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Abstract

This paper deals with inverse problems subject to imprecise or vague information of some in-
volved data by means of interval-valued functions. To provide interval solutions to the inverse prob-
lems we have adopted a perturbed collage-based approach and we have also introduced a numerical
procedure by means of the use of interval bases in a sense. To illustrate the results, and as an applica-
tion, we have studied the Volterra interval-valued integral equation, and provide some computational
examples.
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1 Introduction

This work deals with some inverse problems by mean of fractal-based methods, and more specifically,
collage-based techniques, as well as some related numerical schemes. It addresses a perturbed version of
a well-known and straightforward consequence of the Banach fixed point theorem, the collage theorem
[5], and its application for designing numerical algorithms to solve an inverse problem involving a class
of interval integral equations. In order to present the motivation behind that perturbed result, we should
first recall that, in its classical form, the collage theorem asserts that in a complete metric space (M, d),
for the unique fixed point x

• 2 M of a contractive self-mapping � : M �! M, the inequality

d(x, x•)  1
1 � c

d(x,�(x)),

is valid, where c 2 [0, 1) is the contraction constant and x is any element in M. Therefore, a practical
problem arises when trying to calculate the so-called collage distance, d(x,�(x)): evaluating � at x is not
always a feasible calculus from a practical perspective. For instance, this is the case when dealing with
integral operators. In our main result, we state the collage theorem in terms of an approximating element
y of �(x), which is easy to calculate in a sense, and which satisfies a perturbed inequality along the lines
of that which is outlined in the collage theorem.
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A question related to the collage theorem is the collage-based inverse problem: given a target
element x in the complete metric space (M, d), a nonempty set ⇤ (typically a nonempty compact subset
of a Euclidean real space RN) and a family {��}�2⇤ of c�-contractive self-mappings (0  c� < 1) on M,
with respective fixed points x

•
�, the aim is to find a parameter �⇤ 2 ⇤ for which the distance d(x, x•�⇤) is

as small as possible. To this end, and according to the collage theorem, one must consider (see [13]) the
optimization problem

min
�2⇤

1
1 � c�

d(x,��(x)).

Moreover, if c := inf
�2⇤

c� > 0, then we must instead deal with the nonlinear program

min
�2⇤

d(x,��(x)).

For the same practical reasons we have mentioned above, in this work we also focus on with a perturbation
of it.

In addition, and as an extension of the previous contents, we have considered another kind of
perturbed framework, which is in the presence of interval uncertainty. This is the case when some input
(data) is not deterministic, such as, following the example discussed by Román-Flores and Rojas-Medar
[18], in di↵erential equations given for the growing population by means of the Malthus model, in the
case of imprecision or vagueness of information from individuals in the initial population. To this matter,
and specially on interval arithmetic operations, the reader can find the interval analysis commented on
works by Moore [16, 17]. It has a wide range of applications, such as reliable computing, validated
numerics, interval problems with di↵erential equations, data envelopment analysis, robotics and so on,
which are discussed in several monographs and research papers, in addition to the bibliography therein
(see [20, 21, 22, 23]). Alefeld and Mayer [2] o↵er an interesting overview of applications of interval
arithmetic, and among these they include the application of the allocation of fixed points under contractive
functions, which are point wise valued on intervals. Furthermore, and in relation to our objectives, in
recent literature we find definitions of integral for interval-valued functions, such as those given by Aubin
and Cellina [4], Wu and Gong [24], and Stefanini and Bede [22], among others, which will be referred
to and discussed in this text. The integral for interval-valued functions provided by Stefanini and Bede
[22] will be a useful tool for us to use as a model and tooperate inverse problems subject to interval
uncertainty, such as the Volterra interval integral equation, as proposed in the present manuscript.

This leads us to consider interval problems, and we have focused on those of an integral-type. In
this context, the set C(⌦,Kc) of continuous functions from a compact space⌦ into the metric spaceKc of
all compact real intervals (the Hausdor↵ metric), becomes a complete metric space when endowed with
an adequate uniform metric. Therefore, the interval integral equation under study permits the described
treatment of the corresponding inverse problem. Another key factor is the way in which we construct
the perturbations in this metric space. We approximate a continuous interval-valued function by means
of a Schauder basis in an associated space of continuous functions, which generates, adequately way,
easy-to-calculate continuous interval-valued functions to evaluate the involved operators ��. So, for a
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given function X 2 C(⌦,Kc), we find another one Y 2 C(⌦,Kc), as close to ��(X) as we want, in such a
way that we can explicitly determine Y .

