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ABSTRACT
The combined use of origami and dynamic geometry software has
recently appeared in mathematics education to enrich students’
geometric thinking. The objective of this research is to study the
roles played by the interaction of two artifacts, paper folding and
GeoGebra, in a construction-proving problem as well as its general-
ization in the Euclidean geometry context. For this, we designed and
implemented two mathematical tasks with 52 secondary education
students (15–16 years old, 10th grade) during the COVID-19 emer-
gency lockdown period in Italy. The tasks involved four phases: con-
structing, exploring, conjecturing, and proving. This article presents
an epistemic analysis of the tasks and a cognitive analysis of the
answers given by one of the students. The theoretical tools of the
onto-semiotic approach supported these analyses. Cognitive anal-
ysis allows us to confront the intended meanings of the task and
the meanings actually employed by a student, thus drawing specific
conclusions about the roles of such artifacts in written arguments
and give an interpretation of their combined use in mathematics
education.
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1. Introduction

One of the main difficulties students face in high school is solving geometric problems,
especially those that are proof oriented. Research in the field of dynamic geometry over
the last 30 years has shown great opportunities for such software tools to offer geome-
try teaching and learning, thanks to their affordances, such as dragging, measuring, and
tracing, among others (Hoyles & Jones, 1998; Laborde, 2000; Lopez-Real & Leung, 2006;
Mariotti, 2000; Olivero & Robutti, 2007).

Furthermore, the art of paper folding, also known as origami, has a long history in
geometry education, with nineteenth-century origins in Friedrich Fröbel’s educational
method of folding, ‘paperfalten’ as a working tool in his kindergarten (Friedman, 2018).
Several other authors have also exploited the power of paper folding because of its manip-
ulative and exploratory nature and the theoretical concepts embedded in each permitted
fold. Thus, paper folding is a suitable cognitive tool for teaching geometry and other
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mathematics topics at every level of education (Frigerio, 2002; Golan& Jackson, 2009;Hull,
2013, 2020; Lam & Pope, 2016; Wares, 2011; Wiles, 2013). Regarding geometry teaching
and learning through origami, research results show positive effects on students’ spatial
visualization, achievement in geometry, and geometric reasoning in the 10th grade (Arıcı
& Aslan-Tutak, 2015). Other research findings indicate potential positive effects for the
visualization and geometric achievement of middle school and college students (Boakes,
2006, 2009) and an improvement in students’ geometric thinking in the 11th grade (Gürbüz
et al., 2018).

Given these contributions, research in the area has recently studied the potential of the
combined use of these two environments, origami and dynamic geometry software, to
improve the literacy and mathematics skills of high school students (Budinski et al., 2018;
Fenyvesi et al., 2014). In the context of teaching geometry, the bookDeveloping the Essential
Understanding of Geometry in Grades 9–12 (Sinclair et al., 2012) proposes the challenge of
working with dynamic diagrams presented both on screen and with physical movements
(e.g. with paper folding). Despite this suggestion, to date, there have been no specific stud-
ies on the interplay of these representations in a proving process, and our research attempts
to shed light on this issue.

The main visual representations used in teaching and learning geometry are static and
dynamic geometric diagrams in addition to physical or virtual manipulatives (including
geometric object models). Our research focuses on geometric diagrams (or 2D – two
dimensional – physicalmodels), widely understood as ‘two-dimensional visual representa-
tions that accompany problems (e.g. proof problems, find problems, determine problems)
in plane geometry’ (Dimmel & Herbst, 2015).

This article focuses on the synergy between paper folding and GeoGebra (a dynamic
software) applied in two tasks based on a construction-proving problem and its general-
ization in the Euclidean geometry context.

First, we show the epistemic and cognitive analyses of tasks using onto-semiotic tools
(Font et al., 2013; Godino et al., 2007). These analyses will allow us to respond to the follow-
ing questions: What type of mathematical activity does the student mobilize when solving
geometric problems with two different artifacts? Second, what relationship does this have
with the built diagrams? Answering these questions will help us to reach the aim to identify
the interplay between the chosen artifacts and highlight the interactions between students
and diagrams, as reflected in their arguments and actions.

2. Theoretical considerations

This section presents theoretical notions for carrying out the analysis. First, the onto-
semiotic approach is used as themain framework of this study.Considering thatmathemat-
ical activity manifests itself through practices that involve objects and processes, discursive
and operational, this approach proposes powerful theoretical tools for the analysis of the
complex relationships that are established between them. Second, we point out the main
problems and new approaches to the practice of proofs in the geometric context and clarify
themeaning of some terms used in the analysis. Third, figural apprehensions are described
– a theoretical semiotic-cognitive notion introduced byDuval. These allow a reading of the
interactions between an individual and diagrams during geometric problem solving. In the
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fourth subsection, we briefly present the paper folding practice, while in the fifth subsec-
tion, we describe the use of dynamic geometry systems, their peculiarities, and a geometric
construction classification. Finally, considering the research aims, we present the interplay
that we want to study, taking the Komatsu and Jones (2020) theoretical framework as a
reference.

