cikmk

)
+ c2

is‖ms‖2

]〉

=− β

2

(
−2cTs z−s + ‖cs‖2

〈
‖ms‖2

〉)
, (22)

where z−s is a column vector with components

z−si = 〈ms〉T e−si,: with e−si,: = yi,: −
∑
k 6=s

〈cik〉 〈mk〉 , i = 1, . . . ,MN. (23)

From (13), we can calculate

〈logM(C,U,α)〉q(Θ\cs) =

〈
−αs

2

MN∑
i=1

(∆h
i (cs))

2 + (∆v
i (cs))

2 + uis
uis

〉
=− αs

2
(cs)

T
[
(∆h)TW(u)∆h + (∆v)TW(u)∆v

]
cs + const, (24)

where W(us) is a diagonal matrix of the form W(us) = diag(u
−1/2
is ), for i = 1, . . . ,MN .

Hence,

〈log F(Y,C,M|β,α,γ)〉q(Θ\cs) =− β

2

(
−2cT

s z−s+ ‖ cs ‖2
〈
‖ms ‖2

〉)
− αs

2
(cs)

T
[
(∆h)TW(u)∆h + (∆v)TW(u)∆v

]
cs + const,

(25)
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which, from (17), produces q(cs) = N (cs| 〈cs〉 ,Σcs) , where

Σ−1
cs = β

〈
‖ms ‖2

〉
IMN×MN + (∆h)TW(us)∆

h + (∆v)TW(us)∆
v (26)

〈cs〉 = βΣcsz
−s , (27)

where ∆h and ∆v represent the convolution matrices associated with the first order horizontal
and vertical differences, respectively. Note that the matrix W(us) can be interpreted as a
spatial adaptivity matrix since it controls the amount of smoothing at each pixel location
depending on the strength of the intensity variation at that pixel, as expressed by the
horizontal and vertical intensity gradient.

3.2. Color-Vector Update

In a similar way, using (23), we calculate the distribution of ms,

〈log F(Y,C,M|β,α,γ)〉q(Θ\ms) = 〈log p(Y|C,M, β)〉q(Θ\ms) + 〈log p(M,γ)〉q(Θ\ms)

= −β
2

(
‖ms ‖2

MN∑
i=1

〈
c2
is

〉
− 2mT

s

MN∑
i=1

〈cis〉 e−si,:

)
− 1

2
γs ‖ms −ms ‖2 +const, (28)

which, from (17), produces q(ms) = N (ms| 〈ms〉 ,Σms),
where

Σ−1
ms

=

(
β
MN∑
i=1

〈
c2
is

〉
+ γs

)
I3×3, (29)

〈ms〉 = Σms

(
β
MN∑
i=1

〈cis〉 e−si,: + γsms

)
. (30)

Notice that 〈ms〉 may not be a unitary vector even if ms is. To obtain unitary vectors, we
can always replace 〈ms〉 by 〈ms〉 / ‖ 〈ms〉 ‖ and Σms by Σms/ ‖ 〈ms〉 ‖2.

3.3. U Update

The use of the majorization with the functional in (13) introduces a new set of param-
eters, U, that need to be estimated along with the concentrations and the color-vectors
matrix. To estimate the U matrix, we need to solve, for each s ∈ {1, . . . , ns},

ûs = arg min
us

−〈logMs(αs, cs,us)〉q(cs) , (31)

whose solution is given by

ûis = arg min
uis

〈
(∆h

i (cs))
2 + (∆v

i (cs))
2
〉

+ uis√
uis

=
〈
∆h
i (cs)

2
〉

+
〈
∆v
i (cs)

2
〉
. (32)
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3.4. Parameter Update

Finally, the estimates of the noise, concentration, and color-vectors parameters are ob-
tained according (18) as

β̂−1 =
tr(
〈
(YT −MCT)(YT −MCT)T

〉
q(Θ)

)

3MN
, (33)

α̂−1
s =

tr
((

(∆h)
T

(∆h) + (∆v)T(∆v)
) 〈

csc
T
s

〉)
MN

, (34)

γ̂−1
s =

tr(
〈
(ms −ms)(ms −ms)

T
〉
)

3
. (35)

3.5. Calculating the expectations and concentration covariance matrices

To estimate the concentrations and color-vectors, the expectations 〈c2
is〉 in (30) and

〈‖ms ‖2〉 in (26) need to be calculated. Also, the computation of the matrix Σcs , defined
in (26), is an issue due to the size of WSI images. In this section we explicitly calculate
the mentioned expected values and address the concentrations covariance matrix calculation
issue.