The structure of this paper is as follows. In Section 2 we derive the perturbed collage theorem
as a consequence of the (Caccioppoli version of the) Banach fixed point theorem and in Section 3 we
recall some facts about interval calculus. In order to performthe calculations involved in the inverse
problem associated with a certain interval integral equation e↵ectively, in Section 4 we have designed an
easy-to-calculate procedure derived from the use of some Schauder bases in certain spaces of continuous
functions. Finally, Section 5 deals with the study of the above-mentioned inverse problem, that of the
Volterra interval-valued integral equation

X(t) = G(t) +
Z

t

a

K(t, s, X(s))ds, (t 2 [a, b]), (1.1)

where G 2 C([a, b],Kc), K 2 C([a, b] ⇥ [a, b] ⇥ Kc,Kc) are assumed to be known interval functions,
and X 2 C([a, b],KC) is the unknown interval-valued function to be determined. Finally, in Section 6 we
provide some examples.

2 A perturbed collage theorem

In this paper we have developed a collage-based result, but as previosly mentioned in the Introduction,
in practical situations we can not explicitly determine the collage distance, only an approximation of it.
In order to state the corner stone of these ideas, we begin by establishing a collage theorem of perturbed
character, which follows from the generalization of R. Caccioppoli of the Banach fixed point theorem
(see, for instance, [3, Theorem 2.3]). For a self-mapping � on a nonempty set M and x 2 M, {�n(x)}n�1

denotes the sequence of iterates of� generated by x. Then, that extension of Banach’s fixed point theorem
reads as follows: assume that (M, d) is a complete metric space, � : M �! M such that

x1, x2 2 M ) d(�n(x1),�n(x2))  ↵nd(x1, x2)

and {↵n}n�1 ⇢ R+ is a sequence such that the series
X

n�1

↵n is convergent. Then, � has a unique fixed point

x
• 2 M and if x 2 M, then for all n � 1 there holds that

d(�n(x), x•) 
1X

k=n

↵kd(�(x), x),

and, in particular, lim
n!1
�n(x) = x

•.

Theorem 2.1 Let (M, d) be a complete metric space, � : M �! M and {↵n}n�1 be a sequence of non-

negative real numbers such that
1X

n=1

↵n < +1 and

x1, x2 2 M ) d(�n(x1),�n(x2))  ↵nd(x1, x2).
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If in addition x
• is the unique fixed point of �, and " > 0 and x, y 2 M satisfy d(�(x), y) < ", then for

each n � 1 with ↵n < 1 the inequality

d(x, x•) 

n�1X

k=1

↵k

1 � ↵n

(d(x, y) + ") (2.2)

is valid.

Proof. First of all, we shoul note that the above-mentioned extension of the Banach fixed point theorem,
[3, Theorem 2.3], guarantees the existence of a unique fixed point x

• of �. So, to conclude this proof, we
should fix " > 0 and x, y 2 M satisfying d(�(x), y) < ", and consider n � 1 so that ↵n < 1 (the existence
of such an n � 1, indeed, that of all them except perhaps a finite number, follows from the convergence
of the series

X

n�1

↵n). Therefore,

d(x, x•)  d(x,�n(x)) + d(�n(x), x•)
= d(x,�n(x)) + d(�n(x),�n(x

•))
 d(x,�n(x)) + ↵nd(x, x•),

and thus
d(x, x•)  1

1 � ↵n

d(x,�n(x)).

As a consequence, we arrive at the announced inequality, since

d(x, x•)  1
1 � ↵n

d(x,�n(x))

 1
1 � ↵n

n�1X

k=0

d(�k(x)),�k(�(x))



n�1X

k=0

↵k

1 � ↵n

d(�(x), x)



n�1X

k=0

↵k

1 � ↵n

(d(�(x), y) + d(y, x))



n�1X

k=0

↵k

1 � ↵n

(" + d(y, x)).