2.1. The onto-semiotic approach

We chose the onto-semiotic approach (OSA) to mathematical education as our study’s
main lens of observation for the classification of mathematical objects involved in the
teaching and learning processes. This perspective stems from the construct of onto-
semiotic configuration, ‘which generalizes the notion of representation and moves the
focus of research towards the systemof objects intervening in and emerging from themath-
ematical activity’ (Font et al., 2008, p. 157). From this perspective, a fundamental notion
is that of mathematical practice: ‘any action or manifestation (linguistic or otherwise) car-
ried out by somebody to solve mathematical problems, to communicate the solution to
other people, so as to validate and generalize that solution to other contexts and problems’
(Godino et al., 2007, p. 129).

Problems promote and contextualize practices that may be individual (personal) or
shared in an institution. Mathematical practice involves and has developed a typology of
six primarymathematical objects: ‘languages (terms, expressions, notations, graphs), situa-
tions (problems, extra or intra – mathematical applications, exercises . . . ), concepts (given
by their definitions or descriptions), propositions (properties or attributes), procedures
(operations, algorithms, techniques), and arguments (used to validate and explain propo-
sitions and procedures)’ (Godino et al., 2007, p. 130). Depending on the language game in
which they are involved, these mathematical objects are classified according to two dimen-
sions: personal (concerning individual subjects) and institutional (shared in a community
of practice), ostensive (material, perceptible) and non-ostensive (abstract, ideal, immate-
rial), extensive (particular) and intensive (general), unitary and -systemic, expression and
content.

Practices can be operative, discursive, visual, or non-visual. Visual practices depend
on visual perception; non-visual practices (or symbolic/analytical) employ sequential lan-
guages such as natural or formal language (Godino et al., 2012). In the formulation of
conjectures and in the search for solutions, the visual component plays a key role in under-
standing a task, while the analytical component is necessary in moments of justification
and generalization (Godino et al., 2012). Therefore, it is necessary for visual and analytical
thinking to coexist in order to enter into synergy. In conclusion, the configuration of prac-
tices, objects, and processes is a powerful tool for investigating the knowledge involved in
mathematical tasks.

2.2. Reasoning and proving through exploration

In high-school geometry, students are expected to transition from informal ways of rea-
soning to more formal ones or, to use the terminology of van Hiele’s theory, from the third
level of geometric thinking, named order (Hoffer, 1981) or relational-inferential reason-
ing (Battista, 2009), to level 4, named deduction (Hoffer, 1981) or formal deductive proof
(Battista, 2009).
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The approach to deductive proofs, especially in geometry, is one of the greatest
difficulties that students encounter in high school (Mariotti, 2006; Schoenfeld, 1985; Senk,
1985; Usiskin, 1982). This may be due to an incorrect teaching of the proof, presented as a
finished product that students must passively learn and reproduce and not as a process of
building knowledge (Harel & Sowder, 1998). This awareness has led to a rethinking of the
teaching of proofs, conceiving it as a process during which students behavemathematically
by means of problems involving them in exploring, conjecturing, explaining, validating,
and disproving tentative claims (Zaslavsky et al., 2012), with an experimental approach to
theoretical thought (Arzarello et al., 2012; De Villiers, 2003; Fujita & Jones, 2003).

Explorations have become the starting point for genuine mathematical activities.
According to Hsieh et al. (2012) the term ‘exploration’ in a proving process can involve
manipulation and interaction with external environments such as hands-on or DGS
(dynamic geometry systems) tools. Interactionwith external objects acts as a reinforcement
of mental exploration and promotes the discovery of properties as well as the discov-
ery of the logical steps required in a proof, thus supporting the related justifications and
arguments (Hsieh et al., 2012).

Below, we clarify the meaning of the terms used in the study: argument, argumentation,
conjecture, explanation, empirical arguments, deductive arguments, and proof.

• Argument refers to a reason given to support or disprove something (i.e. a statement,
claim, or interpretation) (Pedemonte, 2002).

• Argumentation refers to a discursive activity based on arguments (Pedemonte, 2002).
• We adapt from Pedemonte (2007) that conjecture is a triplet consisting of a statement,

an argumentation, and knowledge (of a person or group of people) that is the result
of a system of practices shared within an institution (e.g. the classroom). If the argu-
mentation precedes the statement, it is called constructive, if it follows that, it is called
structuring (2007, p. 28).

• Explanation, from Latin explanare (to make plain or clear), refers to the production of
reasons to make a phenomenon understandable.

• We distinguish between empirical and deductive arguments. Empirical arguments are
based on the observation of ‘regularities in one or more examples; [Students] use
the examples, or relationships observed in them, to justify the truth of their conjec-
ture’ (Marrades & Gutiérrez, 2000, p. 91). Deductive arguments are ‘characterized by
the decontextualization of the arguments used and are based on generic aspects of
the problem, mental operations, and logical deductions, all of which aim to validate
the conjecture in a general way’ (Marrades & Gutiérrez, 2000, p. 93).

• Proof refers to a particular argumentation as a sequence of (deductive) arguments that
are connected by means of accepted canons of correct inference and are based on
accepted truths for or against a mathematical claim (Stylianides, 2008).