Notice that 〈c2
is〉 can be calculated using (27) and 〈‖ms ‖2〉 can be easily calculated from

(29) resulting in

MN∑
i=1

〈
c2
is

〉
=

MN∑
i=1

〈cis〉2 + tr(Σcs) ,
〈
‖ms ‖2

〉
=‖ 〈ms〉 ‖2 +tr(Σms) . (36)

The matrix Σcs must be explicitly calculated to find its trace and also to calculate ûis.
However, since its calculation is very intense, following [27], we aproximate the covariance
matrix as follows. We first approximate W(us) using W(us) ≈ z(us)I, where z(us) is
calculated as the mean value of the diagonal values in W(us), that is, z(us) = 1

MN

∑
i

1√
uis

.

We then use the approximation

Σ−1
cs ≈ β

〈
‖ms ‖2

〉
IMN×MN + αsz(us)(∆

h)
T

(∆h) + αsz(us)(∆
v)T(∆v) = B. (37)

Note that the matrix B is a block circulant matrix with circulant blocks (BCCB), thus,
computing its inverse can be very efficiently performed in the discrete Fourier domain.
Finally, we have〈

∆h
i (cs)

2
〉

+
〈
∆v
i (cs)

2
〉
≈(∆h

i (〈cs〉))2 + (∆v
i (〈cs〉))2

+
1

MN
tr
[
B−1 ×

(
(∆h)

T
(∆h) + (∆v)T(∆v)

)]
. (38)

9



Algorithm 1 Variational Bayesian TV Blind Color Deconvolution

Require: Observed image I and reference (prior) color-vector matrix M.

Obtain the observed OD image Y from I and set 〈ms〉(0) = ms, Σ
(0)
ms = 0, Σ

(0)
cs = 0, 〈cs〉(0),

∀s = 1, . . . , ns, from the matrix C obtained as CT = M+YT, with M+ the Moore-Penrose
pseudo-inverse of M, and n = 0.
while convergence criterion is not met do

1. Set n = n+ 1.
2. Obtain β(n), α(n) and γ(n) from (33), (34) and (35), respectively.

3. Using 〈cs〉(n−1) and Σ
(n−1)
cs , ∀s ∈ {1, . . . , ns}, update the new variational parameters

û
(n)
s from (32).

4. Using 〈cs〉(n−1), Σ
(n−1)
cs and 〈ms〉(n−1), update the color-vectors 〈ms〉(n) and Σ

(n)
ms

from (30) and (29), ∀s.
5. Using 〈ms〉(n), Σ

(n)
ms and û

(n)
s , update the concentrations Σ

(n)
cs and 〈cs〉(n) from (26)

and (27), ∀s.
end while
Output the color-vector m̂s = 〈ms〉(n) and the concentrations ĉs = 〈cs〉(n).

3.6. Proposed Algorithm

Based on the previous derivations, we propose the Variational Bayesian TV Blind Color
Deconvolution in Algorithm 1. The algorithm starts from the observed RGB image and a
reference (prior) color vector matrix. Using this reference color-vector matrix as an starting
point, the algorithm estimates in an iterative way, the model and variational parameters
value, the distribution on the concentrations and distribution on the color-vectors.

The linear equations problem in (27), used in step 5 of Alg. 1, has been solved using
the conjugate gradient approach while the color-vectors update in step 4 of the algorithm
has been directly calculated from the equations due to the small size of the problem. On
convergence, the algorithm returns point estimates of the color-vectors and concentrations
as the mean value of the estimated distributions. Finally, from Alg. 1, an RGB image of
each separated stain, Îsep

s , can be obtained as

(Îsep
s )T = exp10 (−m̂sĉ

T
s ). (39)

4. Experimental results

As previously indicated, blind color deconvolution algorithms are used for visual inspec-
tion and automatic classification of images. These may be conflicting goals since the most
accurate color deconvolved images, in the sense of closeness to each single dye, are not
usually the ones that lead to the highest performance in classification.