⇤

3 Some elementary notions and facts about interval calculus

We denote by KC the family of all bounded closed intervals in R, i.e.,

KC =
nh

a, a
i

: a, a 2 R and a  a

o
.
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From herein, for the sake of simplicity, we refer to any element in KC as an interval.

Given two intervals A = [a, a], B = [b, b], we have the following classical operations of the sum

A + B = [a + b, a + b]

and the multiplication by scalars

⌧A = {⌧a : a 2 A} =
8>><
>>:

[⌧a, ⌧a], if ⌧ � 0,
[⌧a, ⌧a], if ⌧  0.

With respect to the di↵erence of two intervals, several definitions exist in literature. One of the most
popular is the generalized Hukuhara di↵erence (gH-di↵erence, for short). The gH-di↵erence of two
intervals A and B, which we recall from [15, 21, 22], is as follows:

A  gH B = C ()
8>><
>>:

(a) A = B +C,

or (b) B = A + (�1)C.

Note that the di↵erence of an interval and itself is zero, that is, A  gH A = [0, 0]. Furthermore, the
gH-di↵erence of two intervals always exists and is equal to

A  gH B = [min{a � b, a � b},max{a � b, a � b}].

We refer to Markov [15], Moore [16, 17] and Alefeld and Herzberger [1] for further details on the topic
of interval analysis.

We also recall the Pompeiu-Hausdor↵ distance D on KC which is defined by

D(A, B) = max

max
a2A

d(a, B),max
b2B

d(b, A)
�

with d(a, B) = minb2B |a� b|. It is well-known (see [22]) that D(A, B) =
���A  gH B

��� = max{|a� b|, |a� b|}
where, for C 2 KC , kCk = max{|c| : c 2 C}, and that (KC ,D) is a complete and separable metric space.

Finally, in this paper we consider the definition of the integral for an interval-valued function as
used by L. Stefanini and B. Bede [22], as follows.

Definition 3.1 Given an interval-valued function f : [a, b] ! KC , with f (t) = [ f (t), f (t)], f is said to be
integrable if and only if the endpoint functions f and f are integrable, and the integral of f over [a, b] is
defined as Z

b

a

f (t)dt =

"Z
b

a

f (t)dt,

Z
b

a

f (t)dt

#
2 KC . (3.3)

Remark 3.2 The previous definition is a natural extension of the classic integral, and fits the aim of this
paper. However, we would like to point out that other definitions of integral for inteval-valued functions
exist in literature. For instance, Aubin and Cellina [4] have defined the Aunmann integral of f over [a, b]
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as
R

b

a
f (t)dt =

⇢R
b

a
h(t)dt : h 2 S ( f )

�
, where S ( f ) is the set of all the integrable selectors of f , that is,

S ( f ) =
�
h : [a, b] ! R : h integrable, h(t) 2 f (t),8t 2 [a, b]

 
. Bede and Gal [6] have proved that if f is

a measurable and integrable bounded interval-valued function, then the endpoint functions f and f are
integrable, and (3.3) is fulfilled. On the other hand, Wu and Gong [24] introduced the Henstock integral
for interval-valued functions as an extension of the Henstock integral in real-valued functions. In fact,
the endpoint functions f and f are Henstock integrable if and only if the interval-valued function f is
Henstock integrable, and its integral coincides with the interval defined by the Henstock integral of the
endpoint functions ([24], Theorem 2.1). In this way, under certain hypotheses, the Henstock integral of f

verifies (3.3).

4 Approximation of a continuous interval-valued function

In this section we focus on obtaining an approximation of a continuous interval-valued function in terms
of a sequence of functions, simple in a sense, which will be essential in the development of our numerical
method to solve interval integral inverse problems by means of the perturbed collage theorem, Theorem
2.1.

Given ⌦ a compact topological space, we will denote by C (⌦) the Banach space of all continuous
real valued functions defined on ⌦ with its usual max norm, k · k1, and by C (⌦,KC) the set of all
continuous functions from ⌦ into KC endowed with the distance

H( f , h) := sup
!2⌦

max{|h(!) � f (!)|, |h(!) � f (!)|} (4.4)

with f (!) = [ f (!), f (!)] and h(!) = [h(!), h(!)] in C (⌦,KC).