2.3. Duval’s figural apprehensions

To analyze heuristic figural working, Duval considers four cognitive apprehensions: per-
ceptual, sequential, discursive, and operative (Duval, 1994, 1995).We recognize something
(a figure or a sub-figure) by perceptual apprehension and pictorially, by figural organi-
zation laws, we can also name what we recognize. Sequential apprehension is required
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to construct a diagram of a geometrical figure with tools or to describe its construction.
Unlike perceptual apprehension, there is a temporal dimension linked to the order inwhich
the instructions for carrying out the construction are executed (Herbst et al., 2017). There
are often auxiliary lines that do not belong to the intended figure, and the organization
of elementary figural units depends on the technical constraints of the tools used (ruler
and compass, paper folding, available primitives in geometrical software) and mathemat-
ical properties. In this case, the diagram is a model of a represented mathematical object
(Duval, 1995).

Discursive apprehension views a figure in relation to its designation (denomination,
capture, primitive commands in a menu, hypothesis) (Duval, 1995). The explicitness of
other properties, starting from those indicated, is discursive apprehension. The corre-
sponding cognitive process is deductive reasoning, and its epistemological function is
proving (Duval, 1994).We also extend discursive apprehension to cases in which an explo-
ration of a soft construction in a DGS environment gives rise to theoretical discourse by
identifying the hypotheses that generate a deductive type of discourse. Finally, operative
apprehension consists of all possible modifications, mental or material, of the figure to
other figures (reconfigurations, enlargements, deformations, position changes, etc.), which
can be created by acting on perceptive sub-figures, separating and recombining them in a
new configuration, but also by inserting new elements, such as auxiliary lines, into the
starting figure (Duval, 1994).

Challenging construction-demonstration problems involve, in addition to the percep-
tual, the three apprehensions – discursive, sequential, and operative – and the proof
requires complete coordination.

2.4. Paper folding practice

Euclidean geometry is the area in which it is easy to recognize the link between origami
(from Japanese ori = folding and kami = paper) and mathematics. Classic construction
tools, straight-edge and compass (SE&C), can be replaced by a piece of paper to fold,
assuming all crease lines are straight lines and that every time we fold the paper, we make
a single crease (Hull, 2020).

Full characterization of the basic possible operations with origami is harder than with
a straight-edge and compass (SE&C), because it is possible to fold paper in many different
ways. Seven operations describe the basic admissible folds to construct a new folded line
from previously constructed data (points or lines); furthermore, given two lines, we can
locate their point of intersection, if it exists (Hull, 2020; Huzita, 1989).

Any SE&C construction can be performed using five of the seven basic operations
and vice versa. Any construction using these five operations can be constructed with a
SE&C (Geretschlager, 1995). For our purposes, paper folding is a mathematical practice
for constructing ostensive representations (models) of geometric figures of the Euclidean
plane (non-ostensive). Table 1 shows the five origami operations equivalent to SE&C, their
Euclidean meanings, and the number of ways to fold.

2.5. Dynamic geometry environment practices

Dynamic geometry environments have been technological tools in use since the 1980s
for teaching and learning geometry. GeoGebra is a commonly used (open-source, free)
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Table 1. The five origami operations equivalent to SE&C. Source: authors’ own.

Operation Euclidean meaning of the resulting crease
Number of
ways to fold

(O1) Given two distinct points A and B, we canmake
a unique fold that passes through both of them.

The straight line passing through A and B. 1

(O2) Given two distinct points A and B, we canmake
a unique fold that places A on B.

The perpendicular bisector of segment AB. 1

(O3) Given two distinct straight-lines r and s, we can
make at least one fold that places r on s.

The angle bisector between the lines r and s if r and
s are not parallel, the line midway between the
two given lines otherwise.

2,1

(O4) Given a point A and a straight-line r, we can
make a unique fold perpendicular to r passing
through point A.

Perpendicular to r passing through A. 1

(O5) Given two distinct points A and B and a
straight-line r, we can, whenever possible, make
at least one fold placing A on r and passing
through B.

There are more meanings, depending on the
relative positions of the line and points.

If point A is not on r and the distance from B to
line r is less than or equal to the distance from B to
A, then the crease is the perpendicular bisector of
segment AA’ where A’ is an intersection point of the
circle with centre B, and radius AB with line r. In this
case, two or just one crease are possible.

0,1,2

software. The environment in GeoGebra allows for the construction and manipulation of
geometric figures. Its main features are a set of primitive objects (e.g. points, lines, seg-
ments, circles), tools that allow the construction of other objects starting from them (e.g.
parallel line, perpendicular line), tools for performing geometric transformations (e.g.
axial symmetry, translation), dragging, measuring, animation, hiding objects, and creat-
ing procedures. The most important feature is dragging, which allows movement of the
free points (those chosen to build new objects) and exploration of how the points and
other built objects vary. This dynamic aspect distinguishes a diagram built in a dynamic
geometry environment from a paper and pencil diagram or a paper-folding diagram. A
figure constructed according to the rules and properties of Euclidean geometry maintains
the internal relationships between the elements during dragging. Dragging can perform
several functions: providing feedback, mediating between design and geometric figure,
testing properties, and searching for new properties. Different types of dragging exist. In
this paper, we observe guided dragging, that is, moving ‘the basic points of a drawing in
order to give it a particular shape’ (Arzarello et al., 2002, p. 67) and maintaining drag-
ging, that is, moving a base point so that the dynamic figure maintains a certain property
(Baccaglini-Frank & Mariotti, 2010).