In this section, we will show that, depending on the number of components used in
the deconvolution process, the proposed methodology can obtain either the most accurate
color images or produce stains that lead to the highest classification performance. To do
so, we have designed two set of experiments. In the first one, the proposed method is
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applied on the Warwick Stain Separation Benchmark (WSSB) dataset [16] (a dataset where
the ground-truth color-vectors are known) and its results are compared to classical and
state-of-the-art deconvolution methods both visually and numerically. We will show that
the proposed method outperforms the competing methods when two components are used.
We also presents results on prostate cancer detection using the histopathological SICAPv1
database [28]. On this carefully annotated dataset, color deconvolution is used to separate
H&E stains from which a set of features are extracted. Following [28], those features are
then used to train a group of state-of-the-art supervised classification methods to distinguish
between benign and pathological images. In this classification scenario we will show that
the proposed method outperforms its competitors when three components are used.

The experiments carried out will then indicate that the introduced framework can be
used for accurate reconstruction of original stains and to obtain better classification results
depending on the number of stains used to decompose the image.

4.1. Color Deconvolution Experiments

In this first experiment, we assess the quality of the color deconvolution methods for
accurate H&E separation. For this purpose, we used the Warwick Stain Separation Bench-
mark (WSSB) [16] dataset as a test-bed. WSSB contains 24 H&E stained images of different
tissues (breast, colon and lung) from different laboratories which have been captured with
different microscopes. For each image, its ground truth stain color-vector matrix, MGT , was
manually obtained by medical experts. The median value of a set of image pixels with a
single stain was used. The pixels were selected based on biological structures: nuclei for
hematoxylin and cytoplasm for eosin. The ground truth concentrations were obtained in
[16] from the ground-truth color-vector matrix as CT

GT = M+
GTYT. From those ground-

truth concentrations and color-vectors, a RGB image for each stain separately is obtained
by applying (39). A sample breast image from the WSSB dataset is shown in Fig. 1a and
its ground truth RGB separation is depicted in Fig. 1b.

The proposed framework was compared with the classical non-blind method by Ruifrok et
al.[4], the classical blind color deconvolution by Macenko et al.[10], and the state-of-the-art
methods by Vahadane et al.[8], Alsubaie et al.[16], and Hidalgo-Gavira et al.[21]. The pro-

posed Algorithm 1 was run on this dataset until the criterion ‖ 〈cs〉(n)−〈cs〉(n−1) ‖2/‖ 〈cs〉(n) ‖2

< 10−5 was met by all stains, that is, s = 1, 2, . . . , ns. Since different tissues may have dif-
ferent color characteristics, the reference (prior) color-vector matrix M was obtained by
selecting, by non-medical experts, a single pixel from each type of tissue, breast, colon and
lung, containing mainly hematoxylin and another pixel containing mainly eosin. When a
third component is utilized, following the most commonly used implementation of Ruifrok’s
method [29], the color representing the third component of each reference color-vector was
calculated as the complementary of the first two colors. For all the competing algorithms,
parameters were selected following the recommendations in the original paper or the refer-
ence software freely available.

The resulting H-only and E-only images were compared both visually and numerically by
means of the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics.
Numerical results, presented in Table 1, show that using two stains, i. e., ns = 2, the
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a) H&E image b) H&E Ground truth c) Ruifrok’s method [4]

d) Macenko’s method [10] e) Vahadane’s method [8] f) Alsubaie’s method [16]

g) Hidalgo-Gavira’s method [21] h) Proposed Method ns = 3 i) Proposed Method ns = 2

Figure 1: A breast H&E stained image from the WSSB dataset in [16], its ground truth separated H-only
and E-only images, and its separation results by the competing and proposed methods. Hematoxylin and
eosin separations are presented on the left and right hand sides of each image, respectively.

proposed method produces higher PSNR and SSIM values than the competing models except
for SSIM in lung images where a slightly higher value is obtained by the Hidalgo-Gavira’s
method.