It is very easy to check that f = [ f , f ] : ⌦ ! KC is continuous if and only if f and f are
continuous. As a direct consequence, if T⌦ is the nonempty set

T⌦ := {( f , f ) 2 C (⌦) ⇥ C (⌦) : f  f }

with the metric
d(( f , f ), (h, h)) := max{k f � hk1, k f � hk1},

then, the mapping
S : (C (⌦,KC) ,H) ! (T⌦, d)

defined by
S ([ f , f ]) := ( f , f )

is an isometric bijection. In particular, (C (⌦,KC) ,H) is a complete and separable metric space.
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In order to obtain the aforementioned approximation for a continuous interval-valued function, we
make use of an adequate Schauder basis in a certain Banach space, motivated by the succesful use in the
scalar-valued case (see [7], [9], [10] and [11]). We should recall that, in general, given a Banach space
E, a sequence { fn}n�1 of elements of E is said to be a Schauder basis of E if, for every z 2 E, there is a
unique sequence {↵n}n�1 of scalars such that z =

P
n�1 ↵n fn. A Schauder basis gives rise to the canonical

sequence of (continuous and linear) associated projections ⇧m : E ! E, ⇧m(
P

n�1 ↵n fn) :=
P

m

k=1 ↵k fk

(see [12] and [19]).

In the following result we introduce an approximation of a continuous interval-valued function in
the metric space C(⌦,KC) in terms of a Schauder basis in the Banach space C(⌦), which will be essential
for obtaining the algorithm to solve the inverse problem for the Volterra interval integral equation.

Proposition 4.1 Let ⌦ be a topological compact space, { fn}n�1 be a Schauder basis of C(⌦) and let
{⇧n}n�1 be the associated sequence of projections such that

a) if ! 2 ⌦ and n � 1, then fn(!) � 0, and

b) if g 2 C(⌦), g � 0, and n � 1, then ⇧n(g) � 0.

Thus, given f 2 C(⌦,KC) and " > 0 there exists n � 1 such that

H ( f , Pn( f )) < ",

where

Pn( f )(!) =
nX

k=1

↵k�k(!) +
nX

k=1
�k�↵k�0

(�k � ↵k) k(!) �gH

0
BBBBBBBBBBBB@

nX

k=1
�k�↵k<0

|�k � ↵k| k(!)

1
CCCCCCCCCCCCA

with �k(!) =
⇥
fk(!), fk(!)

⇤
,  k(!) =

⇥
0, fk(!)

⇤
and certain real numbers ↵1,↵2, . . . ,↵n and �1, �2, . . . , �n.

Proof. If f = [ f , f ] 2 C (⌦,KC), the fact that { fn}n�1 is a Schauder basis of C(⌦) implies the existence
of sequences of scalars {↵n}n�1 and {�n}n�1 such that f =

P
n�1 ↵n fn and f =

P
n�1 �n fn. Therefore, we

define

Pn( f )(!) :=

2
6666664

nX

k=1

↵k fk(!),
nX

k=1

�k fk(!)

3
7777775 , (n � 1, ! 2 ⌦),

and, according to the definition (4.4) of the distance H, given " > 0 we can guarantee the existence of
n � 1 such that H( f , Pn( f )) < ". Finally, taking into account that if a, b,↵, � 2 R+0 with a↵�b� > 0 , then

[0, a↵ � b�] = a[0,↵] �gH b[0, �],
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it follows that

Pn( f )(!) =

2
6666664

nX

k=1

↵k fk(!),
nX

k=1

↵k fk(!)

3
7777775 +

2
66666640,

nX

k=1

(�k � ↵k) fk(!)

3
7777775

=

nX

k=1

↵k

⇥
fk(!), fk(!)

⇤
+

2
6666666666664
0,

nX

k=1
�k�↵k�0

(�k � ↵k) fk(!)

3
7777777777775
�gH

2
6666666666664
0,

nX

k=1
�k�↵k<0

|�k � ↵k| fk(!)

3
7777777777775

=

nX

k=1

↵k

⇥
fk(!), fk(!)

⇤
+

nX

k=1
�k�↵k�0

(�k � ↵k)
⇥
0, fk(!)