An important distinction is between robust and soft constructions. A robust construc-
tion is one that also retains the properties of figures if base points are moved; a soft one is a
construction ‘in which one of the chosen properties is purposely constructed by eye, allow-
ing the locus of permissible figures to be built up in an empirical manner under the control
of the student’ (Healy, 2000, p. 142). The two types of construction allow different student
experiences of geometric dependence that can be seen as complementary (Laborde, 2005).

2.6. Interplay between physical and digital activity

Analysis of the interplay between physical and digital activity takes the framework pro-
posed byKomatsu and Jones (2020) into account, as shown in Figure 1. In our case, physical
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Figure 1. Komatsu and Jones model for the interplay between physical and digital activity. Source:
(Komatsu & Jones, 2020, p. 126).

activity concerns constructions and interactions with the papermodels, while digital activ-
ity refers to the construction (first task) and manipulations (both tasks) of the dynamic
model of the folding diagram in the GeoGebra environment.

The interplay that we wish to examine concerns the interactions with diagrams during
mathematical activity as interpreted through the discursive and operative, visual, and non-
visual practices employed by the student.

3. Materials andmethods

3.1. Context and participants

To study the interplay between physical and digital activities, we designed different
sequences of tasks as part of a larger project entitled Paper Folding and GeoGebra. In this
work, we present a sequence of two tasks designed and administered to a course of 52
10th-grade students.

The easy availability of the material used (a sheet of paper to fold) and use of the free
GeoGebra Groups (Tomaschko et al., 2018) combined with the availability of G Suite Apps
like Google Meet allowed us to carry out the research during the COVID19 lockdown
period in Italy.

In the two-class sessions (90min each), students faced two connected tasks. In the first
session, students tackled the tasks individually, whereas in the second session, students
worked in small groups before participating in a classroom discussion (Figure 2).

When they performed the tasks analyzed here, students had basic user knowledge of
GeoGebra and had previously worked on the geometric meanings of the first four basic
operations of origami geometry, as described in Table 1. Concerning the study of Euclidean
geometry, students had little experience with proofs; however, they were familiar with tri-
angle congruence criteria, SAS (side, angle, side), ASA (angle, side, angle), and SSS (side,
side, side). The students had a shallow knowledge of the kite.

3.2. Data collection and analysis techniques

In this article, we describe and analyze the work of one student (F) while solving the two
tasks described below. We selected Student F because his detailed production allows for
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Figure 2. Didactic methodology. Source: authors’ own.

the analysis of the role of the chosen artifacts in the development of his arguments. The
data analyzed were the student’s written and digital (e.g. digital diagrams) production, his
interventions in the classroom discussion, and the folded physical models, allowing us to
triangulate the information during analysis.

The following paragraph first provides a description of the two tasks, then gives an epis-
temic analysis of the OSA object configurations involved in the mathematical practices to
solve the tasks, highlighting the duality of the generated processes. Finally, we analyze the
cognitive OSA configuration of objects that emerged in student F’s mathematical practice,
distinguishing the typology of arguments and the type of apprehension and pointing out
the role of physical and digital diagrams and artifacts in each step. Our elaboration of object
configurations is inspired by the model of Font et al. (Font et al., 2010) described above.

4. Task analysis and discussion

4.1. Tasks description

Students were given two connected tasks for which an online worksheet had been provided
(GeoGebra activity). Both tasks involved physical and digital activities with the possibility
of interference, as students could work with both representations.

In this section, we describe how students were expected to work, and in the following
sections of epistemic analysis, we clarify, for each step of the two tasks, the previous and
emerging objects during the resolution of the task.

In task 1, instructions were given to fold a square sheet of paper (Figure 3). allowing
students to construct a two-dimensional origami model.
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Figure 3. Paper-folding instructions. Source: authors’ own.

Students were asked to analyze the paper model, with visual and hands-on explorations,
formulating observations on congruencies between the various subfigures, and trying to
justify them. A direct question asked them to formulate a conjecture about the nature of
the folded quadrilateral (a kite): ‘What kind of polygon is FBED?’

Students were then asked: (1) to model the paper folding operations in the GeoGebra
environment, starting from a pre-assigned square, explaining the mathematical meanings
embedded in each operation, (2) to test the construction by dragging, and (3) to make any
new observations and/or justifications in support of the conjecture already made.

Since a mathematical result obtained in a particular case (in our case, that of a folded
square) has greater value and meaning if it can inspire a sense of generality that can be
acquired by the students if they are given the opportunity to vary, extend, and recontextu-
alize the previous experience, this opportunity was offered by the second task.