The separated H- and E-only images from the observed image in Fig. 1a are shown
in Fig. 1(c-i). The proposed method and the methods by Vahadane and Hidalgo-Gavira
produce H&E images very similar to the ground truth separation in Fig. 1b. Note also that
the images obtained by Hidalgo-Gavira’s method and the proposed one with two and three
components are very similar. Notice, however, that the H-only images produced by the
proposed method (Fig. 1h-i) are sharper and nuclei are clearer which will be useful, as we
will later see, for classification. Both methods use the same prior model on the color-vectors,
but they differ on the prior on the concentrations. While Hidalgo-Gavira’s method uses a
SAR model, ours uses a TV-based one. This model produces sharper images than those
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Table 1: PSNR and SSIM for the different methods on the WSSB dataset [16].

Image Stain Ruifrok’s Macenko’s Vahadane’s Alsubaie’s Hidalgo-Gavira’s Proposed Proposed
method [4] method [10] method [8] method [16] method [21] method ns = 3 method ns = 2

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Colon
H 22.27 0.8141 23.91 0.8095 25.83 0.8851 21.11 0.7241 28.57 0.9542 24.83 0.9005 28.62 0.9544
E 20.70 0.7456 21.55 0.6365 26.29 0.8904 21.94 0.8540 27.58 0.9139 25.97 0.8695 27.60 0.9161

Breast
H 15.27 0.6215 26.24 0.9552 25.46 0.9239 24.60 0.8068 28.81 0.9528 27.71 0.9538 29.14 0.9560
E 17.66 0.7644 23.62 0.9336 27.68 0.9550 25.92 0.9380 26.60 0.9464 26.84 0.9510 26.76 0.9492

Lung
H 22.47 0.7987 19.52 0.7389 25.87 0.8912 20.62 0.5551 32.91 0.9763 25.00 0.8374 33.10 0.9757
E 22.05 0.7734 18.09 0.5088 25.53 0.8195 23.95 0.8939 30.77 0.9306 25.81 0.8426 31.02 0.9353

Mean
H 20.00 0.7448 23.22 0.8345 25.72 0.9100 22.11 0.6953 30.10 0.9611 25.85 0.8972 30.29 0.9621
E 20.14 0.7611 21.08 0.6930 26.50 0.8883 23.94 0.8953 28.32 0.9303 26.21 0.8877 28.46 0.9336

a) H-only b) E-only c) Third component

Figure 2: Detail of the H-only, E-only and third component separations of the bottom left corner of Fig. 1a
obtained with the proposed method using two components (top) and three components (bottom).

obtained by Hidalgo-Gavira’s method and is richer in details than Vahadane’s method all
the above is reflected in higher PSNR and SSIM values, see Table 1.

When a third component is used, the separation obtained by the proposed method, see
Fig. 1h, is not so close to the ground-truth. Zoomed in areas of the bottom left corner of
Fig. 1(h-i) are shown in Figure 2 for a better visual inspection. Colors are visually similar to
the ones obtained when using two components, but some pixel information, specially from
the background in the hematoxylin band, has been displaced to the third component. It
can be observed that the third component has bright values, that is, only a small fraction
of the information originally in the other bands is captured by this one, and nuclei in the
H-only image appear brighter and are more clearly separated when three components are
used, which will be extremely useful for classification. However, this implies a separation
from the ground-truth images and, hence, lower values of PSNR and SSIM. In spite of the
lower objective quality measure values, the separation in three components leads, as we will
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Table 2: Computational time in seconds for the different methods on the WSSB dataset [16].

Method Ruifrok Macenko Vahadane Alsubaie Hidalgo-Gavira Proposed Proposed
[4] [10] [8] [16] [21] ns = 3 ns = 2

Whole Dataset 147.68 141.47 375.10 210.13 357.03 877.67 507.28
Mean per image 6.15 5.89 15.62 8.75 14.87 36.56 21.13

see in the next section, to a better classification.
To conclude this section, Table 2 contains a computational time comparison between the

competing methods. The method by Ruifrok is the fastest one. As complexity increases,
the methods require higher computational time. Method by Vahadane requires as much
time as the method by Hidalgo-Gavira but achieves lower PSNR and SSIM values. The
proposed method takes longer than the competing ones but the higher computational burden
is accompanied by higher figures-of-merit as already shown in Table 1. Note, also, that the
proposed method estimates the model parameters together with the color-vector matrix and
the concentrations, increasing the running time but making the method parameter free.