⇤
�gH

0
BBBBBBBBBBBB@

nX

k=1
�k�↵k<0

|�k � ↵k|
⇥
0, fk(!)

⇤

1
CCCCCCCCCCCCA

=

nX

k=1

↵k�k(!) +
nX

k=1
�k�↵k�0

(�k � ↵k) k(w) �gH

0
BBBBBBBBBBBB@

nX

k=1
�k�↵k<0

|�k � ↵k| k(!)

1
CCCCCCCCCCCCA
,

where �k(!) =
⇥
fk(!), fk(!)

⇤
,  k(!) =

⇥
0, fk(!)

⇤
. ⇤

The following result provides us with an procedure to determine the integral of Pn( f ) in Proposition
4.1:

Proposition 4.2 (i) Given hk : [a, b] ! KC integrable interval-valued functions, for k = 1, . . . , n, then
P

n

k=1 hk is integrable, and
R

b

a

P
n

k=1 hk(t)dt =
P

n

k=1

R
b

a
hk(t)dt.

(ii) Given f , h : [a, b] ! KC integrable interval-valued functions, and define (h gH f )(t) = h(t) gH f (t),
then h  gH f is integrable. Furthermore, if f (t) = [0, f (t)] and h(t) = [0, h(t)], with h(t) � f (t), thenR

b

a
(h(t)  gH f (t))dt =

R
b

a
h(t)dt  gH

R
b

a
f (t)dt.

Proof. (i) The proof is straightforward, since the summation of hk, k = 1, . . . , n, is equivalent to the
summantion of their lower and upper endpoints, which are integrable by Definition 3.1.
(ii) By definition of the gH-di↵erence, we have that

h(t)  gH f (t) =
h
min{h(t) � f (t), h(t) � f (t)},max{h(t) � f (t), h(t) � f (t)}

i
.

Since f and h are integrable, then h, f , h, f are integrable. The latest implies that h � f and h �
f are integrable. Then, min{h � f , h � f } and max{h � f , h � f } are integrable, therefore h  gH f is

integrable. Furthermore if f (t) = [0, f (t)] and h(t) = [0, h(t)] with h(t) � f (t), then
R

b

a
(h(t)  gH f (t))dt =

0,
R

b

a
(h(t) � f (t))dt

�
=

R
b

a
h(t)dt  gH

R
b

a
f (t)dt. ⇤

Now we are in a position to calculate the integral of Pn( f ).

Proposition 4.3 Consider the interval-valued functions and the hypotheses and equations given in Propo-
sition 4.1 with ⌦ := [a, b]. Then,

Z
b

a

Pn( f )(t)dt =

nX

k=1

↵k

Z
b

a

�k(t)dt +

nX

k=1
�k�↵k�0

(�k � ↵k)
Z

b

a

 k(t)dt �gH

0
BBBBBBBBBBBB@

nX

k=1
�k�↵k<0

|�k � ↵k|
Z

b

a

 k(t)dt

1
CCCCCCCCCCCCA
.
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Proof. The interval-valued functions �k and  k verify the hypothesis required in (i) and (ii) in Proposition
4.2. Therefore, in view of Proposition 4.1, the validity of the announced equality follows. ⇤

The following technical result together with Proposition 4.2 and Propostion 4.3, allow us to check
that

R
b

a
Pn( f )(t)dt is close to

R
b

a
f (t)dt in the sense of the distance D.

Lemma 4.4 If f , h 2 C([a, b],Kc), then

D

 Z
b

a

f (s)ds,

Z
b

a

h(s)ds

!
 (b � a)H( f , h).

Proof. If f (s) = [ f (s), f (s)] and h(s) = [h(s), h(s)], it su�ces to follow this chain of inequalities:

D

 Z
b

a

f (s)ds,

Z
b

a

h(s)ds

!
= max

(������

Z
b

a

f (s)ds �
Z

b

a

h(s)ds

������ ,
������

Z
b

a

f (s)ds �
Z

b

a

h(s)ds

������

)

 max
(Z

b

a

| f (s) � h(s)|ds,

Z
b

a

| f (s) � h(s)|ds

)


Z

b

a

max
n
| f (s) � h(s)|, | f (s) � h(s)|

o
ds

=

Z
b

a

D( f (s), h(s))ds


Z

b

a

H( f , h)ds

= (b � a)H( f , h).