Task 2 aims to generalize the result obtained in the case of the square sheet to a wider
class of quadrilaterals, with generalization being the process/product of ‘passing from con-
sideration of a given set of objects to that of a larger set containing the given one’ (Polya,
1954, vol. I, p. 12).

The students were initially prompted to fold, as in task 1, non-square quadrangular
sheets (general quadrilateral, rectangle, trapezoid, rhombus, kites, etc.) whose templates
had been provided, identifying similarities and differences (see epistemic analysis for more
detail) with the square sheet case. Students were then asked to find the conditions on the
initial quadrilateral ABCD under which the folding instructions would produce a quadri-
lateral FBED of the same kind as that obtained in task 1, formulating a conjecture (ABCD
kite) and providing a justification for it.We emphasize that the ambiguity of the expression
of the same kind is intentional, but apparent; in fact, it was used in order not to reveal the
nature of the quadrilateral right away, but by the time the second task was solved, all the
students had determined it was a kite (during the classroom session, the students’ work
was constantly monitored), as expected. Finally, the students were asked to decide which
further conditions on the initial quadrilateral ABCD would make it so that the triangles
folded in steps (2) and (3) of the instruction would fit perfectly into triangle FED, as in
the case of the folded square, trying to give a justification (see epistemic analysis for more
detail). A GeoGebra pre-build construction (described later), showing the folding output,
was also embedded in the worksheet that students could explore and work with.
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Figure 4. Synthetic illustration of the tasks. Source: authors’ own.

Both conditions fulfilling the task requirements are exclusive, that is, sufficient as well
as necessary (if and only if).

In this second task, we expect the exploration of the GeoGebra construction not only to
confirm the situations already explored on paper but also to enrich students’ observations
(e.g. to note that the condition ABCD kite is not only sufficient but also necessary) and
arguments.

Figure 4 below briefly illustrates the central questions in the two tasks.

4.2. Task 1 epistemic analysis

The paper-folding instructions were given in diagrammatic language (Figure 3), with the
label and text indicating that the diagram was supposed to be seen as a geometric figure
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by discursive apprehension. This involves an interpretation by means of non-ostensive
objects (the diagonal, the angle bisector . . . ) of the ostensive objects (the square sheet, the
folds . . . ).

Fold BD (Figure 3. Step 1) corresponds to the first origami operation and represents the
diagonal of the square ABCD. Folds DE and DF correspond to the third origami operation
and represent the segments of the angle bisectors of ∠BDC and ∠ADB inside the square
(Figure 3. Steps 2 and 3). The last fold, FE, corresponds to the first origami operation and
represents the segment joining points F and E (Figure 3. Step 4). The folding procedure
requires sequential apprehension.

The construction of the digital model of the fold diagram requires a change in the
representational system, forcing students to reason about themeanings of the folds in non-
ostensive terms. Discursive and sequential apprehensions intervene in this practice. The
conjecture on FBED can be considered as a ‘fact’, provided without any argumentation,
directly from diagrams or the model, through perceptual apprehension, and the related
arguments will be structuring arguments.

The digital diagram students had to build is a robust construction, where the dragging
function tests the correctness of the construction in a ‘large’ set of squares, showing the
generality of the construction process. The digital counterparts of the folds and the square
sheet determine the construction invariants (premise of conditional statements), whereas
congruencies such as those between DF and DE or between BF and DE are the invariants
derived from the construction (conclusion of conditional statements). The link between
invariants can also emerge from the epistemic potential of the folding actions, assuming the
square sheet and the folds as a before and the results as an after of a conditional statement
expressed in a diachronic mode.

It is possible to prove that FBED is a kite in many ways, informal or more formal, also
involving symmetries. Assuming the folds as additional hypotheses to the square ABCD,
the Euclidean proof requires the application of congruence triangle criteria and congruence
properties.

Figure 5 shows the epistemic configuration related to the expected practices in the
resolution of the task. The question marks refer to possible emergent objects.

From an onto-semiotic approach, the epistemic configuration reflected in Figure 5 is
complemented with an analysis of the dual processes employed.

• Ostensive-non-ostensive: The starting point is reasoning on a material representa-
tion model of an ideal object (a kite) intertwining the dual processes of materializa-
tion and idealization of the concepts and operations to achieve a mathematical proof
(Figure 6).

• Extensive-intensive: This duality allows the complexity of a generic element, that is, the
dual relationship between the particular and the general. In this sense, the use of rules,
criteria, and formulas is applied to specific cases of the problem. For example, congruent
triangle criteria are applied in the case of a folded shape.

• Unitary-systemic: This duality is linked to the processes of reification (constitution of
objects as a whole) and decomposition (inverse). In this case, it is an ostensive geomet-
ric figure that intervenes as a unitary whole that must be decomposed into different
elements: triangles, sides, congruent angles, and so on.



12 G. VALORI ET AL.

Figure 5. Epistemic configuration related to task 1. Source: authors’ own.
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Figure 5. Continued.