4.2. Prostate Cancer Classification Experiments

In this section we study how the use of different stain deconvolution methods affects the
performance of classifiers. We use the SICAPv1 database, a prostate cancer histopathological
database recently presented in [28]. The database contains 79 H&E WSIs from 48 patients
scanned at 40x magnification, 19 correspond to benign prostate tissue biopsies (negative
class) and 60 to pathological prostate tissue biopsies (positive class). In each pathological
WSI, malignant regions were annotated by expert pathologists. The whole dataset was
divided into a training set of 60 WSI (17 benign and 43 pathological), and a test set of 19
WSI (2 benign and 17 pathological). The images were downsampled to 10x scale and those
in the training set were divided into patches of size 512× 512 pixels and 1024× 1024 pixels
with a 50% overlap. Using this scale and patch size it is possible to capture complete glands
in the 512×512 patches. Patches containing more than a 75% of background were discarded.
Benign patches were extracted from benign WSI. Malignant patches were considered only if
they contain at least a 25% of malignant tissue. Following [28] we will use cross-validation
on this subset of the training set to assess the performance of the classifiers. Figure 3
shows an example of malignant patches with the areas annotated by the pathologist. In this
experiment we only consider the dataset with patches of size 1024× 1024 since it produced
the best results in the patch classification experiments carried out in [28]. This training
dataset contains 1909 patches from benign WSIs and 344 from pathological ones.

The dataset was color deconvolved using the proposed and competing methods. The
H&E concentration image in the OD space was used to extract features to be utilized as
input to the classifiers. Following [28], we used the concatenation of Local Binary Patterns
Variance (LBPV) [30] and Geodesic granulometries (GeoGran) features [28]. LBPV features
capture the texture and contrast information from the hematoxylin. GeoGran is an H&E
granulometry based descriptor in the OD space recently proposed in [28] for prostate cancer
classification. It encodes the structure of the glands by recovering, from the hematoxylin,
the structure of the nuclei which formed the gland frontiers (those that enclosed their lumen
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Figure 3: Top row: Patches extracted from SICAPv1 database. Bottom row: The same patches with the
pathological areas annotated by the pathologist colored in red.

Table 3: AUC of the proposed and competing deconvolution methods with different classifiers.

Method RF GP XgBoost DGP

Ruifrok [4] 0.9789±0.0187 0.9855±0.0089 0.9764±0.0218 0.9737±0.0239
Macenko [10] 0.9315±0.0273 0.9535±0.0276 0.9425±0.0209 0.8802±0.0792
Vahadane [8] 0.9222±0.0318 0.9479±0.0321 0.9295±0.0325 0.9420±0.0436
Alsubaie [16] 0.9262±0.0586 0.9442±0.0294 0.9246±0.0612 0.9344±0.0581
Hidalgo-Gavira [21] 0.9157±0.0528 0.9542±0.0332 0.9228±0.0540 0.8997±0.0810
Proposed ns = 2 0.9242±0.0579 0.9498±0.0332 0.9294±0.0824 0.9249±0.0638
Proposed ns = 3 0.9798±0.0174 0.9856±0.0082 0.9797±0.0160 0.9718±0.0208

and cytoplasm). It also utilizes how distinguishable is, in the eosin, the lumen and nuclei
structure from the rest of the stroma. This information is relevant to discriminate between
pathological and benign tissues. The combination of LBPV and GeoGran features, which
obtained the best classification results in the mentioned paper, allows to collect texture
and structural information in the image, creating a descriptor able to accurately classify
histopathological images.

A set of shallow and deep classifiers were trained with those descriptors and their results
were compared. We used Random Forest (RF) [31], Extreme Gradient Boosting (XgBoost)
[32], Gaussian Processes (GP)[33] and Deep Gaussian Processes (DGP)[34]. The tree-based
ensemble models and the shallow and Deep GP can capture complex patterns in data and
they are state-of-art classifiers. RF and XgBoost are configured with 1000 estimators and
maximum depth of 20 and 30, respectively. A learning rate of 0.01 is chosen for XgBoost.
Following the same approach as in [28] we use variational inference on a single-layer GP
classifier with a RBF kernel [35]. For DGP, doubly stochastic variational inference [36] in a
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Table 4: Accuracy of the proposed and competing deconvolution methods with different classifiers.