⇤

5 Inverse problem

Since, in this work, we adopt a collage-based approach to deal with an inverse problem related to the
Volterra interval integral equation (1.1), we must first consider its fixed-point-treatment, that is, the well-
known fact that, under suitable assumptions of continuity and lipschitzianity, the equation (1.1) admits
a unique solution, and that it is possible to give this in terms of the limit of the sequence of iterates of
an integral operator at a continuous interval-valued function, since such an interval integral equation is
obviously equivalent to determine a fixed point of an adequate integral operator. This follows from the
generalized Banach fixed point theorem ([3, Theorem 2.3]).

Proposition 5.1 Assuming G 2 C([a, b],Kc) and K 2 C([a, b]2 ⇥ Kc,Kc), in such a way that, for some
L > 0 there holds that

A, B 2 Kc

a  t, s  b

9>>=
>>; ) D(K(t, s, A),K(t, s, B))  L D(A, B).
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Then, the self-operator � : C([a, b],Kc) �! C([a, b],Kc) defined at each X 2 C([a, b],Kc) as

�(X)(t) := G(t) +
Z

t

a

K(t, s, X(s))ds, (t 2 [a, b]) (5.5)

admits a unique fixed point X
•. Furthermore, if X 2 C([a, b],Kc) and n � 1, then

H(�n(X), X•) 
0
BBBBBB@
1X

k=n

L
k(b � a)k

k!

1
CCCCCCA H(�(X), X),

and so,
lim
n!1
�n(X) = X

•.

In particular, and according to the perturbed collage theorem, Theorem 2.1, we arrive at:

Corollary 5.2 Let G 2 C([a, b],Kc), K 2 C([a, b]2 ⇥Kc,Kc) and L > 0 such that

A, B 2 Kc

a  t, s  b

9>>=
>>; ) D(K(t, s, A),K(t, s, B))  L D(A, B).

Let X
• 2 C([a, b],Kc) be the unique solution of the Volterra interval integral equation (1.1) and suppose

that " > 0 and X,Y 2 C([a, b],Kc) satisfy

H

 
G(·) +

Z (·)

a

K(·, s, X(s))ds,Y(·)
!
< ".

Then
H(X, X•)  e

L(b�a)(H(X,Y) + ").

With the idea in mind of stating the previosly inverse problem in a precise way, now we can focus
on the following fact: In the perturbed collage theorem, Theorem 2.1, we can replace the image by � of
an element x 2 M by another y 2 M where, for a given " > 0, d(x, y) < ". When dealing with a certain
inverse problem involving the Volterra interval integral equation (1.1), our aim is to find, for a given
X 2 C([a, b],Kc) and an " > 0, a continuous function Y 2 C([a, b],Kc) such that both H(�(X),Y) < "
and that Y is easy-to-calculate, unlike �(X) in general. We do this in Lemma 5.3 in a constructive way,
which will be essential for addressing the inverse problem.

Lemma 5.3 Let { fn}n�1 be a Schauder basis in C([a, b]2) with sequence of associated projections {⇧n}n�1

and satisfying the hypotheses in Proposition 4.1, X 2 C([a, b],Kc), � be defined as in (5.5) and " > 0.
Therefore, there exists n � 1 in such a way that for Pn defined as in Proposition 4.1 and Y : [a, b] �! Kc

is the continuous interval-valued function

Y(·) := G(·) +
Z (·)

a

Pn(K(·, s, X(s))ds,

we have that
H(�(X),Y) < ".

10



Proof. If Z 2 C([a, b]2,Kc) is defined at each a  t, s  b by

Z(t, s) := K(t, s, X(s)), (5.6)

according to Proposition 4.1, let n be a positive integer with

H(Z, Pn(Z)) <
"

b � a
.

Then, taking into account the invariance of D by translations, Lemma 4.4 and (5.6), we arrive at

H(�(X),Y) = sup
t2[a,b]

D

 
G(t) +

Z
t

a

K(t, s, X(s))ds,G(t) +
Z

t

a

Pn(K(t, s, X(s)))ds

!