4.3. Task 2 epistemic analysis

Task 2 aims to extend the domain of the problem to quadrangular non-square sheets
and create conflict situations. The task asks students two questions. In the first question,
students are asked to determine under which conditions the initial quadrilateral in the
paper-folding instructions would produce a quadrilateral of the same kind as the one
obtained in task 1 (a kite). They then must formulate a conjecture and justify it. Stu-
dents first worked with quadrangular paper sheets of different shapes (rectangle, trapezoid,
rhombus, kite, right kite . . . ) and then with a pre-built GeoGebra construction, as shown
in Figure 7.
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Figure 6. Example of the dialectic between the ostensive and non-ostensive facets of mathematical
activity. Source: authors’ own.

Our intention was that the digital construction should havemade it possible to visualize
a greater variety of configurations than those seen on paper and with greater precision but
also to perform different actions due to the perceived affordances. These actions could
be integrated with those performed on paper as complementary and supplementary to
formulate conjectures and related arguments. Of course, we did not exclude the possibility
that students could solve the task by working exclusively with the templates provided.

Here, dragging can be used with different focuses and intentions. It can be used to
induce, as a soft (Healy, 2000; Laborde, 2005), invariant, FBED kite (conclusion) to identify
a hypothesis (premise) and to formulate a conditional statement for a sufficient condi-
tion. This does not exclude the fact that the same dragging could be used for a dynamic
exploration beyond the conditions set by the hypothesis, this time focusing on ABCD, also
in light of the experience made with the paper sheets, to arrive at a statement that also
expresses the necessity of the condition. Guided and maintaining dragging strategies were
expected.

Square and rhombuses as kites, concave kites (called darts), or degenerate kites could
emerge, favoring the generalization process and enriching the students’ concept image of
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Figure 7. The digital representation for task 2. Source: authors’ own.

the kite. In this task, we expected constructive arguments. One possible correctly formu-
lated statement for the conjecture is as follows: ‘In a kite (and only in a kite), if the main
diagonal is drawn and, from one of its ends, we draw the bisectors of the angles that it
forms with each side sharing the end, the bisectors cut the other two sides at two points
which, together with the ends of the diagonal, are the vertices of the other kite’. The fol-
lowing statement expresses the same information in simpler terms: ‘if (and only if) ABCD
is a kite, then FBED is a kite’ (Figure 8a).

The sufficient condition (ABCD kite) could be verified using a robust construction,
starting for example, constructing a kite, ABCD, by fixing three vertices that determine
a triangle, such as BCD, and applying an axial symmetry with a BD axis, (the key idea
of which is the symmetry of quadrilateral ABCD with respect to diagonal BD) and then
applying the same sequence of instructions as in task 1. Similarly (with the awareness of
the equivalence of the statements ‘if ABCD is not a kite, then FBED is not a kite’ and ‘if
FBED is a kite, then ABCD is a kite’), starting from a robust FBED kite, the necessity of the
condition ABCD kite could be verified. In this case, students could refer to either themate-
rial or virtual folding. Starting from the kite FBED, one can unfold the two folded triangles
AFD and DEC and obtain the original quadrilateral ABCD. Point A is the intersection of
the segment BF extended beyond B and the segment resulting from the reflection of the
diagonal DB with respect to the side DF (see Figure 8a). Similarly, point C is the intersec-
tion of the segment BE extended beyond E and the segment resulting from the reflection
of the diagonal DB with respect to the side DE. Due to the symmetry of FBEDwith respect
to BD, the quadrilateral ABCD, constructed in this way, is a kite.
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Figure 8. Different situations where if ABCD is a kite, then FBED is a kite. Source: authors’ own.

In the second question, students were expected to conjecture and justify that if (and only
if) ABCD is a right kite (Figure 8b), then triangles ADF and CDE, once folded (Figure 8c),
would fit perfectly into triangle FED, as in the case of the square sheet.

All the conjectures can be provenusing congruence criteria for triangles and congruence
properties.

Figure 9 shows the epistemic configuration of task 2. The questionmarks refer to objects
that could emerge from practice.

4.4. Task 1 cognitive analysis

Figure 10 shows the cognitive configurations of the objects that emerged from Student
F’s practice. Within square brackets are references to words implicit in the student’s dis-
course. We categorize each argument according to the artifact used for its formulation and
its typology (empirical or deductive).

Student F folded the sheet correctly, highlighting the understanding of the instruc-
tions in the text and representing them ostensibly. The student correctly reconstructed
the crease diagram in the GeoGebra environment, associating the square and folds with
their corresponding non-ostensive objects and then choosing the appropriate GeoGebra
tools. The student used dragging to test the correctness of the construction with perceptual
apprehension.

The student looked (perceptual apprehension) at the quadrilateral FBED (artifact L2-a)
as a quadrilateral composed of two isosceles triangles on the same base (arguments A4, A5,
and A6), suggesting that it was a kite. The folds made in steps 2 and 3 of the instructions
that highlight an isosceles triangle of double thickness may have influenced the student,
or this way of looking may also reflect the student’s personal concept image of the kite.
Manipulating the physicalmodel, he consequently folded triangle FEDalong the symmetry
axis BD (argument A1 with artifact L2-b) with an operative apprehension that affected the
choice of sub-configurations to which discursive apprehension could be attached: triangles
ADF and ECD (argument A2 with artifact L2) superimposed after folding. It seems to us
that the student identified triangles ADF andECDwithDFGandDGE, respectively (which
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Figure 9. Epistemic configuration of task 2. Source: authors’ own.
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Figure 9. Continued.
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Figure 9. Continued.

he successively represented with the L3 artifact), based on the empirical evidence of the
multilayer overlap after folding (steps 3–4 of the folding instructions).