Method RF GP XgBoost DGP

Ruifrok [4] 0.9408±0.0301 0.9512±0.0272 0.9324±0.0505 0.9349±0.0337
Macenko [10] 0.8656±0.0277 0.8883±0.0561 0.8904±0.0205 0.8043±0.0399
Vahadane [8] 0.8870±0.0284 0.8826±0.0531 0.8830±0.0299 0.8996±0.0317
Alsubaie [16] 0.8825±0.0557 0.8793±0.0438 0.8730±0.0769 0.8885±0.05985
Hidalgo-Gavira [21] 0.8799±0.0105 0.8706±0.0445 0.8881±0.0673 0.8693±0.0810
Proposed ns = 2 0.8914±0.0579 0.9029±0.0426 0.8910±0.0824 0.8797±0.0649
Proposed ns = 3 0.9422±0.0375 0.9519±0.0319 0.9420±0.0339 0.9349±0.0257

Table 5: Accuracy of the proposed methods with different classifiers in train and test.

Method RF GP XgBoost DGP

ns = 2 train 0.9789±0.0036 0.9794±0.0030 0.9697±0.0033 0.9401±0.0166
ns = 2 test 0.8914±0.0579 0.9029±0.0426 0.8910±0.0824 0.8797±0.0649
ns = 3 train 0.9774±0.0026 0.9878±0.0041 0.9796±0.0001 0.9605±0.0059
ns = 3 test 0.9422±0.0375 0.9519±0.0319 0.9420±0.0339 0.9349±0.0257

three-layer classifier with RBF kernel and 100 inducing points per layer was used.
For each classifier, a five-fold cross-validation was applied to compare its performance

with each deconvolution method. To avoid correlation between training and test sets, patches
from the same image and patient were assigned to the same fold. Since the training set has
more benign than pathological patches, an usual scenario on medical applications, balanced
classifiers were built with all the pathological instances and a subset of the benign ones.
The final prediction will be the average of the predictions of each classifier. The area under
the ROC curve (AUC) obtained by the different deconvolution methods and classifiers is
presented in Figure 4 and Table 3. Accuracy is shown in Table 4.

From Table 3, the best results are obtained using the proposed method with ns = 3
and GP, with an AUC of 0.9856. The proposed method with ns = 3 also obtains the best
results among the shallow classifiers being the Ruifrok’s method the one obtaining the best
result with the DGP classifier. When the proposed method is run with only two components
results are also competitive but not as good as the ones obtained with three components.
The curves in Figure 4 clearly show the advantage of the proposed ns = 3 method and
Ruifrok’s over the others. Average results of the method with ns = 2 are also visible.
From Table 4, the proposed method with ns = 3 reaches the highest accuracy for all the
classification methods. Notice that Ruifrok’s method was used for color deconvolution in
[28] and so the figures of merits reported in the first line of Table 3 coincide with those
reported in Table 5 in [28]. Finally, we would like to mention that in [28] a comparison with
the deep learning methods VGG19, Inception v3, and Xception was carried out. The deep
learning methods use as input the original RGB images, so the values reported for them in
[28] are valid here. GPs and DGPs perform similarly and are competitive to VGG19, the
best performing deep learning method in [28].

To assess the generalization capability of our model, we show in Table 5 the accuracy of
the proposed method obtained for the train and test sets when performing cross validation.
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a) RF b) GP

d) XgBoost e) DGP

Figure 4: ROC curves for the competing methods and classifiers. Each sub-image contains all deconvolution
methods AUC for a single classifier.

The use of ns = 2 induced a higher overfitting to the train data in all the classification
methods, reducing their generalization capability. For the GP and DGP models, Figure 5
includes the evolution of accuracy in train and test during the training procedure. Both
GP and DGP models obtain a high accuracy from the beginning of the training and quickly
converge. The overfitting when using ns = 2 is visible in both models. The values obtained
in training data using ns = 2 and ns = 3 are similar while the results obtained in testing
data with ns = 2 are much lower than the ones obtained with ns = 3.