= sup
t2[a,b]

D

 Z
t

a

K(t, s, X(s))ds,

Z
t

a

Pn(K(t, s, X(s)))ds

!

 sup
t2[a,b]

(t � a)H(K(t, ·, X(·)), Pn(K(t, ·, X(·))))

 (b � a)H(Z, Pn(Z))
< ".

⇤

Finally, we present the general scheme for solving an inverse problem via the perturbed collage
theorem, Theorem 2.1. The idea is to consider a complete metric space (M, d), a nonempty index set ⇤
–usually a compact subset of RN–, a family of contractive self-mappings �� : M �! M or, at least,those
which satisfy the conditions of the perturbed collage theorem, Theorem 2.1, with a unique fixed point x

•
�,

a target element x 2 M and an " > 0. Then, for any � 2 ⇤ we calculate an element y� 2 M, in a suitable
way, such that d(��(x), y�) is easily computable and

d(��(x), y�) < ",

and then we determine that
�⇤ 2 argmin

�2⇤
d(y�, x), (5.7)

for which, in view of (2.2), it holds that

d(x, x•�) 

n�1X

k=1

↵(�)
k

1 � ↵(�)
n�

(d(x, y�) + "), (5.8)

where, for each � 2 ⇤, {↵n�}n�1 is a sequence in R+ with
1X

n=1

↵n� < +1 and n� � 1 satisfies ↵n� < 1. If,

in addition, we assume the stability condition

⇢ := sup

8>>>>>>>>><
>>>>>>>>>:

n�1X

k=1

↵(�)
k

1 � ↵(�)
n�

: � 2 ⇤

9>>>>>>>>>=
>>>>>>>>>;

< 1, (5.9)
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then (5.8) yields
d(x, x•�)  ⇢(d(x, y�) + "),

and so we can consider problem (5.7) instead of

�⇤ 2 argmin
�2⇤

d(x, x•�),

since in general we can not determine each fixed point x
•
� or, if it is possible to obtain an approximation

of it, such a calculation has a very high computational cost. The condition (5.9) is quite familiar in
some particular cases. For instance, when the self-mappings �� are c�-contractive, with 0  c� < 1,
it is equivalent to the well-known assumption sup

�2⇤
c� < 1 in a typical collage-based approach to inverse

problems (see for instance [8], [13] and [14]).

Now we can address the inverse problem related to the Volterra interval integral equation (1.1). So
we consider a, b 2 R with a < b, a nonempty set ⇤ and, for each � 2 ⇤, two interval-valued functions
G� 2 C([a, b],Kc) and K� 2 C([a, b]2 ⇥Kc,Kc), and an L� > 0 such that

A, B 2 Kc

a  t, s  b

9>>=
>>; ) D(K�(t, s, A),K�(t, s, B))  L� D(A, B).

We should also consider the self-operator �� : C([a, b],Kc) �! C([a, b],Kc) defined for each X 2
C([a, b],Kc) by

��(X)(t) := G�(t) +
Z

t

a

K�(t, s, X(s))ds, (t 2 [a, b]), (5.10)

and its unique fixed point X
•
�. Then, in view of Proposition 5.1, the stability condition (5.9) is valid as

soon as
sup
�2⇤

L� < 1

and therefore, under this hypothesis, the preceding reasoning applies.

6 Numerical examples

In order to illustrate the behaviour of the inverse problem, we have developed some examples. Given ⇤
a compact subset of RN , for � 2 ⇤, given G� 2 C ([a, b],KC), and K� : [a, b] ⇥ [a, b] ⇥ KC ! KC we
consider the problem of finding X 2 C ([a, b],KC) such that

X(t) = G�(t) +
Z

t

a

K�(t, s, X(s))ds, (t 2 [a, b]).