A deductive argument was formulated by working with the material diagram (argu-
ment A2 with artifact L2). The deductive argument A2 presents an implicit premise:∠ADB
congruent to ∠BDC. This implicit premise was later made explicit and proved (deduc-
tive argument A3 with artifact L3) after the use of the angle-measuring tool in the digital
environment. Therefore, we believe that, in this instance, the use of measure (here with a
discursive apprehension) in the digital environment allowed the student to recall themean-
ings of the folds and to reorganize their previous knowledge in order to develop a deductive
argument.

The student used the angle measuring tools (artifact L3) as a marker to visualize ele-
ments (as he would have done in a traditional diagram) and also as a tool to verify the
congruence of some angles and of the segments AF and CE (the latter used in argument
A4) during the proving process. With argument A4 (artifact L3), the student justified the
FDE isosceles proposition (operative and discursive apprehensions). In this sense, its pur-
pose is evident: to prove that FBED is a quadrilateral consisting of two isosceles triangles
with a common base.

Claims about PP6–PP11 emerging propositions are all justified by deductive arguments
(basically correct, in a semi-paragraph format style), using other well-known theorems or
propositions (PP1–PP5), with the exception of PP12. This highlights the fact that the student
only observed the symmetry of the kite with respect to the BD diagonal at the end of his
work, but as we will see in the analysis of Task 2, this is the key idea during the resolution
process.
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Figure 10. Cognitive configuration of the resolution of task 1 by Student F. Source: authors’ own.
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Figure 10. Continued.
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Figure 10. Continued.

Moreover, the student used the intersection tool to add a point (G) to the digital dia-

gram and the triangle tool to highlight sub-configurations FGD and EGD and used the
angle measurement tool without any written statements. During the classroom discussion,
the student said hewas trying to prove the congruence of the four right trianglesADF, FDG,
DGE, and DEC, which explains why, once folded, the ADF and DEG triangles overlap the
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isosceles triangle FED perfectly. Here, a less formal approach based on symmetries would
be acceptable.

All of the student’s conjectures were observed facts based on perceptual apprehen-
sion of the physical diagram, and his arguments are all structuring type, supported by a
coordination of sequential, operative, and discursive apprehensions.

4.5. Task 2 cognitive analysis

Figure 11 shows the cognitive configurations of the objects that emerged from Student
F’s practice. Within square brackets, we include the words implicit in the student’s dis-
course and within curly brackets, some of our specifications. Each argument is categorized
according to the artifact used for its formulation and its typology (empirical or deductive).

The student apprehended the unlabeled paper shapes by discursive (a rectangle, a rhom-
bus, . . . ) apprehension and labeled them.He then performed the paper-folding instructions
with sequential and discursive apprehensions, even by varying the labeling. The request
that quadrilateral ABCD should be symmetrical with respect to diagonal BD (first fold)
to achieve a kite emerged from hands-on explorations (language L2, arguments A1–A3)
by perceptual apprehension that allowed the student to formulate a kind of pre-conjecture
but not explained through a general statement. It seems to us that in this phase, the stu-
dent collected examples and non-examples, identifying the condition that, besides being
sufficient, seemed to his eyes also necessary, that is, the symmetry of the quadrilateral with
respect to a diagonal (along which the first fold must be made). Although the arguments
were empirical and not detached from the physical context, they provided the basis for
subsequent deeper exploration with GeoGebra.

In the GeoGebra environment, the student first looked for a confirmation of what had
already been seen on paper, in the logic of yes (Soldano et al., 2019), and with an inductive
approach and perceptual apprehension, starting from squares and rhombuses and end-
ing with kites (artifact L3, arguments A4–A5). The student used the grid tool only at the
beginning of the exploration, as an aid, then performed a guided dragging (and guided
measuring of the sides) focusing on ABCD to reconfirm what he had already explored
through paper folding. The student then performed a maintaining dragging (to maintain
FBED, a kite moving point D or point B) without tracing; this is an operative apprehen-
sion because he changed the initial geometrical figure (the kite obtained) into another
one, ‘while keeping the properties of the initial figure’ (Duval, 1999, p. 18). The student
confirmed this cognitive process during classroom discussion (Figure 12).

With argument A6: ‘The ABCD quadrilateral always has two [distinct?] pairs of con-
gruent consecutive sides’, the student explained the symmetry condition hypothesized by
explicitly referring to the sides of quadrilateral ABCD (we believe that dragging while
measuring facilitated this logical step), coordinating the operative apprehensionwith a dis-
cursive apprehension, establishing the theoretical starting assumptions for the Euclidean
deductive reasoning set out below (arguments A7–A8). Argument A6 also shows awareness
that squares and rhombuses belong to the class of kites (this shows a conceptual control
of the figure given by the fusion of image and concept into a single mental object favored
by dragging). It is evident that, unlike in Task 1, the student viewed the kite as a quadrilat-
eral that was symmetrical with respect to a diagonal. Although the data available to us are



24 G. VALORI ET AL.

Figure 11. Cognitive configuration of Student F’s resolution of task 2. Source: authors’ own.
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Figure 11. Continued.
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Figure 11. Continued.
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Figure 11. Continued.