For classification, the use of a third component capturing residual information is clearly
an advantage although the obtained images are not as close to the ground-truth separations
as those obtained using ns = 2. As seen in section 4.1, the third component is mainly
capturing background information from the hematoxylin channel. An example of component
concentration values in the OD space, which are used to extract the features, is shown in
Fig. 6. The hematoxylin is used to extract LBPV and GeoGran features, that is, textures and
nuclei structure. Due to the prostate tissue characteristics, the cytoplasm captures eosin
and, partly, hematoxylin, so it appears also on the background of the hematoxylin band
(see Fig. 6a). When three components are used, this background information is displaced
to the third component. This also leads to a clearer hematoxylin (Fig. 6c) where nucleus
information, belonging to the gland frontiers, is enhanced while the nucleus information
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Figure 5: Train and test accuracy during the training procedure. a) GP model. b) DGP model.

belonging to the stroma (non-discriminative) appears in the third component. This allows
to obtain less noisy features.

The eosin band is used to obtain GeoGran features to capture stroma information and
identifies whether is invaded by nuclei or not. The use of three components makes the eosin
band slightly more contrasted, which allows to obtain better descriptors. The joint use of
descriptors extracted from hematoxylin and eosin bands by the proposed method using three
component leads to an increased classification performance. The use of the TV prior, which
produces sharper edges, also helps the feature extractors and, hence, the classifier.

4.2.1. Whole slide image evaluation

Our ultimate goal is to analyse full WSI images. To extend patch-wise classification
to WSI classification, each WSI was split into overlapping patches. For each pixel, the
probability of being cancerous was estimated by bilinearly interpolating the predicted prob-
abilities of its four closest patches (using Euclidean distance to the center of the patches). A
pixel-wise probability map was then obtained for each WSI. To assess the proposed method
performance on this task, we deconvolved the train and test sets using ns = 3. The GP
classifier was then trained with the 60 images of the training set and used to predict the
19 WSIs in the test set. To obtain a better map resolution, 512×512 patches were used
with 75% overlap. Figure 7 illustrates the result on a WSI of the test set. Probability
maps are represented as heat maps. Red and blue colors are assigned to highest and lowest
probabilities of being cancerous, respectively. The obtained probabilities correctly identify
the annotated areas. Figure 8 shows zoomed in regions of interest.

5. Conclusions

In this work we have presented a framework for blind color deconvolution and classi-
fication of histological images. In this framework, we have developed a novel variational
Bayesian blind color deconvolution algorithm which automatically estimates the concentra-
tion of stains, the color-vector matrix, and all the model parameters. It takes into account
the spatial relations between pixels by means of a TV prior model, as well as the similarity
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a) H-only, ns = 2 b) E-only, ns = 2

c) H-only, ns = 3 d) E-only, ns = 3 e) Third component, ns = 3

Figure 6: Detail of the H-only, E-only and third component concentration values in the OD space for a patch
of SICAPv1 database obtained by the proposed method using two (top) and three components (bottom).
The color-map of the images is inverted for a better visualization.

to a reference color-vector matrix. The use of the non-quadratic TV energy helps to reduce
the noise in the images while preserving sharp edges.

For H&E stained images, color deconvolution with two components can be used in order
to capture all stain details when visual inspection is needed. Classification algorithms,
however, benefit from a clearer separation between classes. The use of a third, residual,
component helps that separation by capturing information that is not completely explained
by only one of the two stains. We found that, when using a third component, we obtain a
clearer hematoxylin background, while nucleus information is enhanced and nuclei appear
more clearly. The eosin is not severely modified, but the contrast of the image is increased
which meliorates the discrimination power of this band. The use of a third component
reduces the SSIM and PSNR values, but it helps the geodesic and LBPV descriptors to
extract the relevant information and leads to better classification results.
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Figure 7: Full WSI comparison. Left: Areas annotated by the pathologists. Right: Probability maps (heat
maps) obtained by the proposed method with ns = 3 and GP classifier with 512×512 patches.

Figure 8: Regions of interest from Figure 7. Top row: annotations by a pathologist. Bottom row: Probability
maps (heat maps) obtained.
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Signal Processing and Digital Image Processing in the telecommunication, biomedical

degree and in the master’s degree in technology, systems and communication networks

of the Communications Department of the Universitat Politècnica de València. She has
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