The inverse problem starts with a target element X̃. This element is obtained as follows: first of all,
we fix values �0 2 ⇤ and we obtain a numerical approximation of the solution of the equation

X(t) = G�0 (t) +
Z

t

a

K�0 (t, s, X(s))ds, (t 2 [a, b]). (6.11)

12



This numerical approximation is an approximation of the fixed point of the self-operator given in (5.10).
To obtain X̃ we start with an initial X0 2 C ([a, b],KC) and for j = 1, 2, ... we calculate for the chosen
n 2 N

X
n

j
(t) := G�0 (t) +

Z
t

a

Pn(K�0 (t, s, Xn

j�1(s))ds, (t 2 [a, b]),

where Pn is described in Proposition 4.1 using as { fn} the usual basis in C([0, 1]2) constructed over the
diadic nodes (see for instance [9]). Fixing " > 0 we consider m 2 N in such a way that

H(Xn

m
, Xn

m�1) < ",

and take X̃(t) := X
n

m
(t) as the target element. We can now address the inverse problem. Given the target

element X̃ : [a, b] ! KC , and fixed r 2 N, we consider

Y�,r(t) = G�(t) +
Z

t

a

Pr(K�(t, s, X̃(s))ds, (t 2 [a, b]).

We then compute �⇤
r
2 ⇤ in such a way that

H(X̃,Y�⇤r ,r) = min
�2⇤

H(X̃,Y�,r), (6.12)

and we analyse the di↵erences between �0 and �⇤
r
.

Example 6.1 Let

X(t) = G(t) +
Z

t

0
K(t, s, X(s))ds, (t 2 [0, 1]) (6.13)

be the Volterra interval equation where G(t) is obtained in such away that the solution of the equation
is X(t) = [cos(t) � t

2 , cos(t) + t

2 ] and K(t, s, u) = (
p

2t � 1s)u. We now consider the family of Volterra
interval integral equations

X(t) = G�(t) +
Z

t

0
K�(t, s, X(s))ds, (t 2 [0, 1])

with G�(t) = G(t) and K�(t, s, u) = (↵t + �s)u, where � = (↵, �) with ↵ 2 [1, 3] and � 2 [� 3
2 ,�1

2 ]. For the
value �0 = (↵0, �0) = (

p
2,�1), we compute X̃ = X

n

m
and with this target element we calculate Y�,r. Then

we solve the minimization problem (6.12) and we note �⇤
r
= (↵⇤

r
, �⇤

r
) as the solution. In Table 1, we show

the obtained values for di↵erent m, n and r.

Example 6.2 We now consider the family of Volterra interval integral equations

X(t) = [2t +
1
8
, 2t +

3
8

] +
Z

t

0
(↵ cos(t) + � cos(s))arctan(X(s))ds, (t 2 [0, 1]) (6.14)

with arctan(X(s)) = [arctan(X(s)), arctan(X(s))], ↵ 2 [1.5, 2.5] and � 2 [0.5, 1.5]. For ↵0 = 2 and �0 = 1,
we compute X̃ = X

n

m
and we calculate Y(↵,�),r. Then we solve the minimization problem (6.12) and we

note (↵⇤
r
, �⇤

r
) as the solution.
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Table 1. Numerical results for Example 6.1.
m n r ↵⇤

r
�⇤

r
H(X̃,Y�⇤r ,r)

3 32 32 1.4052404924510171 �0.9908622806761388 1.48128 ⇥ 10�9

3 92 92 1.4127066294461754 �0.9982113290080197 3.14213 ⇥ 10�9

3 172 172 1.4064981933829088 �0.9904868353840546 1.88601 ⇥ 10�9

7 32 32 1.4142065762008067 �0.9999923158306506 2.58755 ⇥ 10�9

7 92 92 1.4142138642529456 �1.0000006138203197 2.03712 ⇥ 10�9

7 172 172 1.414213609421653 �1.0000001074746905 2.8527 ⇥ 10�9

Table 2. Numerical results for Example 6.2.
m n r ↵⇤

r
�⇤

r
H(X̃,Y�⇤r ,r)

7 92 92 1.9960170992122808 1.002917299482817 3.33067 ⇥ 10�16

7 172 172 1.9978735611639642 1.001405265860099 6.98024 ⇥ 10�9

Conclusions

In this paper we have established a perturbed Collage theorem. To deal with Volterra interval-valued
integral equations, the use of adequate Schauder bases in certain Banach spaces, naturally associated
with the inverse problem, allows us to design an algorithm based on the perturbed Collage Theorem.

In our future work, we will explore new contexts and applications related to this manuscript, which
includes the vagueness of data needs of fuzzy modelling, as well as the necessary tools in order to extend
the content and results of the present paper.
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