Figure 12. Student F’s intervention during the classroom discussion. Source: data collected by the
authors.
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insufficient to make a firm claim, from analysis of the student intervention in class discus-
sion, we believe that the student’s explorations went beyond the conditions of the identified
hypothesis, in the logic of not (Soldano et al., 2019), and that, in the absence of counter-
examples, led him to think the general statement ‘if ABCD is not a kite, then FBED is not
a kite’, expressed during the discussion by student utterances such as ABCDmust be a kite.
Perhaps additional prompts in the worksheet could have stimulated arguments about this
aspect, but in our task design, we preferred the spontaneous emergence and evolution of
arguments (also to see the possible contribution of artefacts in this respect).

The student finally observed that if the kite is a right kite, then the folding procedure will
give a very similar result to that obtained with the square sheet but provided no discursive
argument for this claim (proposition Pp12). It seems to us that this statement comes only
from folding the paper right kite chosen from the templates and was not explored further
in the digital diagram.

No student succeeded in providing arguments for this question, which was addressed
in the classroom discussion, showing how arguments based on symmetries (or on a mix of
symmetries and congruences) instead of rigorous arguments based on the congruence of
triangles sometimes make it easier to solve a task (De Villiers, 2011).

For this task, it is possible to clearly distinguish different argumentative phases for the
first question: Some arguments contribute to the construction of the conjecture for the
sufficient condition (arguments A1–A6) while others structure it to realize an acceptable
proof (arguments A7–A8). Student F did not seem to have difficulty developing deduc-
tive arguments (A7–A8) after coordinating the various apprehensions, starting from the
sequential one that contains some ‘premises’ and the ‘conclusion’, the operative one as well
as the discursive one.

5. Conclusions

In this article, we analyzed the mathematical practices of a 10th-grade student in the res-
olution of mathematical tasks undertaken in online learning class sessions during the
COVID-19 lockdown in Italy (May 2020).

The aim of this study was to examine the roles played by the representational artifacts
used (paper folding and dynamic geometry) in a construction-proving problem (task 1)
and its generalization (task 2) in the field of Euclidean geometry. Task 1 consisted of con-
jecturing and proving a certain statement that was valid in a particular case (a square)
in the kite category. Task 2 generalized the statement through explorative activities. We
first characterized the expected mathematical activity (epistemic analysis) and then the
one that effectively emerged (cognitive analysis) in the work of a student, analyzing the
mathematical objects involved (language, situations, concepts, propositions, procedures,
arguments) based on the semiotic approach. We complemented the analysis with other
theoretical tools (Duval apprehensions, dragging modalities, typing of arguments) to bet-
ter highlight the interplay of the artifacts arising in thismathematical activity. The interplay
and interactions with diagrams during the mathematical activity were interpreted through
the discursive, operative, visual, and non-visual practices employed by a student. The arti-
facts used established two different visual scenarios governed by their production rules and
the affordances offered by the environments. The physical and digital artifacts sometimes
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played complementary roles, whereas at other times they reinforced each other and allowed
the student to make inferences or rework the actions that the student carried out.

In the first task, there was no privileged artifact to start a deductive discourse. In the
second task, it seems to us that the digital one favored the discourse by acting as a bridge
between configural reasoning and proof. However, we cannot confirm the futility of the
digital diagram in the first task for at least three reasons. First, the reconstruction of folding
operations in the digital environment strengthened the student’s awareness of the hypothe-
ses. Second, because the student did not workwith a paper and pencil diagram, because the
digital diagram took this role too, and finally, because the use of measuring tools (which
also replaced the usual marks that the student affixes on his drawings) allowed the student
to make inferences by reasoning with the diagram, some previous arguments were allowed
to be completed. The synergy between visual practices and analytical practices mediated
by the developed discourse arises from the completeness and richness of the objects that
emerged from the student’s practice, although he did not tackle the task in its full generality.

It is clear that this study has strong limitations (the analysis of only one student and
a limited amount of data); however, it shows how multiple visual representations such as
folded models and crease diagrams and their digital counterparts allow for better coor-
dination of operative and discursive apprehensions during the problem-solving process,
especially during the process from conjecture generation to proof construction. Even if
more studies are required (with more challenging problems, different promptings, indi-
vidual or group data) our results seem to suggest that it is desirable for these practices to
enter into teaching. Many different possibilities of proof-oriented task design are possible,
even drawing on origami literature (Frigerio, 2002; Haga, 2008) for substantial problems
that can be modeled in dynamic geometry environments. The choice of the problem and
the task design obviously depend on many factors, including the previous knowledge of
students and the degree of confidence in paper folding and dynamic geometry practices.
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